JP2010041842A - Permanent-magnet type rotary electric machine and permanent-magnet type motor drive system - Google Patents

Permanent-magnet type rotary electric machine and permanent-magnet type motor drive system Download PDF

Info

Publication number
JP2010041842A
JP2010041842A JP2008202703A JP2008202703A JP2010041842A JP 2010041842 A JP2010041842 A JP 2010041842A JP 2008202703 A JP2008202703 A JP 2008202703A JP 2008202703 A JP2008202703 A JP 2008202703A JP 2010041842 A JP2010041842 A JP 2010041842A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
permanent
magnetic flux
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008202703A
Other languages
Japanese (ja)
Other versions
JP5198178B2 (en
Inventor
Masanori Shin
政憲 新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008202703A priority Critical patent/JP5198178B2/en
Publication of JP2010041842A publication Critical patent/JP2010041842A/en
Application granted granted Critical
Publication of JP5198178B2 publication Critical patent/JP5198178B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Control Of Ac Motors In General (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent-magnet type rotary electric machine that performs variable-speed operation in a wide range from low speed to high speed, achieves operation at a higher speed compared with a conventional one while achieving high torque in a low-speed rotation zone, high output in a middle/high-speed rotation zone, improvement in efficiency, reliability, and manufacturability, and material reduction, and a permanent-magnet type motor drive system for driving the same. <P>SOLUTION: The permanent-magnet type rotary electric machine includes a stator having an armature winding, and a rotor 1a. The rotor 1a is configured such that a plurality of permanent magnets 4a are provided in each of a plurality of rotor cores 2a, configured by being laminated and arranged oppositely to each other on the inner peripheral side of the stator via each air gap, along the circumferential direction. The rotor 1a is formed by being axially divided for each prescribed block. The rotor 1a is arranged with a plurality of permanent magnets in each prescribed block in order to form a magnetic pole. The plurality of permanent magnets are one type selected from among the plural types of permanent magnets respectively having at least one of a different shape and a different magnetic property. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、永久磁石式回転電機及び当該永久磁石式回転電機を利用した永久磁石電動機ドライブシステムに関する。   The present invention relates to a permanent magnet type rotating electrical machine and a permanent magnet motor drive system using the permanent magnet type rotating electrical machine.

現在、適用範囲が拡大している永久磁石式回転電機は、大きく2種類のタイプに分けられる。回転子鉄心の外周に永久磁石を貼り付けた表面磁石型永久磁石式回転電機と、永久磁石を回転子鉄心の中に埋め込んだ埋め込み型永久磁石式回転電機である(例えば、特許文献1参照)。近年、可変速駆動用モータとしては、後者の埋め込み型永久磁石式回転電機の適用が多くなっている。   Currently, the permanent magnet type rotating electrical machines whose application range has been expanded are roughly divided into two types. A surface magnet type permanent magnet type rotating electrical machine in which a permanent magnet is attached to the outer periphery of a rotor core, and an embedded type permanent magnet type rotating electrical machine in which a permanent magnet is embedded in a rotor core (for example, see Patent Document 1). . In recent years, the latter embedded permanent magnet type rotating electrical machines have been increasingly applied as variable speed drive motors.

従来の埋め込み型永久磁石式回転電機は、内部に回転子を備え、その外周にエアギャップを介して固定子を配置した構成を有する。この固定子は、電機子巻線を固定子鉄心の内側に形成されたスロットに収容することで構成されている。図10は、従来の埋め込み型永久磁石式回転電機の回転子1の構成を示す径方向断面図である。回転子1は、図示しない固定子の内部に収容され、回転子鉄心2の外周部に長方形の空洞を等配で極数の数だけ設けた構成を有する。図10に示す回転子1は、8極の回転子であり、回転子鉄心2に8個の空洞を設けてそれぞれに永久磁石4を挿入している。永久磁石4は、回転子1の半径方向、又は永久磁石4の断面の長方形におけるエアギャップ面に対向する辺(図10では長辺)に直角方向に磁化されている。永久磁石4は負荷電流により減磁しないように保磁力の高いNdFeB永久磁石が主に適用される。回転子鉄心2は空洞を打抜いた電磁鋼板を積層して形成してある。   A conventional embedded permanent magnet type rotating electrical machine has a configuration in which a rotor is provided inside, and a stator is arranged on the outer periphery thereof via an air gap. This stator is configured by accommodating the armature winding in a slot formed inside the stator core. FIG. 10 is a radial cross-sectional view showing a configuration of a rotor 1 of a conventional embedded permanent magnet type rotating electrical machine. The rotor 1 is accommodated in a stator (not shown), and has a configuration in which rectangular cavities are provided in the outer peripheral portion of the rotor core 2 by an equal number and the number of poles. A rotor 1 shown in FIG. 10 is an eight-pole rotor, and eight cavities are provided in the rotor core 2 and a permanent magnet 4 is inserted into each of them. The permanent magnet 4 is magnetized in a direction perpendicular to the radial direction of the rotor 1 or the side (long side in FIG. 10) facing the air gap surface in the rectangle of the cross section of the permanent magnet 4. The permanent magnet 4 is mainly an NdFeB permanent magnet having a high coercive force so as not to be demagnetized by a load current. The rotor core 2 is formed by laminating electromagnetic steel plates punched out of cavities.

また、可変速特性に優れて高出力の回転電機としては、特許文献2や特許文献3に記載されている永久磁石式リラクタンス型回転電機が知られている。さらに、特許文献4には、磁石磁束を可変とする永久磁石式回転電機が記載されている。この回転電機は、低速から高速までの広範囲で可変速運転を可能とし、低速回転域の高トルク化と中・高速回転域での高出力化、効率の向上を図ったものである。   Further, as a rotating electric machine having excellent variable speed characteristics and high output, a permanent magnet type reluctance rotating electric machine described in Patent Document 2 and Patent Document 3 is known. Further, Patent Document 4 describes a permanent magnet type rotating electrical machine that makes the magnetic flux of the magnet variable. This rotating electrical machine is capable of variable speed operation in a wide range from low speed to high speed, and is intended to increase the torque in the low speed rotation range, increase the output in the middle / high speed rotation range, and improve the efficiency.

一般に、永久磁石式回転電機では、その構造特性上、永久磁石によって常に一定の鎖交磁束が発生しているので永久磁石による誘導電圧は回転速度に比例して高くなる。そのため、低速から高速まで可変速運転する場合、高速回転では永久磁石による誘導電圧(逆起電圧)が極めて高くなる。この永久磁石による誘導電圧はインバータの電子部品に印加されるが、その印加電圧が電子部品の耐電圧以上になると部品が絶縁破壊する。そのため、永久磁石の磁束量が耐電圧以下になるように削減された設計を行うことが考えられるが、そのような設計を採用した場合には、永久磁石式回転電機の低速域での出力及び効率が低下する。   In general, in a permanent magnet type rotating electrical machine, a constant interlinkage magnetic flux is always generated by the permanent magnet due to its structural characteristics, and therefore the induced voltage by the permanent magnet increases in proportion to the rotational speed. Therefore, when variable speed operation is performed from low speed to high speed, the induced voltage (back electromotive voltage) by the permanent magnet becomes extremely high at high speed rotation. The induced voltage by the permanent magnet is applied to the electronic component of the inverter. When the applied voltage exceeds the withstand voltage of the electronic component, the component breaks down. For this reason, it is conceivable to perform a design in which the amount of magnetic flux of the permanent magnet is reduced so as to be equal to or lower than the withstand voltage, but when such a design is adopted, the output in the low speed region of the permanent magnet type rotating electrical machine and Efficiency is reduced.

他方、低速から高速まで定出力に近い可変速運転を行う場合、永久磁石の鎖交磁束は一定であるので、高速回転域では回転電機の電圧が電源電圧上限に達して出力に必要な電流が流れなくなる。その結果、高速回転域では出力が大幅に低下し、さらには高速回転までの広範囲な可変速運転ができなくなる。そこで、最近では、可変速範囲を拡大する方法として、非特許文献1に記載されているような弱め磁束制御が適用され始めている。永久磁石式回転電機の場合、総鎖交磁束量はd軸電流による磁束と永久磁石による磁束から成る。弱め磁束制御は、このことに着目し、負のd軸電流による磁束を発生させることによって、電機子巻線の総鎖交磁束量を減少させる制御を行う。この弱め磁束制御においては、高保磁力の永久磁石4は磁気特性(B−H特性)の動作点が可逆の範囲で変化するようにする。このため、永久磁石には、弱め磁束制御の減磁界により不可逆的に減磁しないように高保磁力特性をもつNdFeB磁石を適用する。   On the other hand, when performing variable speed operation close to constant output from low speed to high speed, the flux linkage of the permanent magnet is constant, so the rotating electrical machine voltage reaches the upper limit of the power supply voltage in the high speed rotation range, and the current required for output is It stops flowing. As a result, the output is greatly reduced in the high-speed rotation range, and furthermore, a wide range of variable speed operation up to the high-speed rotation cannot be performed. Therefore, recently, as a method for expanding the variable speed range, the magnetic flux weakening control as described in Non-Patent Document 1 has begun to be applied. In the case of a permanent magnet type rotating electrical machine, the total interlinkage magnetic flux amount is composed of a magnetic flux caused by a d-axis current and a magnetic flux caused by a permanent magnet. The weakening magnetic flux control pays attention to this, and performs control to reduce the total amount of interlinkage magnetic flux of the armature winding by generating magnetic flux due to negative d-axis current. In the flux weakening control, the high coercive force permanent magnet 4 is configured such that the operating point of the magnetic characteristics (BH characteristics) changes within a reversible range. For this reason, an NdFeB magnet having a high coercive force characteristic is applied to the permanent magnet so as not to be irreversibly demagnetized by the demagnetizing field of the flux weakening control.

弱め磁束制御を適用した運転では、負のd軸電流による磁束で鎖交磁束が減少するので、鎖交磁束の減少分が電圧上限値に対する電圧の余裕分を作る。そして、トルク成分となる電流を増加できるので高速域での出力が増加する。また、電圧余裕分だけ回転速度を上昇させることができ、可変速運転の範囲が拡大される。   In operation using the flux-weakening control, the linkage flux decreases due to the magnetic flux due to the negative d-axis current, and therefore the decrease in linkage flux creates a voltage margin with respect to the voltage upper limit value. And since the electric current which becomes a torque component can be increased, the output in a high speed region increases. Further, the rotational speed can be increased by the voltage margin, and the range of variable speed operation is expanded.

しかし、弱め磁束制御を適用した永久磁石式回転電機は、出力に寄与しない負のd軸電流を常時流し続けるため銅損が増加して効率は悪化する。さらに、負のd軸電流による減磁界は高調波磁束を生じ、高調波磁束等で生じる電圧の増加は弱め磁束制御による電圧低減の限界を作る。これらより、埋め込み型永久磁石式回転電機に弱め磁束制御を適用しても基底速度の3倍以上の可変速運転は困難である。さらに、前述の高調波磁束により鉄損が増加し、中・高速域で大幅に効率が低下する。また、高調波磁束による電磁力で振動を発生することもある。   However, in the permanent magnet type rotating electrical machine to which the flux weakening control is applied, since the negative d-axis current that does not contribute to the output is continuously supplied, the copper loss increases and the efficiency deteriorates. Furthermore, a demagnetizing field due to a negative d-axis current generates a harmonic magnetic flux, and an increase in voltage caused by the harmonic magnetic flux or the like is weakened, creating a limit of voltage reduction by magnetic flux control. Therefore, even if the flux-weakening control is applied to the embedded permanent magnet type rotating electrical machine, it is difficult to operate at a variable speed of more than 3 times the base speed. Furthermore, the above-described harmonic magnetic flux increases the iron loss, and the efficiency is greatly reduced in the middle and high speed ranges. In addition, vibration may be generated by electromagnetic force due to harmonic magnetic flux.

ハイブリッド自動車用駆動モータに埋め込み型永久磁石モータを適用した場合、エンジンのみで駆動される状態ではモータは連れ回される。中・高速回転ではモータの永久磁石による誘導電圧が上昇する。そこで誘導電圧の上昇を電源電圧以内に抑制するために、弱め磁束制御で負のd軸電流を流し続ける。しかしながら、この状態では、モータは損失のみを発生するので総合運転効率が悪化する問題点がある。   When an embedded permanent magnet motor is applied to a drive motor for a hybrid vehicle, the motor is rotated when driven by an engine alone. At medium and high speeds, the induced voltage from the permanent magnet of the motor increases. Therefore, in order to suppress the rise of the induced voltage within the power supply voltage, the negative d-axis current is continuously supplied by the magnetic flux weakening control. However, in this state, since the motor generates only a loss, there is a problem that the overall operation efficiency deteriorates.

これらの課題を解決するものとして、特許文献5には、低速から高速までの広範囲で可変速運転が可能であり、低速回転域の高トルク化と中・高速回転域での高出力化、効率の向上、信頼性向上、製造性向上、材料の削減、希少材料の削減が図れる永久磁石式回転電機の回転子が記載されている。この回転子を適用した永久磁石式回転電機は、保磁力と磁化方向厚みの積が小となる永久磁石と、保磁力と磁化方向厚みの積が大となる永久磁石とを使用し、保磁力と磁化方向厚みの積が小となる永久磁石を運転条件に応じて不可逆的に磁化させることにより固定子との鎖交磁束量を増減する。
特開平7−336919号公報 特開平11−27913号公報 特開平11−136912号公報 特開2006−280195号公報 特開2008−48514号公報 「埋込磁石同期モータの設計と制御」、武田洋次・他、オーム社出版
As a solution to these problems, Patent Document 5 discloses that variable speed operation is possible in a wide range from low speed to high speed, high torque in the low speed rotation range, high output in the middle / high speed rotation range, and efficiency. A rotor of a permanent magnet type rotating electrical machine that can improve the reliability, improve the reliability, improve the productivity, reduce the material, and reduce the rare material is described. A permanent magnet type rotating electrical machine to which this rotor is applied uses a permanent magnet having a small product of coercive force and magnetization direction thickness, and a permanent magnet having a large product of coercive force and magnetization direction thickness. The amount of flux linkage with the stator is increased or decreased by irreversibly magnetizing a permanent magnet having a small product of magnetization direction thickness according to operating conditions.
JP 7-336919 A JP-A-11-27913 JP-A-11-136912 JP 2006-280195 A JP 2008-48514 A "Design and control of embedded magnet synchronous motor", Yoji Takeda et al., Ohm Publishing

しかしながら、上述した特許文献5に記載された回転電機は、保磁力と磁化方向厚みの積が小となる永久磁石の占有部分増大し、構造が複雑となるため高速回転が困難となる問題点がある。また、当該回転電機は、保磁力と磁化方向厚みの積が小となる永久磁石を回転子中心軸を通る直線と平行な方向に磁石長手方向を設置するため、回転子内径を大きくしにくい等の製造性、信頼性、材料の削減の上で改善の余地がある。   However, the rotating electrical machine described in Patent Document 5 described above has a problem that the occupied portion of the permanent magnet in which the product of the coercive force and the thickness in the magnetization direction is small increases, and the structure becomes complicated, so that high-speed rotation is difficult. is there. In addition, since the rotating electrical machine has a permanent magnet whose product of coercive force and magnetization direction thickness is small and the magnet longitudinal direction is installed in a direction parallel to a straight line passing through the rotor central axis, it is difficult to increase the rotor inner diameter. There is room for improvement in terms of manufacturability, reliability, and material reduction.

本発明は、上述した従来技術の課題を解決するためになされたものであり、低速から高速までの広範囲で可変速運転が可能であり、従来に比してさらに高速での運転を可能とし、低速回転域の高トルク化と中・高速回転域での高出力化、効率の向上、信頼性向上、製造性向上、材料の削減が図れる永久磁石式回転電機及びそれを駆動する永久磁石式電動機ドライブシステムを提供することを課題とする。   The present invention has been made to solve the above-described problems of the prior art, and can be operated at a variable speed in a wide range from low speed to high speed, enabling operation at a higher speed than conventional, Permanent magnet type rotating electrical machine that can achieve high torque in the low speed rotation range, high output in the middle / high speed rotation range, improved efficiency, improved reliability, improved manufacturability, and material reduction, and a permanent magnet electric motor that drives it It is an object to provide a drive system.

本発明に係る永久磁石式回転電機は、上記課題を解決するために、電機子巻線を持つ固定子と、前記固定子の内周側にエアギャップを介して対向配置され、積層して構成された複数の回転子鉄心の各々に周方向に沿って複数の永久磁石を設け、軸方向に所定のブロック毎に分割されて構成される回転子とを備えた永久磁石式回転電機において、前記回転子は、前記所定のブロック毎に、形状と磁気特性との少なくとも1つが異なる複数種類の永久磁石の中から選択された1種類の前記複数の永久磁石が配置されて磁極を形成することを特徴とする。   In order to solve the above-mentioned problem, a permanent magnet type rotating electrical machine according to the present invention is configured by arranging and laminating a stator having an armature winding and an inner circumferential side of the stator via an air gap. In the permanent magnet type rotating electrical machine, comprising a plurality of permanent magnets along the circumferential direction in each of the plurality of rotor cores, and a rotor configured to be divided into predetermined blocks in the axial direction. In the rotor, one type of the plurality of permanent magnets selected from a plurality of types of permanent magnets having at least one of different shapes and magnetic characteristics is arranged for each predetermined block to form a magnetic pole. Features.

また、本発明に係る永久磁石電動機ドライブシステムは、上記課題を解決するために、請求項1乃至請求項11のいずれか1項記載の永久磁石式回転電機と、前記永久磁石式回転電機を駆動するインバータと、前記永久磁石の磁束を制御するための磁化電流を流す磁化部とを備えることを特徴とする。   Moreover, in order to solve the said subject, the permanent-magnet-motor drive system which concerns on this invention drives the permanent-magnet-type rotary electric machine of any one of Claim 1 thru | or 11, and the said permanent-magnet-type rotary electric machine. And a magnetizing unit for passing a magnetizing current for controlling the magnetic flux of the permanent magnet.

本発明によれば、低速から高速までの広範囲で可変速運転が可能であり、従来に比してさらに高速での運転を可能とし、低速回転域の高トルク化と中・高速回転域での高出力化、効率の向上、信頼性向上、製造性向上、材料の削減を実現することができる。   According to the present invention, variable speed operation is possible in a wide range from low speed to high speed, and it is possible to operate at a higher speed than before, increasing the torque in the low speed rotation range and in the middle / high speed rotation range. High output, efficiency improvement, reliability improvement, manufacturability improvement, and material reduction can be realized.

以下、本発明の永久磁石式回転電機及び永久磁石電動機ドライブシステムの実施の形態を、図面に基づいて詳細に説明する。   Embodiments of a permanent magnet type rotating electrical machine and a permanent magnet motor drive system according to the present invention will be described below in detail with reference to the drawings.

最初に図1乃至図3を用いて実施例1の構成について説明する。図1は、本発明の実施例1の永久磁石式回転電機の回転子1aの外観を示す図である。図2は、本発明の実施例1の永久磁石式回転電機の回転子1aのブロック20(あるいは23)における径方向断面図である。図3は、本発明の実施例1の永久磁石式回転電機の回転子1aのブロック21(あるいは22)における径方向断面図である。なお、図10の従来技術における構成要素と同一ないし均等のものは、前記と同一符号を以て示し、重複した説明を省略する。また、以下の各実施の形態では、8極の永久磁石式回転電機を例示しているが、他の極数でも同様に適用できる
本実施例の永久磁石式回転電機は、電機子巻線を持つ図示されない固定子と、固定子の内周側にエアギャップを介して対向配置され軸方向に所定のブロック毎に分割されて構成される回転子1aとを備える。本実施例の回転子1aは、図1に示すように、軸方向に4つのブロック20,21,22,23に分割されて構成されている。また、回転子1aは、積層して構成された複数の回転子鉄心2aの各々に周方向に沿って複数の永久磁石4aを設けている。回転子鉄心2aは、例えば珪素鋼板を積層して構成されている。
First, the configuration of the first embodiment will be described with reference to FIGS. 1 to 3. 1 is an external view of a rotor 1a of a permanent magnet type rotating electric machine according to a first embodiment of the present invention. FIG. 2 is a radial cross-sectional view of the block 20 (or 23) of the rotor 1a of the permanent magnet type rotating electric machine according to the first embodiment of the present invention. FIG. 3 is a radial cross-sectional view of the block 21 (or 22) of the rotor 1a of the permanent magnet type rotating electric machine according to the first embodiment of the present invention. 10 that are the same as or equivalent to those in the prior art of FIG. 10 are denoted by the same reference numerals as those described above, and redundant descriptions are omitted. Further, in each of the following embodiments, an 8-pole permanent magnet type rotating electrical machine is illustrated, but the permanent magnet type rotating electrical machine of this embodiment that can be similarly applied to other numbers of poles has an armature winding. And a rotor 1a that is arranged to be opposed to each other through an air gap on the inner peripheral side of the stator and divided into predetermined blocks in the axial direction. As shown in FIG. 1, the rotor 1a of the present embodiment is configured by being divided into four blocks 20, 21, 22, and 23 in the axial direction. Moreover, the rotor 1a is provided with a plurality of permanent magnets 4a along the circumferential direction in each of a plurality of rotor cores 2a formed by stacking. The rotor core 2a is configured by stacking silicon steel plates, for example.

さらに、回転子1aは、所定のブロック毎に、形状と磁気特性との少なくとも1つが異なる複数種類の永久磁石の中から選択された1種類の複数の永久磁石が配置されて磁極を形成する。具体的には、回転子1aは、ブロック20,23において、図2に示すように8個の永久磁石4aを回転子鉄心2a内の径方向断面に設けている。また、永久磁石4a同士の間には、空隙等による磁気障壁7が設けられている。   Furthermore, the rotor 1a forms a magnetic pole by arranging a plurality of types of permanent magnets selected from a plurality of types of permanent magnets having different shapes and magnetic characteristics for each predetermined block. Specifically, in the rotor 1a, in the blocks 20 and 23, as shown in FIG. 2, eight permanent magnets 4a are provided in a radial cross section in the rotor core 2a. Further, a magnetic barrier 7 is provided between the permanent magnets 4a by a gap or the like.

一方、回転子1aは、ブロック21,22において、図3に示すように8個の永久磁石3を回転子鉄心2a内の径方向断面に設けている。これらの永久磁石3は、隣接するブロック20(あるいは23)における磁気障壁7に対応する位置に設けられている。また、永久磁石3同士の間には、空隙等による磁気障壁8が設けられており、隣接するブロック20(あるいは23)における永久磁石4aの位置に対応する。   On the other hand, the rotor 1a is provided with eight permanent magnets 3 in the radial cross section in the rotor core 2a in the blocks 21 and 22, as shown in FIG. These permanent magnets 3 are provided at positions corresponding to the magnetic barriers 7 in the adjacent blocks 20 (or 23). Further, a magnetic barrier 8 such as a gap is provided between the permanent magnets 3 and corresponds to the position of the permanent magnet 4a in the adjacent block 20 (or 23).

複数種類の永久磁石の各々は、保磁力と磁化方向厚みの積が互いに他の種類の永久磁石と異なる。本実施例において、永久磁石4aは、保磁力と磁化方向厚みの積が大となる磁石であり、例えばNdFeB磁石である。また、永久磁石3は、保磁力と磁化方向厚みの積が小となる磁石であり、例えばアルニコ磁石やFeCrCo磁石である。さらに、永久磁石3は、アルニコ磁石とフェライト磁石との複合磁石、あるいはFeCrCo磁石とフェライト磁石との複合磁石を適用することも可能である。   Each of the plural types of permanent magnets is different from other types of permanent magnets in the product of coercive force and magnetization direction thickness. In the present embodiment, the permanent magnet 4a is a magnet having a large product of coercive force and magnetization direction thickness, for example, an NdFeB magnet. The permanent magnet 3 is a magnet having a small product of the coercive force and the magnetization direction thickness, such as an alnico magnet or an FeCrCo magnet. Further, as the permanent magnet 3, a composite magnet of an alnico magnet and a ferrite magnet, or a composite magnet of an FeCrCo magnet and a ferrite magnet can be applied.

また、複数種類の永久磁石の各々は、磁化方向が互いに他の種類の永久磁石と異なる。本実施例においては、永久磁石4aと永久磁石3の磁化方向は、それぞれ異なる。永久磁石4aは、回転子1aのほぼ周方向に配置され、永久磁石4aの磁化方向は回転子1aのほぼ径方向である。一方、永久磁石3は、ほぼ回転子1aの径方向に沿って配置され、永久磁石3の磁化方向は回転子1aのほぼ周方向である。永久磁石3と永久磁石4aとの8組それぞれは、回転子1aの内径側に凸の形状に設置され、永久磁石3,4aの磁化方向はともに、ほぼ磁石寸法の小さい方向である。   Further, each of the plurality of types of permanent magnets has a magnetization direction different from that of other types of permanent magnets. In the present embodiment, the magnetization directions of the permanent magnet 4a and the permanent magnet 3 are different from each other. The permanent magnet 4a is disposed substantially in the circumferential direction of the rotor 1a, and the magnetization direction of the permanent magnet 4a is substantially the radial direction of the rotor 1a. On the other hand, the permanent magnet 3 is disposed substantially along the radial direction of the rotor 1a, and the magnetization direction of the permanent magnet 3 is substantially the circumferential direction of the rotor 1a. Each of the eight sets of the permanent magnet 3 and the permanent magnet 4a is installed in a convex shape on the inner diameter side of the rotor 1a, and the magnetization directions of the permanent magnets 3 and 4a are both substantially smaller in magnet size.

図4に、本実施の形態の永久磁石式回転電機に適用する、永久磁石3用のアルニコ磁石(AlNiCo)、FeCrCo磁石、また永久磁石4a用のNdFeB磁石の磁気特性を示す。アルニコ磁石の保磁力(磁束密度が0になる磁界)は60〜120kA/mであり、NdFeB磁石の950kA/mの1/15〜1/8になる。また、FeCrCo磁石の保磁力は約60kA/mであり、NdFeB磁石の950kA/mの1/15になる。アルニコ磁石とFeCrCo磁石は、NdFeB磁石と比較してかなり低保磁力であることがわかる。   FIG. 4 shows the magnetic characteristics of an Alnico magnet (AlNiCo) for the permanent magnet 3, an FeCrCo magnet, and an NdFeB magnet for the permanent magnet 4a, which are applied to the permanent magnet type rotating electrical machine of the present embodiment. The coercive force of the alnico magnet (magnetic field at which the magnetic flux density becomes 0) is 60 to 120 kA / m, which is 1/15 to 1/8 of the 950 kA / m of the NdFeB magnet. Further, the coercive force of the FeCrCo magnet is about 60 kA / m, which is 1/15 of 950 kA / m of the NdFeB magnet. It can be seen that the alnico magnet and the FeCrCo magnet have a considerably lower coercive force than the NdFeB magnet.

本実施の形態では、保磁力と磁化方向厚みの積が小となる永久磁石3には、保磁力が120kA/mのアルニコ磁石を適用する。また、保磁力と磁化方向厚みの積が大となる永久磁石4aには、保磁力が1000kA/mのNdFeB磁石を適用する。   In the present embodiment, an alnico magnet having a coercive force of 120 kA / m is applied to the permanent magnet 3 in which the product of the coercive force and the magnetization direction thickness is small. Further, an NdFeB magnet having a coercive force of 1000 kA / m is applied to the permanent magnet 4a having a large product of the coercive force and the magnetization direction thickness.

図2に示すように、永久磁石4aは回転子鉄心2aの中に埋め込まれ、この永久磁石4aの両端部には空洞5が設けられている。また、図3に示すように、永久磁石3は回転子鉄心2aの中に埋め込まれ、この永久磁石3の両端部には空洞6が設けられている。   As shown in FIG. 2, the permanent magnet 4a is embedded in the rotor core 2a, and cavities 5 are provided at both ends of the permanent magnet 4a. As shown in FIG. 3, the permanent magnet 3 is embedded in the rotor core 2 a, and cavities 6 are provided at both ends of the permanent magnet 3.

永久磁石3は、磁極間の中心軸になるq軸と一致する回転子1aの半径方向に沿って配置されている。また、アルニコ磁石で成る永久磁石3の磁化容易方向は回転子1aのほぼ周方向であり、回転子1aの半径に対して直角方向とする。すなわち、複数の回転子鉄心2aの中で磁化により磁束の変化あるいは極性の反転を示す永久磁石3を有する回転子鉄心2aは、永久磁石3の容易磁化方向が自己の回転子鉄心2aの半径方向と直角に交わるように永久磁石3を配置して磁極を形成する。   The permanent magnet 3 is arranged along the radial direction of the rotor 1a that coincides with the q axis that is the central axis between the magnetic poles. In addition, the easy magnetization direction of the permanent magnet 3 made of an alnico magnet is substantially the circumferential direction of the rotor 1a and is perpendicular to the radius of the rotor 1a. That is, in the rotor core 2a having the permanent magnet 3 that exhibits magnetic flux change or polarity reversal due to magnetization among the plurality of rotor cores 2a, the easy magnetization direction of the permanent magnet 3 is the radial direction of its own rotor core 2a. The magnetic poles are formed by arranging the permanent magnets 3 so as to intersect with each other at right angles.

高保磁力のNdFeB磁石で成る永久磁石4aは、回転子鉄心2a内に埋め込まれ、その両端部には空洞5が設けられている。1つの永久磁石4aは、2個の磁気障壁7により回転子1aの内周部側で挟まれるように回転子1aのほぼ周方向に配置されている。この永久磁石4aの磁化容易方向は、回転子1aの周方向に対してほぼ直角(図2では永久磁石4aの長方形断面の長辺に対して直角)方向である。   A permanent magnet 4a made of a high coercive force NdFeB magnet is embedded in the rotor core 2a, and cavities 5 are provided at both ends thereof. One permanent magnet 4a is arranged in a substantially circumferential direction of the rotor 1a so as to be sandwiched between two magnetic barriers 7 on the inner peripheral side of the rotor 1a. The direction of easy magnetization of the permanent magnet 4a is substantially perpendicular to the circumferential direction of the rotor 1a (in FIG. 2, perpendicular to the long side of the rectangular cross section of the permanent magnet 4a).

なお、空洞部5,6は、永久磁石4a,3の磁束短絡と応力緩和のために、必要に応じて設けられる。   In addition, the hollow parts 5 and 6 are provided as needed for the magnetic flux short circuit of the permanent magnets 4a and 3 and stress relaxation.

永久磁石3は、磁極間の中心軸となるq軸方向に配置され、その磁化方向はq軸に対して90°、又は−90°方向となる。隣り合う永久磁石3において、互いに向かい合う磁極面は同極になるようにしてある。また、永久磁石4aは、d軸に対して直角方向に配置され、その磁化方向はd軸に対して0°、又は180°の方向となる。隣り合う永久磁石4aにおいて、互いに磁極の向きは逆極性とする。   The permanent magnet 3 is disposed in the q-axis direction that is the central axis between the magnetic poles, and the magnetization direction is 90 ° or −90 ° with respect to the q-axis. In the adjacent permanent magnets 3, the magnetic pole surfaces facing each other are made to have the same polarity. The permanent magnet 4a is arranged in a direction perpendicular to the d-axis, and the magnetization direction is 0 ° or 180 ° with respect to the d-axis. In the adjacent permanent magnets 4a, the magnetic poles have opposite polarities.

また、本発明の永久磁石電動機ドライブシステムの構成について述べる。この永久磁石電動機ドライブシステムは、上述した永久磁石式回転電機と、永久磁石式回転電機を駆動するためのインバータと、永久磁石の磁束を制御するための磁化電流を流す磁化部とを備える。本実施例において、磁化部は、複数種類の永久磁石のうち保磁力と磁化方向厚みの積が他の種類の永久磁石のものと比較して小さい永久磁石3に対して、電機子巻線に電流を流して作る磁界により永久磁石3の磁束量を不可逆的に変化させるか、又は永久磁石3の極性を反転させる。   The configuration of the permanent magnet motor drive system of the present invention will be described. This permanent magnet motor drive system includes the above-described permanent magnet type rotating electric machine, an inverter for driving the permanent magnet type rotating electric machine, and a magnetizing unit for passing a magnetizing current for controlling the magnetic flux of the permanent magnet. In this embodiment, the magnetizing portion is an armature winding with respect to the permanent magnet 3 having a product of coercive force and magnetization direction thickness which is smaller than that of other types of permanent magnets among a plurality of types of permanent magnets. The amount of magnetic flux of the permanent magnet 3 is irreversibly changed by a magnetic field generated by passing an electric current, or the polarity of the permanent magnet 3 is reversed.

インバータ4は、例えば直流電源から得た直流電力を交流電力に変換して永久磁石式回転電機に供給する。磁化部は、独立して設けることも可能であるが、インバータ4を磁化部としてもよい。その場合にインバータ4は、磁化部に対応し、永久磁石式回転電機の有する低保磁力の可変磁石(永久磁石3)の磁束を制御するための磁化電流を供給する。   The inverter 4 converts, for example, DC power obtained from a DC power source into AC power and supplies the AC power to the permanent magnet type rotating electrical machine. Although the magnetizing part can be provided independently, the inverter 4 may be used as the magnetizing part. In that case, the inverter 4 supplies a magnetizing current for controlling the magnetic flux of the low-coercivity variable magnet (permanent magnet 3) of the permanent magnet type rotating electrical machine corresponding to the magnetizing unit.

次に、上述のように構成された本実施の形態の作用を説明する。本実施の形態では、固定子の電機子巻線に通電時間が極短時間(0.1ms〜10ms程度)となるパルス的な電流を流して磁界を形成し、永久磁石3に磁界を作用させる。永久磁石を磁化するための磁界を形成するパルス電流は固定子の電機子巻線のd軸電流成分とする。着磁磁界を250kA/mとすると、理想的には永久磁石3には十分な着磁磁界が作用し、永久磁石4aには着磁による不可逆減磁はない。   Next, the operation of the present embodiment configured as described above will be described. In the present embodiment, a magnetic field is formed by applying a pulse-like current whose energization time is extremely short (about 0.1 ms to 10 ms) to the armature winding of the stator, and the magnetic field is applied to the permanent magnet 3. . The pulse current that forms the magnetic field for magnetizing the permanent magnet is the d-axis current component of the armature winding of the stator. If the magnetizing magnetic field is 250 kA / m, ideally, a sufficient magnetizing magnetic field acts on the permanent magnet 3, and the permanent magnet 4a does not have irreversible demagnetization due to magnetization.

図5は、固定子との鎖交磁束が最大となるように永久磁石を不可逆的に磁化した場合における永久磁石の磁束の向きを示す図であり、Z−θ面に展開した2極分のみを示す。また、図6は、固定子との鎖交磁束が最大となる場合におけるブロック20,21の永久磁石の磁束の向きとともに示す回転子1aの斜視図である。本発明の永久磁石電動機システムにおける磁化部は、電機子巻線に電流を流して作る磁界により、各磁極において回転子1aが有する永久磁石のうち少なくとも1個の永久磁石を磁化させて永久磁石の磁束量を不可逆的に変化させる。   FIG. 5 is a diagram showing the direction of the magnetic flux of the permanent magnet when the permanent magnet is irreversibly magnetized so that the flux linkage with the stator is maximized, and only the two poles developed on the Z-θ plane are shown. Indicates. FIG. 6 is a perspective view of the rotor 1a shown together with the direction of the magnetic flux of the permanent magnets of the blocks 20 and 21 when the interlinkage magnetic flux with the stator is maximized. The magnetizing unit in the permanent magnet motor system of the present invention magnetizes at least one permanent magnet among the permanent magnets of the rotor 1a at each magnetic pole by a magnetic field generated by passing a current through the armature winding. The amount of magnetic flux is irreversibly changed.

着磁磁界を作用させて永久磁石3を永久磁石4aと同極に着磁することにより、永久磁石3と永久磁石4aとの磁束は、磁極及びエアギャップ面で加え合せになる。すなわち、永久磁石4aは、その周方向中心軸にもともとの極性の磁極と磁束を発生し、永久磁石3は、周方向に隣り合う永久磁石3との中間となる位置に永久磁石4aと同じ向きに磁極と磁束を発生させる。例えば図5のブロック20において、磁束の流れ11は、回転子1aから固定子へと向かう磁束の方向を示すが、同じθ位置におけるブロック21,22,23の磁束の方向も同じである。したがって、図5,6において永久磁石3,4aによる鎖交磁束は増加して増磁状態となる。なお、磁束の流れ10,11を示すθ位置と回転子1aの回転中心とを結ぶ方向は、回転子1aの主磁極でありd軸である。また、逆極性となる隣の磁極との間の補助磁極を通る中心軸方向がq軸となる(永久磁石3と回転中心とを結ぶ軸)。   By applying a magnetizing magnetic field to magnetize the permanent magnet 3 to the same polarity as the permanent magnet 4a, the magnetic fluxes of the permanent magnet 3 and the permanent magnet 4a are added together at the magnetic pole and the air gap surface. In other words, the permanent magnet 4a generates a magnetic pole and magnetic flux of the original polarity on the central axis in the circumferential direction, and the permanent magnet 3 is in the same direction as the permanent magnet 4a at a position intermediate between the permanent magnets 3 adjacent in the circumferential direction. To generate magnetic poles and magnetic flux. For example, in the block 20 of FIG. 5, the magnetic flux flow 11 indicates the direction of the magnetic flux from the rotor 1a to the stator, but the direction of the magnetic flux in the blocks 21, 22, and 23 at the same θ position is also the same. Therefore, in FIGS. 5 and 6, the interlinkage magnetic flux by the permanent magnets 3 and 4a is increased to be in a magnetized state. The direction connecting the θ position indicating the magnetic flux flows 10 and 11 and the rotation center of the rotor 1a is the main magnetic pole of the rotor 1a and the d-axis. Further, the central axis direction passing through the auxiliary magnetic pole between the adjacent magnetic poles having the opposite polarity is the q axis (the axis connecting the permanent magnet 3 and the rotation center).

着磁磁界は固定子の電機子巻線に極短時間のパルス的な電流を流して形成する。このとき通電する電流はd軸電流成分である。パルス電流はすぐに0になり、着磁磁界はなくなるが、永久磁石3は不可逆的に変化して着磁方向に磁束を発生する。   The magnetizing magnetic field is formed by passing a pulse-like current for a very short time through the armature winding of the stator. The current that is energized at this time is a d-axis current component. The pulse current immediately becomes 0 and the magnetizing magnetic field disappears, but the permanent magnet 3 changes irreversibly and generates a magnetic flux in the magnetizing direction.

次に、固定子に対する鎖交磁束を減少させるときの作用を説明する。固定子の電機子巻線に負のd軸電流を通電して磁界を形成すると、形成された磁界は、回転子1aの磁極中心から永久磁石3と永久磁石4aに対して磁化方向とほぼ逆方向に作用する。永久磁石3のアルニコ磁石は、保磁力と磁化方向厚みの積を小さくしているため、この逆磁界によりその磁束は不可逆的に減少する。一方、永久磁石4aのNdFeB磁石は保磁力と磁化方向厚みの積が大きいため逆磁界Bdを受けても磁気特性は可逆範囲であり、負のd軸電流による着磁磁界が消えた後の磁化状態は変化なく、磁束量も変らない。したがって、永久磁石3のみが減磁することになり、鎖交磁束量を減少できる。   Next, an effect | action at the time of reducing the flux linkage with respect to a stator is demonstrated. When a negative d-axis current is passed through the armature winding of the stator to form a magnetic field, the formed magnetic field is almost opposite to the magnetization direction from the center of the magnetic pole of the rotor 1a to the permanent magnet 3 and the permanent magnet 4a. Acts on direction. Since the alnico magnet of the permanent magnet 3 has a small product of coercive force and thickness in the magnetization direction, the magnetic flux is irreversibly reduced by this reverse magnetic field. On the other hand, the NdFeB magnet of the permanent magnet 4a has a large product of the coercive force and the thickness in the magnetization direction, so that the magnetic characteristics are in a reversible range even when receiving the reverse magnetic field Bd, and the magnetization after the magnetization magnetic field due to the negative d-axis current disappears. The state does not change and the amount of magnetic flux does not change. Therefore, only the permanent magnet 3 is demagnetized, and the amount of flux linkage can be reduced.

したがって、本実施の形態では、永久磁石3をd軸電流で磁化させることによって永久磁石3,4aを合わせた全鎖交磁束量を広範囲に調整することができる。具体的には、回転子1aは、磁極を形成する永久磁石の磁束が加え合わせになるように複数種類の永久磁石を配置する。一方、本発明の永久磁石電動機ドライブシステムの磁化部は、電機子巻線に電流を流して作る磁界により、永久磁石の一部を磁化させて永久磁石による鎖交磁束を不可逆的に減少させるとともに、減少後に電流による磁界を先ほどとは逆方向に発生させて永久磁石の一部を磁化させて鎖交磁束量を不可逆的に増加させる。   Therefore, in the present embodiment, the total amount of interlinkage magnetic flux including the permanent magnets 3 and 4a can be adjusted over a wide range by magnetizing the permanent magnet 3 with the d-axis current. Specifically, in the rotor 1a, a plurality of types of permanent magnets are arranged so that the magnetic fluxes of the permanent magnets forming the magnetic poles are added together. On the other hand, the magnetizing portion of the permanent magnet motor drive system of the present invention irreversibly reduces the interlinkage magnetic flux by the permanent magnet by magnetizing a part of the permanent magnet by the magnetic field generated by flowing current through the armature winding. After the decrease, a magnetic field due to an electric current is generated in the opposite direction to magnetize a part of the permanent magnet to irreversibly increase the amount of flux linkage.

本実施の形態ではさらに大きな電流を通電させて強い逆磁界により永久磁石3の極性を反転させる。永久磁石3の極性を反転させることにより、鎖交磁束を大幅に減少でき、特に鎖交磁束を0にできる特徴がある。すなわち、本発明の永久磁石電動機ドライブシステムにおける磁化部は、電機子巻線に電流を流して作る磁界により、各磁極において回転子1aが有する永久磁石のうち少なくとも1個の永久磁石を磁化させて永久磁石の極性を反転させることができる。また、当該磁化部は、電機子巻線に電流を流して作る磁界により、各磁極において回転子1aが有する永久磁石のうち少なくとも1個の永久磁石を磁化させて、回転子1aが有する全ての永久磁石による電機子巻線の鎖交磁束量をほぼ0にすることができる。   In the present embodiment, a larger current is applied and the polarity of the permanent magnet 3 is reversed by a strong reverse magnetic field. By inverting the polarity of the permanent magnet 3, the interlinkage magnetic flux can be greatly reduced, and in particular, the interlinkage magnetic flux can be reduced to zero. That is, the magnetizing unit in the permanent magnet motor drive system of the present invention magnetizes at least one permanent magnet among the permanent magnets of the rotor 1a in each magnetic pole by a magnetic field generated by flowing current through the armature winding. The polarity of the permanent magnet can be reversed. Further, the magnetizing portion magnetizes at least one permanent magnet among the permanent magnets of the rotor 1a in each magnetic pole by a magnetic field generated by passing an electric current through the armature winding, so that all the rotor 1a has The amount of flux linkage of the armature winding by the permanent magnet can be made almost zero.

図7は、固定子との鎖交磁束が最小となるように負のd軸電流による減磁磁界が作用した後の永久磁石の磁束の向きを示す図であり、Z−θ面に展開した2極分のみを示す。また、図8は、固定子との鎖交磁束が最小となる場合におけるブロック20,21の永久磁石の磁束の向きとともに示す回転子1aの斜視図である。減磁磁界を作用させて永久磁石3を永久磁石4aと逆極に着磁することにより、永久磁石4aの発生する磁束は、永久磁石3が設置された鉄心ブロックに流れ、逆極性の永久磁石3に入る。本実施例においては、ブロック20内の永久磁石4aの発生する磁束は、磁束の流れ14によりブロック21の永久磁石3に入る。したがって磁気的に短絡された状態となるため、回転子1aは、外部の固定子に対する鎖交磁束がほとんど無い状態となり、回転子1a全体として着磁されていない場合と同様の状態となる。   FIG. 7 is a diagram showing the direction of the magnetic flux of the permanent magnet after the demagnetizing magnetic field due to the negative d-axis current is applied so that the flux linkage with the stator is minimized, and is developed on the Z-θ plane. Only two poles are shown. FIG. 8 is a perspective view of the rotor 1a shown along with the direction of the magnetic flux of the permanent magnets of the blocks 20 and 21 when the interlinkage magnetic flux with the stator is minimized. By applying a demagnetizing magnetic field to magnetize the permanent magnet 3 in the opposite polarity to the permanent magnet 4a, the magnetic flux generated by the permanent magnet 4a flows to the iron core block where the permanent magnet 3 is installed, and the permanent magnet of the opposite polarity. Enter 3. In this embodiment, the magnetic flux generated by the permanent magnet 4 a in the block 20 enters the permanent magnet 3 of the block 21 by the magnetic flux flow 14. Therefore, since it is magnetically short-circuited, the rotor 1a has almost no linkage magnetic flux with respect to the external stator, and is in the same state as when the rotor 1a as a whole is not magnetized.

この場合の減磁磁界は固定子の電機子巻線に極短時間のパルス的な電流を流して形成する。このとき通電する電流は負のd軸電流成分である。パルス電流はすぐに0になり、減磁磁界はなくなるが、永久磁石3は極性が反転し、図7,8に示す方向に磁束を発生する。   In this case, the demagnetizing magnetic field is formed by flowing an extremely short pulse current through the armature winding of the stator. The current that is energized at this time is a negative d-axis current component. The pulse current immediately becomes 0 and the demagnetizing magnetic field disappears. However, the polarity of the permanent magnet 3 is reversed, and a magnetic flux is generated in the direction shown in FIGS.

したがって、本実施の形態では、永久磁石3の極性を反転させることによって永久磁石3,4aを合わせた全鎖交磁束量を広範囲に調整することができる。具体的には、回転子1aは、磁極を形成する永久磁石の磁束が加え合わせになるように複数種類の永久磁石を配置する。一方、本発明の永久磁石電動機ドライブシステムの磁化部は、電機子巻線に電流を流して作る磁界により、永久磁石の一部を磁化させて永久磁石の極性を反転させるとともに、反転後に電流による磁界を先ほどとは逆方向に発生させてさらに永久磁石3の極性を反転させて元の極性にすることができる。   Therefore, in the present embodiment, by reversing the polarity of the permanent magnet 3, the total interlinkage magnetic flux amount of the permanent magnets 3 and 4a can be adjusted over a wide range. Specifically, in the rotor 1a, a plurality of types of permanent magnets are arranged so that the magnetic fluxes of the permanent magnets forming the magnetic poles are added together. On the other hand, the magnetizing portion of the permanent magnet motor drive system of the present invention magnetizes a part of the permanent magnet by a magnetic field generated by passing an electric current through the armature winding, and reverses the polarity of the permanent magnet. The magnetic field can be generated in the opposite direction to the previous one, and the polarity of the permanent magnet 3 can be reversed to the original polarity.

従来の回転電機は、電機子巻線の負のd軸電流による磁束を発生させて回転子1aの永久磁石の磁束を相殺させると、合成の基本波磁束は50%程度までは低減できる。しかし、高調波磁束がかなり増加し、高調波電圧と高調波鉄損が生じて問題となる。また、鎖交磁束を0にすることは極めて困難であり、仮に基本波を0にできても高調波磁束は逆にかなり大きな値になる。   In the conventional rotating electric machine, when the magnetic flux generated by the negative d-axis current of the armature winding is generated to cancel the magnetic flux of the permanent magnet of the rotor 1a, the combined fundamental wave magnetic flux can be reduced to about 50%. However, the harmonic magnetic flux increases considerably, causing harmonic voltage and harmonic iron loss. In addition, it is extremely difficult to set the interlinkage magnetic flux to 0. Even if the fundamental wave can be reduced to 0, the harmonic magnetic flux becomes a considerably large value.

一方、本実施の形態の永久磁石式回転電機は回転子1aにおいては、永久磁石3,4aのみの磁束で一様に減少できるので高調波磁束は少なく、損失の増加はない。本実施の形態の永久磁石式回転電機においては、保磁力と磁化方向厚みの積が小となる永久磁石3は、d軸電流による磁界により磁化され易くなる。永久磁石3を着磁する程度の磁界であれば、永久磁石4aは可逆減磁状態であり、着磁後でも永久磁石4aは着磁前の状態の磁束を維持できる。   On the other hand, in the permanent magnet type rotating electrical machine of the present embodiment, the rotor 1a can be uniformly reduced by the magnetic flux of only the permanent magnets 3 and 4a, so that the harmonic magnetic flux is small and the loss is not increased. In the permanent magnet type rotating electric machine according to the present embodiment, the permanent magnet 3 having a small product of the coercive force and the magnetization direction thickness is easily magnetized by the magnetic field generated by the d-axis current. If the magnetic field is sufficient to magnetize the permanent magnet 3, the permanent magnet 4a is in a reversible demagnetized state, and the permanent magnet 4a can maintain the magnetic flux in the state before magnetization even after magnetization.

アルニコ磁石の永久磁石3とNdFeB磁石の永久磁石4aとの相互的な磁気の影響について述べる。減磁状態では、永久磁石4aの磁界は永久磁石3にバイアス的な磁界として作用し、負のd軸電流による磁界と永久磁石4aによる磁界とが永久磁石3に作用して磁化し易くなる。すなわち、回転子1aは、各磁極において磁束の変化あるいは極性の反転を示す永久磁石3に対し、他の永久磁石4aからバイアス的な磁界が作用するように各永久磁石を配置してなる。   The mutual magnetic influence between the permanent magnet 3 of the Alnico magnet and the permanent magnet 4a of the NdFeB magnet will be described. In the demagnetized state, the magnetic field of the permanent magnet 4a acts as a bias magnetic field on the permanent magnet 3, and the magnetic field due to the negative d-axis current and the magnetic field due to the permanent magnet 4a act on the permanent magnet 3 and are easily magnetized. That is, in the rotor 1a, each permanent magnet is arranged so that a bias-like magnetic field acts from the other permanent magnet 4a on the permanent magnet 3 that exhibits a change in magnetic flux or a reversal of polarity in each magnetic pole.

また、永久磁石3の保磁力と磁化方向厚みの積が永久磁石4aの無負荷時の動作点における磁界の強さと磁化方向厚みの積に等しいか、それ以上にすることにより鎖交磁束の増磁状態において永久磁石4aの磁界に打ち勝ち、磁束量を発生する。したがって、本発明の永久磁石式回転電機は、各磁極の中で保磁力と磁化方向厚みの積が小さい永久磁石3の保磁力と磁化方向厚みの積が、保持力と磁化方向厚みの積が大きな永久磁石4aの無負荷時の動作点における磁界の強さと磁化方向厚みの積にほぼ等しいか又はそれ以上とする。   Further, by increasing the product of the coercive force and the magnetization direction thickness of the permanent magnet 3 to be equal to or greater than the product of the magnetic field strength and the magnetization direction thickness at the operating point when the permanent magnet 4a is unloaded, the flux linkage can be increased. In the magnetic state, the magnetic field of the permanent magnet 4a is overcome and a magnetic flux amount is generated. Therefore, in the permanent magnet type rotating electrical machine of the present invention, the product of the coercive force and the magnetization direction thickness of the permanent magnet 3 having a small product of the coercive force and the magnetization direction thickness in each magnetic pole is the product of the coercive force and the magnetization direction thickness. The large permanent magnet 4a is substantially equal to or more than the product of the magnetic field strength and the magnetization direction thickness at the operating point when no load is applied.

上述のとおり、本発明の実施例1の形態に係る永久磁石式回転電機及び永久磁石電動機システムによれば、低速から高速までの広範囲で可変速運転が可能であり、従来に比してさらに高速での運転を可能とする。従来技術として説明した特許文献5との差異となる本発明のポイントは、特に磁化による磁束の変化量が異なる複数種類の永久磁石を軸方向に分割したブロックにそれぞれ分けて配置し、径方向のみならず軸方向に互いに磁束を作用させて固定子に対する鎖交磁束量を制御可能としたことである。   As described above, according to the permanent magnet type rotating electrical machine and the permanent magnet motor system according to the first embodiment of the present invention, variable speed operation can be performed in a wide range from low speed to high speed, which is higher than conventional. It is possible to drive in. The point of the present invention that is different from Patent Document 5 described as the prior art is that a plurality of types of permanent magnets having different magnetic flux variations due to magnetization are arranged separately in blocks divided in the axial direction, and only in the radial direction. In other words, the amount of flux linkage with respect to the stator can be controlled by causing magnetic fluxes to act in the axial direction.

従来の永久磁石式回転電機のように、磁気的な流れをコントロールするために、複数種類の永久磁石を1つの径方向断面に構成するとなると設計上の様々な制約が要求される。しかしながら、本発明のように軸方向に分割したブロックに複数種類の永久磁石を分けて設けることにより、径方向の同一断面内に複数種類の永久磁石を収容する必要が無くなるため、設計の自由度が増し、材料強度の制限を緩和するための工夫がしやすく、より高速回転が可能となるとともに、低速回転域の高トルク化と中・高速回転域での高出力化、効率の向上、信頼性向上、製造性向上、材料の削減を実現することができる。 In order to control the magnetic flow as in a conventional permanent magnet type rotating electrical machine, various design restrictions are required when a plurality of types of permanent magnets are configured in one radial cross section. However, by providing a plurality of types of permanent magnets separately in the block divided in the axial direction as in the present invention, it is not necessary to accommodate a plurality of types of permanent magnets in the same radial cross section, and therefore the degree of freedom in design. It is easy to devise to relax the restrictions on the material strength, enabling higher speed rotation, higher torque in the low speed rotation range, higher output in the middle / high speed rotation range, improved efficiency, and reliability. Improvement of productivity, improvement of manufacturability, and reduction of materials can be realized.

また、回転子1aは、分割されたブロックのうち軸方向両端部に位置するブロック20,23において、磁化による磁束の変化が小さい永久磁石4aを配置している。これは、回転子1aの端部の磁界が強くなるため、トルクをかけたときに永久磁石が減磁するのを防止するためであり、このような配置にすることで永久磁石に働く減磁界をコントロールすることが容易になるからである。   Moreover, the rotor 1a arrange | positions the permanent magnet 4a with a small change of the magnetic flux by magnetization in the blocks 20 and 23 located in an axial direction both ends among the divided | segmented blocks. This is to prevent the permanent magnet from demagnetizing when torque is applied because the magnetic field at the end of the rotor 1a becomes strong. This is because it becomes easy to control the above.

また、本実施の形態の永久磁石式回転電機では、d軸電流により永久磁石3の鎖交磁束量を最大から0まで大きく変化でき、また磁化方向も正逆方向の両方向にできる。すなわち、永久磁石4aの鎖交磁束を正方向とすると、永久磁石3の鎖交磁束を正方向の最大値から0、さらには逆方向の最大値まで広範囲に調整することができる。このため、本実施の形態の永久磁石式回転電機によれば、永久磁石3をd軸電流で磁化させることにより永久磁石3と永久磁石4aとを合わせた全鎖交磁束量を広範囲に調整することができる。   Further, in the permanent magnet type rotating electrical machine of the present embodiment, the amount of flux linkage of the permanent magnet 3 can be greatly changed from the maximum to 0 by the d-axis current, and the magnetization direction can be changed in both forward and reverse directions. That is, if the interlinkage magnetic flux of the permanent magnet 4a is the forward direction, the interlinkage magnetic flux of the permanent magnet 3 can be adjusted over a wide range from the maximum value in the positive direction to 0, and further to the maximum value in the reverse direction. For this reason, according to the permanent magnet type rotating electrical machine of the present embodiment, the amount of total interlinkage magnetic flux combining the permanent magnet 3 and the permanent magnet 4a is adjusted over a wide range by magnetizing the permanent magnet 3 with the d-axis current. be able to.

(1)低速域では、永久磁石3は永久磁石4aの鎖交磁束と同方向(図5,6で示した増磁状態)で最大値になるようにd軸電流で磁化する。永久磁石3,4aによるトルクは最大になるので、回転電機のトルク及び出力は最大にすることができる。すなわち、本発明の永久磁石電動機ドライブシステムの磁化部は、永久磁石式回転電機の最大トルク時には磁極の永久磁石の磁束が加え合わせになるように保磁力と磁化方向厚みの積が他よりも小さな永久磁石3を磁化させる。   (1) In the low speed region, the permanent magnet 3 is magnetized with a d-axis current so as to have a maximum value in the same direction as the interlinkage magnetic flux of the permanent magnet 4a (magnetization state shown in FIGS. 5 and 6). Since the torque by the permanent magnets 3 and 4a is maximized, the torque and output of the rotating electrical machine can be maximized. That is, the magnetized portion of the permanent magnet motor drive system of the present invention has a product of coercive force and magnetization direction thickness smaller than the others so that the magnetic flux of the permanent magnet of the magnetic pole is added at the maximum torque of the permanent magnet type rotating electrical machine. The permanent magnet 3 is magnetized.

(2)中・高速域では、永久磁石3の磁束を低下させ(図7,8の減磁状態)、全鎖交磁束量を下げる。これにより回転電機の電圧は下がるので、電源電圧の上限値に対して余裕ができ、回転速度(周波数)をさらに高くすることが可能となる。すなわち、本発明の永久磁石電動機ドライブシステムの磁化部は、トルクの小さな軽負荷時や中速回転域と高速回転域では、保磁力と磁化方向厚みの積が他よりも小さな永久磁石3に対して、電流による磁界で磁化させて磁束を減少させるか、又は磁界で永久磁石3の極性を反転させる。   (2) In the middle / high speed range, the magnetic flux of the permanent magnet 3 is reduced (demagnetized state in FIGS. 7 and 8), and the total flux linkage is reduced. As a result, the voltage of the rotating electrical machine is lowered, so that there is a margin with respect to the upper limit value of the power supply voltage, and the rotational speed (frequency) can be further increased. That is, the magnetized portion of the permanent magnet motor drive system according to the present invention has a smaller product of the coercive force and the thickness in the magnetization direction than the other at the time of a light load with a small torque and at a medium speed rotation range and a high speed rotation range. Thus, the magnetic field is magnetized by a magnetic field to reduce the magnetic flux, or the polarity of the permanent magnet 3 is reversed by the magnetic field.

このようにして、本実施の形態の永久磁石式回転電機では、高出力で低速回転から超高速回転まで広範囲の可変速運転を実現できる。加えて、本実施の形態の永久磁石式回転電機では、鎖交磁束を変化させるときの着磁電流は極短時間のみ流すので損失を著しく低減できるので、広い運転範囲で高効率となる。   In this manner, the permanent magnet type rotating electrical machine of the present embodiment can realize a wide range of variable speed operation from high speed to low speed rotation to ultra high speed rotation. In addition, in the permanent magnet type rotating electrical machine of the present embodiment, since the magnetizing current when changing the flux linkage flows only for an extremely short time, the loss can be remarkably reduced, so that the efficiency becomes high in a wide operating range.

次に、本実施の形態の永久磁石式回転電機において、トルク電流の影響について述べる。回転電機が出力を発生するときは、固定子の電機子巻線にq軸電流を流すことにより、q軸電流と永久磁石3,4aの磁束との磁気作用でトルクを発生させる。このときq軸電流による磁界が発生する。しかし、永久磁石3はq軸方向に配置され、磁化方向はq軸方向と直角方向であることから、永久磁石3の磁化方向とq軸電流による磁界とは直交する方向になるので、q軸電流による磁界の影響はわずかとなる。   Next, the influence of torque current in the permanent magnet type rotating electrical machine of the present embodiment will be described. When the rotating electrical machine generates an output, a q-axis current is passed through the armature winding of the stator to generate a torque by the magnetic action of the q-axis current and the magnetic flux of the permanent magnets 3 and 4a. At this time, a magnetic field is generated by the q-axis current. However, since the permanent magnet 3 is arranged in the q-axis direction and the magnetization direction is a direction perpendicular to the q-axis direction, the magnetization direction of the permanent magnet 3 and the magnetic field due to the q-axis current are orthogonal to each other. The effect of the magnetic field due to the current is minimal.

本発明の永久磁石電動機ドライブシステムの磁化部は、d軸電流による磁界で永久磁石3を磁化させて永久磁石3の磁束量を不可逆的に変化させるか、磁界で永久磁石3の極性を反転させ、さらにq軸電流によりトルクを制御することもできる。   The magnetizing part of the permanent magnet motor drive system of the present invention magnetizes the permanent magnet 3 with a magnetic field generated by d-axis current to irreversibly change the amount of magnetic flux of the permanent magnet 3, or reverses the polarity of the permanent magnet 3 with a magnetic field. Further, the torque can be controlled by the q-axis current.

次に、本実施の形態の永久磁石式回転電機において、永久磁石3,4aそれぞれの両端部に設けた空洞5,6の作用について述べる。空洞5,6は、永久磁石3,4aによる遠心力が回転子鉄心2aに作用した時の回転子鉄心2aへの応力集中と減磁界を緩和する。   Next, the operation of the cavities 5 and 6 provided at both ends of the permanent magnets 3 and 4a in the permanent magnet type rotating electrical machine of the present embodiment will be described. The cavities 5 and 6 alleviate stress concentration and demagnetizing field on the rotor core 2a when centrifugal force by the permanent magnets 3 and 4a acts on the rotor core 2a.

図2,3に示したように空洞5,6を設けることにより、回転子鉄心2aは曲率のついた形状にでき、応力が緩和される。また、電流による磁界が永久磁石3,4aの角部に集中して減磁界が作用し、角部が不可逆減磁する場合がある。本実施の形態では、永久磁石3,4aそれぞれの端部に空洞6,5を設けているため、永久磁石3,4aの端部での電流による減磁界が緩和される。   As shown in FIGS. 2 and 3, by providing the cavities 5 and 6, the rotor core 2a can have a curved shape, and the stress is relieved. Moreover, the magnetic field by an electric current concentrates on the corner | angular part of the permanent magnets 3 and 4a, a demagnetizing field acts, and a corner | angular part may be irreversibly demagnetized. In the present embodiment, since the cavities 6 and 5 are provided at the ends of the permanent magnets 3 and 4a, the demagnetizing field due to the current at the ends of the permanent magnets 3 and 4a is alleviated.

次に、本実施の形態の永久磁石式回転電機における回転子1aの構造的強度について述べる。回転子鉄心2a内に永久磁石3と永久磁石4aとが埋め込まれており、回転子鉄心2aで永久磁石3,4aを固定している。   Next, the structural strength of the rotor 1a in the permanent magnet type rotating electrical machine of the present embodiment will be described. The permanent magnet 3 and the permanent magnet 4a are embedded in the rotor core 2a, and the permanent magnets 3 and 4a are fixed by the rotor core 2a.

以上の構成により、本実施の形態の永久磁石式回転電機は、次の効果を奏する。NdFeB磁石の永久磁石4aの鎖交磁束を正方向とすると、アルニコ磁石の永久磁石3の鎖交磁束を正方向の最大値から0、さらには逆方向の最大値まで広範囲に調整することができる。したがって、本実施の形態では、永久磁石3をd軸電流で磁化させることによって永久磁石3,4aを合わせた全鎖交磁束量を広範囲に調整することができる。また、永久磁石3,4aの全鎖交磁束量を広範囲に調整できることで、永久磁石式回転電機の電圧も広範囲に調整できる。また、着磁は極短時間のパルス的な電流で行うので、常時弱め磁束電流を流し続ける必要がなく、損失を大幅に低減できる。また、従来のように弱め磁束制御を行う必要がないので、高調波磁束による高調波鉄損も発生しない。以上より、本実施の形態の永久磁石式回転電機では、高出力で低速から高速までの広範囲の可変速運転を可能とし、広い運転範囲において高効率も可能となる。加えて、永久磁石による誘導電圧に関しては、永久磁石3をd軸電流で着磁して永久磁石3,4aの全鎖交磁束量を小さくできるので、永久磁石3,4aの誘導電圧によるインバータ電子部品の破損がなくなり、信頼性が向上する。さらに、永久磁石式回転電機が無負荷で連れ回される状態では、永久磁石3を負のd軸電流で着磁して永久磁石3,4aの全鎖交磁束量を小さくできる。これより、誘導電圧は著しく低くなり、誘導電圧を下げるための弱め磁束電流を常時通電する必要がほとんどなくなり、総合効率が向上する。特に惰行運転時間が長くなる通勤電車に本実施の形態の永久磁石式回転電機を搭載して駆動すると、総合運転効率は大幅に向上する。   With the above configuration, the permanent magnet type rotating electrical machine of the present embodiment has the following effects. Assuming that the linkage flux of the permanent magnet 4a of the NdFeB magnet is the positive direction, the linkage flux of the permanent magnet 3 of the alnico magnet can be adjusted over a wide range from the maximum value in the positive direction to 0 and further to the maximum value in the reverse direction. . Therefore, in the present embodiment, the total amount of interlinkage magnetic flux including the permanent magnets 3 and 4a can be adjusted over a wide range by magnetizing the permanent magnet 3 with the d-axis current. Further, since the total flux linkage of the permanent magnets 3 and 4a can be adjusted over a wide range, the voltage of the permanent magnet type rotating electrical machine can be adjusted over a wide range. In addition, since magnetization is performed with a pulse-like current for a very short time, it is not necessary to constantly weaken the magnetic flux current and loss can be greatly reduced. Further, since it is not necessary to perform the flux-weakening control as in the prior art, harmonic iron loss due to harmonic magnetic flux does not occur. As described above, the permanent magnet type rotating electrical machine according to the present embodiment enables variable speed operation in a wide range from high speed to low speed to high speed, and also enables high efficiency in a wide operating range. In addition, as for the induced voltage by the permanent magnet, the permanent magnet 3 can be magnetized by the d-axis current to reduce the total amount of magnetic flux linkage of the permanent magnets 3 and 4a. The parts are not damaged and the reliability is improved. Further, in a state where the permanent magnet type rotating electrical machine is rotated with no load, the permanent magnet 3 can be magnetized with a negative d-axis current to reduce the total flux linkage of the permanent magnets 3 and 4a. As a result, the induced voltage is remarkably lowered, and there is almost no need to constantly apply a weak magnetic flux current for lowering the induced voltage, thereby improving the overall efficiency. In particular, when the permanent magnet type rotating electrical machine of the present embodiment is mounted and driven on a commuter train with a long coasting operation time, the overall driving efficiency is greatly improved.

なお、本発明の永久磁石式回転電機では、d軸電流による磁界で永久磁石3を不可逆的に磁化して鎖交磁束量を変化させることができる。さらに負のd軸電流による磁束を常時発生させることにより、負のd軸電流による磁束と永久磁石3,4aによる磁束から成る鎖交磁束は、負のd軸電流による磁束で調整することができる。すなわち、永久磁石3の磁化状態を不可逆的に変化させることによって鎖交磁束量を大きく変化させることができ、その上、常時通電させる負のd軸電流により鎖交磁束量を微調整することができる。このとき常時通電する負のd軸電流が微調整する鎖交磁束量は僅かなので、常時流し続ける負のd軸電流は僅かとなり、大きな損失は発生しない。これにより、本実施の形態の永久磁石式回転電機によれば、電圧の基になる鎖交磁束量を広範囲で変化させるとともに微調整することができ、しかも高効率で可変できるようになる。   In the permanent magnet type rotating electrical machine of the present invention, the amount of flux linkage can be changed by irreversibly magnetizing the permanent magnet 3 with a magnetic field generated by a d-axis current. Further, by always generating a magnetic flux due to a negative d-axis current, the linkage flux composed of the magnetic flux due to the negative d-axis current and the magnetic flux due to the permanent magnets 3 and 4a can be adjusted by the magnetic flux due to the negative d-axis current. . That is, the amount of interlinkage magnetic flux can be changed greatly by irreversibly changing the magnetization state of the permanent magnet 3, and the amount of interlinkage magnetic flux can be finely adjusted by a negative d-axis current that is always energized. it can. At this time, since the amount of interlinkage magnetic flux that is finely adjusted by the negative d-axis current that is always energized is small, the negative d-axis current that continues to flow constantly becomes small and no significant loss occurs. As a result, according to the permanent magnet type rotating electrical machine of the present embodiment, the amount of interlinkage magnetic flux that is the basis of the voltage can be varied and finely adjusted, and can be varied with high efficiency.

本発明の永久磁石電動機ドライブシステムの磁化部は、永久磁石式回転電機の運転時において、d軸電流による磁界で永久磁石3を磁化させて永久磁石3の磁束量を不可逆的に変化させるか、磁界で永久磁石3の極性を反転させる動作と、d軸電流で生じる磁束により電流と永久磁石で生じる電機子巻線の鎖交磁束量をほぼ可逆的に変化させる動作とを選択的に実行することもできる。   The magnetizing portion of the permanent magnet motor drive system of the present invention magnetizes the permanent magnet 3 with a magnetic field generated by the d-axis current during operation of the permanent magnet type rotating electrical machine, and irreversibly changes the amount of magnetic flux of the permanent magnet 3; An operation of reversing the polarity of the permanent magnet 3 with a magnetic field and an operation of reversibly changing the amount of interlinkage magnetic flux of the armature winding generated in the permanent magnet by the magnetic flux generated by the d-axis current are selectively executed. You can also

本発明の実施例2の形態の永久磁石式回転電機は、実施例1の形態の永久磁石式回転電機において、複数種類の永久磁石の中で保磁力と磁化方向厚みの積が大きな永久磁石4aは、Dy元素をほとんど含まないNdFeB系の永久磁石である。したがって、その他の構成は実施例1と同様である。   The permanent magnet type rotating electrical machine according to the second embodiment of the present invention is the same as the permanent magnet type rotating electrical machine according to the first embodiment. The permanent magnet 4a has a large product of coercive force and magnetization direction thickness among a plurality of types of permanent magnets. Is an NdFeB-based permanent magnet containing almost no Dy element. Therefore, other configurations are the same as those in the first embodiment.

Dy元素が少ないと永久磁石の残留磁束密度は高くなり、20℃において1.33T以上の残留磁束密度が得られる。   When the amount of Dy element is small, the residual magnetic flux density of the permanent magnet is increased, and a residual magnetic flux density of 1.33 T or more can be obtained at 20 ° C.

従来の回転電機は高速になると誘導電圧による電圧上昇を抑制するために負のd軸電流による弱め磁束制御を行っている。このとき永久磁石には過大な逆磁界が作用して永久磁石は不可逆減磁して出力が大幅に低下したままになる場合もある。この対策としてNdFeB磁石の中でも保磁力の大きな磁石を適用する。NdFeB磁石の保磁力を大きくする方法としてDy元素を添加するが、これにより永久磁石の残留磁束密度が低下して回転電機の出力も低下する。また、耐減磁を向上させるためにだけNdFeB磁石の磁化方向厚を厚くすることになる。   Conventional rotating electrical machines perform flux-weakening control with a negative d-axis current in order to suppress voltage increase due to induced voltage at high speed. At this time, an excessive reverse magnetic field acts on the permanent magnet, the permanent magnet may be irreversibly demagnetized, and the output may remain significantly reduced. As a countermeasure, a magnet having a large coercive force is applied among NdFeB magnets. As a method for increasing the coercive force of the NdFeB magnet, Dy element is added, but this reduces the residual magnetic flux density of the permanent magnet and also reduces the output of the rotating electrical machine. In addition, the thickness of the magnetization direction of the NdFeB magnet is increased only in order to improve the demagnetization resistance.

本実施の形態の永久磁石式回転電機では永久磁石3のアルニコ磁石を不可逆的に磁化させて電圧となる鎖交磁束量を調整している。したがって、NdFeB磁石の永久磁石4aに過大な逆磁界が作用するような弱め磁束制御は使用しない。微調整のための弱め制御を使用する場合もあるが、僅かな電流なので逆磁界も極めて小さくできる。これより、本実施の形態の永久磁石式回転電機は、従来の回転電機には減磁のため使用できなかった低保磁力で高残留磁束密度のNdFeB磁石を適用することができるようになり、NdFeB磁石によるエアギャップ磁束密度は高くなり、高出力が得られる。   In the permanent magnet type rotating electrical machine of the present embodiment, the Alnico magnet of the permanent magnet 3 is irreversibly magnetized to adjust the amount of interlinkage magnetic flux that becomes a voltage. Therefore, the flux weakening control in which an excessive reverse magnetic field acts on the permanent magnet 4a of the NdFeB magnet is not used. In some cases, weakening control for fine adjustment is used. However, since the current is small, the reverse magnetic field can be extremely small. From this, the permanent magnet type rotating electrical machine of the present embodiment can be applied to a NdFeB magnet having a low coercive force and a high residual magnetic flux density that could not be used for conventional rotating electrical machines due to demagnetization. The air gap magnetic flux density by the NdFeB magnet is increased, and a high output can be obtained.

例えば、従来の回転電機に適用するNdFe磁石の特性は保磁力Hcj=2228kA/m、残留磁束密度Br=1.23Tであり、本実施の形態に適用するNdFeB磁石の特性はHcj=875kA/m、残留磁束密度Br=1.45Tである。このように保磁力は小さいが磁束密度は1.17倍の磁石の適用が可能となり、約1.17倍に高出力が期待できる。   For example, the characteristics of a NdFe magnet applied to a conventional rotating electrical machine are coercive force Hcj = 2228 kA / m and residual magnetic flux density Br = 1.23 T, and the characteristics of the NdFeB magnet applied to this embodiment are Hcj = 875 kA / m. The residual magnetic flux density Br = 1.45T. As described above, a magnet having a small coercive force but a magnetic flux density of 1.17 times can be applied, and a high output can be expected about 1.17 times.

また、従来の回転電機では出力に貢献せずに耐減磁のために磁石の厚みを増加していたが、本実施の形態の永久磁石式回転電機は減磁界が小さいのでNdFeB磁石の使用量を低減できる。また、埋蔵量の少ないDy元素をほとんど添加しないNdFeB磁石を適用できようになるので、将来的にも安定して製造できる。   Further, in the conventional rotating electric machine, the thickness of the magnet is increased for demagnetization resistance without contributing to the output. However, since the permanent magnet type rotating electric machine of the present embodiment has a small demagnetizing field, the amount of NdFeB magnet used is increased. Can be reduced. In addition, since it becomes possible to apply an NdFeB magnet with little Dy element added, it can be manufactured stably in the future.

図9は、本発明の実施例3の永久磁石式回転電機の回転子1bのブロック20(あるいは23)における径方向断面図である。本実施の形態の永久磁石式回転電機は、図9に示す回転子1bとそれを収容する固定子とで構成される。回転子1bは、積層して構成された複数の回転子鉄心2bの各々に周方向に沿って複数の永久磁石4bを設けている。また、本実施例の回転子1bは、実施例1,2と同様に軸方向に複数のブロックに分割されているものとし、所定のブロック毎に、形状と磁気特性との少なくとも1つが異なる複数種類の永久磁石の中から選択された1種類の複数の永久磁石が配置されて磁極を形成する。永久磁石4bは、複数種類の永久磁石のうち磁化による磁束の変化が小さく極性が反転することのない磁石であり、回転子1bの内径側に凸の形状に設置されて磁極を形成する。なお、図示していないが、回転子1bは、アルニコ磁石のように磁束の変化あるいは極性の反転を示す永久磁石が設けられたブロックも有する。当該ブロックにおいてアルニコ磁石は、回転子鉄心2b内のq軸上に回転子1bの径方向に沿う姿勢に配置されている。   FIG. 9 is a radial cross-sectional view of the block 20 (or 23) of the rotor 1b of the permanent magnet type rotating electric machine according to the third embodiment of the present invention. The permanent magnet type rotating electrical machine according to the present embodiment includes a rotor 1b shown in FIG. 9 and a stator that accommodates the rotor 1b. In the rotor 1b, a plurality of permanent magnets 4b are provided along the circumferential direction in each of a plurality of rotor cores 2b formed by stacking. Further, the rotor 1b of the present embodiment is divided into a plurality of blocks in the axial direction as in the first and second embodiments, and a plurality of different at least one of shape and magnetic characteristics for each predetermined block. A plurality of permanent magnets of one type selected from the types of permanent magnets are arranged to form a magnetic pole. The permanent magnet 4b is a magnet in which the change in magnetic flux due to magnetization is small and the polarity does not reverse among a plurality of types of permanent magnets, and is installed in a convex shape on the inner diameter side of the rotor 1b to form a magnetic pole. Although not shown, the rotor 1b also has a block provided with a permanent magnet that shows a change in magnetic flux or a reversal of polarity like an alnico magnet. In the block, the alnico magnet is arranged on the q axis in the rotor core 2b in a posture along the radial direction of the rotor 1b.

図9に示すように、本実施の形態における複数の永久磁石4bは、1以上のブロックにおいて磁極毎にハの字型又はV字型に設置されている。永久磁石4bをハの字型又はV字型にすることにより、永久磁石4bの磁極の面積を広くすることができる。さらに、永久磁石4bをハの字型又はV字型にすることにより、q軸磁束の磁路を妨げて、q軸インダクタンスを低減でき、これより回転電機の力率を向上できる。磁極鉄心9の中央部の磁束密度が最大でも1.9T程度にすれば、エアギャップの磁束分布が歪まず、永久磁石の磁束を有効に利用できる。   As shown in FIG. 9, the plurality of permanent magnets 4b in the present embodiment are installed in a C-shape or V-shape for each magnetic pole in one or more blocks. By making the permanent magnet 4b into a C shape or a V shape, the area of the magnetic pole of the permanent magnet 4b can be increased. Furthermore, by making the permanent magnet 4b into a square shape or a V shape, the magnetic path of the q-axis magnetic flux can be obstructed to reduce the q-axis inductance, thereby improving the power factor of the rotating electrical machine. If the magnetic flux density at the center of the magnetic core 9 is at most about 1.9 T, the magnetic flux distribution in the air gap is not distorted and the magnetic flux of the permanent magnet can be used effectively.

なお、本実施の形態にあっても、実施例2のように、保磁力と磁化方向厚みの積が大となる永久磁石4bとして、Dy元素が少ないNdFeB磁石を採用することができ、それによっていっそう高出力で、軽量の回転電機が実現できる。   Even in the present embodiment, an NdFeB magnet with a small amount of Dy element can be adopted as the permanent magnet 4b in which the product of the coercive force and the magnetization direction thickness is large, as in Example 2. A lighter rotating electrical machine with higher output can be realized.

また、上述した実施例には、下記に示す変形例が考えられる。   Further, in the above-described embodiments, the following modifications can be considered.

(変形例1)上記実施例1乃至3の形態それぞれにおいて、回転子1a,1bは、固定子に挿入して組み立てる製造時に、保磁力と磁化方向厚みの積が小さな永久磁石3による磁束と、保磁力と磁化方向厚みの積が大きな永久磁石4a,4bによる磁束とが、磁極又はエアギャップ面で互いに逆方向となるように永久磁石3を磁化させた状態にすることができる。   (Modification 1) In each of the embodiments 1 to 3, the rotors 1a and 1b are manufactured by inserting and assembling them into the stator, and the magnetic flux generated by the permanent magnet 3 having a small product of the coercive force and the magnetization direction thickness. The permanent magnet 3 can be magnetized so that the magnetic fluxes of the permanent magnets 4a and 4b having a large product of the coercive force and the magnetization direction thickness are opposite to each other on the magnetic pole or air gap surface.

製造工程で、着磁した回転子1a,1bを固定子に挿入して組立を行うには、永久磁石の磁気吸引力に対策が必要である。そこで、本例のように、永久磁石3の磁束と永久磁石4a(4b)の磁束とが互いに逆方向になるように磁化することで、回転子1a(1b)から発生する永久磁石の磁束量は少なくできる。この結果、回転子1a(1b)と固定子との間で生じる磁気吸引力は小さくなり、組立作業性が向上する。さらに、永久磁石3と永久磁石4a(4b)とにより発生する磁束量を0にすると、磁気吸引力はなくなり、回転子1a(1b)を固定子に組み込む作業は極めて容易にできる。   In order to perform assembly by inserting the magnetized rotors 1a and 1b into the stator in the manufacturing process, it is necessary to take measures against the magnetic attractive force of the permanent magnet. Therefore, as in this example, the amount of magnetic flux of the permanent magnet generated from the rotor 1a (1b) is obtained by magnetizing the magnetic flux of the permanent magnet 3 and the magnetic flux of the permanent magnet 4a (4b) in opposite directions. Can be less. As a result, the magnetic attractive force generated between the rotor 1a (1b) and the stator is reduced, and the assembly workability is improved. Further, when the amount of magnetic flux generated by the permanent magnet 3 and the permanent magnet 4a (4b) is set to 0, the magnetic attractive force is lost, and the work of incorporating the rotor 1a (1b) into the stator can be very easily performed.

また、回転子1aは、回転子鉄心溝加工を施した際の表裏がブロック毎に交互に構成されている。これにより、回転子鉄心2aの積みのばらつきの分散を小さくでき、設計寸法の誤差を小さくすることができる。   In addition, the rotor 1a is configured such that the front and back surfaces of the rotor core groove are alternately formed for each block. Thereby, dispersion | distribution of the dispersion | variation in the stack of the rotor cores 2a can be made small, and the error of a design dimension can be made small.

(変形例2)上記の各実施の形態において、複数種類の永久磁石の中で保磁力と磁化方向厚みの積が大きな永久磁石4aは、回転子1aの最高回転速度において自己の永久磁石4aによる逆起電圧が当該永久磁石式回転電機の電源であるインバータ電子部品の耐電圧以下となるものとする。   (Modification 2) In each of the embodiments described above, the permanent magnet 4a having a large product of the coercive force and the magnetization direction thickness among the plurality of types of permanent magnets is formed by the permanent magnet 4a at the maximum rotational speed of the rotor 1a. It is assumed that the counter electromotive voltage is equal to or lower than the withstand voltage of the inverter electronic component that is the power source of the permanent magnet type rotating electrical machine.

永久磁石による逆起電圧は回転速度に比例して高くなる。この逆起電圧がインバータの電子部品に印加し、電子部品の耐電圧以上になると電子部品が絶縁破壊する。そのため、従来の永久磁石式回転電機では、設計時に耐電圧により永久磁石の逆起電圧が制限され、永久磁石の磁束量が削減され、モータの低速域での出力及び効率が低下する問題点があった。   The back electromotive force generated by the permanent magnet increases in proportion to the rotation speed. When this counter electromotive voltage is applied to the electronic component of the inverter and exceeds the withstand voltage of the electronic component, the electronic component breaks down. Therefore, in the conventional permanent magnet type rotating electrical machine, there is a problem that the back electromotive force of the permanent magnet is limited by the withstand voltage at the time of design, the amount of magnetic flux of the permanent magnet is reduced, and the output and efficiency in the low speed range of the motor are reduced. there were.

そこで、高速回転時になると負のd軸電流により減磁方向の磁界で永久磁石を不可逆的に磁化させて永久磁石3の磁束を0近傍まで小さくする。永久磁石3による逆起電圧はほぼ0にできるので、磁束量を調整できない永久磁石4aによる逆起電圧を最高回転速度で耐電圧以下にすればよい。すなわち、NdFeB磁石の永久磁石4aのみの磁束量を耐電圧以下までになるまで小さくすることになる。一方、低速回転時では、最大の磁束量となるように磁化された永久磁石3と永久磁石4aとによる鎖交磁束量は増加できる。   Therefore, at the time of high speed rotation, the permanent magnet is irreversibly magnetized by the magnetic field in the demagnetizing direction by the negative d-axis current, and the magnetic flux of the permanent magnet 3 is reduced to near zero. Since the counter electromotive voltage generated by the permanent magnet 3 can be reduced to almost zero, the counter electromotive voltage generated by the permanent magnet 4a, which cannot adjust the amount of magnetic flux, may be set to the maximum withstand voltage or less. That is, the amount of magnetic flux of only the permanent magnet 4a of the NdFeB magnet is reduced until it reaches the withstand voltage or less. On the other hand, at the time of low speed rotation, the amount of flux linkage between the permanent magnet 3 and the permanent magnet 4a magnetized so as to have the maximum amount of magnetic flux can be increased.

さらには、実用上では、最高速域ではアルニコ磁石の永久磁石3は低速時とは逆方向に磁化されることになるので、総鎖交磁束量は永久磁石4aのみの鎖交磁束よりも小さくなる。すなわち、本例の永久磁石式回転電機では、高速時の逆起電圧は永久磁石4aのみによる逆起電圧よりも小さくなり、実質的には耐電圧と許容最高回転数は十分な余裕ができる。これにより、本例2の永久磁石式回転電機の構成にすれば、低速回転時での高出力と高効率を維持しながら、高速回転時の逆起電圧を抑制でき、インバータを含めたシステムの信頼性を高めることができる。   Furthermore, practically, the permanent magnet 3 of the alnico magnet is magnetized in the direction opposite to that at the low speed at the highest speed range, so the total amount of interlinkage magnetic flux is smaller than the interlinkage magnetic flux of only the permanent magnet 4a. Become. That is, in the permanent magnet type rotating electrical machine of this example, the counter electromotive voltage at high speed is smaller than the counter electromotive voltage due to the permanent magnet 4a alone, and the withstand voltage and the allowable maximum rotational speed can be sufficiently afforded. As a result, the configuration of the permanent magnet type rotating electrical machine of Example 2 can suppress the back electromotive voltage during high-speed rotation while maintaining high output and high efficiency during low-speed rotation. Reliability can be increased.

(変形例3)上記各実施の形態では、8極の永久磁石式回転電機について例示して説明したが、8極以外の極数の回転電機も本発明を適用できるのは当然である。極数に応じて永久磁石の配置位置、形状が幾分変るが、作用と効果は同様に得られる。   (Modification 3) In each of the above-described embodiments, the description has been given by taking an example of an 8-pole permanent magnet type rotating electrical machine. However, it is natural that the present invention can be applied to a rotating electrical machine having a number other than 8 poles. Depending on the number of poles, the position and shape of the permanent magnets change somewhat, but the action and effect are obtained in the same way.

また、磁極を形成する永久磁石において、保磁力と磁化方向の厚みの積をもって永久磁石を区別する定義をしている。したがって、磁極には同じ種類の永久磁石で形成し、磁化方向厚みを異なるように形成しても同様な作用と効果が得られる。   Moreover, in the permanent magnet which forms a magnetic pole, the definition which distinguishes a permanent magnet with the product of a coercive force and the thickness of a magnetization direction is made. Therefore, even if the magnetic poles are formed of the same type of permanent magnet and are formed so as to have different magnetization direction thicknesses, the same operation and effect can be obtained.

本発明に係る永久磁石式回転電機及び永久磁石式電動機ドライブシステムは、回転電機を動力源として搭載する車両等に利用可能である。   The permanent magnet type rotating electric machine and the permanent magnet type electric motor drive system according to the present invention can be used for a vehicle or the like equipped with the rotating electric machine as a power source.

本発明の実施例1の形態の永久磁石式回転電機の回転子の外観を示す図である。It is a figure which shows the external appearance of the rotor of the permanent magnet type rotary electric machine of the form of Example 1 of this invention. 本発明の実施例1の形態の永久磁石式回転電機の回転子の径方向断面図である。It is radial direction sectional drawing of the rotor of the permanent magnet type rotary electric machine of the form of Example 1 of this invention. 本発明の実施例1の形態の永久磁石式回転電機の回転子の径方向断面図である。It is radial direction sectional drawing of the rotor of the permanent magnet type rotary electric machine of the form of Example 1 of this invention. 種々の材料の永久磁石の磁気特性を示すBH特性図である。It is a BH characteristic figure which shows the magnetic characteristic of the permanent magnet of various materials. 本発明の実施例1の形態の永久磁石式回転電機において固定子との鎖交磁束が最大となるように永久磁石を不可逆的に磁化した場合における永久磁石の磁束の向きを示す図である。It is a figure which shows the direction of the magnetic flux of a permanent magnet when a permanent magnet is irreversibly magnetized so that the linkage magnetic flux with a stator may become the maximum in the permanent magnet type rotary electric machine of the form of Example 1 of this invention. 本発明の実施例1の形態の永久磁石式回転電機において固定子との鎖交磁束が最大となる場合における永久磁石の磁束の向きとともに示す回転子の斜視図である。It is a perspective view of the rotor shown with the direction of the magnetic flux of a permanent magnet in case the interlinkage magnetic flux with a stator becomes the maximum in the permanent magnet type rotary electric machine of the form of Example 1 of this invention. 本発明の実施例1の形態の永久磁石式回転電機において固定子との鎖交磁束が最小となるように負のd軸電流による減磁磁界が作用した後の永久磁石の磁束の向きを示す図である。The direction of the magnetic flux of the permanent magnet after the demagnetizing magnetic field due to the negative d-axis current is applied so that the flux linkage with the stator is minimized in the permanent magnet type rotating electrical machine according to the first embodiment of the present invention. FIG. 本発明の実施例1の形態の永久磁石式回転電機において固定子との鎖交磁束が最小となる場合における永久磁石の磁束の向きとともに示す回転子の斜視図である。It is a perspective view of the rotor shown with the direction of the magnetic flux of a permanent magnet in case the interlinkage magnetic flux with a stator becomes the minimum in the permanent magnet type rotary electric machine of the form of Example 1 of this invention. 本発明の実施例3の形態の永久磁石式回転電機の回転子の径方向断面図である。It is radial direction sectional drawing of the rotor of the permanent magnet type rotary electric machine of the form of Example 3 of this invention. 従来の永久磁石式回転電機の回転子の構成を示す径方向断面図である。It is radial direction sectional drawing which shows the structure of the rotor of the conventional permanent magnet type rotary electric machine.

符号の説明Explanation of symbols

1,1a,1b 回転子
2,2a,2b 回転子鉄心
3,4,4a,4b 永久磁石
5,6 空洞
7,8 磁気障壁
9 磁極鉄心
10,11,12,13,14,15 磁束の流れ
16 空洞
20,21,22,23 ブロック
1, 1a, 1b Rotor 2, 2a, 2b Rotor core 3, 4, 4a, 4b Permanent magnet 5, 6 Cavity 7, 8 Magnetic barrier 9 Magnetic pole core 10, 11, 12, 13, 14, 15 Flow of magnetic flux 16 cavities 20, 21, 22, 23 blocks

Claims (23)

電機子巻線を持つ固定子と、前記固定子の内周側にエアギャップを介して対向配置され、積層して構成された複数の回転子鉄心の各々に周方向に沿って複数の永久磁石を設け、軸方向に所定のブロック毎に分割されて構成される回転子とを備えた永久磁石式回転電機において、
前記回転子は、前記所定のブロック毎に、形状と磁気特性との少なくとも1つが異なる複数種類の永久磁石の中から選択された1種類の前記複数の永久磁石が配置されて磁極を形成することを特徴とする永久磁石式回転電機。
A stator having an armature winding, and a plurality of permanent magnets along the circumferential direction on each of a plurality of rotor cores arranged to be opposed to each other via an air gap on the inner peripheral side of the stator In a permanent magnet type rotating electrical machine provided with a rotor configured to be divided for each predetermined block in the axial direction,
In the rotor, one type of the plurality of permanent magnets selected from a plurality of types of permanent magnets having at least one of different shapes and magnetic properties is arranged for each predetermined block to form a magnetic pole. Permanent magnet type rotating electrical machine characterized by
前記複数種類の永久磁石の各々は、磁化方向が互いに他の種類の永久磁石と異なることを特徴とする請求項1記載の永久磁石式回転電機。   The permanent magnet type rotating electric machine according to claim 1, wherein each of the plurality of types of permanent magnets has a magnetization direction different from that of other types of permanent magnets. 前記複数種類の永久磁石のうち磁化による磁束の変化が小さい永久磁石は、前記回転子の内径側に凸の形状に設置されて磁極を形成することを特徴とする請求項1又は請求項2記載の永久磁石式回転電機。   The permanent magnet having a small change in magnetic flux due to magnetization among the plurality of types of permanent magnets is installed in a convex shape on the inner diameter side of the rotor to form a magnetic pole. Permanent magnet type rotating electric machine. 前記複数の永久磁石は、1以上の前記ブロックにおいて磁極毎にハの字型又はV字型に設置されたことを特徴とする請求項1乃至請求項3のいずれか1項記載の永久磁石式回転電機。   The permanent magnet type according to any one of claims 1 to 3, wherein the plurality of permanent magnets are arranged in a C shape or a V shape for each magnetic pole in the one or more blocks. Rotating electric machine. 前記複数の回転子鉄心の中で磁化により磁束の変化あるいは極性の反転を示す永久磁石を有する回転子鉄心は、前記永久磁石の容易磁化方向が自己の回転子鉄心の半径方向と直角に交わるように前記永久磁石を配置して磁極を形成することを特徴とする請求項1乃至請求項4のいずれか1項記載の永久磁石式回転電機。   Among the plurality of rotor cores, a rotor core having a permanent magnet that exhibits a change in magnetic flux or a reversal of polarity due to magnetization is such that the easy magnetization direction of the permanent magnet intersects the radial direction of its own rotor core at right angles. The permanent magnet type rotating electric machine according to any one of claims 1 to 4, wherein the permanent magnet is arranged to form a magnetic pole. 前記回転子は、分割されたブロックのうち軸方向両端部に位置するブロックにおいて、磁化による磁束の変化が小さい永久磁石を配置したことを特徴とする請求項1乃至請求項5のいずれか1項記載の永久磁石式回転電機。   6. The rotor according to claim 1, wherein permanent magnets having a small change in magnetic flux due to magnetization are arranged in blocks located at both axial ends of the divided blocks. The permanent magnet type rotating electric machine described. 前記回転子は、回転子鉄心溝加工を施した際の表裏がブロック毎に交互に構成されたことを特徴とする請求項1乃至請求項6のいずれか1項記載の永久磁石式回転電機。 The permanent magnet type rotating electrical machine according to any one of claims 1 to 6, wherein the rotor is configured such that front and back surfaces of the rotor when the rotor core groove is processed are alternately arranged for each block. 前記複数種類の永久磁石の各々は、保磁力と磁化方向厚みの積が互いに他の種類の永久磁石と異なることを特徴とする請求項1乃至請求項7のいずれか1項記載の永久磁石式回転電機。   The permanent magnet type according to any one of claims 1 to 7, wherein each of the plurality of types of permanent magnets has a product of a coercive force and a magnetization direction thickness that is different from that of other types of permanent magnets. Rotating electric machine. 前記複数種類の永久磁石の中で保磁力と磁化方向厚みの積が大きな永久磁石は、Dy元素をほとんど含まないNdFeB系の永久磁石であることを特徴とする請求項8記載の永久磁石式回転電機。   9. The permanent magnet rotation according to claim 8, wherein a permanent magnet having a large product of coercive force and magnetization direction thickness among the plurality of types of permanent magnets is an NdFeB-based permanent magnet containing almost no Dy element. Electric. 前記複数種類の永久磁石の中で保磁力と磁化方向厚みの積が大きな永久磁石は、前記回転子の最高回転速度において自己の永久磁石による逆起電圧が当該永久磁石式回転電機の電源であるインバータ電子部品の耐電圧以下となるものであることを特徴とする請求項8又は請求項9記載の永久磁石式回転電機。   Among the plurality of types of permanent magnets, the permanent magnet having a large product of coercive force and magnetization direction thickness is the power source of the permanent magnet type rotating electrical machine due to the back electromotive force generated by its own permanent magnet at the maximum rotational speed of the rotor. 10. The permanent magnet type rotating electrical machine according to claim 8, wherein the permanent magnet type rotating electrical machine has a withstand voltage lower than that of the inverter electronic component. 前記回転子は、固定子に挿入して組み立てる際に、保磁力と磁化方向厚みの積が小さな永久磁石による磁束と、保磁力と磁化方向厚みの積が大きな永久磁石による磁束とが磁極又は前記エアギャップ面で互いに逆方向となることを特徴とする請求項8乃至請求項10のいずれか1項記載の永久磁石式回転電機。   When the rotor is inserted into the stator and assembled, the magnetic flux generated by a permanent magnet having a small product of coercive force and magnetization direction thickness and the magnetic flux generated by a permanent magnet having a large product of coercive force and magnetization direction thickness are magnetic poles or The permanent magnet type rotating electrical machine according to any one of claims 8 to 10, wherein the air gap surfaces are opposite to each other. 請求項1乃至請求項11のいずれか1項記載の永久磁石式回転電機と、
前記永久磁石式回転電機を駆動するインバータと、
前記永久磁石の磁束を制御するための磁化電流を流す磁化部と、
を備えることを特徴とする永久磁石電動機ドライブシステム。
A permanent magnet type rotating electrical machine according to any one of claims 1 to 11,
An inverter for driving the permanent magnet type rotating electrical machine;
A magnetizing section for passing a magnetizing current for controlling the magnetic flux of the permanent magnet;
A permanent magnet motor drive system comprising:
前記磁化部は、前記電機子巻線に電流を流して作る磁界により、各磁極において前記回転子が有する永久磁石のうち少なくとも1個の永久磁石を磁化させて永久磁石の磁束量を不可逆的に変化させることを特徴とする請求項12記載の永久磁石電動機ドライブシステム。   The magnetizing portion irreversibly changes the amount of magnetic flux of the permanent magnet by magnetizing at least one permanent magnet among the permanent magnets of the rotor in each magnetic pole by a magnetic field generated by passing a current through the armature winding. The permanent magnet motor drive system according to claim 12, wherein the permanent magnet motor drive system is changed. 前記磁化部は、前記電機子巻線に電流を流して作る磁界により、各磁極において前記回転子が有する永久磁石のうち少なくとも1個の永久磁石を磁化させて、前記回転子が有する全ての永久磁石による電機子巻線の鎖交磁束量をほぼ0にすることを特徴とする請求項13記載の永久磁石電動機ドライブシステム。   The magnetizing unit magnetizes at least one permanent magnet among the permanent magnets of the rotor at each magnetic pole by a magnetic field generated by passing an electric current through the armature winding, so that all permanents of the rotor have The permanent magnet motor drive system according to claim 13, wherein the amount of interlinkage magnetic flux of the armature winding by the magnet is set to approximately zero. 前記回転子は、磁極を形成する永久磁石の磁束が加え合わせになるように前記複数種類の永久磁石を配置し、
前記磁化部は、前記電機子巻線に電流を流して作る磁界により、前記永久磁石の一部を磁化させて永久磁石による鎖交磁束を不可逆的に減少させ、減少後に電流による磁界を前記磁界とは逆方向に発生させて前記永久磁石の一部を磁化させて鎖交磁束量を不可逆的に増加させることを特徴とする請求項12乃至請求項14のいずれか1項記載の永久磁石電動機ドライブシステム。
The rotor is arranged with the plurality of types of permanent magnets so that the magnetic fluxes of the permanent magnets forming the magnetic poles are added together,
The magnetizing unit magnetizes a part of the permanent magnet by a magnetic field generated by passing a current through the armature winding to irreversibly decrease the flux linkage by the permanent magnet, and after the reduction, the magnetic field due to the current is changed to the magnetic field. 15. The permanent magnet motor according to claim 12, wherein the permanent magnet motor is generated in the opposite direction to magnetize a part of the permanent magnet to irreversibly increase the amount of flux linkage. Drive system.
前記磁化部は、前記電機子巻線に電流を流して作る磁界により、各磁極において前記回転子が有する永久磁石のうち少なくとも1個の永久磁石を磁化させて永久磁石の極性を反転させることを特徴とする請求項12記載の永久磁石電動機ドライブシステム。   The magnetizing section magnetizes at least one permanent magnet among the permanent magnets of the rotor at each magnetic pole by a magnetic field generated by passing a current through the armature winding, thereby reversing the polarity of the permanent magnet. The permanent magnet motor drive system according to claim 12, 前記回転子は、磁極を形成する永久磁石の磁束が加え合わせになるように前記複数種類の永久磁石を配置し、
前記磁化部は、前記電機子巻線に電流を流して作る磁界により、前記永久磁石の一部を磁化させて永久磁石の極性を反転させ、反転後に電流による磁界を前記磁界とは逆方向に発生させてさらに前記永久磁石の極性を反転させて元の極性にすることを特徴とする請求項16記載の永久磁石電動機ドライブシステム。
The rotor is arranged with the plurality of types of permanent magnets so that the magnetic fluxes of the permanent magnets forming the magnetic poles are added together,
The magnetizing unit magnetizes a part of the permanent magnet by a magnetic field generated by passing a current through the armature winding to reverse the polarity of the permanent magnet, and after the reversal, the magnetic field due to the current is in a direction opposite to the magnetic field. 17. The permanent magnet motor drive system according to claim 16, wherein the permanent magnet motor drive system further generates the original polarity by reversing the polarity of the permanent magnet.
請求項8乃至請求項11のいずれか1項記載の永久磁石式回転電機と、
前記永久磁石式回転電機を駆動するインバータと、
前記永久磁石の磁束を制御するための磁化電流を流す磁化部とを備え、
前記磁化部は、前記複数種類の永久磁石のうち保磁力と磁化方向厚みの積が他の種類の永久磁石のものと比較して小さい永久磁石に対して、前記電機子巻線に電流を流して作る磁界により永久磁石の磁束量を不可逆的に変化させるか、又は前記永久磁石の極性を反転させることを特徴とする永久磁石電動機ドライブシステム。
A permanent magnet type rotating electrical machine according to any one of claims 8 to 11,
An inverter for driving the permanent magnet type rotating electrical machine;
A magnetizing section for passing a magnetizing current for controlling the magnetic flux of the permanent magnet,
The magnetizing portion causes a current to flow through the armature winding with respect to a permanent magnet having a product of coercive force and magnetization direction thickness smaller than that of other types of permanent magnets among the plurality of types of permanent magnets. A permanent magnet motor drive system characterized by irreversibly changing the amount of magnetic flux of a permanent magnet or reversing the polarity of the permanent magnet.
前記磁化部は、前記永久磁石式回転電機の最大トルク時には磁極の永久磁石の磁束が加え合わせになるように保磁力と磁化方向厚みの積が他よりも小さな永久磁石を磁化させ、トルクの小さな軽負荷時や中速回転域と高速回転域では、前記保磁力と磁化方向厚みの積が他よりも小さな永久磁石は、電流による磁界で磁化させて磁束を減少させるか、又は前記磁界で前記永久磁石の極性を反転させることを特徴とする請求項18記載の永久磁石電動機ドライブシステム。   The magnetizing portion magnetizes a permanent magnet whose product of coercive force and magnetization direction thickness is smaller than the others so that the magnetic flux of the permanent magnet of the magnetic pole is added at the maximum torque of the permanent magnet type rotating electrical machine, and the torque is small In a light load or in a medium-speed rotation region and a high-speed rotation region, the permanent magnet whose product of the coercive force and the magnetization direction thickness is smaller than the other is magnetized by a magnetic field due to current to reduce the magnetic flux, or the magnetic field 19. The permanent magnet motor drive system according to claim 18, wherein the polarity of the permanent magnet is reversed. 前記永久磁石式回転電機は、各磁極の中で保磁力と磁化方向厚みの積が小さな永久磁石の保磁力と磁化方向厚みの積が、保磁力と磁化方向厚みの積が大きな永久磁石の無負荷時の動作点における磁界の強さと磁化方向厚みの積にほぼ等しいか又はそれ以上としたことを特徴とする請求項18又は請求項19記載の永久磁石電動機ドライブシステム。   The permanent magnet type rotating electrical machine has a permanent magnet with a small product of coercive force and magnetization direction thickness among the magnetic poles, and a permanent magnet with a large product of coercive force and magnetization direction thickness. 20. The permanent magnet electric motor drive system according to claim 18, wherein the permanent magnet motor drive system is substantially equal to or greater than a product of a magnetic field strength and a magnetization direction thickness at an operating point under load. 前記磁化部は、d軸電流による磁界で永久磁石を磁化させて永久磁石の磁束量を不可逆的に変化させるか、前記磁界で永久磁石の極性を反転させ、さらにq軸電流によりトルクを制御することを特徴とする請求項12乃至請求項20のいずれか1項記載の永久磁石電動機ドライブシステム。   The magnetizing unit magnetizes the permanent magnet with a magnetic field generated by a d-axis current and irreversibly changes the amount of magnetic flux of the permanent magnet, or reverses the polarity of the permanent magnet with the magnetic field, and further controls the torque by the q-axis current. The permanent magnet motor drive system according to any one of claims 12 to 20, wherein the permanent magnet motor drive system is provided. 前記磁化部は、前記永久磁石式回転電機の運転時において、d軸電流による磁界で永久磁石を磁化させて永久磁石の磁束量を不可逆的に変化させるか、前記磁界で永久磁石の極性を反転させる動作と、d軸電流で生じる磁束により電流と永久磁石で生じる電機子巻線の鎖交磁束量をほぼ可逆的に変化させる動作とを選択的に実行することを特徴とする請求項12乃至請求項21のいずれか1項記載の永久磁石電動機ドライブシステム。   The magnetizing unit magnetizes the permanent magnet with a magnetic field generated by a d-axis current and irreversibly changes the amount of magnetic flux of the permanent magnet during the operation of the permanent magnet type rotating electrical machine, or reverses the polarity of the permanent magnet with the magnetic field. 13. The method of selectively performing the operation of causing the magnetic flux generated by the d-axis current and the operation of changing the interlinkage magnetic flux of the armature winding generated by the permanent magnet substantially reversibly by the magnetic flux generated by the d-axis current. The permanent magnet motor drive system according to claim 21. 前記回転子は、各磁極において磁束の変化あるいは極性の反転を示す前記永久磁石に対し、他の永久磁石からバイアス的な磁界が作用するように各永久磁石を配置してなることを特徴とする請求項12乃至請求項22のいずれか1項記載の永久磁石電動機ドライブシステム。   The rotor is characterized in that each permanent magnet is arranged so that a bias magnetic field acts on the permanent magnet exhibiting a change in magnetic flux or a reversal of polarity in each magnetic pole. The permanent magnet motor drive system according to any one of claims 12 to 22.
JP2008202703A 2008-08-06 2008-08-06 Permanent magnet type rotating electric machine and permanent magnet motor drive system Active JP5198178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008202703A JP5198178B2 (en) 2008-08-06 2008-08-06 Permanent magnet type rotating electric machine and permanent magnet motor drive system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008202703A JP5198178B2 (en) 2008-08-06 2008-08-06 Permanent magnet type rotating electric machine and permanent magnet motor drive system

Publications (2)

Publication Number Publication Date
JP2010041842A true JP2010041842A (en) 2010-02-18
JP5198178B2 JP5198178B2 (en) 2013-05-15

Family

ID=42013801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008202703A Active JP5198178B2 (en) 2008-08-06 2008-08-06 Permanent magnet type rotating electric machine and permanent magnet motor drive system

Country Status (1)

Country Link
JP (1) JP5198178B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014121265A (en) * 2012-12-17 2014-06-30 Lg Innotek Co Ltd Motor
CN103956874A (en) * 2014-04-25 2014-07-30 联合汽车电子有限公司 Permanent magnet synchronous motor and rotor thereof
WO2016125567A1 (en) * 2015-02-02 2016-08-11 三菱電機株式会社 Synchronous machine control device and permanent magnet temperature estimation method for synchronous machine
CN107546894A (en) * 2017-10-19 2018-01-05 哈尔滨理工大学 A kind of high speed permanent magnet motor rotor structure
CN110089006A (en) * 2017-01-25 2019-08-02 三菱电机株式会社 Rotor and rotating electric machine
WO2020059513A1 (en) * 2018-09-20 2020-03-26 パナソニックIpマネジメント株式会社 Rotor and electric motor using same
JP2020096405A (en) * 2018-12-10 2020-06-18 株式会社Soken Rotary electric machine, power conversion device and manufacturing method of rotary electric machine
CN113746235A (en) * 2020-05-27 2021-12-03 沃尔沃汽车公司 Permanent magnet motor with magnetic field weakening structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08340651A (en) * 1995-06-12 1996-12-24 Toshiba Corp Permanent magnet, and permanent magnet rotating machine
JPH11206049A (en) * 1997-10-24 1999-07-30 Fujitsu General Ltd Permanent magnet motor
JP2003180043A (en) * 2001-12-07 2003-06-27 Sanyo Electric Co Ltd Stator for motor of compressor, and method of manufacturing the stator
JP2006288183A (en) * 2005-03-09 2006-10-19 Nissan Motor Co Ltd Dynamo-electric motor
JP2008048514A (en) * 2006-08-11 2008-02-28 Toshiba Corp Rotor of permanent magnet type rotating electric machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08340651A (en) * 1995-06-12 1996-12-24 Toshiba Corp Permanent magnet, and permanent magnet rotating machine
JPH11206049A (en) * 1997-10-24 1999-07-30 Fujitsu General Ltd Permanent magnet motor
JP2003180043A (en) * 2001-12-07 2003-06-27 Sanyo Electric Co Ltd Stator for motor of compressor, and method of manufacturing the stator
JP2006288183A (en) * 2005-03-09 2006-10-19 Nissan Motor Co Ltd Dynamo-electric motor
JP2008048514A (en) * 2006-08-11 2008-02-28 Toshiba Corp Rotor of permanent magnet type rotating electric machine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014121265A (en) * 2012-12-17 2014-06-30 Lg Innotek Co Ltd Motor
CN103956874A (en) * 2014-04-25 2014-07-30 联合汽车电子有限公司 Permanent magnet synchronous motor and rotor thereof
US10418929B2 (en) 2015-02-02 2019-09-17 Mitsubishi Electric Corporation Synchronous machine control device and permanent magnet temperature estimation method for synchronous machine
JPWO2016125567A1 (en) * 2015-02-02 2017-04-27 三菱電機株式会社 Synchronous machine control device and permanent magnet temperature estimation method for synchronous machine
WO2016125567A1 (en) * 2015-02-02 2016-08-11 三菱電機株式会社 Synchronous machine control device and permanent magnet temperature estimation method for synchronous machine
CN110089006A (en) * 2017-01-25 2019-08-02 三菱电机株式会社 Rotor and rotating electric machine
CN110089006B (en) * 2017-01-25 2020-07-14 三菱电机株式会社 Rotor and rotating electrical machine
CN107546894A (en) * 2017-10-19 2018-01-05 哈尔滨理工大学 A kind of high speed permanent magnet motor rotor structure
WO2020059513A1 (en) * 2018-09-20 2020-03-26 パナソニックIpマネジメント株式会社 Rotor and electric motor using same
JP2020096405A (en) * 2018-12-10 2020-06-18 株式会社Soken Rotary electric machine, power conversion device and manufacturing method of rotary electric machine
US11496017B2 (en) 2018-12-10 2022-11-08 Denso Corporation Rotating electric machine, electric power conversion device and method of manufacturing rotating electric machine
JP7181781B2 (en) 2018-12-10 2022-12-01 株式会社Soken Rotating electric machine, power converter, and manufacturing method of rotating electric machine
CN113746235A (en) * 2020-05-27 2021-12-03 沃尔沃汽车公司 Permanent magnet motor with magnetic field weakening structure
CN113746235B (en) * 2020-05-27 2023-12-19 沃尔沃汽车公司 Permanent magnet motor with magnetic field weakening structure

Also Published As

Publication number Publication date
JP5198178B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5085071B2 (en) Permanent magnet type rotating electrical machine rotor
JP5159577B2 (en) Permanent magnet rotating electric machine
JP5398103B2 (en) Permanent magnet rotating electric machine
JP5305753B2 (en) Permanent magnet rotating electric machine
JP5198178B2 (en) Permanent magnet type rotating electric machine and permanent magnet motor drive system
EP2061132B1 (en) Permanent magnetic type electric motor
JP5159171B2 (en) Permanent magnet rotating electric machine
US8653710B2 (en) Permanent magnet electric motor
JP5502571B2 (en) Permanent magnet rotating electric machine
JP5361261B2 (en) Permanent magnet rotating electric machine
JP5361260B2 (en) Permanent magnet rotary electric machine
EP1643618B1 (en) Rotor for rotary electric machine
JP7076188B2 (en) Variable magnetic force motor
JP5355055B2 (en) Permanent magnet rotating electric machine
JP2012029563A (en) Permanent magnet type rotary electric machine
JP2010279215A (en) Rotor of embedded magnet type synchronous motor
JP2010183778A (en) Electric motor and method of controlling the same
WO2022113181A1 (en) Permanent magnet synchronous motor
JP4569139B2 (en) Rotor for IPM motor, method for manufacturing rotor for IPM motor using the same, and IPM motor therefor.
JP2011172323A (en) Permanent magnet type rotary electric machine
JP5089325B2 (en) Electric motor
JP5390314B2 (en) Permanent magnet rotating electric machine
JP5197551B2 (en) Permanent magnet rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5198178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3