KR101541021B1 - Piezoelectric ceramics, manufacturing method therefor, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removal device - Google Patents
Piezoelectric ceramics, manufacturing method therefor, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removal device Download PDFInfo
- Publication number
- KR101541021B1 KR101541021B1 KR1020137018573A KR20137018573A KR101541021B1 KR 101541021 B1 KR101541021 B1 KR 101541021B1 KR 1020137018573 A KR1020137018573 A KR 1020137018573A KR 20137018573 A KR20137018573 A KR 20137018573A KR 101541021 B1 KR101541021 B1 KR 101541021B1
- Authority
- KR
- South Korea
- Prior art keywords
- piezoelectric
- manganese
- mass
- piezoelectric ceramics
- barium titanate
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 168
- 239000007788 liquid Substances 0.000 title claims description 39
- 239000000428 dust Substances 0.000 title claims description 21
- 238000004519 manufacturing process Methods 0.000 title description 27
- 239000011572 manganese Substances 0.000 claims abstract description 108
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 88
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 88
- 239000013078 crystal Substances 0.000 claims abstract description 83
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 claims abstract description 73
- 229910002113 barium titanate Inorganic materials 0.000 claims abstract description 73
- 229910052751 metal Inorganic materials 0.000 claims abstract description 45
- 239000002184 metal Substances 0.000 claims abstract description 45
- 150000001875 compounds Chemical class 0.000 claims abstract description 32
- 229910052788 barium Inorganic materials 0.000 claims abstract description 24
- 239000010936 titanium Substances 0.000 claims description 152
- 239000002245 particle Substances 0.000 claims description 98
- 238000000034 method Methods 0.000 claims description 44
- 239000000843 powder Substances 0.000 claims description 36
- 238000005245 sintering Methods 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 28
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 20
- 239000011230 binding agent Substances 0.000 claims description 19
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 19
- 150000002739 metals Chemical class 0.000 claims description 3
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 48
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 12
- 239000011133 lead Substances 0.000 description 12
- 239000000523 sample Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- 239000011164 primary particle Substances 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 239000004372 Polyvinyl alcohol Substances 0.000 description 9
- 229920002451 polyvinyl alcohol Polymers 0.000 description 9
- 229910052719 titanium Inorganic materials 0.000 description 9
- 239000012535 impurity Substances 0.000 description 8
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 7
- 238000002050 diffraction method Methods 0.000 description 7
- 239000006104 solid solution Substances 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 6
- 238000010894 electron beam technology Methods 0.000 description 6
- 238000002524 electron diffraction data Methods 0.000 description 6
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 6
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 6
- 238000001694 spray drying Methods 0.000 description 6
- 229910052791 calcium Inorganic materials 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 238000002003 electron diffraction Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 239000011812 mixed powder Substances 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 150000001553 barium compounds Chemical class 0.000 description 4
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Chemical compound [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 4
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 239000011163 secondary particle Substances 0.000 description 4
- 150000003609 titanium compounds Chemical class 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- ITHZDDVSAWDQPZ-UHFFFAOYSA-L barium acetate Chemical compound [Ba+2].CC([O-])=O.CC([O-])=O ITHZDDVSAWDQPZ-UHFFFAOYSA-L 0.000 description 2
- -1 barium alkoxides Chemical class 0.000 description 2
- GXUARMXARIJAFV-UHFFFAOYSA-L barium oxalate Chemical compound [Ba+2].[O-]C(=O)C([O-])=O GXUARMXARIJAFV-UHFFFAOYSA-L 0.000 description 2
- 229940094800 barium oxalate Drugs 0.000 description 2
- QKYBEKAEVQPNIN-UHFFFAOYSA-N barium(2+);oxido(oxo)alumane Chemical compound [Ba+2].[O-][Al]=O.[O-][Al]=O QKYBEKAEVQPNIN-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 229940071125 manganese acetate Drugs 0.000 description 2
- 229940093474 manganese carbonate Drugs 0.000 description 2
- 235000006748 manganese carbonate Nutrition 0.000 description 2
- 239000011656 manganese carbonate Substances 0.000 description 2
- 150000002697 manganese compounds Chemical class 0.000 description 2
- 229940099594 manganese dioxide Drugs 0.000 description 2
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 2
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 description 2
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920005596 polymer binder Polymers 0.000 description 2
- 239000002491 polymer binding agent Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000001350 scanning transmission electron microscopy Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 238000004876 x-ray fluorescence Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920001967 Metal rubber Polymers 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical group 0.000 description 1
- 238000009768 microwave sintering Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/09—Forming piezoelectric or electrostrictive materials
- H10N30/093—Forming inorganic materials
- H10N30/097—Forming inorganic materials by sintering
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/16—Production of nozzles
- B41J2/1607—Production of print heads with piezoelectric elements
- B41J2/161—Production of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/16—Production of nozzles
- B41J2/1621—Manufacturing processes
- B41J2/1623—Manufacturing processes bonding and adhesion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/16—Production of nozzles
- B41J2/1621—Manufacturing processes
- B41J2/1632—Manufacturing processes machining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/16—Production of nozzles
- B41J2/1621—Manufacturing processes
- B41J2/164—Manufacturing processes thin film formation
- B41J2/1642—Manufacturing processes thin film formation thin film formation by CVD [chemical vapor deposition]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/16—Production of nozzles
- B41J2/1621—Manufacturing processes
- B41J2/164—Manufacturing processes thin film formation
- B41J2/1646—Manufacturing processes thin film formation thin film formation by sputtering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/465—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
- C04B35/468—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/465—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
- C04B35/468—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
- C04B35/4682—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62655—Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62695—Granulation or pelletising
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/106—Langevin motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/16—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
- H02N2/163—Motors with ring stator
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
- H10N30/8536—Alkaline earth metal based oxides, e.g. barium titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
- C04B2235/3203—Lithium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
- C04B2235/3222—Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
- C04B2235/3234—Titanates, not containing zirconia
- C04B2235/3236—Alkaline earth titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
- C04B2235/3267—MnO2
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3287—Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3293—Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3298—Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/441—Alkoxides, e.g. methoxide, tert-butoxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/442—Carbonates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/443—Nitrates or nitrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/449—Organic acids, e.g. EDTA, citrate, acetate, oxalate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5454—Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/761—Unit-cell parameters, e.g. lattice constants
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
- C04B2235/85—Intergranular or grain boundary phases
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
압전 성능 및 기계적 품질계수(Qm)가 양호한 티탄산바륨계 압전 세라믹 및 그것을 사용한 압전소자를 제공한다. 구체적으로는, 압전 세라믹에 있어서, 결정 입자; 및 상기 결정 입자간의 입계를 구비하고, 상기 결정 입자는, 페로브스카이트형 구조의 티탄산바륨 및 상기 티탄산바륨에 대하여 금속환산으로 0.04질량%이상 0.20질량%이하의 망간을 각각 함유하고, 상기 입계는 Ba4Ti12027 및 Ba6Ti17040으로 이루어진 군으로부터 선택된 적어도 하나의 화합물을 함유하고, 망간은 상기 입계에 함유된 결정에 포함되며, 상기 압전 세라믹의 표면 또는 단면상에서 관측했을 때 상기 입계에 함유되는 Ba4Ti12027 및 Ba6Ti17040으로 이루어진 군으로부터 선택된 적어도 하나의 화합물이 차지하는 비율이, 상기 압전 세라믹의 표면 또는 단면의 전체면적에 대하여 0.05면적%이상 2면적%이하인, 압전 세라믹과, 이것을 사용한 압전소자를 제공한다.A barium titanate piezoelectric ceramic excellent in piezoelectric performance and mechanical quality factor (Q m ) and a piezoelectric device using the piezoelectric ceramic are provided. Specifically, in a piezoelectric ceramics, crystal grains; And the grain boundaries between the crystal grains, wherein the crystal grains each contain 0.04 mass% or more and 0.20 mass% or less of manganese in terms of metal with respect to barium titanate of the perovskite type structure and barium titanate, At least one compound selected from the group consisting of Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 , wherein manganese is included in crystals contained in the grain boundaries, and when observed on the surface or cross section of the piezoelectric ceramics, The proportion of at least one compound selected from the group consisting of Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 contained in the grain boundary is 0.05 area% or more and 2 area% or more, Or less, and a piezoelectric device using the piezoelectric ceramic.
Description
본 발명은, 압전 세라믹, 그 제조 방법, 압전소자, 액체 토출 헤드, 초음파 모터 및 진애 제거장치에 관한 것이다. 특히, 본 발명은, 결정립계의 조성 및 결정구조를 제어함으로써 압전 성능 및 기계적 품질계수(Qm)가 양호한 티탄산바륨계 압전 세라믹에 관한 것이다.The present invention relates to a piezoelectric ceramic, a manufacturing method thereof, a piezoelectric element, a liquid discharge head, an ultrasonic motor, and a dust removing device. Particularly, the present invention relates to a barium titanate piezoelectric ceramics having good piezoelectric performance and mechanical quality factor (Q m ) by controlling the composition of grain boundaries and crystal structure.
일반적으로 사용된 압전 세라믹은, 티탄산 지르코늄산연(이하, "PZT"라고 한다)과 같은 ABO3형 페로브스카이트(perovskite) 산화물이다.A piezoelectric ceramic generally used is an ABO 3 type perovskite oxide such as zirconium titanate (hereinafter referred to as "PZT").
그렇지만, A사이트 원소로서 납을 함유하는 PZT는 환경 문제의 원인이 될 수도 있다고 한다. 이 때문에, 납을 함유하지 않는 페로브스카이트형 산화물을 사용한 압전 세라믹이 요구되고 있다.However, PZT containing lead as an A site element may cause environmental problems. For this reason, a piezoelectric ceramics using a perovskite-type oxide not containing lead is required.
비납 페로브스카이트형의 압전 세라믹 재료로서, 티탄산바륨이 알려져 있다. 특허문헌1에는, 저항가열/2단계 소결법을 사용해서 제작한 티탄산바륨이 개시되어 있다. 나노 사이즈의 티탄산바륨 분말을 상기 2단계 소결법에 의해 소결하면, 압전 특성이 우수한 세라믹을 얻을 수 있는 것이 기재되어 있다. 그렇지만, 상기의 2단계 소결법으로 얻어진 세라믹은, 기계적 품질계수가 낮고, 고온에서의 내구성이 낮기 때문에, 공진 디바이스에서 사용하는데 적절하지 않다.Barium titanate is known as a piezoelectric ceramics material of a non-perovskite type. Patent Document 1 discloses barium titanate produced by a resistance heating / two-step sintering method. It is described that when a nano-sized barium titanate powder is sintered by the above two-step sintering method, a ceramic excellent in piezoelectric characteristics can be obtained. However, the ceramics obtained by the above two-step sintering method are not suitable for use in resonance devices because of their low mechanical coefficient of quality and low durability at high temperatures.
또한, 특허문헌2에는, 티탄산바륨의 바륨 사이트의 일부를 칼슘으로 치환하고, 한층 더 망간, 철 또는 구리를 첨가한 세라믹이 개시되어 있다. 특허문헌에는, 그 세라믹이 망간, 철 또는 구리에 의해, 우수한 기계적 품질계수를 갖는 것이 기재되어 있다. 그러나, 칼슘의 양을 늘리는 것에 의해, 결정상 전이의 온도가 약 -50℃부근까지 이동하기 때문에, 압전 특성이 현저하게 저하한다.Patent Document 2 discloses a ceramic in which a part of the barium titanate barium site is substituted with calcium and further manganese, iron or copper is added. In the patent literature, it is described that the ceramic has an excellent mechanical quality coefficient by manganese, iron or copper. However, by increasing the amount of calcium, the temperature of the crystal phase transition shifts to about -50 占 폚, so that the piezoelectric property remarkably decreases.
또한, 망간의 첨가량을 늘리면 티탄산바륨의 결정 입자외에 산화망간(MnOx)이 석출하는 것이 잘 알려져 있다. 상기 산화망간은 유전체로서의 특성을 갖지 않기 때문에, 세라믹의 압전 성능을 저하시킨다. 한층 더, 상기 산화망간은 망간의 원자가(valence)가 불안정하기 때문에 기계적 품질계수를 저하시킨다.It is well known that when manganese is added in an increased amount, manganese oxide (MnO x ) precipitates in addition to barium titanate crystal grains. Since the manganese oxide does not have a dielectric property, the piezoelectric performance of the ceramic is deteriorated. Furthermore, the above-mentioned manganese oxide lowers the mechanical quality factor because the valence of manganese is unstable.
즉, 티탄산바륨계 압전 세라믹에는, 양호한 압전 성능과 높은 기계적 품질계수의 양쪽이 기대되고 있다.In other words, barium titanate piezoelectric ceramics is expected to have both good piezoelectric performance and high mechanical quality factor.
본 발명은, 이러한 과제를 극복하기 위해서 이루어진 것이다. 본 발명의 목적은, 결정립계의 조성 및 결정구조를 제어함으로써 압전 성능 및 기계적 품질계수(Qm)가 양호한 압전 세라믹 및 그 제조 방법을 제공하는데 있다.The present invention has been made in order to overcome such a problem. An object of the present invention is to provide a piezoelectric ceramics having good piezoelectric performance and mechanical quality factor (Q m ) by controlling the composition of grain boundaries and crystal structure, and a method for producing the same.
본 발명의 다른 목적은, 상기 압전 세라믹을 각각 사용한 압전소자, 액체 토출 헤드, 초음파 모터 및 진애 제거장치를 제공하는데 있다.It is another object of the present invention to provide a piezoelectric element, a liquid discharge head, an ultrasonic motor, and a dust removing device each using the piezoelectric ceramics.
상기 과제를 해결하기 위한 압전 세라믹은, 압전 세라믹에 있어서, 결정 입자; 및 상기 결정 입자간의 입계를 구비하고, 상기 결정 입자는, 페로브스카이트형 구조의 티탄산바륨 및 상기 티탄산바륨에 대하여 금속환산으로 0.04질량%이상 0.20질량%이하의 망간을 각각 함유하고, 상기 입계는 Ba4Ti12027 및 Ba6Ti17040으로 이루어진 군으로부터 선택된 적어도 하나의 화합물을 함유하고, 망간은 상기 입계에 함유된 결정에 포함되며, 상기 압전 세라믹의 표면 또는 단면상에서 관측했을 때 상기 입계에 함유되는 Ba4Ti12027 및 Ba6Ti17040으로 이루어진 군으로부터 선택된 적어도 하나의 화합물이 차지하는 비율이, 상기 압전 세라믹의 표면 또는 단면의 전체면적에 대하여 0.05면적%이상 2면적%이하이다.A piezoelectric ceramic for solving the above-mentioned problems is characterized in that in a piezoelectric ceramics, crystal grains; And the grain boundaries between the crystal grains, wherein the crystal grains each contain 0.04 mass% or more and 0.20 mass% or less of manganese in terms of metal with respect to barium titanate of the perovskite type structure and barium titanate, At least one compound selected from the group consisting of Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 , wherein manganese is included in crystals contained in the grain boundaries, and when observed on the surface or cross section of the piezoelectric ceramics, The proportion of at least one compound selected from the group consisting of Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 contained in the grain boundary is 0.05 area% or more and 2 area% or more, Or less.
상기 과제를 해결하기 위한 압전 세라믹의 제조 방법은, 금속환산으로 0.04질량%이상 0.20질량%이하의 망간을 각각 함유하는 티탄산바륨 입자에 바인더를 첨가해서 조립분을 제작하는 공정; 및 상기 조립분에 Ba4Ti12027 및 Ba6Ti17040 입자로 이루어진 군으로부터 선택된 적어도 하나의 화합물을 첨가하여 제작한 혼합물을 소결하는 공정을 포함한다.A process for producing a piezoelectric ceramic for solving the above-mentioned problems comprises a step of adding a binder to barium titanate particles each containing 0.04 mass% or more and 0.20 mass% or less of manganese in terms of metal, to prepare a granulated powder; And adding at least one compound selected from the group consisting of Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 particles to the granulated powder, and sintering the mixture.
또한, 상기 과제를 해결하기 위한 압전 세라믹의 제조 방법은, 금속환산으로 0.04질량%이상 0.20질량%이하의 망간을 각각 함유하는 티탄산바륨 입자에 바인더를 첨가해서 조립분을 제작하는 공정; 및 상기 조립분에, 각각 평균입경이 100nm이하인 산화티탄 입자를 첨가하여 제작한 혼합물을 소결하는 공정을 포함한다.In addition, a method of manufacturing a piezoelectric ceramic for solving the above-mentioned problems comprises a step of adding a binder to barium titanate particles each containing 0.04 mass% or more and 0.20 mass% or less of manganese in terms of metal, And a step of sintering the mixture prepared by adding titanium oxide particles each having an average particle size of 100 nm or less to the granulated powder.
상기 과제를 해결하기 위한 압전소자는, 제1 전극; 압전 세라믹; 및 제2 전극을 구비하고, 이 압전 세라믹이 상기의 압전 세라믹을 포함한다.According to an aspect of the present invention, there is provided a piezoelectric element comprising: a first electrode; Piezoelectric ceramics; And a second electrode, wherein the piezoelectric ceramics includes the piezoelectric ceramics described above.
상기 과제를 해결하기 위한 액체 토출 헤드는, 상기의 압전소자를 사용한 액체 토출 헤드다.The liquid discharge head for solving the above-mentioned problems is a liquid discharge head using the piezoelectric element.
상기 과제를 해결하기 위한 초음파 모터는, 상기의 압전소자를 사용한 초음파 모터다.An ultrasonic motor for solving the above problems is an ultrasonic motor using the piezoelectric element.
상기 과제를 해결하기 위한 진애 제거장치는, 상기의 압전소자를 사용한 진애 제거장치다.A dust removing apparatus for solving the above-mentioned problems is a dust removing apparatus using the piezoelectric element.
본 발명에 의하면, 결정립계의 조성 및 결정구조를 제어함으로써 압전 성능 및 기계적 품질계수(Qm)가 양호한 압전 세라믹 및 그 제조 방법을 제공할 수 있다. 또한, 본 발명에 의하면, 상기 압전 세라믹을 각각 사용한 압전소자, 액체 토출 헤드 및 초음파 모터를 제공할 수 있다.According to the present invention, it is possible to provide a piezoelectric ceramic excellent in piezoelectric performance and mechanical quality factor (Q m ) by controlling the composition of grain boundaries and the crystal structure, and a method for producing the same. Further, according to the present invention, it is possible to provide a piezoelectric element, a liquid discharge head, and an ultrasonic motor each using the piezoelectric ceramics.
본 발명의 또 다른 특징들은, 첨부도면을 참조하여 이하의 예시적 실시예들의 설명으로부터 명백해질 것이다.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the accompanying drawings.
도 1a는 본 발명의 액체 토출 헤드의 구성의 일 실시예를 도시한 개략도다.
도 1b는 본 발명의 액체 토출 헤드의 구성의 일 실시예를 도시한 개략도다.
도 2a는 본 발명의 초음파 모터의 구성의 일 실시예를 도시한 개략도다.
도 2b는 본 발명의 초음파 모터의 구성의 일 실시예를 도시한 개략도다.
도 3a는 본 발명의 진애 제거장치의 일 실시예를 도시한 개략도다.
도 3b는 본 발명의 진애 제거장치의 일 실시예를 도시한 개략도다.
도 4a는 도 3a 및 도 3b 각각에서의 본 발명의 압전소자의 구성을 도시한 개략도다.
도 4b는 도 3a 및 도 3b 각각에서의 본 발명의 압전소자의 구성을 도시한 개략도다.
도 4c는 도 3a 및 도 3b 각각에서의 본 발명의 압전소자의 구성을 도시한 개략도다.
도 5는 본 발명의 진애 제거장치의 진동원리를 도시한 패턴도다.
도 6은 본 발명의 압전 세라믹의 일 실시예를 도시한 개념도다.
도 7a는 본 발명의 압전 세라믹의 표면의 SEM 2차전자상이다.
도 7b는 본 발명의 압전 세라믹의 TEM관찰상이다.
도 8a는 문헌 데이터로부터 산출한 Ba4Ti12027의 [100]입사 전자선 회절 패턴이다.
도 8b는 본 발명의 압전 세라믹의 입계에 있어서의 비페로브스카이트형 구조의 전자선 회절상이다.
도 9a는 문헌 데이터로부터 산출한 Ba6Ti17040의 [011]입사 전자선 회절 패턴이다.
도 9b는 본 발명의 압전 세라믹의 입계에 있어서의 비페로브스카이트형 구조의 전자선 회절상이다.BRIEF DESCRIPTION OF DRAWINGS FIG. 1A is a schematic view showing an embodiment of the configuration of a liquid discharge head of the present invention. FIG.
1B is a schematic view showing an embodiment of the configuration of the liquid discharge head of the present invention.
2A is a schematic view showing an embodiment of the configuration of the ultrasonic motor of the present invention.
2B is a schematic view showing an embodiment of the configuration of the ultrasonic motor of the present invention.
3A is a schematic view showing an embodiment of the dedusting device of the present invention.
3B is a schematic view showing an embodiment of the dedusting device of the present invention.
FIG. 4A is a schematic view showing the configuration of the piezoelectric element of the present invention in FIG. 3A and FIG. 3B, respectively. FIG.
Fig. 4B is a schematic view showing the configuration of the piezoelectric element of the present invention in Fig. 3A and Fig. 3B, respectively.
Fig. 4C is a schematic view showing the configuration of the piezoelectric element of the present invention in Figs. 3A and 3B, respectively. Fig.
5 is a pattern showing the principle of oscillation of the dedusting device of the present invention.
6 is a conceptual view showing an embodiment of the piezoelectric ceramic of the present invention.
7A is a SEM secondary electron image of the surface of the piezoelectric ceramics of the present invention.
7B is a TEM observation of the piezoelectric ceramics of the present invention.
8A is a [100] incident electron beam diffraction pattern of Ba 4 Ti 12 O 27 calculated from document data.
Fig. 8B is an electron diffraction pattern of a bipaverite-type structure at the grain boundaries of the piezoelectric ceramics of the present invention. Fig.
9A is an [011] incident electron diffraction pattern of Ba 6 Ti 17 0 40 calculated from document data.
Fig. 9B is an electron diffraction pattern of a bipaverite-type structure at the grain boundaries of the piezoelectric ceramics of the present invention. Fig.
이하, 본 발명의 실시예들에 관하여 설명한다.Hereinafter, embodiments of the present invention will be described.
본 발명에 따른 압전 세라믹은, 결정 입자; 및 상기 결정 입자간의 입계를 구비하고, 상기 결정 입자 각각은, 페로브스카이트형 구조의 티탄산바륨 및 상기 티탄산바륨에 대하여 금속환산으로 0.04질량%이상 0.20질량%이하의 망간을 함유하고, 상기 입계에는 Ba4Ti12027 및 Ba6Ti17040으로 이루어진 군으로부터 선택된 적어도 하나의 화합물을 함유한다.A piezoelectric ceramics according to the present invention comprises: crystal grains; And a grain boundary between the crystal grains, wherein each of the crystal grains contains 0.04 mass% or more and 0.20 mass% or less of manganese in terms of metal with respect to barium titanate of the perovskite type structure and barium titanate, At least one compound selected from the group consisting of Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 .
본 명세서에서 사용된 "세라믹"이란, 주요 성분이 금속산화물이며, 열처리에 의해 소결된 결정 입자의 응집체(벌크체라고도 말한다), 또는 소위 다결정을 나타낸다. 그 용어는 소결 후에 가공된 것도 포함한다. 그렇지만, 분말이나 분말을 분산되게 한 슬러리는, 이 용어에 포함하지 않는다.As used herein, the term "ceramic" refers to aggregates (also referred to as bulk bodies) of crystal grains sintered by heat treatment, or so-called polycrystalline, whose main component is a metal oxide. The term includes those processed after sintering. However, slurries in which powders or powders are dispersed are not included in this term.
상기 페로브스카이트형 구조의 티탄산바륨은, BaTiO3이다. 아울러, 여기에서, 상기 티탄산바륨에는, 망간뿐만 아니라 그 밖의 특성 조정성분과 제조상 불순물이 함유되어 있어도 된다.The perovskite-type barium titanate is BaTiO 3 . The barium titanate may contain not only manganese but also other property-adjusting components and manufacturing impurities.
본 발명에 있어서의 압전 세라믹에 있어서는, 비페로브스카이트 구조의 화합물이, 페로브스카이트형 구조의 티탄산바륨의 결정 입자외의 결정 입자의 입계에 존재한다. 비페로브스카이트 구조의 화합물은, Ba4Ti12027 및 Ba6Ti17040로부터 선택된 적어도 하나의 화합물이다.In the piezoelectric ceramics according to the present invention, the biparbovite structure compound exists in the grain boundaries of the crystal grains other than the barium titanate crystal grains of the perovskite type structure. The compound of the biparovskite structure is at least one compound selected from Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 .
또한, 본 명세서에 있어서, 상기 결정 입자외에 존재하는 Ba4Ti12027 및 Ba6Ti17040로부터 선택된 적어도 하나의 화합물을 "부입자"라고 칭한다.In the present specification, at least one compound selected from Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 existing in the crystal grains is referred to as "sub-grains".
상기 Ba4Ti12027이 공간군 C2/m에 속하고, 유전체의 성질을 가진다. 또한, 상기 Ba6Ti17040이 공간군 A2/a에 속하고, 유전체의 성질을 가진다.The Ba 4 Ti 12 O 27 belongs to the space group C 2 / m and has a dielectric property. Further, the Ba 6 Ti 17 O 40 belongs to the space group A 2 / a and has a dielectric property.
본 명세서에서 사용된 "입계"란, 결정 입자간의 계면을 말한다(이 계면은 결정 입자가 선형적 및 간헐적으로 서로 접하고 있는 경우를 포함한다). 한층 더, 이하의 설명에서는 "입계" 중 두개의 결정 입자끼리 접하게 되는 면 또는 선은 "경계"라고도 말한다. 또한, 이하의 설명에서는, "입계" 중, 3개 이상의 결정 입자가 한 점 또는 선에서 교차하는 장소를 "삼중점"이라고 칭한다(3개의 바늘형의 결정 입자의 경계는 "선"으로 교차하기도 한다).As used herein, the term "grain boundary" refers to an interface between crystal grains (this includes cases where crystal grains are in contact with each other linearly and intermittently). Furthermore, in the following description, a surface or a line where two crystal grains are brought into contact with each other in the "grain boundary" is also referred to as a "boundary". In the following description, a place where three or more crystal grains intersect at one point or a line in a "grain boundary" is referred to as a "triple point" (the boundary of three needle-like crystal grains intersects with a "line" ).
도 6은 본 발명의 압전 세라믹의 일 실시예를 나타내는 개념도이며, 결정 입자, 입계 및 부입자간의 관계를 개략적으로 나타낸다. 401은 티탄산바륨의 결정 입자이다. 결정 입자끼리는 경계와 삼중점의 적어도 한쪽을 거쳐서 접하고 있다. 402는 결정 입자간의 경계를 나타내고, 403은 삼중점을 나타낸다. 404는 결정 입자간의 경계에 존재하는 부입자를 나타낸다. 본 발명의 압전 세라믹에서는, 결정 입자들의 입계(경계 또는 삼중점)에는, 부입자인 Ba4Ti12027 및 Ba6Ti17040로부터 선택된 적어도 하나의 화합물이 존재하고 있다. 상기 도면에서, 405, 406은, 삼중점에 존재하고 있는 Ba4Ti12027 및 Ba6Ti17040의 적어도 한쪽의 부입자를 나타낸다.Fig. 6 is a conceptual diagram showing one embodiment of the piezoelectric ceramics of the present invention, and schematically shows the relationship between crystal grains, grain boundaries and sub-grains. 401 is a crystal grain of barium titanate. The crystal grains are in contact with each other via at least one of the boundary and the triple point. 402 denotes a boundary between crystal grains, and 403 denotes a triple point. And reference numeral 404 denotes a sub-particle existing at a boundary between crystal grains. In the piezoelectric ceramics of the present invention, at least one compound selected from Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 exists as sub-grains in the grain boundary (boundary or triple point) of the crystal grains. In the figure,
상기 결정 입자와 상기 부입자를 간편하게 구별하는 수법의 하나로서, 주사형 전자현미경(SEM)을 사용하는 방법이 알려져 있다. 이 방법은, 즉, 상기 압전 세라믹 표면을 SEM 2차전자상으로 관찰하면, 상기 결정 입자와 상기 부입자가 유저에 의해 다른 콘트라스트로 관찰되는 사실을 이용한다.As a method of easily distinguishing the crystal grains from the sub-grains, a method using a scanning electron microscope (SEM) is known. This method utilizes the fact that the crystal grains and the sub-grains are observed with different contrast by the user when the surface of the piezoelectric ceramics is observed with the SEM secondary electron image.
도 7a는 본 발명의 압전 세라믹 표면을 관찰하여 얻어진 SEM 2차전자상이다. 이 전자상에 의해 밝혀진 것은, 삼중점(502)과 결정 입자(501)에 존재하는 부입자가 다른 콘트라스트로 관찰될 수 있다는 것이다. 또한, 도 7b는 상기 부입자를 포함하는 상기 압전 세라믹의 일부를 투과형 전자현미경(TEM)으로 얻어진 상이다. TEM관찰에 의해 부입자(504)의 일부와 결정 입자(503)의 일부를 구별할 수 있는 것을 안다.7A is a SEM secondary electron image obtained by observing the piezoelectric ceramic surface of the present invention. What is revealed by this electron is that the subpixels existing in the
상기 티탄산바륨(BaTiO3)의 바륨(Ba) 사이트를, 다른 2가 금속이나 의사 2가 금속으로 일부 치환하여도 된다. Ba 사이트를 치환할 수 있는 2가 금속의 예로서는, Ca, Sr등을 들 수 있다. Ba 사이트를 치환할 수 있는 의사 2가 금속으로서는, (Bi0.5Na0.5), (Bi0.5K0.5), (Bi0.5Li0.5), (La0.5Na0.5), (La0.5K0.5), (La0.5Li0.5)등을 들 수 있다. Ba 사이트를 다른 2가 금속이나 의사 2가 금속으로 일부 치환하는 경우의 치환율은, 20atm%이하, 바람직하게는 10atm%이하다. 그 치환율이 20atm%을 초과하면, 티탄산바륨 고유의 높은 압전 특성이 충분히 얻어질 수 없을 우려가 있다.The barium (Ba) site of the barium titanate (BaTiO 3 ) may be partially substituted with another bivalent metal or a pseudobaric metal. Examples of the divalent metal that can substitute the Ba site include Ca and Sr. As the pseudo-divalent metal that can replace the Ba site, (Bi 0.5 Na 0.5), (Bi 0.5 K 0.5), (Bi 0.5 Li 0.5), (La 0.5 Na 0.5), (La 0.5 K 0.5), (La 0.5 Li 0.5 ). When the Ba site is partially substituted with another bivalent metal or pseudobaric metal, the replacement ratio is 20 atm% or less, preferably 10 atm% or less. If the substitution ratio exceeds 20 atm%, there is a possibility that the piezoelectric characteristics inherent to barium titanate can not be sufficiently obtained.
상기 티탄산바륨(BaTiO3)의 티타늄(Ti) 사이트를 다른 4가 금속이나 의사 4가 금속으로 일부 치환해도 된다. Ti 사이트를 치환할 수 있는 4가 금속의 예로서는, Zr, Hf, Si, Sn, Ge등을 들 수 있다. Ti 사이트를 치환할 수 있는 의사 4가 금속의 예로서는, 2가 금속과 5가 금속의 조합(M2+ 1/3M5+ 2/3), 3가 금속과 5가 금속의 조합(M3+ 1/2M5+ 1/2), 3가 금속과 6가 금속의 조합(M3+ 2/3M6+ 1/3)등을 들 수 있다.The titanium (Ti) site of barium titanate (BaTiO 3 ) may be partially substituted with another tetravalent metal or a pseudo tetravalent metal. Examples of the tetravalent metal capable of substituting the Ti site include Zr, Hf, Si, Sn, and Ge. Examples of the pseudo-tetravalent metal capable of substituting the Ti site include a combination of a divalent metal and a pentavalent metal (M 2+ 1/3 M 5+ 2/3 ), a combination of a trivalent metal and a pentavalent metal (M 3 + 1/2 M 5+ 1/2 ), a combination of a trivalent metal and a hexavalent metal (M 3+ 2/3 M 6+ 1/3 ), and the like.
본 발명의 압전 세라믹에 있어서, 결정 입자가 티탄산바륨에 대하여 금속환산으로 0.04질량%이상 0.20질량%이하, 바람직하게는 0.05질량%이상 0.17질량%이하의 망간을 함유한다. 주성분이 티탄산바륨인 압전 세라믹이 상기 범위의 망간 성분을 함유하면, 그 압전 세라믹은 향상된 절연성이나 기계적 품질계수(Qm)가 구비될 수 있다. 상기 티탄산바륨에 대하여 망간의 함유량이 0.04질량%미만인 경우에, 압전 세라믹의 기계적 품질계수를 충분히 개선할 수 없다. 이에 대하여, 망간의 함유량이 0.20질량%보다 큰 경우에는, 압전 성능에 뒤지는 육방정의 티탄산바륨이나 불순물 위상이 혼재할 가능성이 있다. 따라서, 압전 세라믹 전체의 압전 성능이 불충분해지기도 한다.In the piezoelectric ceramics of the present invention, the crystal grains contain 0.04 mass% or more and 0.20 mass% or less, preferably 0.05 mass% or more and 0.17 mass% or less of manganese in terms of metal with respect to barium titanate. If the piezoelectric ceramics whose main component is barium titanate contains the above-mentioned manganese component, the piezoelectric ceramic can be provided with improved insulation or a mechanical quality factor (Q m ). When the content of manganese is less than 0.04 mass% with respect to the barium titanate, the mechanical quality factor of the piezoelectric ceramic can not be sufficiently improved. On the other hand, when the content of manganese is larger than 0.20 mass%, there is a possibility that the hexagonal barium titanate and impurity phases which are inferior to the piezoelectric properties are mixed. Therefore, the piezoelectric performance of the entire piezoelectric ceramics may become insufficient.
상기 입계에 함유된 부입자를 구성하는 화합물인 Ba4Ti12027 혹은 Ba6Ti17040은, 예를 들면, 상기 화합물을 투과형 전자현미경(TEM)을 사용하여제한 시야 회절법에 의해 취득한 회절상과, 기지의 문헌에서의 데이터를 비교함으로써 특정될 수 있다.Ba 4 Ti 12 O 27 or Ba 6 Ti 17 O 40, which is a compound constituting the sub-particles contained in the grain boundaries, can be obtained by, for example, a method of obtaining the above compound by a limited field diffraction method using a transmission electron microscope Can be specified by comparing the diffraction image with the data in the known literature.
상기 제한 시야 회절법은, 투과형 전자현미경(TEM)에 의해 관찰된 확대 상의 특정한 영역만의 회절 패턴을 관찰하는 방법이다. 이 방법을 사용함으로써 상기 화합물로부터 생성된 회절 패턴만을 관찰하는 것이 가능하다.The limited field diffraction method is a method of observing a diffraction pattern of only a specific region of the magnified image observed by a transmission electron microscope (TEM). It is possible to observe only the diffraction pattern generated from the above compound by using this method.
상기 부입자는, 결정 입자간의 입계에 형성되기도 하는 공극을 메울 수 있다. 유전체인 상기 Ba4Ti12027 및 Ba6Ti17040 중 적어도 한쪽으로 형성된 상기 부입자가 공극을 메우는 경우, 상기 압전 세라믹의 유전율을 공극이 존재하는 상태와 비교하여 높게 할 수 있다. 즉, 상기 부입자가 공극을 메우는 것은, 상기 압전 세라믹의 압전 특성을 향상할 수 있다.The sub-particles may fill voids that may be formed in grain boundaries between crystal grains. In the case where the sub-particles formed of at least one of Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40, which are dielectrics, fill the voids, the dielectric constant of the piezoelectric ceramics can be made higher than that in the state where voids exist. That is, the filling of the voids by the sub-particles can improve the piezoelectric characteristics of the piezoelectric ceramics.
본 발명의 압전 세라믹에서, 상기 압전 세라믹의 표면 또는 단면에서 관측했을 때의 상기 입계에 함유되는 Ba4Ti12027 및 Ba6Ti17040으로 이루어진 군으로부터 선택된 적어도 하나의 화합물의 비율이, 상기 압전 세라믹의 표면 또는 단면의 전체면적에 대하여 0.05면적%이상 1면적%이하, 바람직하게는 0.1면적%이상 0.5면적%이하인 것이 바람직하다.In the piezoelectric ceramics of the present invention, the ratio of at least one compound selected from the group consisting of Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 contained in the grain boundaries when observed on the surface or cross section of the piezoelectric ceramics, Is preferably not less than 0.05% by area and not more than 1% by area, preferably not less than 0.1% by area and not more than 0.5% by area, based on the total area of the surface or cross section of the piezoelectric ceramics.
상기 입계내의 Ba4Ti12027 혹은 Ba6Ti17040의 함유량, 즉 부입자의 압전 세라믹 전체에서의 비율이 0.05면적%미만일 경우, 상기 입계내의 산화망간의 석출을 전부 막을 수 없을 우려가 있다. 그 때문에, 티탄산바륨 고유의 높은 압전 성능을 충분히 얻을 수 없을 우려가 있다. 상기 입계에 포함되는 부입자가 차지하는 비율이, 1면적%보다 큰 경우에는, 압전성을 갖지 않는 부입자가 상기 입계에 과잉으로 석출된다. 이 때문에, 티탄산바륨 고유의 높은 압전 성능을 충분히 얻을 수 없을 우려가 있다.If the content of Ba 4 Ti 12 O 27 or Ba 6 Ti 17 0 40 in the grain boundary, that is, the ratio of the minor grains in the entire piezoelectric ceramics is less than 0.05 area%, the precipitation of manganese oxide in the grain boundary can not be completely prevented There is a concern. Therefore, there is a possibility that a high piezoelectric performance inherent to barium titanate can not be obtained sufficiently. When the ratio of the sub-particles contained in the grain boundaries is larger than 1% by area, sub-particles having no piezoelectricity are excessively precipitated in the grain boundaries. Therefore, there is a possibility that a high piezoelectric performance inherent to barium titanate can not be sufficiently obtained.
또한, 상기 압전 세라믹에 대하여, 상기 입계에 포함되는 부입자의 비율은, 예를 들면, 전술한 주사형 전자현미경을 사용하는 방법으로 산출할 수 있다. 망간을 함유하는 상기 압전 세라믹의 표면 또는 단면을, 주사형 전자현미경의 반사 전자상을 사용해서 관찰한다. 상기 관찰법에서는, 상기 부입자와 상기 압전 세라믹의 결정 입자가, 다른 콘트라스트로 관찰된다. 따라서, 상기 부입자와 상기 압전 세라믹의 결정 입자를 구별하고, 양쪽의 입자의 면적비를 계측하여서 상기 부입자의 비율을 산출한다.The ratio of the sub-particles contained in the grain boundaries of the piezoelectric ceramics can be calculated, for example, by a method using the scanning electron microscope described above. The surface or cross-section of the piezoelectric ceramics containing manganese is observed using a reflection electron image of a scanning electron microscope. In the above observation method, the sub-particles and the crystal grains of the piezoelectric ceramics are observed with different contrast. Therefore, the sub-particles and the crystal grains of the piezoelectric ceramics are distinguished from each other, and the ratio of the sub-grains is calculated by measuring the area ratio of both grains.
본 발명의 압전 세라믹에서는, 상기 입계가 Ba4Ti12027 또는 Ba6Ti17040을 함유하고, 상기 Ba4Ti12027 및 Ba6Ti17040의 모두가 망간을 함유하는 것이 바람직하다.The piezoelectric ceramic of the present invention, the grain boundary Ba 4 Ti 12 0 27 or all of Ba 6 Ti 17 containing 0 to 40, and the Ba 4 Ti 12 0 27 and Ba 6 Ti 17 0 40 is preferred to contain Mn Do.
일반적으로, 압전 세라믹에 망간을 첨가하면, 첨가한 모든 망간이 항상 결정 입자내에 존재하지는 않는다. 종래의 압전 세라믹에 망간을 첨가하면, 입계에 산화망간(MnOx)으로서 첨가된 망간이 존재한다.In general, when manganese is added to a piezoelectric ceramics, all of the manganese added is not always present in the crystal grains. When manganese is added to the conventional piezoelectric ceramics, manganese added as manganese oxide (MnOx) exists in the grain boundary.
상기 산화망간을 입계에 함유하는 압전 세라믹에 있어서, 상기 산화망간은 유전체로서의 성질을 가지고 있지 않고, 상기 압전 세라믹의 절연성을 저하시키기 때문에, 압전 성능도 저하한다. 또한, 상기 산화망간은 입계, 또는 결정 입자외에 존재하고 있어, 망간의 원자가도 불안정하다. 따라서, 상기 산화망간은 상기 압전 세라믹의 기계적 품질계수를 저하시킨다.In the piezoelectric ceramics containing the manganese oxide at grain boundaries, the manganese oxide has no property as a dielectric and degrades the insulating property of the piezoelectric ceramics, so that the piezoelectric performance also deteriorates. Further, the manganese oxide exists in the grain boundary or outside the crystal grains, and the valence of manganese is also unstable. Therefore, the manganese oxide decreases the mechanical quality factor of the piezoelectric ceramics.
이에 대하여, 본 발명의 압전 세라믹에서는, 입계에 부입자, 즉 Ba4Ti12027 및 Ba6Ti17040로부터 선택된 적어도 하나의 화합물이 존재하고 있다.On the other hand, in the piezoelectric ceramics of the present invention, at least one compound selected from sub-particles of Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 exists in the grain boundary.
Ba4Ti12027 및 Ba6Ti17040은 유전체이기 때문에, 입계에 이러한 화합물의 존재는, 압전 세라믹의 절연성을 저하시키는 원인이 되지는 않는다. 또한, 산화망간으로서 입계에 존재하고 있었던 망간을 상기 부입자에 넣음으로써, 입계에 산화망간이 존재하지 않는 상태를 확립할 수 있다. 그 결과, 전술한 산화망간에 의한 압전 성능저하와 기계적 품질계수의 저하를 막을 수 있다.Since Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 are dielectrics, the presence of such a compound in the grain boundary does not cause deterioration of the insulation of the piezoelectric ceramics. In addition, a state in which manganese oxide does not exist in the grain boundaries can be established by adding manganese present in the grain boundaries as the manganese oxide to the sub-grains. As a result, it is possible to prevent a reduction in piezoelectric performance and a mechanical quality factor due to the above-described manganese oxide.
따라서, 본 발명의 압전 세라믹은, 상기 입계에 함유된 Ba4Ti12027 또는 Ba6Ti17040이 망간을 함유하는 것이 바람직하다.Therefore, in the piezoelectric ceramic of the present invention, Ba 4 Ti 12 O 27 or Ba 6 Ti 17 O 40 contained in the grain boundary preferably contains manganese.
본 발명의 압전 세라믹에 있어서는, 상기 입계에 함유된 Ba4Ti12027 및 Ba6Ti17040으로 이루어진 군으로부터 선택된 적어도 하나의 화합물에서의 망간의 함유량이, 상기 Ba4Ti12027 및 Ba6Ti17040으로 이루어진 군으로부터 선택된 적어도 하나의 화합물에 대하여 금속환산으로 0.6질량%이상 2.8질량%이하, 바람직하게는 1.0질량%이상 2.0질량%이하인 것이 바람직하다.In the piezoelectric ceramics of the present invention, the content of manganese in at least one compound selected from the group consisting of Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 contained in the grain boundaries is in the range of Ba 4 Ti 12 O 27 and At least one compound selected from the group consisting of Ba 6 Ti 17 0 40 is preferably not less than 0.6 mass% and not more than 2.8 mass%, more preferably not less than 1.0 mass% nor more than 2.0 mass% in terms of metal.
망간의 함유량이 0.6질량%미만의 경우, 즉 Ba4Ti12027 및 Ba6Ti17040 중 적어도 한쪽의 고용체로서 용해된 망간의 용량이 작을 경우, 상기 결정 입자내에 고용체로서 용해되지 않은 망간은 상기 입계에 산화망간등의 망간을 주성분으로 하는 화합물이 석출할 우려가 있다.When the content of manganese is less than 0.6 mass%, that is, when the capacity of manganese dissolved as at least one solid solution of Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 is small, manganese A compound containing manganese as a main component such as manganese oxide may precipitate at the grain boundary.
또한, 망간의 함유량이 2.8질량%보다 많을 경우, 즉 Ba4Ti12027 및 Ba6Ti17040 중 적어도 한쪽의 고용체로서 용해된 망간의 용량이 클 경우, 상기 결정 입자내에 고용체로서 용해된 망간의 용량이 저감한다. 따라서, 상기 압전 세라믹이 충분한 기계적 품질계수를 얻을 수 없을 우려가 있다.Further, when the content of manganese is more than 2.8 mass%, that is, when the capacity of manganese dissolved as at least one solid solution of Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 is large, The capacity of manganese is reduced. Therefore, there is a possibility that the piezoelectric ceramics can not obtain a sufficient mechanical quality coefficient.
상기 망간의 함유량은, 예를 들면, 상기 입계를 제한 시야 회절법에 의해 관찰했을 때에, 결정구조가 Ba4Ti12027 또는 Ba6Ti17040중 어느 하나에 정해진 영역을, 에너지 분산형 분광법에 의해 얻어진 분석 결과로부터 특정되어도 된다.The content of manganese can be determined, for example, when the grain boundary is observed by the limited field diffraction method and the region defined by any one of the crystal structures of Ba 4 Ti 12 O 27 or Ba 6 Ti 17 O 40 , It may be specified from the analysis result obtained by the spectroscopic method.
본 발명의 압전 세라믹에서, 상기 입계가 Ba4Ti12027 및 Ba6Ti17040을 함유하고, 상기 Ba4Ti12027 및 Ba6Ti17040이 각각 망간을 함유하는 것이 바람직하다.In the piezoelectric ceramic of the present invention, it is preferable to contain the grain boundary Ba 4 Ti 12 0 27 and Ba 6 Ti 17 containing 0 to 40, and the Ba 4 Ti 12 0 27 and Ba 6 Ti 17 0 40 each Mn .
상기 입계가 Ba4Ti12027 및 Ba6Ti17040에 의해 점유되는 경우, 압전 세라믹 전체의 유전율이 향상하여, 압전 성능이 향상한다. 또한, 상기 Ba4Ti12027 및 Ba6Ti17040의 결정 입자내에 고용체로서 용해된 망간은, 산화망간(MnO)등의 Mn을 주성분으로 하는 화합물로서 상기 결정 입자간의 입계나 공극에 석출하는 것을 막을 수 있다.When the grain boundary is occupied by Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 , the dielectric constant of the entire piezoelectric ceramics is improved and the piezoelectric performance is improved. The manganese dissolved as a solid solution in the crystal grains of Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 is a compound containing Mn as a main component such as manganese oxide (MnO), and precipitates .
본 발명의 압전 세라믹은, 상기 Ba4Ti12027에 포함되는 망간의 함유 비율이 Ba6Ti17040에 포함되는 망간의 함유 비율보다 큰 것이 바람직하다. Ba4Ti12027과 Ba6Ti17040 각각에 포함되는 망간의 함유 비율은, 예를 들면, 전술의 제한 시야 회절법에 의해 판정된 결정구조와 에너지 분산형 분광법을 조합하여, 평가할 수 있다.In the piezoelectric ceramic of the present invention, it is preferable that the content ratio of manganese contained in Ba 4 Ti 12 O 27 is larger than the content ratio of manganese contained in Ba 6 Ti 17 0 40 . The content ratio of manganese contained in each of Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 can be evaluated by combining the crystal structure determined by the limited viewing angle method described above with the energy dispersive spectroscopy have.
Ba4Ti12027에 망간이 많이 함유됨으로써, 절연성 및 소결밀도가 향상한다.By containing a large amount of manganese in Ba 4 Ti 12 0 27 , the insulating property and sintering density are improved.
본 명세서에서 사용된 압전 세라믹의 "입경"이란, 현미경관찰법에 있어서 소위 "투영 면적 지름"을 말하고, 결정 입자의 투영 면적과 동일 면적을 가지는 완전 원의 직경을 말한다. 본 발명에 있어서, 이 입경의 측정 방법은 특별히 제한되지 않는다. 예를 들면, 압전 세라믹의 표면을 편광현미경이나 주사형 전자현미경으로 촬영한 사진화상에 관해 화상처리를 해서 입경을 구하여도 된다. 결정 입자의 입경을 구할 때의 확대 배율의 예는, 5 내지 5000배정도다. 그 배율에 따라 광학현미경과 전자현미경 중 한쪽을 적절하게 사용하여도 된다. 세라믹의 표면이 아니고 연마면이나 단면의 화상으로부터 입경을 구해도 된다.The "particle size" of the piezoelectric ceramics used in this specification refers to a so-called "projected area diameter" in the microscopic observation method and refers to the diameter of a perfect circle having the same area as the projected area of the crystal grains. In the present invention, the method of measuring the particle diameter is not particularly limited. For example, the particle size may be obtained by subjecting a photographic image obtained by photographing the surface of the piezoelectric ceramic with a polarizing microscope or a scanning electron microscope to image processing. An example of the enlargement magnification when determining the grain size of the crystal grains is about 5 to 5,000 times. One of an optical microscope and an electron microscope may be appropriately used depending on the magnification. The grain size may be obtained from the image of the polished surface or the cross section rather than the surface of the ceramic.
다음에, 본 발명의 압전 세라믹의 제조 방법에 관하여 설명한다.Next, a method of manufacturing the piezoelectric ceramics of the present invention will be described.
본 발명에 따른 압전 세라믹의 제조 방법의 제 1 국면은, 금속환산으로 0.04질량%이상 0.20질량%이하의 망간을 각각 함유하는 티탄산바륨 입자에 바인더를 첨가해서 조립분을 제작하는 공정; 및 상기 조립분에 Ba4Ti12027 및 Ba6Ti17040 입자로 이루어진 군으로부터 선택된 적어도 하나의 화합물을 첨가하여 제작한 혼합물을 소결하는 공정을, 적어도 포함한다.A first aspect of a method for producing a piezoelectric ceramic according to the present invention comprises the steps of: preparing a granulated powder by adding a binder to barium titanate particles each containing 0.04 mass% or more and 0.20 mass% or less of manganese in terms of metal; And a step of sintering the mixture prepared by adding at least one compound selected from Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 particles to the granulated powder.
망간을 각각 함유하는 티탄산바륨 입자는, 티탄산바륨과 망간이외의 다른 특성 조정 성분과 합성상의 불순물을 함유하여도 된다. 그 불순물의 예로서는, 알루미늄, 칼슘, 니오븀, 철, 납등의 금속유래 성분, 유리 성분 및 탄화수소계의 유기성분등을 들 수 있다. 그 불순물의 함유량은, 5질량%이하인 것이 바람직하고, 보다 바람직하게는 1질량%이하다.The barium titanate particles each containing manganese may contain barium titanate, other property adjusting components other than manganese, and impurities in the synthesis phase. Examples of the impurities include metal-derived components such as aluminum, calcium, niobium, iron and lead, glass components, and hydrocarbon-based organic components. The content of the impurity is preferably 5 mass% or less, and more preferably 1 mass% or less.
망간을 각각 함유하는 티탄산바륨 입자의 1차입자로서의 평균 입경은, 특별히 제한되지 않는다. 그렇지만, 고밀도로 균질한 압전 세라믹을 얻기 위해서, 바람직한 1차입자의 평균 입경은 5nm이상 300nm이하, 바람직하게는 50nm이상 150nm이하다. 1차입자의 평균 입경이 지나치게 작거나 지나치게 커도, 소결후의 세라믹의 밀도가 부족해지기도 한다. 여기에서, "1차입자"란, 분말을 구성하고 있는 입자 중, 기타와 명확하게 구별될 수 있는 최소단위의 물질을 나타낸다. 1차 입자가 응집하여, 보다 큰 2차 입자를 형성해도 된다. 고분자 바인더를 사용한 조립공정에 의해, 의도적으로 2차입자를 형성해도 된다.The average particle diameter of the primary particles of barium titanate particles containing manganese, respectively, is not particularly limited. However, in order to obtain a high-density and homogeneous piezoelectric ceramics, the preferred average primary particle diameter is 5 nm or more and 300 nm or less, preferably 50 nm or more and 150 nm or less. If the average particle diameter of the primary particles is excessively small or excessively large, the density of the ceramic after sintering may become insufficient. Here, "primary particle" represents a minimum unit of the particles constituting the powder, which can be clearly distinguished from the others. Primary particles may aggregate to form larger secondary particles. A secondary particle may be intentionally formed by an assembling process using a polymer binder.
망간을 각각 함유하는 티탄산바륨 입자의 제조 방법 및 상기 망간을 각각 함유하는 티탄산바륨 입자에 바인더를 첨가하는 것을 포함한 조립분을 제작하는 방법은 특별히 한정되지 않는다.A method for producing barium titanate particles each containing manganese and a method for producing a granular component including adding a binder to barium titanate particles each containing manganese are not particularly limited.
망간이 부착된 티탄산바륨의 경우에는, 시판 또는 합성된 티탄산바륨 입자에 후공정에서 망간 성분을 첨가해서 부착하여도 된다. 망간 성분의 첨가방법은 한정되지 않는다. 그렇지만, 망간 성분은 티탄산바륨의 표면에 균일하게 부착되는 것이 바람직하다. 그 관점에 있어서, 가장 바람직한 첨가방법은 스프레이 드라이법이다. 스프레이 드라이법은, 망간 성분의 부착과 동시에 바인더를 첨가하여서, 조립분을 제작할 수 있다고 하는 관점과 입경을 보다 균일하게 할 수 있다고 하는 관점에서도 바람직하다.In the case of barium titanate with manganese attached thereto, a manganese component may be added to commercially available or synthesized barium titanate particles in a post-process. The method of adding the manganese component is not limited. However, it is preferable that the manganese component is uniformly adhered to the surface of barium titanate. In that respect, the most preferred addition method is the spray drying method. The spray drying method is preferable from the viewpoint that a granulated powder can be produced by adding a binder at the same time as the manganese component is adhered and that the particle diameter can be made more uniform.
망간이 고용체로서 용해된 티탄산바륨의 경우에는, 망간 성분을 미리 포함시킨 티탄산바륨 전구체를 결정화시키면 좋다. 예를 들면, 바륨화합물과 티탄화합물을 등몰(equimolar)의 혼합물을 제작하고 나서, 이 혼합물에 소망량의 망간 성분을 첨가한다. 이어서, 1000℃정도로 그 혼합물을 가소함으로써 망간 성분이 고용체로서 용해된 티탄산바륨 입자를 얻는다.In the case of barium titanate dissolved as a solid solution of manganese, the barium titanate precursor containing the manganese component may be crystallized. For example, an equimolar mixture of a barium compound and a titanium compound is prepared, and then a desired amount of manganese component is added to the mixture. Subsequently, the mixture is calcined at about 1000 DEG C to obtain barium titanate particles in which the manganese component is dissolved as a solid solution.
이 경우에도, 조립분의 제작 방법도 특별히 한정되지 않는다. 그렇지만, 입경을 보다 균일하게 할 수 있다고 하는 관점에 있어서, 스프레이 드라이법이 바람직하다.Also in this case, the method of producing the granules is not particularly limited. However, from the viewpoint that the particle diameter can be more uniform, the spray drying method is preferable.
조립(granulation)할 때에 사용하여도 되는 바인더의 예로서는, 폴리비닐알코올(PVA), 폴리비닐 부티랄(PVB) 및 아크릴 수지를 들 수 있다. 첨가된 바인더의 양은, 1질량% 내지 10질량%가 바람직하고, 성형체의 밀도의 증가 관점에 있어서 2질량% 내지 5질량%가 보다 바람직하다.Examples of the binder that can be used for granulation include polyvinyl alcohol (PVA), polyvinyl butyral (PVB), and acrylic resin. The amount of the binder added is preferably 1% by mass to 10% by mass, more preferably 2% by mass to 5% by mass from the viewpoint of increasing the density of the molded article.
망간을 각각 함유하는 티탄산바륨 입자를 제조할 때에 사용하여도 되는 바륨 화합물의 예로서는, 탄산 바륨, 옥살산 바륨, 산화바륨, 아세트산 바륨, 질산바륨, 알루민산 바륨, 및 각종의 바륨 알콕시드를 들 수 있다.Examples of barium compounds that may be used in producing barium titanate particles each containing manganese include barium carbonate, barium oxalate, barium oxide, barium acetate, barium nitrate, barium aluminate, and various barium alkoxides .
망간을 각각 함유하는 티탄산바륨 입자에 사용되어도 되는 티탄화합물의 예로서는, 산화티탄이 있다.An example of a titanium compound that can be used for barium titanate particles each containing manganese is titanium oxide.
망간을 각각 함유하는 티탄산바륨 입자에 사용되어도 되는 망간 성분의 예로서는, 산화망간, 이산화망간, 아세트산 망간 및 탄산 망간 등의 망간 화합물을 들 수 있다.Examples of the manganese component which may be used in the barium titanate particles each containing manganese include manganese compounds such as manganese oxide, manganese dioxide, manganese acetate and manganese carbonate.
상기 조립분에 Ba4Ti12027입자 혹은 Ba6Ti17040입자의 적어도 한쪽을 첨가한 혼합물을 소결하는 것으로 수득할 수 있는 압전 세라믹에는, 입계에, 첨가한 상기 Ba4Ti12027입자 및 Ba6Ti17040입자 중 적어도 한쪽이 석출한다. 전술한 기구에 의해, 이러한 압전 세라믹은, 결정 입자내에 Mn을 머무르게 해 두는 것이 가능해져, 압전 성능과 기계적 품질계수를 만족시킬 수 있다. 상기 Ba4Ti12027입자와 Ba6Ti17040입자 각각의 첨가량은, 0.02질량%이상 1.5질량%이하다. 즉, 제조 방법A에 의해, 실패없이 Ba4Ti12027입자 혹은 Ba6Ti17040입자를 석출할 수 있다.In the piezoelectric ceramics which can be obtained by sintering a mixture obtained by adding at least one of Ba 4 Ti 12 O 27 particles or Ba 6 Ti 17 O 40 particles to the granulated powder, the Ba 4 Ti 12 O 27 At least one of the particles and Ba 6 Ti 17 O 40 particles precipitates. With the above-described mechanism, such piezoelectric ceramics can keep Mn in the crystal grains, and can satisfy the piezoelectric performance and the mechanical quality factor. The addition amount of each of the Ba 4 Ti 12 O 27 particles and Ba 6 Ti 17 O 40 particles is 0.02 mass% or more and 1.5 mass% or less. That is, according to the production method A, Ba 4 Ti 12 O 27 particles or Ba 6 Ti 17 O 40 particles can be precipitated without fail.
혼합된 티탄산바륨 입자는, 원하는 형상으로 성형되고나서, 소결처리되어 세라믹이 된다.The mixed barium titanate particles are molded into a desired shape and then sintered to form a ceramic.
상기 제조 방법에 있어서의 세라믹의 소결 방법은 한정되지 않는다. 소결 방법의 예로서는, 전기로에 의한 소결, 통전 가열법, 마이크로파 소결법, 밀리미터의 전파 소결법, 열간 등방압 프레스(HIP)등을 들 수 있다.The sintering method of the ceramics in the above production method is not limited. Examples of the sintering method include sintering by an electric furnace, energization heating method, microwave sintering method, radio wave sintering method of millimeter, hot isostatic pressing (HIP), and the like.
상기 제조 방법에 있어서의 세라믹의 소결 온도는 한정되지 않지만, 티탄산바륨이 충분히 결정 성장하는 온도인 것이 바람직하다. 따라서, 바람직한 소결 온도는, 1000℃이상 1450℃이하, 보다 바람직하게는 1300℃이상 1400℃이하다. 상기 온도범위에 있어서 소결된 티탄산바륨 세라믹은, 양호한 압전 성능을 나타낸다.The sintering temperature of the ceramics in the above production method is not limited, but is preferably a temperature at which barium titanate sufficiently grows crystals. Therefore, the preferable sintering temperature is 1000 占 폚 to 1450 占 폚, and more preferably 1300 占 폚 to 1400 占 폚. The sintered barium titanate ceramic in this temperature range exhibits good piezoelectric performance.
소결 처리에 의해 얻어진 압전 세라믹의 특성을 재현성 높게 안정시키기 위해서는, 소결 온도를 상기 범위내에서 일정하게 유지하면서 1시간 이상 12시간 이하 정도의 소결 처리를 행하는 것이 바람직하다.In order to stabilize the characteristics of the piezoelectric ceramics obtained by the sintering treatment with high reproducibility, it is preferable to carry out the sintering treatment for about 1 hour to 12 hours while keeping the sintering temperature constant within the above range.
본 발명에 따른 압전 세라믹의 제조 방법의 제 2 국면은, 금속환산으로 0.04질량%이상 0.20질량%이하의 망간을 각각 함유하는 티탄산바륨 입자에 바인더를 첨가해서 조립분을 제작하는 공정; 및 상기 조립분에, 각각 평균 입경이 100nm이하인 산화티탄 입자를 첨가하여 제작한 혼합물을 소결하는 공정을 적어도 포함한다.A second aspect of the method for producing a piezoelectric ceramic according to the present invention comprises the steps of: preparing a granulated powder by adding a binder to barium titanate particles each containing 0.04 mass% or more and 0.20 mass% or less of manganese in terms of metal; And a step of sintering the mixture prepared by adding titanium oxide particles each having an average particle diameter of 100 nm or less to the granulated powder.
망간을 각각 함유하는 티탄산바륨 입자에는, 티탄산바륨과 망간이외의 특성조정 성분이나 합성상의 불순물을 함유하고 있어도 된다. 불순물로서는, 알루미늄, 칼슘, 니오븀, 철 및 납등의 금속유래 성분, 유리 성분 및 탄화수소계의 유기성분등을 들 수 있다. 불순물의 함유량은 5질량%이하인 것이 바람직하고, 보다 바람직하게는 1질량%이하다.The barium titanate particles each containing manganese may contain barium titanate and characteristic adjusting components other than manganese and impurities in the synthesis phase. Examples of the impurities include metal-derived components such as aluminum, calcium, niobium, iron and lead, glass components, and hydrocarbon-based organic components. The content of the impurity is preferably 5 mass% or less, and more preferably 1 mass% or less.
망간을 각각 함유하는 티탄산바륨 입자의 1차 입자로서의 평균 입경은, 특히 제한되지 않는다. 그렇지만, 고밀도로 균질한 압전 세라믹을 얻기 위해서, 바람직한 1차 입자의 평균 입경은 5nm이상 300nm이하, 바람직하게는 50nm이상 150nm이하다. 1차 입자의 평균 입경이 지나치게 작아도 지나치게 커도, 소결후의 세라믹의 밀도가 부족해질 우려가 있다. 여기에서, "1차 입자"란, 분말을 구성하고 있는 입자 중, 기타와 명확하게 구별될 수 있는 최소단위의 물질을 나타낸다. 1차 입자가 응집하고, 보다 큰 2차 입자를 형성해도 된다. 고분자 바인더를 사용한 조립공정에 의해, 의도적으로 2차 입자를 형성해도 된다.The average particle diameter of the primary particles of the barium titanate particles each containing manganese is not particularly limited. However, in order to obtain a high-density and uniform piezoelectric ceramics, the average primary particle size is preferably 5 nm or more and 300 nm or less, and more preferably 50 nm or more and 150 nm or less. If the average particle diameter of the primary particles is excessively small or too large, the density of the ceramic after sintering may become insufficient. Here, "primary particles" refers to the smallest unit of the particles constituting the powder, which can be clearly distinguished from the others. The primary particles may aggregate to form larger secondary particles. Secondary particles may be intentionally formed by an assembling process using a polymer binder.
망간을 각각 함유하는 티탄산바륨 입자의 제조 방법 및 상기 망간을 각각 함유하는 티탄산바륨 입자에 바인더를 첨가하는 것을 포함하는 분말을 조립하는 제작 방법은 특별히 한정되지 않는다.A production method of producing barium titanate particles each containing manganese and a method of assembling a powder including adding a binder to barium titanate particles each containing manganese is not particularly limited.
망간이 부착된 티탄산바륨의 경우에는, 시판 또는 합성된 티탄산바륨 입자에 후공정에서 망간 성분을 첨가해서 부착되게 하면 좋다. 망간 성분의 첨가방법은 한정되지 않는다. 그렇지만, 망간 성분은 티탄산바륨의 표면에 균일하게 부착되는 것이 바람직하다. 그 관점에 있어서, 가장 바람직한 첨가방법은 스프레이 드라이법이다. 스프레이 드라이법은, 망간 성분의 부착과 동시에 바인더를 첨가하여, 조립분을 제작할 수 있다고 하는 관점과 입경을 보다 균일하게 할 수 있다고 하는 관점에서도 바람직하다.In the case of barium titanate to which manganese is attached, manganese components may be added to commercially available or synthesized barium titanate particles in a post-process. The method of adding the manganese component is not limited. However, it is preferable that the manganese component is uniformly adhered to the surface of barium titanate. In that respect, the most preferred addition method is the spray drying method. The spray-drying method is preferable from the viewpoint that granules can be prepared by adding a binder at the same time as the manganese component is adhered, and that the particle diameter can be more uniform.
망간이 고용체로서 용해된 티탄산바륨의 경우에는, 망간 성분을 미리 포함시킨 티탄산바륨 전구체를 결정화시켜도 된다. 예를 들면, 바륨화합물과 티탄화합물의 등몰의 혼합합을 제작하고 나서, 소망량의 망간 성분을 그 혼합물에 첨가한다. 이어서, 이 혼합물을 1000℃정도로 가소하여서 망간 성분이 고용체로서 용해된 티탄산바륨 입자를 얻는다. 이 경우에도, 조립분의 제작 방법도 특별하게 한정되지 않는다. 그렇지만, 입경을 보다 균일하게 할 수 있다고 하는 관점에 있어서, 스프레이 드라이법이 바람직하다.In the case of barium titanate dissolved as a solid solution of manganese, the barium titanate precursor containing the manganese component may be crystallized. For example, a equimolar mixture of a barium compound and a titanium compound is prepared, and then a desired amount of manganese component is added to the mixture. Subsequently, this mixture is calcined at about 1000 캜 to obtain barium titanate particles in which the manganese component is dissolved as a solid solution. Also in this case, the method of producing the granulated powder is not particularly limited. However, from the viewpoint that the particle diameter can be more uniform, the spray drying method is preferable.
조립할 때에 사용하여도 되는 바인더의 예로서는, 폴리비닐알코올(PVA), 폴리비닐 부티랄(PVB) 및 아크릴 수지를 들 수 있다. 첨가된 바인더의 양은, 1질량% 내지 10질량%가 바람직하고, 성형체의 밀도의 증가 관점에 있어서 2질량% 내지 5질량%가 보다 바람직하다.Examples of the binder which can be used for the assembly include polyvinyl alcohol (PVA), polyvinyl butyral (PVB) and acrylic resin. The amount of the binder added is preferably 1% by mass to 10% by mass, more preferably 2% by mass to 5% by mass from the viewpoint of increasing the density of the molded article.
망간을 각각 함유하는 티탄산바륨 입자를 제조할 때에 사용하여도 되는 바륨 화합물의 예로서는, 탄산 바륨, 옥살산 바륨, 산화바륨, 아세트산 바륨, 질산바륨, 알루민산 바륨, 및 각종의 바륨 알콕시드를 들 수 있다.Examples of barium compounds that may be used in producing barium titanate particles each containing manganese include barium carbonate, barium oxalate, barium oxide, barium acetate, barium nitrate, barium aluminate, and various barium alkoxides .
망간을 각각 함유하는 티탄산바륨 입자에 사용되어도 되는 티탄화합물의 예로서는, 산화티탄이 있다.An example of a titanium compound that can be used for barium titanate particles each containing manganese is titanium oxide.
망간을 각각 함유하는 티탄산바륨 입자에 사용되어도 되는 망간 성분의 예로서는, 산화망간, 이산화망간, 아세트산 망간 및 탄산 망간 등의 망간 화합물을 들 수 있다.Examples of the manganese component which may be used in the barium titanate particles each containing manganese include manganese compounds such as manganese oxide, manganese dioxide, manganese acetate and manganese carbonate.
상기 제조 방법은 상기 조립분에 상기 산화티탄 입자를 첨가하여 제작한 혼합물을 소결하는 것을 포함한다. 즉, 상기 혼합물은 바륨의 존재비보다 티타늄의 존재비가 큰 상태에 있다. 그러나, 상기 혼합물을 소결해서 얻어진 주된 성분은 티탄산바륨(Ba:Ti=1:1)이기 때문에, 상기 잉여 티타늄은, Ba보다 Ti존재비가 큰 Ba4Ti12027입자 혹은 Ba6Ti17040입자로서 상기 입계에 있어서 석출된다. 여기에서, 상기 산화티탄 입자는 평균 입경이 100nm이하다. 상기 산화티탄 입자는, 각각 평균 입경이 100nm이하인 것에 의해, 상기 혼합물B와의 분산성이 뛰어나, 보다 균일하게 혼합된다. 전술한 기구에 의해, 이러한 압전 세라믹은, 결정 입자내에 Mn을 머무르게 해두는 것이 가능하고, 압전 성능과 기계적 품질계수 양쪽을 만족시킨다. 상기 산화티탄 입자의 바람직한 첨가량은, 0.02질량%이상 1.5질량%이하다. 즉, 상기 제조 방법에 의해, 비교적 간편하게 Ba4Ti12027입자 혹은 Ba6Ti17040입자가 상기 입계에서 석출될 수 있다.The manufacturing method includes sintering the mixture prepared by adding the titanium oxide particles to the granules. That is, the mixture is in a state in which the ratio of the presence ratio of titanium is larger than that of barium. However, the primary component obtained by sintering the mixture of barium titanate (Ba: Ti = 1: 1 ) is due, the excess titanium is large Ba than Ti exists ratio Ba 4 Ti 12 0 27 particles or Ba 6 Ti 17 0 40 And is precipitated at the grain boundaries as particles. Here, the titanium oxide particles have an average particle diameter of 100 nm or less. The titanium oxide particles each have an average particle diameter of 100 nm or less, so that the titanium oxide particles are excellent in dispersibility with the mixture B and more uniformly mixed. With the above-described mechanism, such piezoelectric ceramics can make Mn stay in the crystal grains and satisfy both the piezoelectric performance and the mechanical quality factor. The preferable addition amount of the titanium oxide particles is 0.02 mass% or more and 1.5 mass% or less. That is, by the above-described production method, Ba 4 Ti 12 O 27 particles or Ba 6 Ti 17 O 40 particles can be relatively easily precipitated at the grain boundaries.
이후, 본 발명의 압전 세라믹을 사용한 압전소자에 관하여 설명한다.Hereinafter, a piezoelectric device using the piezoelectric ceramics of the present invention will be described.
본 발명에 따른 압전소자는, 제1 전극, 압전 세라믹 및 제2 전극을 적어도 가지는 압전소자이며, 이 압전 세라믹이 상기의 압전 세라믹이다.A piezoelectric element according to the present invention is a piezoelectric element having at least a first electrode, a piezoelectric ceramic and a second electrode, and the piezoelectric ceramic is the piezoelectric ceramics described above.
제1 전극 및 제2 전극은, 각각, 두께 5nm 내지 2000nm정도의 도전층으로 형성된다. 그 도전층의 재료는 특별하게 한정되지 않고, 압전소자에 일반적으로 이용되고 있는 재료이어도 된다. 이러한 재료의 예들로서는, Ti, Pt, Ta, Ir, Sr, In, Sn, Au, Al, Fe, Cr, Ni, Pd, Ag, Cu등의 금속, 및 이 금속들의 산화물을 들 수 있다. 제1 전극 및 제2 전극 각각은, 이들 중의 1종으로 형성되어도 되거나, 이들중의 2종이상을 적층하여 얻어져도 된다. 제1 전극과 제2 전극이, 각각 다른 재료로 형성되어도 된다.Each of the first electrode and the second electrode is formed of a conductive layer having a thickness of about 5 nm to 2000 nm. The material of the conductive layer is not particularly limited, and may be a material generally used for a piezoelectric element. Examples of such materials include metals such as Ti, Pt, Ta, Ir, Sr, In, Sn, Au, Al, Fe, Cr, Ni, Pd, Ag and Cu and oxides of these metals. Each of the first electrode and the second electrode may be formed of one of these, or two or more of them may be laminated. The first electrode and the second electrode may be formed of different materials.
제1 전극과 제2 전극의 제조 방법은 한정되지 않는다. 제1 전극과 제2 전극은, 금속 페이스트의 베이킹에 의해 형성되어도 좋거나, 스퍼터링, 증착법등에 의해 형성되어도 된다. 또한, 제1 전극과 제2 전극 양쪽은, 원하는 형상으로 패터닝 해서 사용해도 된다.The manufacturing method of the first electrode and the second electrode is not limited. The first electrode and the second electrode may be formed by baking the metal paste, or may be formed by sputtering, vapor deposition, or the like. Both the first electrode and the second electrode may be patterned in a desired shape.
도 1a 및 도 1b 각각은, 본 발명의 액체 토출 헤드의 구성의 일 실시예를 도시한 개략도다. 도 1a 및 도 1b에 나타나 있는 바와 같이, 본 발명의 액체 토출 헤드는, 본 발명의 압전소자(101)를 가지는 액체 토출 헤드다. 압전소자(101)는, 제1 전극(1011), 압전 세라믹(1012) 및 제2 전극(1013)을 적어도 가지는 압전소자다. 압전 세라믹(1012)은, 도 1b와 같이, 필요에 따라서 패터닝 되어 있다.Each of Figs. 1A and 1B is a schematic view showing one embodiment of the configuration of the liquid discharge head of the present invention. As shown in Figs. 1A and 1B, the liquid discharge head of the present invention is a liquid discharge head having the
도 1b는 액체 토출 헤드의 모식도다. 액체 토출 헤드는, 토출구(105), 개별액실(102), 개별액실(102)과 토출구(105)를 연결하는 연통 구멍(106), 액실분리벽(104), 공통 액실(107), 진동판(103), 및 압전소자(101)를 가진다. 본 도면에 있어서 압전소자(101) 각각은 직사각형이지만, 그 형상은, 직사각형이외의 타원형, 원형 또는 평행사변형등의 형상이어도 좋다. 일반적으로, 압전 세라믹(1012)은 개별액실(102)의 형상에 따른 형상의 각각이다.1B is a schematic view of a liquid discharge head. The liquid discharge head includes a
본 발명의 액체 토출 헤드에서의 압전소자(101)의 근방을 도 1a를 참조하여 상세하게 설명한다. 도 1a는, 도 1b에 도시된 액체 토출 헤드의 폭방향으로의 압전소자의 단면도다. 압전소자(101)의 단면형상은 직사각형으로 도시되어 있고, 사다리꼴이나 역사다리꼴이어도 된다.The vicinity of the
본 도면에서는, 제1 전극(1011)이 하부전극으로서 사용되고, 제2 전극(1013)이 상부전극으로서 사용된다. 그러나, 제1 전극(1011)과 제2 전극(1013)의 배치는, 상술한 것에 한정되지 않는다. 예를 들면, 제1 전극(1011)을 하부전극으로서 사용해도 되거나, 상부전극으로서 사용해도 된다. 마찬가지로, 제2 전극(1013)을 상부전극으로서 사용해도 되거나, 하부전극으로서 사용해도 된다. 또한, 진동판(103)과 하부전극의 사이에 버퍼층(108)이 존재해도 된다.In this figure, the
이때, 이것들의 명칭의 차이는 디바이스의 제조 방법에 의한 것이며, 어느 쪽의 경우에도 본 발명의 효과는 얻어질 수 있다.At this time, the difference in the names is due to the manufacturing method of the device, and in either case, the effect of the present invention can be obtained.
상기 액체 토출 헤드에 있어서는, 진동판(103)이 압전 세라믹(1012)의 신축에 의해 상하로 변동하여, 개별액실(102)의 액체에 압력을 가한다. 그 결과, 토출구(105)로부터 액체가 토출된다. 본 발명의 액체 토출 헤드는, 프린터 용도나 전자 디바이스의 제조에 사용될 수 있다.In the liquid discharge head, the
진동판(103)의 두께는, 1.O㎛이상 15㎛이하이며, 바람직하게는 1.5㎛이상 8㎛이하다. 진동판 재료는 한정되지 않지만, 바람직하게는 Si이다. 진동판의 Si에 B나 P가 도핑되어도 된다. 또한, 진동판의 버퍼층 및 전극층이 진동판의 일부가 되어도 된다.The thickness of the
버퍼층(108)의 두께는, 5nm이상 300nm이하이며, 바람직하게는 10nm이상 200nm이하다.The thickness of the
토출구(105)의 크기는, 원 상당 지름의 관점에서 5㎛이상 40㎛이하다. 토출구(105)의 형상은, 원형이어도 되거나, 별 모양, 정사각형, 또는 삼각형이어도 된다.The size of the
다음에, 본 발명의 압전소자를 사용한 초음파 모터에 관하여 설명한다.Next, an ultrasonic motor using the piezoelectric element of the present invention will be described.
도 2a 및 도 2b는, 본 발명의 초음파 모터의 구성의 일 실시예를 도시한 개략도다.2A and 2B are schematic views showing an embodiment of the configuration of the ultrasonic motor of the present invention.
도 2a는, 본 발명의 압전소자가 단판으로 형성된 초음파 모터를 나타낸다. 초음파 모터는, 진동자(201), 진동자(201)의 활주면에 (도면에 나타내지 않은) 가압 용수철에 의한 가압력으로 접촉하고 있는 로터(rotor)(202), 상기 로터(202)와 일체로 되도록 설치된 출력 축(203)을 가진다. 상기 진동자(201)는, 금속의 탄성체 링(2011), 본 발명의 압전소자(2012), 압전소자(2012)를 탄성체 링(2011)에 접착하는 유기계 접착제(2013)(이를테면, 에폭시계나 시아노아크리레이트계 접착제)로 구성된다. 본 발명의 압전소자(2012)는, (도면에 나타내지 않은) 제1 전극과 (도면에 나타내지 않은) 제2 전극 사이에 끼워진 압전 세라믹으로 형성된다.2A shows an ultrasonic motor in which the piezoelectric element of the present invention is formed into a single plate. The ultrasonic motor includes a
본 발명의 압전소자에 위상이 Π/2만큼 서로 다른 2개의 교류전압을 인가하면, 진동자(201)에 굴곡진행파가 발생하므로, 진동자(201)의 활주면상의 각점은 타원운동을 한다. 이 진동자(201)의 활주면에 로터(202)가 압접되어 있으면, 로터(202)는 진동자(201)로부터 마찰력을 받고, 굴곡진행파와는 반대의 방향으로 회전한다. (도면에 나타내지 않은) 피구동체는, 출력 축(203)과 접합되어 있고, 로터(202)의 회전력으로 구동된다.When two alternating voltages different in phase by? / 2 are applied to the piezoelectric element of the present invention, bending waves are generated in the
압전 세라믹에 전압을 인가하면, 압전 횡효과에 의해 압전 세라믹은 신축한다. 금속등의 탄성체가 압전소자에 접합되는 경우, 탄성체는 압전 세라믹의 신축에 의해 구부려진다. 여기에서 설명된 종류의 초음파 모터는, 이 원리를 이용한다.When a voltage is applied to the piezoelectric ceramics, the piezoelectric ceramic expands and contracts by the piezoelectric transverse effect. When an elastic body such as metal is bonded to the piezoelectric element, the elastic body is bent by the expansion and contraction of the piezoelectric ceramic. The ultrasonic motor of the kind described here uses this principle.
다음에, 적층구조를 가진 압전소자를 포함하는 초음파 모터를 도 2b에 예시한다. 진동자(204)는, 관 모양의 금속탄성체(2041) 사이에 끼워진 적층 압전소자(2042)로 형성된다. 적층 압전소자(2042)는, (도면에 나타내지 않은) 복수의 적층된 압전 세라믹으로 형성된 소자이며, 적층외면에 제1 전극과 제2 전극, 적층내면에 내부전극을 가진다. 금속탄성체(2041)는 볼트에 의해 체결되어, 압전소자(2042)를 삽입 및 상기 금속탄성체 의해 고정하여도 된다. 따라서, 진동자(204)가 형성된다.Next, an ultrasonic motor including a piezoelectric element having a laminated structure is illustrated in Fig. 2B. The
압전소자(2042)에 위상이 서로 다른 교류전압을 인가함에 의해, 진동자(204)는 서로 직교하는 2개의 진동을 여기한다. 이 2개의 진동은 합성되어, 진동자(204)의 선단부를 구동하기 위한 원형 진동을 형성한다. 이때, 진동자(204)의 상부에는 잘록한 원주 홈이 형성되어, 구동하기 위한 진동의 변위를 확대한다.By applying alternating voltages having different phases to the
로터(205)는, 가압용의 용수철(206)에 의해 진동자(204) 가압하여 접촉하고, 구동을 위한 마찰력을 얻는다. 로터(205)는 베어링에 의해 회전가능하게 지지되어 있다.The
다음에, 본 발명의 압전소자를 사용한 진애 제거장치에 관하여 설명한다.Next, a dust removing apparatus using the piezoelectric element of the present invention will be described.
도 3a 및 도 3b는 본 발명의 진애 제거장치의 일 실시예를 도시한 개략도다.3A and 3B are schematic views showing an embodiment of the dedusting device of the present invention.
진애 제거장치(310)는 판자 모양의 압전소자(330)와 진동판(320)으로 구성된다. 진동판(320)의 재질은 한정되지 않는다. 진애 제거장치(310)를 광학 디바이스에 사용할 경우에는, 투광성 재료나 광반사성 재료를 진동판(320)의 재료로서 사용할 수 있다.The
도 4a 내지 4c는 도 3a 및 3b에 도시된 압전소자(330)의 구성을 도시한 개략도다. 도 4a와 4c는, 압전소자(330)의 앞면 구성과 뒷면 구성을 각각 나타낸다. 도 4b는 측면의 구성을 나타낸다. 압전소자(330)는 도 4a 내지 4c에 나타나 있는 바와 같이, 압전 세라믹(331)과 제1의 전극(332)과 제2의 전극(333)으로 구성되고, 제1의 전극(332)과 제2의 전극(333)은 압전 세라믹(331)의 판면에 대향하도록 배치되어 있다. 도 4c에 있어서, 제1의 전극(332)이 설치된 압전소자(330)의 앞면을 제1의 전극면(336)이라고 한다. 도 4a에 있어서, 제2의 전극(333)이 설치된 압전소자(330)의 앞면을 제2의 전극면(337)이라고 한다.Figs. 4A to 4C are schematic diagrams showing the configuration of the
여기에서, 본 발명에 있어서의 전극면은, 전극이 설치되어 있는 압전소자의 면을 말한다. 예를 들면, 도 4a 내지 4c에 나타나 있는 바와 같이, 제1의 전극(332)이 제2의 전극면(337)에 확장되어도 된다.Here, the electrode surface in the present invention refers to a surface of a piezoelectric element provided with an electrode. For example, the
압전소자(330)와 진동판(320)은, 도 3a 및 3b에 나타나 있는 바와 같이, 압전소자(330)의 제1의 전극면(336)에 진동판(320)의 판면이 고정된다. 압전소자(330)가 구동되면, 압전소자(330)와 진동판(320)과의 사이에 응력이 발생하여, 진동판에 면외진동을 발생시킨다. 본 발명의 진애 제거장치(310)는, 이 진동판(320)의 면외진동에 의해 진동판(320)의 표면에 부착된 진애 등의 이물질을 제거하는 장치다. 면외진동은, 진동판을 광축방향 즉, 진동판의 두께 방향으로 이동시키는 탄성진동을 의미한다.The
도 5는 본 발명의 진애 제거장치(310)의 진동 원리를 나타내는 모식도다. 도 5의 위쪽은 좌우 한 쌍의 압전소자(330)에 동위상의 교번 전계를 인가하고, 진동판(320)에 면외진동을 발생시킨 상태를 나타낸다. 좌우 한 쌍의 압전소자(330)를 구성하는 압전 세라믹의 분극 방향은 압전소자(330)의 두께 방향과 동일하고, 진애 제거장치(310)는 7차의 진동 모드로 구동하고 있다. 도 5의 아래쪽은 좌우 한 쌍의 압전소자(330)에 위상이 180도 반대인 교류 전압을 인가하여, 진동판(320)에 면외진동을 발생시킨 상태를 나타낸다. 진애 제거장치(310)는 6차의 진동 모드로 구동하고 있다. 본 발명의 진애 제거장치(310)는 적어도 2개의 진동 모드를 선택적으로 사용하여서 진동판의 표면에 부착하는 진애를 효과적으로 제거할 수 있는 장치다.5 is a schematic view showing the principle of oscillation of the
전술한 바와 같이, 본 발명의 압전소자는, 액체 토출 헤드, 초음파 모터 및 진애 제거장치에 적합하게 적용 가능하다.As described above, the piezoelectric element of the present invention is suitably applicable to a liquid discharge head, an ultrasonic motor, and a dust removing apparatus.
본 발명의 Ba4Ti12027 및 Ba6Ti17040로부터 선택된 적어도 하나의 화합물을 함유하는 비납계의 압전 세라믹을 사용함으로써, 납을 포함하는 압전 세라믹을 사용하는 경우와 동등이상의 노즐 밀도, 및 토출력을 가지는 액체 토출 헤드를 제공할 수 있다.Lead-based piezoelectric ceramics containing at least one compound selected from Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 of the present invention can be used to achieve a nozzle density equal to or higher than that in the case of using a piezoelectric ceramics containing lead, And a liquid discharge head having a throughput.
본 발명의 Ba4Ti12027 및 Ba6Ti17040로부터 선택된 적어도 하나의 화합물을 함유하는 비납계의 압전 세라믹을 사용함으로써 납을 포함하는 압전 세라믹을 사용하는 경우와 동등이상의 구동력, 및 내구성을 가지는 초음파 모터를 제공할 수 있다.Based piezoelectric ceramics containing at least one compound selected from Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 of the present invention is used to provide a driving force equal to or higher than that in the case of using a piezoelectric ceramics containing lead, Can be provided.
본 발명의 Ba4Ti12027 및 Ba6Ti17040로부터 선택된 적어도 하나의 화합물을 함유하는 비납계의 압전 세라믹을 사용함으로써 납을 포함하는 압전 세라믹을 사용하는 경우와 동등이상의 진애 제거 효율을 가지는 진애 제거장치를 제공할 수 있다.Based piezoelectric ceramics containing at least one compound selected from Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 of the present invention is used to achieve a dust removal efficiency equal to or higher than that in the case of using a piezoelectric ceramics containing lead The branch can provide a dust removal device.
본 발명의 압전 세라믹은, 액체 토출 헤드와 모터에 더하여, 초음파진동자, 압전 액추에이터, 압전센서, 강유전 메모리 등의 디바이스에 사용될 수 있다.The piezoelectric ceramics of the present invention can be used in devices such as ultrasonic vibrators, piezoelectric actuators, piezoelectric sensors, and ferroelectric memories in addition to liquid discharge heads and motors.
전술한 바와 같이, 본 발명의 압전소자는, 액체 토출 헤드와, 초음파 모터에 적합하게 사용된다. 액체 토출 헤드는, 티탄산바륨을 주 성분으로 하는 비납계의 압전소자를 포함한다. 따라서, 납계 압전소자와 동등이상의 노즐 밀도와 토출력을 가지는 헤드를 제공할 수 있다. 또한, 초음파 모터는, 티탄산바륨을 주 성분으로 하는 비납계의 압전소자를 포함하여도 된다. 따라서, 납계 압전소자와 동등이상의 구동력 및 내구성이 있는 모터를 제공할 수 있다.As described above, the piezoelectric element of the present invention is suitably used for a liquid discharge head and an ultrasonic motor. The liquid discharge head includes a non-lead-based piezoelectric element having barium titanate as its main component. Therefore, it is possible to provide a head having a nozzle density equal to or higher than that of the lead-based piezoelectric element and a ground output. Also, the ultrasonic motor may include a non-lead-based piezoelectric element having barium titanate as its main component. Accordingly, it is possible to provide a motor having a driving force and durability equal to or higher than that of the lead-based piezoelectric element.
본 발명의 압전 세라믹은, 액체 토출 헤드와 모터에 더하여, 초음파진동자, 압전 액추에이터, 압전센서 등의 디바이스에 사용될 수 있다.The piezoelectric ceramics of the present invention can be used in devices such as an ultrasonic vibrator, a piezoelectric actuator, and a piezoelectric sensor in addition to a liquid discharge head and a motor.
(예시들)(Examples)
이하, 예시들에 의해 본 발명을 보다 구체적으로 설명한다. 그렇지만, 본 발명은, 이하의 예시에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples.
예시1(세라믹의 제조 방법1)Example 1 (Manufacturing Method 1 of Ceramic)
원료로서 탄산 바륨, 산화티탄 및 산화망간을 사용하고, Ba과 Ti의 몰비가 1:1에, 망간의 첨가량이, 금속환산으로 산화바륨과 산화티탄의 질량의 합에 대하여 0.12질량%가 되도록 칭량했다. 그리고, 이들 원료를 혼합했다. 그 결과로 얻어진 혼합한 분말을 900℃로부터 1100℃까지 2시간 내지 5시간 동안 가소했다.Barium carbonate, titanium oxide, and manganese oxide were used as raw materials and the weight ratio of Ba and Ti was adjusted to 1: 1 so that the addition amount of manganese was 0.12 mass% with respect to the sum of the mass of barium oxide and titanium oxide in terms of metal did. Then, these raw materials were mixed. The resultant mixed powder was calcined at 900 캜 to 1100 캜 for 2 hours to 5 hours.
이어서, 가소된 분말에 바인더로서 PVA를 3질량% 첨가하고, 그 결과의 혼합물을 스프레이 드라이하여 조립분을 얻었다. 그 후, 조립분에 Ba4Ti12027을 0.9질량% 첨가해 혼합했다.Subsequently, 3% by mass of PVA was added as a binder to the calcined powder, and the resulting mixture was spray-dried to obtain granulated powder. Then, 0.9 mass% of Ba 4 Ti 12 O 27 was added to the granulated powder and mixed.
다음에, 그 얻어진 분말을 금형내에 충전하고 나서 압축하여 성형체를 형성했다. 그 결과의 성형체를 1300℃으로부터 1400℃까지 2시간 내지 6시간 소결해서 세라믹을 얻었다. 여기서, 온도상승 레이트는 10℃/분으로 해서 소결 온도로부터 10℃이상의 오버슈트(overshoot)가 발생하지 않도록 전기로의 열전대를 조정했다.Next, the obtained powder was filled in a mold and then compressed to form a molded article. The resultant shaped body was sintered from 1300 ° C to 1400 ° C for 2 hours to 6 hours to obtain a ceramic. Here, the temperature rise rate was set at 10 占 폚 / min, and the thermocouple of the electric furnace was adjusted so that overshoot of 10 占 폚 or more did not occur from the sintering temperature.
그 결과로 얻어진 소결체는 두께가 1mm에 되도록 연마했다. 그 후에, 소결체를 대기중에서 450℃로부터 1100℃까지 1시간 내지 3시간 동안 열처리하여, 그 소결체의 표면으로부터 유기물성분을 제거했다.The resultant sintered body was polished so as to have a thickness of 1 mm. Thereafter, the sintered body was heat-treated in the atmosphere from 450 DEG C to 1100 DEG C for 1 hour to 3 hours to remove the organic component from the surface of the sintered body.
예시2(세라믹의 제조 방법2)Example 2 (Manufacturing Method 2 of Ceramic)
원료로서 탄산 바륨, 산화티탄 및 산화망간을 사용하고, Ba과 Ti의 몰비가 1:1에, 망간의 첨가량이, 금속환산으로 산화바륨과 산화티탄의 질량의 합에 대하여 0.12질량%가 되도록 칭량했다. 그 후, 이들 원료를 혼합했다. 그 결과의 혼합한 분말을 900℃로부터 1100℃까지 2시간 내지 5시간동안 가소했다.Barium carbonate, titanium oxide, and manganese oxide were used as raw materials and the weight ratio of Ba and Ti was adjusted to 1: 1 so that the addition amount of manganese was 0.12 mass% with respect to the sum of the mass of barium oxide and titanium oxide in terms of metal did. Thereafter, these raw materials were mixed. The resultant mixed powder was calcined at 900 캜 to 1100 캜 for 2 hours to 5 hours.
이어서, 가소된 분말에 바인더로서 PVA를 3질량% 첨가하고, 그 결과의 혼합물을 스프레이 드라이하여 조립분을 얻었다. 그 후에, 조립분에 Ba6Ti17040을 0.85질량% 첨가하고, 혼합했다.Subsequently, 3% by mass of PVA was added as a binder to the calcined powder, and the resulting mixture was spray-dried to obtain granulated powder. Thereafter, it was added 0.85% by weight of Ba 6 Ti 17 0 40 minutes for assembly, and mixed.
다음에, 그 얻어진 분말을 금형내에 충전하고 나서 압축하여 성형체를 형성했다. 그 결과로 얻어진 성형체를 1300℃로부터 1400℃까지 2시간 내지 6시간 동안 소결하여 세라믹을 얻었다. 여기서, 온도상승 레이트는 10℃/분으로 해서 소결 온도로부터 10℃이상의 오버슈트가 발생하지 않도록 전기로의 열전대를 조정했다.Next, the obtained powder was filled in a mold and then compressed to form a molded article. The resulting compact was sintered from 1300 ° C to 1400 ° C for 2 hours to 6 hours to obtain a ceramic. Here, the temperature rise rate was set at 10 占 폚 / min, and the thermocouple of the electric furnace was adjusted so that overshoot of 10 占 폚 or more did not occur from the sintering temperature.
그 결과로 얻어진 소결체는 두께가 1mm가 되도록 연마했다. 그 후에, 소결체를 대기중에서 450℃로부터 1100℃까지 1시간 내지 3시간 동안 열처리하여, 그 소결체의 표면으로부터 유기물성분을 제거했다.The resultant sintered body was polished so as to have a thickness of 1 mm. Thereafter, the sintered body was heat-treated in the atmosphere from 450 DEG C to 1100 DEG C for 1 hour to 3 hours to remove the organic component from the surface of the sintered body.
예시3(세라믹의 제조 방법3)Example 3 (Manufacturing Method 3 of Ceramic)
원료로서 탄산 바륨, 산화티탄 및 산화망간을 사용하고, Ba과 Ti의 몰비가 1:1에, 망간의 첨가량이, 금속환산으로 산화바륨과 산화티탄의 질량의 합에 대하여 0.12질량%가 되도록 칭량했다. 그 후, 이들 원료를 혼합했다. 그 결과의 혼합한 분말을 900℃로부터 1100℃까지 2시간 내지 5시간동안 가소했다.Barium carbonate, titanium oxide, and manganese oxide were used as raw materials and the weight ratio of Ba and Ti was adjusted to 1: 1 so that the addition amount of manganese was 0.12 mass% with respect to the sum of the mass of barium oxide and titanium oxide in terms of metal did. Thereafter, these raw materials were mixed. The resultant mixed powder was calcined at 900 캜 to 1100 캜 for 2 hours to 5 hours.
이어서, 가소된 분말에 바인더로서 PVA를 3질량% 첨가하고, 그 결과의 혼합물을 스프레이 드라이하여 조립분을 얻었다. 그 후에, 조립분에 Ba4Ti12027 및 Ba6Ti17040을 0.45질량%씩 첨가하고, 혼합했다.Subsequently, 3% by mass of PVA was added as a binder to the calcined powder, and the resulting mixture was spray-dried to obtain granulated powder. Thereafter, Ba 4 Ti 12 O 27 and Ba 6 Ti 17 0 40 were added in amounts of 0.45 mass% in the granulated powder and mixed.
다음에, 그 얻어진 분말을 금형내에 충전하고 나서 압축하여 성형체를 형성했다. 그 결과로 얻어진 성형체를 1300℃로부터 1400℃까지 2 내지 6시간동안 소결하여 세라믹을 얻었다. 온도상승 레이트는 10℃/분으로 해서 소결 온도로부터 10℃이상의 오버슈트가 발생하지 않도록 전기로의 열전대를 조정했다.Next, the obtained powder was filled in a mold and then compressed to form a molded article. The resulting compact was sintered from 1300 ° C to 1400 ° C for 2 to 6 hours to obtain a ceramic. The temperature rise rate was set at 10 占 폚 / min and the thermocouple of the electric furnace was adjusted so that overshoot of 10 占 폚 or more did not occur from the sintering temperature.
그 결과로 얻어진 소결체는 두께가 1mm가 되도록 연마했다. 그 소결체를 대기중에서 450℃로부터 1100℃까지 1시간 내지 3시간 동안 열처리하여, 그 소결체의 표면으로부터 유기물성분을 제거했다.The resultant sintered body was polished so as to have a thickness of 1 mm. The sintered body was heat-treated in the atmosphere from 450 ° C to 1100 ° C for 1 hour to 3 hours to remove organic components from the surface of the sintered body.
예시4 내지 예시10(세라믹의 제조 방법4)Examples 4 to 10 (Manufacturing Method 4 of Ceramic)
원료로서 탄산 바륨, 산화티탄 및 산화망간을 사용하고, Ba과 Ti의 몰비가 1:1에, 망간의 첨가량이 표1에 기재한 양이 되도록 칭량했다. 그 후, 이들 원료를 혼합했다. 그 결과로 얻어진 혼합한 분말을 900℃로부터 1100℃까지 2시간 내지 5시간동안 가소했다.Barium carbonate, titanium oxide and manganese oxide were used as raw materials, and the amounts of Ba and Ti were 1: 1, and the amounts of manganese added were as shown in Table 1. Thereafter, these raw materials were mixed. The resultant mixed powder was calcined at 900 캜 to 1100 캜 for 2 hours to 5 hours.
이어서, 가소된 분말에 바인더로서 PVA를 3질량% 첨가하고, 그 결과의 혼합물을 스프레이 드라이 하여, 조립분을 얻었다. 그 후에, 조립분에 평균 입경이 10nm 내지 30nm의 산화티탄(TiO2)을 혼합해 그 결과로 얻어진 분말을, 금형내에 충전하고 나서 압축하여 성형체를 형성했다.Subsequently, 3% by mass of PVA was added as a binder to the calcined powder, and the resulting mixture was spray-dried to obtain granulated powder. Thereafter, titanium oxide (TiO 2 ) having an average particle size of 10 nm to 30 nm was mixed with the granulation powder, and the resulting powder was filled in a mold and compressed to form a molded article.
다음에, 그 결과로 얻어진 성형체를 1300℃로부터 1450℃까지 2시간 내지 6시간동안 소결하여 세라믹을 얻었다. 온도상승 레이트는 10℃/분으로 해서 소결 온도로부터 10℃이상의 오버슈트가 발생하지 않도록 전기로의 열전대를 조정했다.Next, the resulting molded body was sintered from 1300 占 폚 to 1450 占 폚 for 2 hours to 6 hours to obtain a ceramic. The temperature rise rate was set at 10 占 폚 / min and the thermocouple of the electric furnace was adjusted so that overshoot of 10 占 폚 or more did not occur from the sintering temperature.
그 결과로 얻어진 소결체는 두께가 1mm가 되도록 연마했다. 소결체를 대기중에서 450℃로부터 1100℃까지 1시간 내지 3시간동안 열처리하여, 그 소결체의 표면으로부터 유기물성분을 제거했다.The resultant sintered body was polished so as to have a thickness of 1 mm. The sintered body was heat-treated in the atmosphere from 450 ° C to 1100 ° C for 1 hour to 3 hours to remove organic components from the surface of the sintered body.
비교예1(세라믹의 제조 방법5)Comparative Example 1 (Production Method 5 of Ceramic)
원료로서 탄산 바륨, 산화티탄 및 산화망간을 사용하고, Ba과 Ti의 몰비가 1:1에, 망간의 첨가량이, 금속환산으로 산화바륨과 산화티탄의 질량의 합에 대하여 0.12질량%가 되도록 칭량했다. 그 후, 이들 원료를 혼합했다. 그 결과의 혼합한 분말을 900℃로부터 1100℃까지 2시간 내지 5시간동안 가소했다.Barium carbonate, titanium oxide, and manganese oxide were used as raw materials and the weight ratio of Ba and Ti was adjusted to 1: 1 so that the addition amount of manganese was 0.12 mass% with respect to the sum of the mass of barium oxide and titanium oxide in terms of metal did. Thereafter, these raw materials were mixed. The resultant mixed powder was calcined at 900 캜 to 1100 캜 for 2 hours to 5 hours.
이어서, 가소된 분말에 바인더로서 PVA를 3질량% 첨가하고, 그 결과의 혼합물을 스프레이 드라이 하여, 조립분을 얻었다. 그 조립분을 금형내에 충전하고 나서 압축하여 성형체를 형성했다.Subsequently, 3% by mass of PVA was added as a binder to the calcined powder, and the resulting mixture was spray-dried to obtain granulated powder. The assembly was filled in a mold and then compressed to form a molded article.
그 결과로 얻어진 성형체를 1300℃로부터 1400℃까지 2시간 내지 6시간동안 소결하여 세라믹을 얻었다. 온도상승 레이트는 10℃/분으로 해서 소결 온도로부터 10℃이상의 오버슈트가 발생하지 않도록 전기로의 열전대를 조정했다.The resulting compact was sintered from 1300 ° C to 1400 ° C for 2 hours to 6 hours to obtain a ceramic. The temperature rise rate was set at 10 占 폚 / min and the thermocouple of the electric furnace was adjusted so that overshoot of 10 占 폚 or more did not occur from the sintering temperature.
그 결과로 얻어진 소결체는 두께가 1mm가 되도록 연마했다. 소결체를 대기중에서 450℃로부터 1100℃까지 1시간 내지 3시간동안 열처리하여, 그 소결체의 표면으로부터 유기물성분을 제거했다.The resultant sintered body was polished so as to have a thickness of 1 mm. The sintered body was heat-treated in the atmosphere from 450 ° C to 1100 ° C for 1 hour to 3 hours to remove organic components from the surface of the sintered body.
표1에, 예시1 내지 예시10의 압전 세라믹의 제조 조건을 나타낸다. 표에서, "Mn량"이란, 칭량한 망간의 양을 나타내고 있다.Table 1 shows the production conditions of the piezoelectric ceramics of Examples 1 to 10. In the table, "Mn amount" indicates the amount of manganese weighed.
표1: 압전 세라믹의 제조 조건Table 1: Manufacturing Conditions of Piezoelectric Ceramics
(압전 세라믹의 구조평가)(Structural Evaluation of Piezoelectric Ceramics)
상기 얻어진 압전 세라믹의 결정 입자 및 입계의 구조를, 투과형 전자현미경(TEM)을 사용해서 평가했다.The structure of the crystal grains and grain boundaries of the obtained piezoelectric ceramics was evaluated using a transmission electron microscope (TEM).
우선, 전자선 회절상을 사용하여, 각 압전 세라믹중의 결정 입자의 결정구조를 평가했다. 예시1 내지 예시10 및 비교예1에서, 결정 입자는 Mn을 함유하는 페로브스카이트 구조의 BaTiO3로 각각 형성되어 있었다. 결정 입자중에 포함되어 있는 Mn은 전자선 프로브 마이크로 아날라이저(EPMA라고 칭한다)를 사용해서 측정했다. 또한, 결정 입경은, 주사형 전자현미경을 사용해서 평가되었다.First, the crystal structure of crystal grains in each piezoelectric ceramic was evaluated using an electron beam diffraction image. In Examples 1 to 10 and Comparative Example 1, the crystal grains were each formed of BaTiO 3 having a perovskite structure containing Mn. Mn contained in the crystal grains was measured using an electron beam probe microanalyzer (EPMA). In addition, the crystal grain size was evaluated using a scanning electron microscope.
한층 더, 압전 세라믹 전체의 조성을 X선 형광분석(XRF)에 의해 평가했다.Furthermore, the composition of the entire piezoelectric ceramics was evaluated by X-ray fluorescence analysis (XRF).
상기 압전 세라믹에 대하여, 입계부분의 평가를 행했다. 구체적으로는, 압전 세라믹중에 있어서의 입계부분의 비율, 입계에 포함되는 결정구조, 상기 결정중의 Mn의 유무, 및 입계에 포함되는 Mn양을 측정했다.The piezoelectric ceramics were evaluated for grain boundary portions. Specifically, the ratio of the grain boundary portion in the piezoelectric ceramics, the crystal structure contained in the grain boundaries, the presence or absence of Mn in the crystal, and the amount of Mn contained in the grain boundaries were measured.
투과형 전자현미경을 사용해서 압전 세라믹을 관찰하기 위한 시료의 작성 수순을 설명한다. 우선, 표면을 경면 모양으로 연마한 압전 세라믹의 표면에 금속 혹은 카본막 적층시켰다. 이러한 코팅은, TEM용 박편시료 제작공정동안에 압전 세라믹 표면에의 전하의 축전을 방지하도록 형성되었다. 다음에, 집중 이온빔을 사용해서 압전 세라믹 표면으로부터 약 두께1㎛×폭10㎛×길이5㎛의 박편 시료를 잘라낸다. TEM 관찰용 그리드에 그 시료를 붙였다. 상기 시료에 상기 시료의 길이방향에 평행한 집중이온빔을 조사하고, 길이5㎛정도의 영역에 있어서 시료두께가 약 100nm가 되도록 가공했다. 투과형 전자현미경 관찰은, 상기 시료(두께1㎛×폭10㎛×길이5㎛)의 두께 방향에서 전자빔을 조사하여서 실행되었다.A procedure for preparing a sample for observing a piezoelectric ceramic using a transmission electron microscope will be described. First, a metal or a carbon film is laminated on the surface of a piezoelectric ceramics whose surface is mirror-polished. This coating was formed to prevent the accumulation of electric charges on the surface of the piezoelectric ceramic during the production process of the thin foil sample for TEM. Next, a thin flake sample having a thickness of 1 m, a width of 10 m and a length of 5 m is cut out from the surface of the piezoelectric ceramics using a concentrated ion beam. The sample was attached to a grid for TEM observation. The sample was irradiated with a focused ion beam parallel to the longitudinal direction of the sample, and the sample was processed to have a thickness of about 100 nm in a region of about 5 mu m in length. The transmission electron microscope observation was carried out by irradiating the electron beam in the thickness direction of the sample (thickness 1 占 퐉 占 10 占 퐉 占 length 5 占 퐉).
상기 입계의 전자선 회절상은 상기 제한 시야 회절법을 사용해서 취득했다. 동시에, 기지의 티탄산바륨 결정 입자부분(BaTiO3)을 동일한 조건하에서 관찰하여, 카메라 정수를 규정했다. 그 결과로 얻어진 상기 입계부분의 회절상으로부터 격자 면간격을 산출했다. 상기 전자회절상 관찰을, 시료의 경사각도를 임의로 변화시키면서 행하여, 입계의 동일장소로부터 수개의 상이한 회절상을 얻었다. 각 회절상의 격자 면간격을 산출하고, 기지의 문헌 데이터와 비교함으로써 입계의 결정구조를 특정했다. 입계 부분을 STEM-EDX법에 의해 조성 분석해 그 입계 부분에 함유되어 있는 Mn의 농도를 산출했다. "STEM-EDX"란, 주사 투과 전자현미경법(STEM)에 의해 관찰된 시료상의 임의의 장소에 있어서의 X선 형광의 강도를 에너지 분산형 X선 분광법(EDX)으로 측정하는 수법이다.The electron diffraction image of the grain boundaries was obtained using the limited field diffraction method. Simultaneously, the barium titanate crystal grain portion (BaTiO 3 ) was observed under the same conditions to define the camera constant. The lattice spacing was calculated from the resultant diffraction image of the grain boundary portion. The electron diffraction image observation was carried out while arbitrarily changing the inclination angle of the sample to obtain several diffraction images from the same place of the grain boundaries. The lattice plane spacing of each diffraction image was calculated and compared with known document data to specify the grain boundary crystal structure. The grain boundary portion was subjected to composition analysis by the STEM-EDX method to calculate the concentration of Mn contained in the grain boundary portion. "STEM-EDX" is a technique of measuring the intensity of X-ray fluorescence in an arbitrary place on a sample observed by scanning transmission electron microscopy (STEM) with energy dispersive X-ray spectroscopy (EDX).
표2에는, 그 얻어진 압전 세라믹의 결정 입자 및 입계의 물성이 열거되어 있다.Table 2 lists the crystal grains of the obtained piezoelectric ceramics and physical properties of grain boundaries.
(입계의 물성의 함유량의 평가)(Evaluation of the content of the physical properties of the grain boundary)
A: Ba4Ti12027만을 함유하고 있었다.A: Ba 4 Ti 12 O 27 only.
B: Ba6Ti17040만을 함유하고 있었다.B: Ba 6 Ti 17 0 40 alone.
C: Ba4Ti12027 및 Ba6Ti17040을 함유하고 있었다.C: Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 .
×: Ba4Ti12027, Ba6Ti17040의 어느쪽의 결정구조도 확인되지 않았다.X: No crystal structure of either Ba 4 Ti 12 O 27 or Ba 6 Ti 17 O 40 was observed.
(입계의 물성의 Mn의 유무의 평가)(Evaluation of the presence or absence of Mn in the physical properties of the grain boundary)
0: 입계에 함유된 결정중에 Mn이 존재하고 있었다.0: Mn was present in the crystal contained in the grain boundaries.
×: 입계에 함유된 결정중에 Mn이 존재하지 않고 있었다.X: Mn was not present in the crystals contained in the grain boundaries.
또한, (표에서는 생략하였지만) XRF에 의한 조성 분석의 결과에 의해 밝혀진 것은, 예시1 내지 예시10 및 비교예1 각각에 있어서, Ba와 Ti의 몰비는 1.0 : 1.0이었다.In addition, the results of composition analysis by XRF (although not shown in the table) revealed that the molar ratio of Ba to Ti was 1.0: 1.0 in each of Examples 1 to 10 and Comparative Example 1.
표2: 결정 입자 및 입계의 물성Table 2: Properties of crystal grains and grain boundaries
(입계 비율)(Grain boundary ratio)
입계 비율은, 입계에 함유된 Ba4Ti12027 및 Ba6Ti17040로부터 선택된 적어도 하나의 화합물이 차지하는 비율(면적%)을 나타낸다.The grain boundary ratio represents the ratio (area%) of at least one compound selected from Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 contained in the grain boundary.
SEM에 의한 표면의 상관찰의 결과, 부입자는 결정 입자와 다른 콘트라스트로 관찰된 것을 알았다. 상기의 SEM관찰에 의한 결과를 바탕으로, 상기 입계에 함유된 Ba4Ti12027 및 Ba6Ti17040로부터 선택된 적어도 하나의 화합물이, 압전 세라믹 전체에 대하여 차지하는 비율을 측정하기 위해서, 이하의 수법을 사용한 해석을 행했다. 즉, SEM에 의한 상기 압전 세라믹 표면의 상관찰을 행하고, 상기 결정 입자부분과, 상기 부입자의 부분을 양자의 콘트라스트의 차이에 의거하여 이진화 하고, 양자의 면적을 측정했다. 그 측정을 간략하기 위해서, 촬영한 SEM상을 10장의 세트마다 면적을 산출했다. 상술한 해석을 상기 부입자의 상기 압전 세라믹에 있어서의 분포에 대해서 충분히 넓다고 생각되는 영역에 대해서 행했다. 상기 해석에 의해 얻어진 부입자의 면적 및 상기 결정 입자의 면적의 각각의 합계를 비교함으로써, 상기 부입자가 상기 압전 세라믹에 대해 차지하는 함유율(면적%)을 산출했다.As a result of observation of the surface by SEM, it was found that the sub-particles were observed with a contrast different from that of the crystal grains. Based on the results of the above SEM observation, in order to measure the ratio of at least one compound selected from Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 contained in the grain boundary to the entire piezoelectric ceramics, Was performed. That is, the surface of the piezoelectric ceramic was observed by SEM, and the crystal grain portion and the subparticle portion were binarized on the basis of the difference of the contrast of the both, and the area of both of them was measured. In order to simplify the measurement, the area of the SEM images taken was calculated for each of 10 sets. The above-described analysis was performed on a region considered to be wide enough for the distribution of the sub-particles in the piezoelectric ceramics. The content (area%) of the sub-particles in the piezoelectric ceramics was calculated by comparing the total of the areas of the sub-particles obtained by the above-described analysis and the areas of the above-mentioned crystal grains.
도 8b는 예시5의 TEM 제한 시야 회절법에 의해 얻어진 전자선 회절상이다. 도 8a는 문헌 데이터로부터 산출한 Ba4Ti12027의 [100]입사 전자선 회절 패턴이다. 양자의 격자 면간격을 비교함으로써, 상기 부입자가 Ba4Ti12027을 함유하는 것을 확인했다. 마찬가지로, 예시1, 3, 4, 6 내지 10 각각에서도 확인했다.Fig. 8B is an electron diffraction image obtained by TEM-limited field diffraction of Example 5. Fig. 8A is a [100] incident electron beam diffraction pattern of Ba 4 Ti 12 O 27 calculated from document data. By comparing the lattice plane spacings of both, it was confirmed that the sub-particles contained Ba 4 Ti 12 O 27 . Likewise, it was confirmed in each of Examples 1, 3, 4, and 6 to 10 as well.
표3은 전술한 제한 시야 회절법을 사용해서 관찰한 상기 전자선 회절상으로부터 얻어진 격자 면간격과, 상기 Ba4Ti12027의 기지의 문헌 데이터로부터 얻은 격자 면간격간의 비교 결과를 나타낸다. 하기 표에서 Ba4Ti12027이 본 발명의 압전 세라믹에는 존재하는 것을 안다.Table 3 shows the result of comparison between the lattice spacing obtained from the electron diffraction image observed using the above-described limited field diffraction method and the lattice spacing obtained from the known literature data of Ba 4 Ti 12 O 27 . In the following table, it is known that Ba 4 Ti 12 O 27 exists in the piezoelectric ceramics of the present invention.
표3: 면간격의 비교(Ba4Ti12027의 [100]입사 전자선 회절상)Table 3: Comparison of surface spacing ([100] incident electron diffraction pattern of Ba 4 Ti 12 0 27 )
또한, 도 9b는 예시5의 압전 세라믹에 있어서의 입계부분의 TEM 제한 시야 회절법에 의해 얻어진 전자선 회절상이다. 도 9a는 문헌 데이터로부터 산출한 Ba6Ti17040의 [011]입사 전자선 회절 패턴이다. 양자의 격자 면간격을 비교함으로써, 상기 부입자가 Ba6Ti17040를 함유한 것을 확인했다. 마찬가지로, 예시2 내지 4, 및 6 내지 10 각각에서도 확인했다.Fig. 9B is an electron diffraction pattern obtained by TEM-limited field diffraction of grain boundaries in the piezoelectric ceramics of Example 5. Fig. 9A is an [011] incident electron diffraction pattern of Ba 6 Ti 17 0 40 calculated from document data. By comparing the lattice plane spacings of both, it was confirmed that the sub-particles contained Ba 6 Ti 17 0 40 . Likewise, Examples 2 to 4 and 6 to 10 were also confirmed.
표4는 전술한 제한 시야 회절법에 의해 관찰한 전자선 회절상으로부터 얻어진 격자 면간격과, 상기 Ba6Ti17040의 기지의 문헌 데이터로부터 얻은 격자 면간격간의 비교 결과를 나타낸다.Table 4 shows the result of comparison between the lattice spacing obtained from the electron diffraction image observed by the above-mentioned limited field diffraction method and the lattice spacing obtained from the known literature data of Ba 6 Ti 17 0 40 .
표4: 면간격의 비교(Ba6Ti17040의 [011] 입사 전자선 회절상)Table 4: Comparison of surface spacing ([011] incident electron beam diffraction pattern of Ba 6 Ti 17 0 40 )
비교예1에서는, 입계에 Ba4Ti12027, Ba6Ti17040의 어느쪽의 결정구조도 확인되지 않았다. 따라서, 칭량한 Mn량보다 결정 입자중에 포함되는 Mn량이 적은 것을 안다. 한편, 예시1 내지 10에서는, 칭량한 Mn량과 결정 입자의 Mn량은 거의 같았다. 이것은, 입계에 Ba4Ti12027 및 Ba6Ti17040의 적어도 어느 한쪽을 함유하므로 결정 입자에 Mn이 효율적으로 포함되었다고 생각된다.In Comparative Example 1, none of the crystal structures of Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 was observed in the grain boundary. Therefore, it is known that the amount of Mn contained in the crystal grains is smaller than the amount of Mn that is weighed. On the other hand, in Examples 1 to 10, the amount of Mn weighed and the amount of Mn of the crystal grains were almost the same. It is considered that Mn contained in the crystal grains is efficiently contained because it contains at least one of Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 in the grain boundary.
또한, 예시1 내지 10 각각에서의 입계부분의 Mn량을 측정했다. 구체적으로는, 제한 시야 회절법에 의한 결정구조와 상기 에너지 분산형 분광법을 조합해서 입계를 복수의 점에서 측정했다. 그 결과, 예시4에서만 Ba4Ti12027 및 Ba6Ti17040의 어느쪽에도 망간은 포함되어 있지 않았다. 또한, 예시3 및 5 내지 10에 있어서는, 결정구조가 Ba4Ti12027인 영역에는 Ba6Ti17040에 비교하고, 평균하여 1질량%정도 많이 망간을 함유하는 것을 알았다. 따라서, 예를 들면, 상기 조립분에 Ba4Ti12027입자를 첨가함으로써, 상기 입계가 Ba4Ti12027만으로 차지한 압전 세라믹을 제조함으로써 상기 압전 세라믹의 결정 입자의 밖으로의 상기 망간의 석출을 효과적으로 방지할 수 있었다.Further, the Mn content in the grain boundary portion in each of Examples 1 to 10 was measured. Specifically, the grain boundaries were measured at a plurality of points by combining the crystal structure by the limited field diffraction method and the energy dispersive spectroscopy. As a result, manganese was not included in either of Ba 4 Ti 12 0 27 and Ba 6 Ti 17 0 40 only in Example 4. Further, in Examples 3 and 5 to 10, it was found that manganese was contained in the region of Ba 4 Ti 12 O 27 by 1 mass% on average in comparison with Ba 6 Ti 17 O 40 in the crystal structure of Ba 4 Ti 12 O 27 . Thus, for example, by adding Ba 4 Ti 12 O 27 particles to the granulated powder, the piezoelectric ceramics in which the grain size is occupied by Ba 4 Ti 12 O 27 is produced, whereby the precipitation of manganese out of the crystal grains of the piezoelectric ceramics Can be effectively prevented.
(세라믹의 압전 특성 평가)(Evaluation of Piezoelectric Properties of Ceramic)
상기 압전 세라믹의 압전 특성을 평가하기 위해서, 금전극을 DC스퍼터링법으로 압전 세라믹의 앞면과 뒷면의 양면에 형성했다. 그 후, 이 전극 부착 세라믹을, 10mm×2.5mm×1mm 크기의 직사각형(스트립 세라믹)으로 절단했다.In order to evaluate the piezoelectric characteristics of the piezoelectric ceramics, gold electrodes were formed on both surfaces of the front and back surfaces of the piezoelectric ceramics by the DC sputtering method. Thereafter, the electrode-attached ceramic was cut into a rectangular shape (strip ceramic) having a size of 10 mm x 2.5 mm x 1 mm.
그 결과로 얻어진 스트립 세라믹을 분극화시켰다. 그 분극화는, 온도 100℃에서, 분극 전압이 직류1kV, 전압인가시간이 30분의 조건하에서 행했다.The resultant strip ceramic was polarized. The polarization was carried out at a temperature of 100 占 폚 under the conditions of a polarization voltage of 1 kV DC and a voltage application time of 30 minutes.
분극화된 스트립 세라믹을 사용하여, 압전 상수를 측정했다. 구체적으로, 임피던스 아날라이저 장치(아지렌트사, 상품명4294A)를 사용하여, 세라믹 시료의 임피던스의 주파수 의존성을 측정했다. 그리고, 관측된 공진주파수와 반공진 주파수로부터 압전상수d31(pm/V)과 기계적 품질계수Qm을 구했다. 압전상수d31은 부의 값을 갖고, 절대치가 클수록 압전 성능이 높은 것을 의미한다. 또한, 기계적 품질계수Qm은 절대치가 클수록 공진자의 공진진동의 손실이 적은 것을 의미한다.Piezoelectric constant was measured using a polarized strip ceramic. Specifically, the impedance dependency of the impedance of the ceramic sample was measured using an impedance analyzer apparatus (trade name: 4294A, manufactured by Ajient). Then, the piezoelectric constant d 31 (pm / V) and the mechanical quality factor Q m were obtained from the observed resonance frequency and anti-resonance frequency. The piezoelectric constant d 31 has a negative value, and the larger the absolute value, the higher the piezoelectric performance. Further, the mechanical quality factor Q m means that the loss of the resonance vibration of the resonator is smaller as the absolute value is larger.
표5에는 압전 특성의 평가 결과가 열거되어 있다.Table 5 lists the evaluation results of the piezoelectric characteristics.
표5: 압전 특성Table 5: Piezoelectric properties
표5로부터 명백하듯이, 입계에 Ba4Ti12027 및 Ba6Ti17040 중 적어도 한쪽을 함유시킴으로써, 압전상수d31과 기계적 품질계수Qm이 함께 향상할 수 있는 것을 알았다.As is apparent from Table 5, Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 It was found that the piezoelectric constant d 31 and the mechanical quality factor Q m can be improved together.
(예시1에 따른 액체 토출 헤드)(Liquid discharge head according to example 1)
예시1과 같은 압전 세라믹을 사용하여, 도 1a 및 1b에 도시된 액체 토출 헤드를 제작했다. 입력한 전기신호에 따라 상기 액체 토출 헤드로부터의 잉크의 토출이 확인되었다.Using the piezoelectric ceramics as in Example 1, the liquid discharge head shown in Figs. 1A and 1B was produced. The discharge of the ink from the liquid discharge head was confirmed in accordance with the inputted electric signal.
(예시1에 따른 초음파 모터)(Ultrasonic motor according to example 1)
예시1과 같은 압전 세라믹을 사용하여, 도 2a 및 2b에 도시된 초음파 모터를 제작했다. 교류 전압의 인가에 따라 상기 모터의 회전 작용이 확인되었다.The ultrasonic motor shown in Figs. 2A and 2B was manufactured by using the piezoelectric ceramics as shown in Example 1. Fig. The rotational action of the motor was confirmed by the application of the AC voltage.
(예시1에 따른 진애 제거장치)(Dust removal device according to example 1)
예시1과 같은 압전 세라믹을 사용하여, 도 3a 및 3b에 도시된 진애 제거장치를 제작했다. 플라스틱제 비즈(beads)를 살포한 후 교류 전압을 인가한 바, 양호한 진애 제거율이 확인되었다.Using the same piezoelectric ceramics as in Example 1, the dust removing apparatus shown in Figs. 3A and 3B was produced. When plastic beads were sprayed and an AC voltage was applied, a good dust removal rate was confirmed.
본 발명의 압전 세라믹은, 양호한 압전 성능 및 기계적 품질계수를 양립하고 있다. 또한, 본 발명의 압전 세라믹은, 환경적으로 깨끗하다. 따라서, 그 압전 세라믹은, 액체 토출 헤드, 초음파 모터, 및 압전소자등의 압전 세라믹을 많이 이용하는 기기에 사용될 수 있다.The piezoelectric ceramic of the present invention has good piezoelectric performance and mechanical quality factor. Further, the piezoelectric ceramics of the present invention are environmentally clean. Therefore, the piezoelectric ceramics can be used in a device that uses a piezoelectric ceramics such as a liquid discharge head, an ultrasonic motor, and a piezoelectric device.
본 발명을 예시적 실시예들을 참조하여 기재하였지만, 본 발명은 상기 개시된 예시적 실시예들에 한정되지 않는다는 것을 알 것이다. 아래의 청구항의 범위는, 모든 변형예와 동등한 구조 및 기능을 포함하도록 폭 넓게 해석해야 한다.While the present invention has been described with reference to exemplary embodiments, it will be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be construed broadly to include structures and functions equivalent to all variations.
본 출원은, 여기서 전체적으로 참고로 포함된, 2010년 12월 22일에 제출된 일본국 특허출원번호 2010-285742의 이점을 청구한다.This application claims the benefit of Japanese Patent Application No. 2010-285742, filed on December 22, 2010, which is hereby incorporated by reference in its entirety.
101 압전소자
102 개별액실
103 진동판
104 액실분리벽
105 토출구
106 연통 구멍
107 공통 액실
108 버퍼층
1011 제1 전극
1012 압전 세라믹
1013 제2 전극
201 진동자
202 로터
203 출력 축
204 진동자
205 로터
206 용수철
2011 탄성체 링
2012 압전소자
2013 유기계 접착제
2041 금속탄성체
2042 적층 압전소자
310 진애 제거장치
330 압전소자
320 진동판
331 압전 세라믹
332 제1 전극
333 제2 전극
336 제1의 전극면
337 제2의 전극면
401 티탄산바륨의 결정 입자
402 결정 입자간의 경계
403 삼중점
404 결정 입자간의 경계에 존재하는 부입자
405 결정 입자간의 경계 및 삼중점에 존재하는 부입자
406 삼중점에 존재하는 부입자
501 티탄산바륨의 결정 입자
502 부입자
503 티탄산바륨의 결정 입자
504 부입자101 piezoelectric element
102 Individual Liquid Room
103 Diaphragm
104 Liquid separation wall
105 outlet
106 communication hole
107 common liquid room
108 buffer layer
1011 first electrode
1012 Piezoelectric Ceramic
1013 second electrode
201 oscillator
202 rotor
203 Output shaft
204 oscillator
205 rotor
206 spring
2011 elastic ring
2012 Piezoelectric elements
2013 Organic adhesive
2041 Metal elastomer
2042 Laminated piezoelectric element
310 Dirt remover
330 piezoelectric element
320 diaphragm
331 Piezoelectric ceramics
332 First electrode
333 Second electrode
336 First electrode surface
337 Second electrode face
401 Crystal particles of barium titanate
402 Boundary between crystal grains
403 Triple point
404 Particles present at the boundary between crystal grains
405 Boundaries between crystal grains and minor particles present at triple points
406 Particles present in the triple point
501 Crystal particles of barium titanate
502 particles
503 Crystal particles of barium titanate
504 part particles
Claims (12)
결정 입자; 및
상기 결정 입자간의 입계를 구비하고, 상기 결정 입자는, 페로브스카이트형 구조의 티탄산바륨 및 상기 티탄산바륨에 대하여 금속환산으로 0.04질량%이상 0.20질량%이하의 망간을 각각 함유하고,
상기 입계는 Ba4Ti12027 및 Ba6Ti17040으로 이루어진 군으로부터 선택된 적어도 하나의 화합물을 함유하고,
망간은 상기 입계에 함유된 결정에 포함되며,
상기 압전 세라믹의 표면 또는 단면상에서 관측했을 때 상기 입계에 함유되는 Ba4Ti12027 및 Ba6Ti17040으로 이루어진 군으로부터 선택된 적어도 하나의 화합물이 차지하는 비율이, 상기 압전 세라믹의 표면 또는 단면의 전체면적에 대하여 0.05면적%이상 2면적%이하인, 압전 세라믹.
In piezoelectric ceramics,
Crystal grains; And
And the crystal grains contain 0.04 mass% or more and 0.20 mass% or less of manganese in terms of metal with respect to barium titanate of the perovskite type structure and barium titanate, respectively,
Wherein the grain boundary contains at least one compound selected from the group consisting of Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 ,
Manganese is included in the crystals contained in the grain boundaries,
Wherein the ratio of at least one compound selected from the group consisting of Ba 4 Ti 12 O 27 and Ba 6 Ti 17 0 40 contained in the grain boundary when observed on the surface or cross section of the piezoelectric ceramic is a surface or cross section of the piezoelectric ceramics Is not less than 0.05% by area and not more than 2% by area based on the total area of the piezoelectric ceramic.
상기 입계가 Ba4Ti12027 또는 Ba6Ti17040을 함유하고,
상기 Ba4Ti12027 및 Ba6Ti17040의 모두가 망간을 함유하는, 압전 세라믹.
The method according to claim 1,
Wherein the grain boundary contains Ba 4 Ti 12 O 27 or Ba 6 Ti 17 O 40 ,
Wherein all of the Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 contain manganese.
상기 입계가 Ba4Ti12027 및 Ba6Ti17040을 함유하고,
상기 Ba4Ti12027 및 Ba6Ti17040 각각은 망간을 함유하는, 압전 세라믹.
The method according to claim 1,
Wherein the grain boundary contains Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 ,
Wherein each of Ba 4 Ti 12 O 27 and Ba 6 Ti 17 O 40 contains manganese.
상기 Ba4Ti12027에 함유되는 망간의 함유율이, Ba6Ti17040에 함유되는 망간의 함유율보다 큰, 압전 세라믹.
5. The method of claim 4,
Wherein the content of manganese contained in the Ba 4 Ti 12 O 27 is larger than the content of manganese contained in Ba 6 Ti 17 O 40 .
상기 입계에 함유되는 Ba4Ti12027 및 Ba6Ti17040으로 이루어진 군으로부터 선택된 적어도 하나의 화합물에 함유되는 망간의 함유량이, Ba4Ti12027 및 Ba6Ti17040으로 이루어진 군으로부터 선택된 적어도 하나의 화합물에 대하여 금속환산으로 0.6질량%이상 2.8질량%이하인, 압전 세라믹.
The method according to claim 1,
When the content of manganese to be contained in at least one compound selected from the group consisting of Ba 4 Ti 12 0 27 and Ba 6 Ti 17 0 40 to be contained in the grain boundary phase, consisting of Ba 4 Ti 12 0 27 and Ba 6 Ti 17 0 40 And not less than 0.6 mass% and not more than 2.8 mass% in terms of the metal, based on the at least one compound selected from the group consisting of the metals.
상기 조립분에 Ba4Ti12027입자 및 Ba6Ti17040입자로 이루어진 군으로부터 선택된 적어도 하나의 화합물을 첨가하여 제작한 혼합물을 소결하는 공정을, 포함하는, 압전 세라믹의 제조 방법.
A step of adding a binder to barium titanate particles containing manganese in an amount of 0.04 mass% or more and 0.20 mass% or less in terms of metal; And
And sintering a mixture prepared by adding at least one compound selected from the group consisting of Ba 4 Ti 12 O 27 particles and Ba 6 Ti 17 O 40 particles to the granulated powder.
상기 조립분에, 평균입경이 100nm이하인 산화티탄 입자를 첨가하여 제작한 혼합물을 소결하는 공정을, 포함하는, 압전 세라믹의 제조 방법.
A step of adding a binder to barium titanate particles containing manganese in an amount of 0.04 mass% or more and 0.20 mass% or less in terms of metal; And
And a step of sintering the mixture prepared by adding titanium oxide particles having an average particle size of 100 nm or less to the granulated powder.
압전 세라믹; 및
제2 전극을, 구비한 압전소자로서,
상기 압전 세라믹은 청구항 1에 따른 압전 세라믹인, 압전소자.
A first electrode;
Piezoelectric ceramics; And
As a piezoelectric element having a second electrode,
Wherein the piezoelectric ceramics is the piezoelectric ceramic according to claim 1.
A liquid discharge head using the piezoelectric element according to claim 9.
An ultrasonic motor using the piezoelectric element according to claim 9.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010285742A JP5932216B2 (en) | 2010-12-22 | 2010-12-22 | Piezoelectric ceramics, manufacturing method thereof, piezoelectric element, liquid discharge head, ultrasonic motor, dust removing apparatus, optical device, and electronic apparatus |
JPJP-P-2010-285742 | 2010-12-22 | ||
PCT/JP2011/079753 WO2012086738A2 (en) | 2010-12-22 | 2011-12-15 | Piezoelectric ceramics, manufacturing method therefor, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removal device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130102112A KR20130102112A (en) | 2013-09-16 |
KR101541021B1 true KR101541021B1 (en) | 2015-07-31 |
Family
ID=45507826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020137018573A KR101541021B1 (en) | 2010-12-22 | 2011-12-15 | Piezoelectric ceramics, manufacturing method therefor, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removal device |
Country Status (6)
Country | Link |
---|---|
US (2) | US9231188B2 (en) |
EP (1) | EP2655293B1 (en) |
JP (1) | JP5932216B2 (en) |
KR (1) | KR101541021B1 (en) |
CN (1) | CN103261119B (en) |
WO (1) | WO2012086738A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10943733B2 (en) | 2018-03-09 | 2021-03-09 | Samsung Electronics Co., Ltd. | Ceramic dielectric and method of manufacturing the same and ceramic electronic component and electronic device |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5572998B2 (en) * | 2009-05-22 | 2014-08-20 | Tdk株式会社 | Piezoelectric ceramic composition and piezoelectric element |
US9614140B2 (en) * | 2010-11-26 | 2017-04-04 | Canon Kabushiki Kaisha | Piezoelectric ceramic, method for making same, piezoelectric element, liquid discharge head, ultrasonic motor, and dust cleaner |
CN103056098B (en) | 2011-10-20 | 2015-08-19 | 佳能株式会社 | Piezoelectric device, dust removal device and imaging device |
US9698337B2 (en) * | 2015-01-09 | 2017-07-04 | Canon Kabushiki Kaisha | Piezoelectric ceramic, piezoelectric element, and electronic appliance |
US9614141B2 (en) | 2015-01-09 | 2017-04-04 | Canon Kabushiki Kaisha | Piezoelectric ceramic, piezoelectric element, piezoelectric device and piezoelectric ceramic manufacturing method |
US9917245B2 (en) | 2015-11-27 | 2018-03-13 | Canon Kabushiki Kaisha | Piezoelectric element, method of manufacturing piezoelectric element, piezoelectric actuator, and electronic apparatus |
US9893268B2 (en) | 2015-11-27 | 2018-02-13 | Canon Kabushiki Kaisha | Piezoelectric element, piezoelectric actuator, and electronic apparatus using the same |
US9887347B2 (en) | 2015-11-27 | 2018-02-06 | Canon Kabushiki Kaisha | Piezoelectric element, piezoelectric actuator and electronic instrument using the same |
US10424722B2 (en) | 2015-11-27 | 2019-09-24 | Canon Kabushiki Kaisha | Piezoelectric element, piezoelectric actuator, and electronic apparatus |
WO2017164413A1 (en) | 2016-03-25 | 2017-09-28 | Canon Kabushiki Kaisha | Method of manufacturing an oscillator, method of manufacturing an oscillatory wave driving apparatus, and method of manufacturing an optical apparatus |
DE102016110124B4 (en) * | 2016-06-01 | 2018-07-19 | Physik Instrumente (Pi) Gmbh & Co. Kg | ultrasonic motor |
US11647677B2 (en) | 2018-06-08 | 2023-05-09 | Canon Kabushiki Kaisha | Piezoelectric ceramics, piezoelectric element, and electronic apparatus |
DE102021213863A1 (en) * | 2021-01-15 | 2022-07-21 | Ngk Insulators, Ltd. | CERAMIC BODY AND PROCESS OF PRODUCTION, HEATING ELEMENT, HEATING UNIT, HEATING SYSTEM AND CLEANING SYSTEM |
KR102620993B1 (en) * | 2021-07-30 | 2024-01-05 | 한국과학기술원 | Ceramic dielectrics with high permittivity and low dielectric loss and preparation method |
JP2023141203A (en) * | 2022-03-23 | 2023-10-05 | 日本碍子株式会社 | Ceramic body, honeycomb structure, manufacturing method of ceramic body, and heater element |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020151430A1 (en) * | 1999-06-14 | 2002-10-17 | Ngk Insulator, Ltd. | Electric-field-inducible deformable material |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1671076C2 (en) * | 1968-02-15 | 1972-02-10 | Siemens Ag | CERAMIC BODY WITH PIEZOELECTRIC PROPERTIES FOR USE AS A PIEZO ELEMENT |
JP3804752B2 (en) * | 1999-06-14 | 2006-08-02 | 日本碍子株式会社 | Electric field induced strain material and piezoelectric / electrostrictive film type element |
TWI290539B (en) | 2004-08-31 | 2007-12-01 | Showa Denko Kk | Barium titanate and capacitor |
JP5538670B2 (en) * | 2006-09-15 | 2014-07-02 | キヤノン株式会社 | Piezoelectric element, liquid discharge head and ultrasonic motor using the same |
US7525239B2 (en) | 2006-09-15 | 2009-04-28 | Canon Kabushiki Kaisha | Piezoelectric element, and liquid jet head and ultrasonic motor using the piezoelectric element |
JP5114730B2 (en) | 2006-12-18 | 2013-01-09 | 富山県 | Method for manufacturing piezoelectric ceramics |
JP4926855B2 (en) * | 2007-06-28 | 2012-05-09 | キヤノン株式会社 | Optical device |
JP5355148B2 (en) | 2008-03-19 | 2013-11-27 | キヤノン株式会社 | Piezoelectric material |
JP5217997B2 (en) | 2008-10-20 | 2013-06-19 | Tdk株式会社 | Piezoelectric ceramic, vibrator and ultrasonic motor |
JP2010285742A (en) | 2009-06-09 | 2010-12-24 | Alps Electric Co Ltd | Method for creating table for determining whether potable machine is inside or outside vehicle |
EP2328193B1 (en) | 2009-11-30 | 2015-03-11 | Canon Kabushiki Kaisha | Piezoelectric ceramic, method for making the same, piezoelectric element, liquid discharge head, and ultrasonic motor |
JP5734688B2 (en) | 2010-02-10 | 2015-06-17 | キヤノン株式会社 | Method for producing oriented oxide ceramics, oriented oxide ceramics, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device |
-
2010
- 2010-12-22 JP JP2010285742A patent/JP5932216B2/en active Active
-
2011
- 2011-12-15 CN CN201180060904.8A patent/CN103261119B/en active Active
- 2011-12-15 EP EP11810902.4A patent/EP2655293B1/en active Active
- 2011-12-15 WO PCT/JP2011/079753 patent/WO2012086738A2/en active Application Filing
- 2011-12-15 US US13/989,970 patent/US9231188B2/en active Active
- 2011-12-15 KR KR1020137018573A patent/KR101541021B1/en active IP Right Grant
-
2015
- 2015-12-07 US US14/961,382 patent/US9842985B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020151430A1 (en) * | 1999-06-14 | 2002-10-17 | Ngk Insulator, Ltd. | Electric-field-inducible deformable material |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10943733B2 (en) | 2018-03-09 | 2021-03-09 | Samsung Electronics Co., Ltd. | Ceramic dielectric and method of manufacturing the same and ceramic electronic component and electronic device |
Also Published As
Publication number | Publication date |
---|---|
EP2655293A2 (en) | 2013-10-30 |
KR20130102112A (en) | 2013-09-16 |
JP5932216B2 (en) | 2016-06-08 |
US20130241347A1 (en) | 2013-09-19 |
CN103261119A (en) | 2013-08-21 |
WO2012086738A3 (en) | 2012-08-16 |
US9231188B2 (en) | 2016-01-05 |
JP2012131669A (en) | 2012-07-12 |
CN103261119B (en) | 2016-01-27 |
EP2655293B1 (en) | 2019-05-22 |
US20160104833A1 (en) | 2016-04-14 |
WO2012086738A2 (en) | 2012-06-28 |
US9842985B2 (en) | 2017-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101541021B1 (en) | Piezoelectric ceramics, manufacturing method therefor, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removal device | |
KR101541022B1 (en) | Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device | |
JP4948639B2 (en) | Piezoelectric ceramics, manufacturing method thereof, piezoelectric element, liquid discharge head, and ultrasonic motor | |
US10280119B2 (en) | Piezoelectric ceramic, method for making the same, piezoelectric element, liquid discharge head, ultrasonic motor, and dust cleaner | |
JP6004640B2 (en) | Piezoelectric element, liquid discharge head, ultrasonic motor, dust removing apparatus, and device | |
JP6021351B2 (en) | Piezoelectric material, piezoelectric element, liquid ejection head, ultrasonic motor, dust removing apparatus and device | |
TWI523814B (en) | Piezoelectric material, piezoelectric element, and electronic device | |
KR101634016B1 (en) | Piezoelectric material | |
TWI518049B (en) | Piezoelectric material, piezoelectric element, and electronic equipment | |
KR101718587B1 (en) | Piezoelectric material, piezoelectric element, multilayered piezoelectric element, liquid discharge head, liquid discharge apparatus, ultrasonic motor, optical device, vibrating apparatus, dust removing apparatus, imaging apparatus and electronic device | |
KR20150106971A (en) | Piezoelectric material | |
CN103910525A (en) | Piezoelectric Material, Piezoelectric Element, And Electronic Apparatus | |
CN104584247A (en) | Piezoelectric material | |
JP7150511B2 (en) | Piezoelectric materials, piezoelectric elements, vibration wave motors, optical devices and electronic devices | |
CN104584248A (en) | Piezoelectric material, piezoelectric element, and electronic apparatus | |
JP5968112B2 (en) | Piezoelectric material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20180625 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20190724 Year of fee payment: 5 |