JP2010040406A - Electrode performance evaluation device - Google Patents

Electrode performance evaluation device Download PDF

Info

Publication number
JP2010040406A
JP2010040406A JP2008203862A JP2008203862A JP2010040406A JP 2010040406 A JP2010040406 A JP 2010040406A JP 2008203862 A JP2008203862 A JP 2008203862A JP 2008203862 A JP2008203862 A JP 2008203862A JP 2010040406 A JP2010040406 A JP 2010040406A
Authority
JP
Japan
Prior art keywords
electrode
electrolyte
positive
support
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008203862A
Other languages
Japanese (ja)
Other versions
JP5365089B2 (en
Inventor
Hidetoshi Kusumi
秀年 久須美
Hiromichi Yanagihara
弘道 柳原
Kaiser Hermann
カイザー ヘルマン
Scheiffele Werner
シャイフェレ ヴェルナー
Novak Peter
ノバック ペーター
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008203862A priority Critical patent/JP5365089B2/en
Publication of JP2010040406A publication Critical patent/JP2010040406A/en
Application granted granted Critical
Publication of JP5365089B2 publication Critical patent/JP5365089B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode performance evaluation device in which a non-destructive inspection of a highly precise evaluation on electrode resistance and electrode capacity is possible regarding positive and negative electrode respectively. <P>SOLUTION: The electrode performance evaluation device is constituted of a simulated battery cell body 11, a charge and discharge device, and the electrode performance evaluation device. The simulated battery cell body 11 is constituted of the positive electrodes 15A, 15B, negative electrodes 16A, 16B, and two electrode support bodies 14A, 14B which respectively support the reference electrodes 17A, 17B. Each electrode support body is equipped with through-holes 23A, 23B contacted and opposedly arranged on the circumference with the same distance from the center of the rotation at positions where the distances along the circumference direction become equal, and has an electrode terminal 25 in which each electrode is joined to the electrode installation part in the interior of the through-hole, and inserted into the through-hole so that the electrode, charge and discharge device, and the electrode evaluation device are connected. When the second electrode support body 14B is rotated and the imitation cell arrangement and the electrode evaluation cell arrangement are formed, the through-holes of respective electrode support bodies are connected so as to form an electrolytic solution pool. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電極性能評価装置に係り、特にリチウムイオン2次電池等の正負電池電極それぞれの電極抵抗及び電極容量の評価を実施できる電池電極の性能評価装置に関する。   The present invention relates to an electrode performance evaluation apparatus, and more particularly to a battery electrode performance evaluation apparatus capable of evaluating electrode resistance and electrode capacity of positive and negative battery electrodes such as lithium ion secondary batteries.

携帯電話、ビデオカメラ、ノートパソコン等のポータブル機器やコードレス機器の普及により、これらの機器に電力を供給する電池の高性能化要求が強くなっており、小型且つ軽量で、エネルギ密度が高く、繰り返し充放電が可能な2次電池の需要が特に高まっている。自動車の分野においも、環境問題、資源問題から、2次電池を搭載した電気自動車、ハイブリッド自動車の開発が盛んに行われている。電気自動車等に搭載される高性能2次電池としては、高エネルギ密度で長寿命、且つ安全性にも優れたリチウムイオン電池が挙げられる。   With the widespread use of portable devices and cordless devices such as mobile phones, video cameras, laptop computers, etc., there is a strong demand for higher performance batteries that supply power to these devices. The demand for rechargeable secondary batteries is particularly increasing. Also in the field of automobiles, development of electric vehicles and hybrid vehicles equipped with secondary batteries has been actively conducted due to environmental problems and resource problems. As a high performance secondary battery mounted on an electric vehicle or the like, a lithium ion battery having a high energy density, a long life, and excellent safety can be mentioned.

リチウムイオン電池等の電池は、正負電池電極及び電解液を主要部材として構成され、それぞれの部材の性能が向上することにより電池全体としての性能が大きく向上してきた。一般的に、電池の研究開発は、これら構成部材ごとに材料設計や構造設計が行われ、性能評価も個別に実施される。研究開発における性能評価は、高性能化或いは性能劣化に関与する因子を解析して最適な材料設計や構造設計を行う上で極めて重要であり、精度の高い評価が常に要求される。正負電池電極についても、構成材料や構造は大きく異なるため、電池電極について精度の高い性能評価を行うためには、電極ごとに切り分けた評価を実施する必要がある。   Batteries such as lithium ion batteries are mainly composed of positive and negative battery electrodes and an electrolytic solution, and the performance of each member has been greatly improved by improving the performance of each member. Generally, in battery research and development, material design and structural design are performed for each of these components, and performance evaluation is also performed individually. Performance evaluation in research and development is extremely important in performing optimal material design and structural design by analyzing factors related to high performance or performance degradation, and high-precision evaluation is always required. Since positive and negative battery electrodes also have greatly different constituent materials and structures, it is necessary to carry out evaluation for each electrode in order to perform highly accurate performance evaluation for battery electrodes.

正負電極単位で性能評価を実施する方法としては、大別して、電池セルに測定の基準となる参照電極(必要により補助電極も挿入)を挿入して測定する参照電極法(三電極法)や交流インピーダンス法等の非破壊検査、電池を分解して評価する破壊検査が挙げられる。ここで、リチウムイオン電池等の2次電池電極の性能評価としては、所定の充放電を繰り返した後の劣化レベル(電極抵抗及び電極容量の変化を測定)を評価する耐久性試験がよく行われる。参照電極法は、最も基本的な電気化学測定法であるが、参照電極等を挿入することが困難であり、また、正負電極が存在する電池セルにおいて参照電極を挿入して電極抵抗等を測定しても評価しない他方の電極の影響を完全に排除することはできない。また、交流インピーダンス法は、電池セルに微小な交流信号を印可し、電圧/電流の応答信号から電極の各部位の劣化レベルを推定可能であるが、正負電極のシグナル(抵抗成分)を完全に分離することは困難であり、参照電極法と同様に、他方の電極の影響を完全に排除することはできない。一方、破壊検査で各電極を分解して評価する場合には、他方の電極の影響を排除できるものの、評価に長時間を要し、さらには、以後の耐久性試験を継続できないという課題がある。   The method of evaluating performance in units of positive and negative electrodes can be broadly divided into the reference electrode method (three-electrode method) or alternating current in which measurement is performed by inserting a reference electrode (a supplementary electrode is also inserted if necessary) into the battery cell. Nondestructive inspection such as impedance method, and destructive inspection in which the battery is disassembled and evaluated. Here, as a performance evaluation of a secondary battery electrode such as a lithium ion battery, a durability test for evaluating a deterioration level (measurement of changes in electrode resistance and electrode capacity) after repeated predetermined charging / discharging is often performed. . The reference electrode method is the most basic electrochemical measurement method, but it is difficult to insert a reference electrode or the like, and the electrode resistance is measured by inserting a reference electrode in a battery cell in which positive and negative electrodes exist. However, the influence of the other electrode that is not evaluated cannot be completely eliminated. In addition, the AC impedance method can apply a minute AC signal to the battery cell and estimate the degradation level of each part of the electrode from the voltage / current response signal. However, the signal (resistance component) of the positive and negative electrodes is completely It is difficult to separate, and like the reference electrode method, the influence of the other electrode cannot be completely eliminated. On the other hand, when each electrode is disassembled and evaluated by destructive inspection, although the influence of the other electrode can be eliminated, the evaluation takes a long time, and further, there is a problem that the subsequent durability test cannot be continued. .

非破壊検査であり、且つ電極ごとに他の因子の影響をうけることなく評価できる方法が特許文献1に開示されている。特許文献1には、X線コンピュータトモグラフィ(CT)の撮影原理に基づき、2次電池の電極体の積層断面における正極合材層および負極合材層の少なくとも一方の少なくとも1つの領域のCT値を測定するCT値測定工程と、測定して得られたCT値により、二次電池の劣化状態を評価する劣化状態評価工程とを含む2次電池の状態評価方法が開示されている。また、特許文献1には、X線CT画像データによって、電極体の位置、集電体からの電極合材の剥離、崩落、電極どうしの積層間隔のズレ等、電極の積層状態が、手に取るように観察できると述べられている。   Patent Document 1 discloses a method that is a nondestructive inspection and can be evaluated without being affected by other factors for each electrode. In Patent Document 1, based on the imaging principle of X-ray computer tomography (CT), the CT value of at least one region of at least one of the positive electrode mixture layer and the negative electrode mixture layer in the laminated section of the electrode body of the secondary battery. A method for evaluating the state of a secondary battery, including a CT value measuring step for measuring and a deterioration state evaluating step for evaluating the deterioration state of the secondary battery based on the CT value obtained by the measurement, is disclosed. Further, in Patent Document 1, the X-ray CT image data indicates the electrode stacking state such as the position of the electrode body, peeling and collapsing of the electrode mixture from the current collector, and the gap in the stacking interval between the electrodes. It is stated that it can be observed.

特開2001−203003号公報JP 2001-203003 A

しかしながら、特許文献1に記載の評価方法では、電極の積層状態を非破壊で観察することはできるが、電極性能評価において極めて重要な評価項目である電極抵抗及び電極容量の測定を行うことができない。   However, in the evaluation method described in Patent Document 1, it is possible to observe the laminated state of the electrodes in a non-destructive manner, but it is impossible to measure the electrode resistance and the electrode capacitance, which are extremely important evaluation items in the electrode performance evaluation. .

本発明の目的は、非破壊検査であって、且つ重要評価項目である電極抵抗及び電極容量について正負電極ごとに精度の高い評価が可能である電極性能評価装置を提供することである。   An object of the present invention is to provide an electrode performance evaluation apparatus that is a non-destructive inspection and that enables high-precision evaluation of positive and negative electrodes for electrode resistance and electrode capacitance, which are important evaluation items.

本発明に係る電極性能評価装置は、性能評価対象となる正負電極を支持する少なくとも2つの電極支持体と電極間隙に充填される電解液とを含み、2つの電極支持体の相対位置を変化させることで、擬似セルと電極評価セルとを形成する擬似セル本体、擬似セルを充放電するための充放電装置、及び電極評価セルの電極を評価するための電極評価装置を備え、擬似セル本体は、少なくとも第1正電極及び第1負電極を支持する第1電極支持体と、少なくとも第2正電極及び第2負電極を支持する第2電極支持体と、を有し、2つの電極支持体の相対位置を変化させることにより、第1正電極と第2負電極及び第1負電極と第2正電極がそれぞれ対向して充放電を行う擬似セル配置と、第1正電極と第2正電極及び第1負電極と第2負電極がそれぞれ対向して正負電極の電極抵抗を測定する電極抵抗評価セル配置とを形成することを特徴とする。   An electrode performance evaluation apparatus according to the present invention includes at least two electrode supports that support positive and negative electrodes that are performance evaluation targets, and an electrolytic solution that fills an electrode gap, and changes the relative positions of the two electrode supports. Thus, a pseudo cell body for forming a pseudo cell and an electrode evaluation cell, a charge / discharge device for charging / discharging the pseudo cell, and an electrode evaluation device for evaluating an electrode of the electrode evaluation cell, A first electrode support that supports at least the first positive electrode and the first negative electrode, and a second electrode support that supports at least the second positive electrode and the second negative electrode. By changing the relative positions of the first and second negative electrodes, and the first positive electrode and the second positive electrode. Electrode and first negative electrode and second negative electrode An electrode resistance evaluation cell arrangement for measuring the electrode resistance of positive and negative electrodes is formed so as to face each other.

また、第1及び第2電極支持体は、さらに、正負電極それぞれの電極容量を測定する際に、正負電極の対電極となる第1及び第2基準電極をそれぞれ有し、2つの電極支持体の相対位置を変化させることにより、擬似セル配置及び電極抵抗評価セル配置に加えて、第1正電極と第2基準電極、第1負電極と第2基準電極、第1基準電極と第2正電極、及び第1基準電極と第2負電極がそれぞれ対向して正負電極の電極容量を測定する電極容量評価セル配置を形成することが好ましい。   The first and second electrode supports further have first and second reference electrodes that serve as counter electrodes for the positive and negative electrodes when measuring the electrode capacities of the positive and negative electrodes, respectively. In addition to the pseudo cell arrangement and the electrode resistance evaluation cell arrangement, the first positive electrode and the second reference electrode, the first negative electrode and the second reference electrode, the first reference electrode and the second positive electrode It is preferable to form an electrode capacity evaluation cell arrangement in which the electrode and the first reference electrode and the second negative electrode face each other and the electrode capacity of the positive and negative electrodes is measured.

また、各電極支持体は、相対的に回転可能な円盤形状であって、円盤面が対向して配置されると共に、円盤面上に回転の中心となる回転中心が形成され、回転中心から等距離の円周上であって円周方向に沿った電極間距離が均等となる位置に各電極が支持或いは固定され、2つの電極支持体の少なくとも一方を回転させて、その相対位置を変化させることにより、擬似セル配置及び電極評価セル配置を形成するときに、対向配置される各電極の間隙に電解液を充填するための電解液溜めが形成されることが好ましい。   Each electrode support has a disk shape that is relatively rotatable, the disk surfaces are arranged to face each other, and a rotation center that is a center of rotation is formed on the disk surface, and so on. Each electrode is supported or fixed at a position on the circumference of the distance where the distance between the electrodes along the circumferential direction is equal, and at least one of the two electrode supports is rotated to change its relative position. Thus, when forming the pseudo cell arrangement and the electrode evaluation cell arrangement, it is preferable to form an electrolyte reservoir for filling the gap between the electrodes arranged opposite to each other.

また、各電極支持体は、円盤面同士が当接して対向配置され、回転中心から等距離の円周上であって円周方向に沿った距離が均等となる位置に電極支持体を貫通する貫通孔を備え、貫通孔の内部に電極を支持又は固定する貫通孔電極設置部材が設けられ、貫通孔に挿入され貫通孔電極設置部材に支持又は固定された電極に当接して、電極と充放電装置及び電極評価装置の少なくとも一方とを接続する電極ターミナルを有し、2つの電極支持体の少なくとも一方を回転させて、擬似セル配置及び電極評価セル配置を形成するときに、各電極支持体の貫通孔同士が繋がって電解液溜めを形成し、さらに、少なくとも1つの電極支持体は、電解液溜めに電解液を充填するための電解液充填路を有することが好ましい。   In addition, the electrode supports are arranged to face each other with the disk surfaces in contact with each other, and penetrate the electrode support at a position on the circumference that is equidistant from the center of rotation and at equal distances along the circumferential direction. A through-hole electrode installation member that includes a through-hole and that supports or fixes the electrode is provided inside the through-hole. The through-hole electrode installation member is inserted into the through-hole and is in contact with the electrode that is supported or fixed by the through-hole electrode installation member. Each electrode support has an electrode terminal that connects at least one of the discharge device and the electrode evaluation device, and rotates at least one of the two electrode supports to form a pseudo cell arrangement and an electrode evaluation cell arrangement. The through holes are connected to each other to form an electrolytic solution reservoir, and at least one electrode support preferably has an electrolytic solution filling path for filling the electrolytic solution reservoir with the electrolytic solution.

また、電解液充填路は、内部円盤面から電極支持体を貫通して形成された電解液を導入するための電解液導入路及び余剰の電解液を導出するための電解液導出路と、内部円盤面上に形成され、一端が電解液導入貫通路と繋がり各貫通孔を連通して他端が電解液導出貫通路に繋がる電解液流通溝と、から構成され、電解液溝が形成された一方の電極支持体の円盤面と他方の電極支持体の円盤面とが当接することにより電解液流通路が形成され、2つの電極支持体の少なくとも一方を回転させて、擬似セル配置及び電極評価セル配置を形成するときに、電解液導入路から電解液流通路を通って各電解液溜めに電解液が充填され、余剰の電解液は電解液導出路から導出されることが好ましい。   The electrolyte solution filling path includes an electrolyte solution introduction path for introducing an electrolyte solution formed through the electrode support from the inner disk surface, an electrolyte solution delivery path for deriving excess electrolyte solution, and an internal An electrolyte solution groove formed on the disk surface, one end of which is connected to the electrolyte introduction through passage, the other through hole is connected to the electrolyte outlet through passage, and the other end is connected to the electrolyte outlet passage. An electrolyte flow path is formed when the disk surface of one electrode support and the disk surface of the other electrode support are in contact with each other, and at least one of the two electrode supports is rotated. When forming the cell arrangement, it is preferable that each electrolytic solution reservoir is filled with the electrolytic solution from the electrolytic solution introduction passage through the electrolytic solution flow passage, and surplus electrolytic solution is led out from the electrolytic solution outlet passage.

本発明に係る電極性能評価装置によれば、擬似セル本体が、少なくとも第1正電極及び第1負電極を支持する第1電極支持体と、少なくとも第2正電極及び第2負電極を支持する第2電極支持体と、を有し、2つの電極支持体の相対位置を変化させることにより、擬似セル配置と、電極抵抗を測定する電極抵抗評価セル配置とを形成するので、擬似セル本体を分解することなく、即ち非破壊検査によって、重要項目である電極抵抗の評価を正負電極ごとに高い精度で実施することができる。   According to the electrode performance evaluation apparatus according to the present invention, the pseudo cell main body supports at least the first positive electrode and the first negative electrode, and supports at least the second positive electrode and the second negative electrode. A second electrode support, and by changing the relative position of the two electrode supports, a pseudo cell arrangement and an electrode resistance evaluation cell arrangement for measuring electrode resistance are formed. The electrode resistance, which is an important item, can be evaluated for each positive and negative electrode with high accuracy without being disassembled, that is, by nondestructive inspection.

また、第1及び第2電極支持体は、さらに、正負電極それぞれの電極容量を測定する際に、正負電極の対電極となる第1及び第2基準電極をそれぞれ有し、2つの電極支持体の相対位置を変化させることにより、正負電極それぞれの電極容量を測定する電極容量評価セル配置を形成する構成とすれば、非破壊検査によって、重要項目である電極容量の評価を正負電極ごとに高い精度で実施することができる。   The first and second electrode supports further have first and second reference electrodes that serve as counter electrodes for the positive and negative electrodes when measuring the electrode capacities of the positive and negative electrodes, respectively. By changing the relative position of the electrode, the electrode capacity evaluation cell arrangement for measuring the electrode capacity of each positive and negative electrode is formed. By nondestructive inspection, the evaluation of the electrode capacity, which is an important item, is high for each positive and negative electrode. Can be implemented with accuracy.

また、各電極支持体は、相対的に回転可能な円盤形状であって、円盤面が対向して配置されると共に、円盤面上に回転の中心となる回転中心が形成され、回転中心から等距離の円周上であって円周方向に沿った電極間距離が均等となる位置に各電極が支持或いは固定され、2つの電極支持体の少なくとも一方を回転させることにより対向配置される各電極の間隙に電解液を充填するための電解液溜めが形成される構成とすれば、電極支持体を回転させるだけで、充放電サイクル及び性能評価を繰り返し実施することができる。また、1つの装置において複数の性能評価を同時に実施することができ、耐久性試験等の電極性能評価を簡便且つ迅速に行うことが可能になる。   Each electrode support has a disk shape that is relatively rotatable, the disk surfaces are arranged to face each other, and a rotation center that is a center of rotation is formed on the disk surface, and so on. Each electrode is supported or fixed at a position where the distance between the electrodes along the circumferential direction is equal on the circumference of the distance, and the electrodes are arranged to face each other by rotating at least one of the two electrode supports If the electrolyte solution reservoir for filling the electrolyte solution in the gap is formed, the charge / discharge cycle and the performance evaluation can be repeatedly performed only by rotating the electrode support. Further, a plurality of performance evaluations can be performed simultaneously in one apparatus, and electrode performance evaluation such as a durability test can be performed easily and quickly.

また、各電極支持体は、円盤面同士が当接して対向配置され、回転中心から等距離の円周上であって円周方向に沿った距離が均等となる位置に電極支持体を貫通する貫通孔を備え、貫通孔の内部に電極を支持又は固定する貫通孔電極設置部材が設けられ、貫通孔に挿入され貫通孔電極設置部材に支持又は固定された電極に当接して、電極と充放電装置及び電極評価装置の少なくとも一方とを接続する電極ターミナルを有し、2つの電極支持体の少なくとも一方を回転させることにより各電極支持体の貫通孔同士が繋がって電解液溜めを形成し、さらに、少なくとも1つの電極支持体は、電解液溜めに電解液を充填するための電解液充填路を有する構成とすれば、簡素化した装置を実現でき、電極性能評価の簡便性及び迅速性をさらに向上させることができる。   In addition, the electrode supports are arranged to face each other with the disk surfaces in contact with each other, and penetrate the electrode support at a position on the circumference that is equidistant from the center of rotation and at equal distances along the circumferential direction. A through-hole electrode installation member that includes a through-hole and that supports or fixes the electrode is provided inside the through-hole. The through-hole electrode installation member is inserted into the through-hole and is in contact with the electrode that is supported or fixed by the through-hole electrode installation member. Having an electrode terminal that connects at least one of the discharge device and the electrode evaluation device, by rotating at least one of the two electrode supports, the through holes of each electrode support are connected to form an electrolyte reservoir, Furthermore, if the at least one electrode support is configured to have an electrolyte filling path for filling the electrolyte reservoir with the electrolyte solution, a simplified apparatus can be realized, and the electrode performance evaluation can be performed easily and quickly. Further improve be able to.

また、電解液充填路は、内部円盤面から電極支持体を貫通して形成された電解液を導入するための電解液導入路及び余剰の電解液を導出するための電解液導出路と、内部円盤面上に形成され、一端が電解液導入貫通路と繋がり各貫通孔を連通して他端が電解液導出貫通路に繋がる電解液流通溝と、から構成され、電解液溝が形成された一方の電極支持体の円盤面と他方の電極支持体の円盤面とが当接することにより電解液流通路が形成される構成とすれば、電解液溜めへの電解液の充填操作が極めて容易になる。   The electrolyte solution filling path includes an electrolyte solution introduction path for introducing an electrolyte solution formed through the electrode support from the inner disk surface, an electrolyte solution delivery path for deriving excess electrolyte solution, and an internal An electrolyte solution groove formed on the disk surface, one end of which is connected to the electrolyte introduction through passage, the other through hole is connected to the electrolyte outlet through passage, and the other end is connected to the electrolyte outlet passage. If an electrolyte flow passage is formed by contact of the disk surface of one electrode support and the disk surface of the other electrode support, the operation of filling the electrolyte reservoir with the electrolyte is extremely easy. Become.

図面を用いて本発明に係る実施の形態につき以下詳細に説明する。以下においては、電極性能評価装置は、2次電池電極の性能評価装置として説明するが、電池に限定されず、充放電が可能である電気二重層キャパシタ等のキャパシタ電極の性能評価にも使用することができる。   Embodiments according to the present invention will be described below in detail with reference to the drawings. In the following description, the electrode performance evaluation apparatus will be described as a performance evaluation apparatus for secondary battery electrodes, but is not limited to batteries, and is also used for performance evaluation of capacitor electrodes such as electric double layer capacitors that can be charged and discharged. be able to.

図1は、2次電池電極の性能評価装置の構成を示すブロック図である。図2は、擬似電池セル本体を構成する2つの電極支持体が分離された状態を示す図である。図3は、図2において電極支持体が当接対向配置された状態を示す図である。図4は、図3の要部断面を示す模式図である(ストッパ33省略)。   FIG. 1 is a block diagram showing a configuration of a secondary battery electrode performance evaluation apparatus. FIG. 2 is a diagram showing a state where two electrode supports constituting the pseudo battery cell main body are separated. FIG. 3 is a view showing a state in which the electrode support is disposed in contact with and opposed to the structure shown in FIG. FIG. 4 is a schematic view showing a cross-section of the main part of FIG. 3 (stopper 33 omitted).

図1に示すように、2次電池電極の性能評価装置10(以下、性能評価装置10とする)は、擬似電池セル本体11を主要構成要素として備える。この擬似電池セル本体11とは、電池セル(単電池)のモデル(擬似電池セル)及び電極の評価を行うための電極評価セルを形成する部材である。また、性能評価装置10は、電池電極の性能評価を実施する上で不可欠な構成要素である充放電装置12及び電極評価装置13が備える。   As shown in FIG. 1, a secondary battery electrode performance evaluation apparatus 10 (hereinafter referred to as a performance evaluation apparatus 10) includes a pseudo battery cell body 11 as a main component. The pseudo battery cell main body 11 is a member that forms a model (pseudo battery cell) of a battery cell (unit cell) and an electrode evaluation cell for evaluating an electrode. The performance evaluation device 10 includes a charge / discharge device 12 and an electrode evaluation device 13 which are indispensable components for performing performance evaluation of battery electrodes.

性能評価装置10が適用できる電池、即ち性能評価装置10の擬似電池セル本体11によって形成される電池は、充放電可能な2次電池であることが好ましい。具体的には、リチウムイオン電池、鉛蓄電池、密閉型ニカド電池、ニッケル水素電池、ニッケル亜鉛電池、金属リチウム電池等が挙げられる。以下においては、評価対象電極として、主にリチウムイオン電池の正負電極を例に挙げて説明するが、評価対象はこれに限定されるものではない。   The battery to which the performance evaluation device 10 can be applied, that is, the battery formed by the pseudo battery cell body 11 of the performance evaluation device 10 is preferably a chargeable / dischargeable secondary battery. Specifically, a lithium ion battery, a lead storage battery, a sealed nickel-cadmium battery, a nickel metal hydride battery, a nickel zinc battery, a metal lithium battery, and the like can be given. In the following description, the positive and negative electrodes of a lithium ion battery are mainly described as examples of the evaluation target electrode, but the evaluation target is not limited to this.

性能評価装置10の評価対象である電極は、一般的に、アルミニウム箔等からなる集電体(電極基材)と、集電体の表面に形成された電極活物質層(本明細書及び図面では、電極活物質層を電極と称して説明する場合がある)と、から構成される。電極活物質層には、微粒子状の活物質と、導電性付与材(アセチレンブラック等)と、それらを結着するバインダ樹脂(ポリフッ化ビニリデン等)と、を含んでいる。リチウムイオン電池では、正電極活物質として、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム等のリチウム化合物が使用され、負電極活物質には、グラファイト等のカーボン材料が使用される。   The electrodes to be evaluated by the performance evaluation apparatus 10 are generally a current collector (electrode base material) made of aluminum foil or the like, and an electrode active material layer (this specification and drawings) formed on the surface of the current collector. Then, the electrode active material layer may be referred to as an electrode in some cases). The electrode active material layer contains a particulate active material, a conductivity imparting material (acetylene black or the like), and a binder resin (polyvinylidene fluoride or the like) for binding them. In lithium ion batteries, lithium compounds such as lithium cobaltate, lithium nickelate, and lithium manganate are used as the positive electrode active material, and carbon materials such as graphite are used as the negative electrode active material.

性能評価装置10によって評価される正負電極の形状やサイズとしては、本発明の構成上特に限定されるものではなく、任意に設定することができる。例えば、Li−ion電池ならば、正極に三元系やオリビンを用いることができ、負極にLiメタル、フッ素系の材料を用いてもよい。また、電極材料も任意に設定できる。液式の電解液を有する電池全てに適用を広げることもできる。実際の電池形態は、例えば、シート状の正電極(正電極シート)と、負極シートとを、多孔質ポリオレフィンシート等のセパレータを介して重ね合わせ、これを捲回してなる捲回電極体として、電解液とともに適当な容器に収容したものである。従って、正負電極の形状としては、実際の電池形態に即した形状であるシート形状(薄膜形状)が好ましい。なお、後述する電極容量等は電極の単位面積或いは単位重量あたりの数値として規定されるため、評価精度を向上させるためには、電極のサイズ(面積、厚み、重量等)を正確に測定しておく必要がある。   The shape and size of the positive and negative electrodes evaluated by the performance evaluation device 10 are not particularly limited due to the configuration of the present invention, and can be arbitrarily set. For example, in the case of a Li-ion battery, ternary or olivine can be used for the positive electrode, and Li metal or fluorine-based material may be used for the negative electrode. The electrode material can also be set arbitrarily. The application can be extended to all batteries having a liquid electrolyte. As an actual battery configuration, for example, a sheet-like positive electrode (positive electrode sheet) and a negative electrode sheet are overlapped via a separator such as a porous polyolefin sheet, and wound as a wound electrode body. It is housed in a suitable container together with the electrolyte. Accordingly, the shape of the positive and negative electrodes is preferably a sheet shape (thin film shape) that is in conformity with the actual battery configuration. In addition, since electrode capacity and the like described later are defined as numerical values per unit area or unit weight of the electrode, in order to improve evaluation accuracy, the size (area, thickness, weight, etc.) of the electrode is accurately measured. It is necessary to keep.

性能評価装置10によって評価できる項目は、電極抵抗(単極抵抗)及び電極容量(単極容量)であり、電極性能評価において極めて重要な評価項目である。一般的に、リチウムイオン電池は、充放電を繰り返すと、電極抵抗の上昇により電池の使用範囲が狭くなったり、電極容量が低下する。抵抗上昇及び容量低下の主な原因は、充放電の繰り返しによって負極表面にリチウム含有化合物が徐々に堆積して、可動のリチウムイオン量が減少することである。従って、電極容量(=電池容量)の低下を引き起こし、更に負極表面に不動態被膜が形成されることにより電極抵抗が上昇して、電池出力も大幅に低下することになる。このように、リチウムイオン電池において、充放電特性は極めて重要な性能であって、充放電を繰り返した後に電極の劣化状態を評価する耐久性試験は重要な性能評価試験であり、性能評価装置10は、この耐久性試験に好適な装置である。   Items that can be evaluated by the performance evaluation apparatus 10 are electrode resistance (single pole resistance) and electrode capacity (single pole capacity), which are extremely important evaluation items in electrode performance evaluation. Generally, when a lithium ion battery is repeatedly charged and discharged, the range of use of the battery becomes narrow due to an increase in electrode resistance, or the electrode capacity decreases. The main cause of the increase in resistance and the decrease in capacity is that the lithium-containing compound is gradually deposited on the negative electrode surface by repeated charging and discharging, and the amount of movable lithium ions is reduced. Therefore, the electrode capacity (= battery capacity) is reduced, and a passive film is further formed on the negative electrode surface. As a result, the electrode resistance is increased and the battery output is also greatly reduced. Thus, in the lithium ion battery, the charge / discharge characteristics are extremely important performance, and the durability test for evaluating the deterioration state of the electrode after repeated charge / discharge is an important performance evaluation test. Is a device suitable for this durability test.

充放電装置12としては、上記擬似電池セルを繰り返し充放電できる装置であれば、特に限定されることなく使用することができ、公知の充放電装置、例えば、ポテンショスタットやガルバノスタットを挙げることができる。ポテンショスタット(電位制御)とガルバノスタット(電流制御)の機能を一体化したポテンショ/ガルバノスタット(マルチスタット1470E型;ローラトロン社製等)を使用することもできる。   The charging / discharging device 12 can be used without particular limitation as long as it is a device that can repeatedly charge and discharge the pseudo battery cell, and examples thereof include known charging / discharging devices such as potentiostats and galvanostats. it can. It is also possible to use a potentio / galvanostat (multistat 1470E type; manufactured by Rollertron, etc.) in which the functions of potentiostat (potential control) and galvanostat (current control) are integrated.

電極評価装置13としては、上記電極評価セルにおいて電極抵抗及び電極容量を測定できる装置であれば、特に限定されることなく使用することができる。例えば、電極容量の測定では、充放電装置12と同様のポテンショ/ガルバノスタットを使用することができる。また、電極抵抗の測定では、インピーダンスアナライザ(周波数応答解析器;FRA)を使用することができ、一般的には、FRAをポテンショスタットに接続して使用される。なお、電極評価において、定電圧又は定電流充放電による測定だけでなく、サイクリックボルタンメトリ法やパルス法等の測定手法を採用することもできる。   The electrode evaluation device 13 can be used without any particular limitation as long as it can measure electrode resistance and electrode capacity in the electrode evaluation cell. For example, in the measurement of electrode capacity, the same potentio / galvanostat as that of the charge / discharge device 12 can be used. In the measurement of electrode resistance, an impedance analyzer (frequency response analyzer; FRA) can be used. Generally, FRA is connected to a potentiostat. In the electrode evaluation, not only measurement by constant voltage or constant current charging / discharging but also measurement methods such as cyclic voltammetry method and pulse method can be adopted.

図1に示すように、擬似電池セル本体11は、2つの電極支持体14A(第1電極支持体14Aとする)及び電極支持体14B(第2電極支持体14Bとする)から構成され、各電極支持体14には、評価対象である電池電極が支持或いは固定されている。ここで、擬似電池セル本体11は、3つ以上の電極支持部材14を有することもできるが、評価操作の簡素化等の観点から2つであることが好ましく、以下では、電極支持体14は2つとして説明する。擬似電池セル本体11は、上記のように、電池セルのモデルである擬似電池セル及び電極評価セルを形成する部材であって、これらのセルは、2つの電極支持体14によって形成される。なお、電極を支持するとは、取り外し可能に設置されていること、電極を固定するとは、取り外しできない或いは取り外しが極めて困難であることを大凡意味するが、評価対象である電極等は、耐久性試験が終了すると交換されるのが一般的であるから、電極は支持されていることが好ましい。   As shown in FIG. 1, the pseudo battery cell body 11 includes two electrode supports 14A (referred to as a first electrode support 14A) and an electrode support 14B (referred to as a second electrode support 14B). A battery electrode to be evaluated is supported or fixed on the electrode support 14. Here, although the pseudo battery cell main body 11 can also have three or more electrode support members 14, it is preferable that it is two from viewpoints, such as simplification of evaluation operation, and the electrode support body 14 is the following. This will be described as two. As described above, the pseudo battery cell main body 11 is a member that forms a pseudo battery cell and an electrode evaluation cell that are models of the battery cell, and these cells are formed by the two electrode supports 14. Note that “supporting the electrode” means that the electrode is detachably installed, and fixing the electrode means that the electrode cannot be removed or is extremely difficult to remove. Since the electrode is generally exchanged when is completed, the electrode is preferably supported.

各電極支持体14には、少なくとも1つずつの正電極15及び負電極16が支持される。各電極支持体14が正電極15及び負電極16を有する場合、2つの電極支持体14の相対位置を変化させることにより、第1正電極15Aと第2負電極16B及び第1負電極16Aと第2正電極15Bがそれぞれ対向して充放電を行う擬似電池セル配置と、第1正電極15Aと第2正電極15B及び第1負電極16Aと第2負電極16Bがそれぞれ対向して正負電極それぞれの電極抵抗を測定する電極抵抗評価セル配置とを形成することができる。従って、性能評価装置10によれば、擬似電池セル本体11を分解することなく、耐久性試験において最も重要な評価項目である電極抵抗の測定が可能になる。このように、擬似電池セル本体11を分解する必要がないため、電極抵抗評価の前後で、電極間距離や電極設置圧力等の条件(電池セルの状態)が変化することなく、同じ条件を維持して耐久性試験を継続することが可能である。   Each electrode support 14 supports at least one positive electrode 15 and one negative electrode 16. When each electrode support 14 has the positive electrode 15 and the negative electrode 16, the first positive electrode 15A, the second negative electrode 16B, and the first negative electrode 16A are changed by changing the relative positions of the two electrode supports 14. A pseudo battery cell arrangement in which the second positive electrode 15B is oppositely charged and discharged, and the first positive electrode 15A and the second positive electrode 15B, and the first negative electrode 16A and the second negative electrode 16B are oppositely positive and negative electrodes. An electrode resistance evaluation cell arrangement for measuring each electrode resistance can be formed. Therefore, according to the performance evaluation apparatus 10, it is possible to measure the electrode resistance, which is the most important evaluation item in the durability test, without disassembling the pseudo battery cell body 11. Thus, since it is not necessary to disassemble the pseudo battery cell main body 11, the same conditions are maintained without changing conditions (battery cell state) such as the distance between electrodes and the electrode installation pressure before and after the electrode resistance evaluation. Thus, the durability test can be continued.

図1に示すように、各電極支持体14は、正電極15及び負電極16に加えて、電極容量測定の際の基準となる電極である基準電極17を支持或いは固定することが好ましい。具体的には、第1電極支持体14Aは、評価対象となる第1正電極15A及び第1負電極16A、評価基準となる第1基準電極17Aを有する。同様に、第2電極支持体14Bも第1正電極15A、第1負電極16A、第1基準電極17Aを有する。各電極支持体14が基準電極17を有する場合、2つの電極支持体14の相対位置を変化させることにより、擬似電池セル配置及び電極抵抗評価セル配置に加えて、第1正電極15Aと第2基準電極17B、第1負電極16Aと第2基準電極17B、第1基準電極17Aと第2正電極15B、及び第1基準電極17Aと第2負電極16Bがそれぞれ対向して正負電極それぞれの電極容量を測定する電極容量評価セル配置を形成することができる。従って、擬似電池セル本体11を分解することなく、耐久性試験において重要な評価項目である電極容量の測定が可能になる。ここで、基準電極17とは、上記のように、電極容量測定の際に測定の基準となる電極であって、リチウムイオン電池では、リチウム金属からなる基準電極を使用することが好ましい。   As shown in FIG. 1, in addition to the positive electrode 15 and the negative electrode 16, each electrode support 14 preferably supports or fixes a reference electrode 17 that is a reference electrode when measuring the electrode capacitance. Specifically, the first electrode support 14A includes a first positive electrode 15A and a first negative electrode 16A to be evaluated, and a first reference electrode 17A to be an evaluation reference. Similarly, the second electrode support 14B has a first positive electrode 15A, a first negative electrode 16A, and a first reference electrode 17A. When each electrode support 14 has the reference electrode 17, the first positive electrode 15 </ b> A and the second positive electrode 15 </ b> A and the second positive electrode 15 </ b> A are added in addition to the pseudo battery cell arrangement and the electrode resistance evaluation cell arrangement by changing the relative positions of the two electrode supports 14. The reference electrode 17B, the first negative electrode 16A and the second reference electrode 17B, the first reference electrode 17A and the second positive electrode 15B, and the first reference electrode 17A and the second negative electrode 16B are opposed to each other. An electrode capacity evaluation cell arrangement for measuring capacity can be formed. Therefore, it is possible to measure the electrode capacity, which is an important evaluation item in the durability test, without disassembling the pseudo battery cell main body 11. Here, as described above, the reference electrode 17 is an electrode serving as a measurement reference when measuring the electrode capacity. In the lithium ion battery, it is preferable to use a reference electrode made of lithium metal.

なお、各電極支持体14は、4つ以上の電極を支持することもできる。例えば、正電極15、負電極16、基準電極17を2つずつ支持することができ、また、第1電極支持体14Aは、2つの正電極15と1つの負電極16を支持し、第2電極支持体14Bは、1つの正電極15と2つの負電極16を支持するように、電極支持体14によって異なる電極の組み合わせとすることもできる。さらに、電極支持体14によって支持する電極の数を変えることもできるが、性能評価の効率向上の観点からは支持する電極の数は同数であることが好ましい。以下では、擬似電池セル本体11を構成する各電極支持体14に支持或いは固定される電極数は同数として説明する。   Each electrode support 14 can also support four or more electrodes. For example, two positive electrodes 15, two negative electrodes 16, and two reference electrodes 17 can be supported. The first electrode support 14A supports two positive electrodes 15 and one negative electrode 16, and second The electrode support 14 </ b> B may be a combination of different electrodes depending on the electrode support 14 so as to support one positive electrode 15 and two negative electrodes 16. Furthermore, the number of electrodes supported by the electrode support 14 can be changed, but the number of electrodes supported is preferably the same from the viewpoint of improving the efficiency of performance evaluation. Below, the number of electrodes supported or fixed to each electrode support 14 constituting the pseudo battery cell body 11 will be described as the same number.

また、擬似電池セル配置及び電極評価セル配置を形成して電極が対向配置されるときに、各電極間隙には電解液が充填される電解液溜め18が形成される。擬似電池セル配置の電解液溜め18(電極間隙)に電解液が充填されると擬似電池セルが完成し、電極評価セル配置の電解液溜め18に電解液が充填されると電極評価セルが完成する。ここで、電解液としては、本発明の構成上特に限定されず、公知の電解液を使用することができる。リチウムイオン電池では、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)等の有機溶媒に、溶質(電解質)として6フッ化リン酸リチウムや4フッ化ホウ酸リチウム等を添加した有機電解液を用いることができる。   Further, when the pseudo battery cell arrangement and the electrode evaluation cell arrangement are formed and the electrodes are arranged to face each other, an electrolytic solution reservoir 18 filled with an electrolytic solution is formed in each electrode gap. When the electrolytic solution reservoir 18 (electrode gap) with the pseudo battery cell arrangement is filled with the electrolytic solution, the pseudo battery cell is completed, and when the electrolytic solution reservoir 18 with the electrode evaluation cell arrangement is filled with the electrolytic solution, the electrode evaluation cell is completed. To do. Here, the electrolytic solution is not particularly limited in terms of the configuration of the present invention, and a known electrolytic solution can be used. In a lithium ion battery, for example, lithium hexafluorophosphate, lithium tetrafluoroborate, or the like is used as an solute (electrolyte) in an organic solvent such as propylene carbonate (PC), ethylene carbonate (EC), or diethyl carbonate (DEC). The added organic electrolyte can be used.

擬似電池セル本体11を構成する各電極支持体14は、上記のように、評価対象及び評価基準となる各電極を支持或いは固定する機能を有し、さらに、電極支持体14の少なくとも一方が動いて相対位置を変化させる機能を有することが必要である。   As described above, each electrode support 14 constituting the pseudo battery cell main body 11 has a function of supporting or fixing each electrode to be evaluated and evaluation criteria, and at least one of the electrode supports 14 moves. It is necessary to have a function of changing the relative position.

電極支持体14の形態としては、各電極を支持或いは固定することができ、相対的に移動可能であれば、種々の形態を採用することが可能であり、例えば、矩形の板状形状であって上下或いは左右にスライドする形態、円筒形状や円盤形状であって回転する形態等が挙げられる。このような形態のうち、操作の簡素化や評価の迅速化等の観点から、円盤形状であって回転する形態であることが好ましい。   As the form of the electrode support 14, various forms can be adopted as long as each electrode can be supported or fixed and can be relatively moved. For example, the electrode support 14 has a rectangular plate shape. And a form that slides up and down or left and right, and a form that is cylindrical or disk-shaped and rotates. Among such forms, from the viewpoint of simplification of operation and speeding up of evaluation, it is preferable that the form is a disk shape and rotates.

円盤形状の各電極支持体14は、相対位置を変化できる必要があり、上記のように、相対的に回転することにより相対位置を変化させることが好ましい。具体的には、各電極支持体14は、その円盤面が対向するように配置されて擬似電池セル本体11が構成する。そして、各電極支持体14は、対向配置された円盤面上の中央部に相対的な回転動作の中心となる回転中心を有する。   Each disk-shaped electrode support 14 needs to be able to change the relative position, and it is preferable to change the relative position by relatively rotating as described above. Specifically, the pseudo battery cell main body 11 is configured such that each electrode support 14 is disposed so that the disk surfaces thereof face each other. Each electrode support 14 has a center of rotation that is the center of relative rotation at the center of the opposingly disposed disk surfaces.

各電極支持体14は、上記回転中心から等距離の円周上であって、且つ円周方向に沿った距離が均等となる位置に各電極を支持或いは固定する。即ち、回転中心が重なるように各電極支持体14の円盤面を対向配置したとき(必要により回転操作を加える)には、各電極支持体14に支持或いは固定された全ての電極は対向することになる。このように電極を配置すると、擬似電池セル配置及び電極評価セル配置を形成することが容易になり、耐久性試験の簡素化、迅速化が促進される。   Each electrode support 14 supports or fixes each electrode at a position on the circumference equidistant from the center of rotation and at a uniform distance along the circumferential direction. That is, when the disk surfaces of the electrode supports 14 are opposed to each other so that the rotation centers overlap (all rotation operations are added as necessary), all the electrodes supported or fixed to the electrode supports 14 are opposed to each other. become. By arranging the electrodes in this way, it becomes easy to form the pseudo battery cell arrangement and the electrode evaluation cell arrangement, and the simplification and speeding up of the durability test are promoted.

各電極支持体14の円盤面が対向配置される際には、所定の間隔を空けて配置する、或いは円盤面同士を当接対向配置することが可能である。所定の間隔を空けて対向配置する場合には、例えば、電解液溜め18を形成するアダプタを挟み込むことができる。また、電極支持体14が対向配置されることにより各支持体に支持される電極同士は接触しないので、電極支持体14の間に、一般的な電池の構成部材であるセパレータを設ける必要はない。なお、各電極支持体14の配置形態としては、図3に示すように、円盤面同士を当接対向配置する形態が好ましい。   When the disk surfaces of the electrode supports 14 are arranged to face each other, it is possible to arrange them at a predetermined interval, or to place the disk surfaces in contact with each other. When facing each other with a predetermined interval, for example, an adapter for forming the electrolyte reservoir 18 can be sandwiched. In addition, since the electrodes supported by the respective supports are not in contact with each other when the electrode supports 14 are arranged opposite to each other, it is not necessary to provide a separator that is a general battery component between the electrode supports 14. . In addition, as an arrangement | positioning form of each electrode support body 14, as shown in FIG. 3, the form which contacts and arrange | positions disk surfaces mutually is preferable.

図2では、円盤形状の2つの電極支持体14から構成される擬似電池セル本体11を示している。各電極支持体14には、正電極15、負電極16、基準電極17が支持されており、上述のように、電極抵抗及び電極容量の評価を行うことが可能である。図3は、各電極支持体14の円盤面同士が当接対向配置された状態であって、第1電極支持体14Aの側から見た図である。以下では、主に円盤面同士を当接対向配置した形態について説明する。   In FIG. 2, the pseudo battery cell main body 11 composed of two disk-shaped electrode supports 14 is shown. Each electrode support 14 supports a positive electrode 15, a negative electrode 16, and a reference electrode 17, and can evaluate electrode resistance and electrode capacitance as described above. FIG. 3 is a view in which the disk surfaces of the electrode supports 14 are arranged in contact with each other and viewed from the side of the first electrode support 14A. In the following, a mode in which the disk surfaces are mainly arranged in contact with each other will be described.

ここで、電極支持体14に支持される電極配置は、上記のように、回転中心から等距離の円周上であって、且つ円周方向に沿った距離が均等となる位置であるが、耐久性試験の迅速化等の観点から、電極の配置順序を特定することが好ましい。具体的には、図2に示すように、第1電極支持体14Aでは、120°間隔で電極が支持され、基準電極17Aから時計回りに、負電極16A、正電極15Aとなっている。同じく、第2電極支持体14Bでも、基準電極17Bから時計回りに、負電極16B、正電極15Bとなっている。即ち、各電極支持体14には、同じ順序で電極を取り付けることが好ましい。このような電極配置にすると、図3に示すように、2つの電極支持体14を当接対向配置した場合に、第1正電極15Aと第2負電極16B及び第1負電極16Aと第2正電極15Bがそれぞれ対向する2つの擬似電池セル配置を形成することができる。従って、長時間を要する充放電過程を同時に行うことができる。   Here, the electrode arrangement supported by the electrode support 14 is a position on the circumference equidistant from the center of rotation and the distance along the circumferential direction is equal, as described above. From the viewpoint of speeding up the durability test, it is preferable to specify the arrangement order of the electrodes. Specifically, as shown in FIG. 2, in the first electrode support 14A, the electrodes are supported at intervals of 120 °, and the negative electrode 16A and the positive electrode 15A are formed clockwise from the reference electrode 17A. Similarly, in the second electrode support 14B, a negative electrode 16B and a positive electrode 15B are formed clockwise from the reference electrode 17B. That is, the electrodes are preferably attached to each electrode support 14 in the same order. With such an electrode arrangement, as shown in FIG. 3, when the two electrode supports 14 are arranged in contact with each other, the first positive electrode 15A, the second negative electrode 16B, the first negative electrode 16A and the second electrode Two pseudo battery cell arrangements in which the positive electrodes 15B face each other can be formed. Therefore, a long charge / discharge process can be performed simultaneously.

図2に示すように、擬似電池セル本体11は、各電極支持体14をセットする固定台19を備えることが好ましい。固定台19は、円盤形状である電極支持体14と同一曲率のハーフパイプ構造を有し、電極支持体14を立てた状態で安定に維持することができる。第1電極支持体14Aは、動かないように螺子20で固定されており、第2電極支持体14Bは、固定台19に固定されず回転可能にセットされる。   As shown in FIG. 2, the pseudo battery cell main body 11 preferably includes a fixing base 19 on which each electrode support 14 is set. The fixed base 19 has a half-pipe structure having the same curvature as the electrode support 14 having a disk shape, and can be stably maintained in a state where the electrode support 14 is erected. The first electrode support 14A is fixed by screws 20 so as not to move, and the second electrode support 14B is not fixed to the fixing base 19 but is set to be rotatable.

各電極支持体14は、上記のように、円盤面の中央に回転中心を有することが好ましい。図2に示すように、第1電極支持体14Aの回転中心には回転軸21を備え、第2電極支持体14Bの回転中心には、回転軸21が挿入される回転軸受け孔22を設けることができる。このような構成とすれば、電極支持体14のセッティングが容易になり、さらに耐久性試験の簡素化、迅速化が促進される。また、各電極支持体14には、当接される円盤面の密着性を向上させるために、各種ベアリング、各種シーリング材(Oリング等)を設けることができる。   As described above, each electrode support 14 preferably has a center of rotation at the center of the disk surface. As shown in FIG. 2, a rotation shaft 21 is provided at the rotation center of the first electrode support 14A, and a rotation bearing hole 22 into which the rotation shaft 21 is inserted is provided at the rotation center of the second electrode support 14B. Can do. With such a configuration, the setting of the electrode support 14 becomes easy, and further simplification and speeding up of the durability test are promoted. Further, each electrode support 14 can be provided with various bearings and various sealing materials (O-rings, etc.) in order to improve the adhesion of the abutted disk surface.

図2〜図4に示すように、各電極支持体14には、回転中心(回転軸21、回転軸受け孔22)から等距離の円周上であって、且つ円周方向に沿った距離が均等となる位置に電極支持体14を貫通する貫通孔23が形成される。貫通孔23は、各電極の支持部材を設けるため、電解液溜め18を形成するため、後述する電極ターミナル25を挿入するために設けられたものである。なお、貫通孔23の孔の形状は、本発明の構成上特に限定されないが、以下では円形状として説明する。   As shown in FIG. 2 to FIG. 4, each electrode support 14 has a circumferential distance that is equidistant from the rotation center (the rotation shaft 21 and the rotation bearing hole 22) and that extends along the circumferential direction. A through hole 23 penetrating the electrode support 14 is formed at an even position. The through hole 23 is provided to insert an electrode terminal 25 described later in order to form an electrolyte reservoir 18 in order to provide a support member for each electrode. In addition, although the shape of the hole of the through-hole 23 is not specifically limited on the structure of this invention, below, it demonstrates as a circular shape.

貫通孔23の内部には、貫通孔電極設置部24(以下、電極設置部24とする)が設けられる。各電極は、貫通孔23及び電極設置部24の形状に対応した薄膜円形状に成形され、電極設置部24に接着剤等を使用して接合される。電極設置部24は、貫通孔23の内径面上から張出したリング形状であり、電極支持体14の製造において一体形成することができる。なお、薄膜電極は、図4等に示すように、電極ターミナル25との接続性向上等の観点から、電極設置部24の外側のリング面に接合されることが好ましい。ここで、当接対向配置する円盤面を内部円盤面、他方の円盤面を外部円盤面とし、電極設置部24の外側のリング面とは、外部円盤面側のリング面を意味する。   A through-hole electrode installation portion 24 (hereinafter referred to as an electrode installation portion 24) is provided inside the through-hole 23. Each electrode is formed into a thin film circular shape corresponding to the shape of the through hole 23 and the electrode installation portion 24, and is joined to the electrode installation portion 24 using an adhesive or the like. The electrode installation part 24 has a ring shape protruding from the inner diameter surface of the through hole 23 and can be integrally formed in the manufacture of the electrode support 14. In addition, as shown in FIG. 4 etc., it is preferable that a thin film electrode is joined to the ring surface of the outer side of the electrode installation part 24 from a viewpoint of the connectivity improvement with the electrode terminal 25, etc. Here, the disk surface arranged in contact and opposite is an internal disk surface, the other disk surface is an external disk surface, and the ring surface outside the electrode installation portion 24 means a ring surface on the external disk surface side.

図4に示すように、電極設置部24は、当接する円盤面(内部円盤面)から所定の距離を有する位置に設けられる。この所定距離を変更することにより、電極間距離を調整することができ、電解液溜め18の容量も変化する。即ち、内部円盤面からの距離を長くするほど電極間距離が長くなり、電解液溜め18のサイズは大きくなる。従って、所定距離は、電極間距離、電解液溜め18のサイズを考慮して設定することができ、後述する電解液流通溝29を備える場合には、少なくとも電解液流通溝29を形成することができる距離とすることが好ましい。   As shown in FIG. 4, the electrode installation part 24 is provided in the position which has a predetermined distance from the disk surface (internal disk surface) which contact | abuts. By changing this predetermined distance, the distance between the electrodes can be adjusted, and the capacity of the electrolyte reservoir 18 also changes. That is, the longer the distance from the inner disk surface, the longer the distance between the electrodes and the larger the size of the electrolyte reservoir 18. Therefore, the predetermined distance can be set in consideration of the distance between the electrodes and the size of the electrolyte reservoir 18. When the electrolyte circulation groove 29 described later is provided, at least the electrolyte circulation groove 29 can be formed. It is preferable to set the distance as possible.

擬似電池セル本体11は、貫通孔23に外側から挿入され電極設置部24に接合された各電極に当接して、電極と充放電装置12及び電極評価装置13(以下、充放電評価装置とする)とを接続する電極ターミナル25を備える。電極ターミナル25は、電極と充放電評価装置とを電気的に接続する機能を有する部材であると共に、電極を安定に支持するため機能も有する。電極ターミナル25は、図2に示すように、円筒形状であって、円筒の直径は貫通孔23の内径よりもやや小さく設計されている。従って、図4に示すように、電極ターミナル25は、貫通孔23に挿入でき、電極は、電極設置部24と電極ターミナル25によって挟持され、安定的に支持される。電極ターミナル25は、電極を構成する集電体34に圧接して、擬似電池セルの充放電等を可能にする。   The pseudo battery cell main body 11 is brought into contact with each electrode inserted from the outside into the through hole 23 and joined to the electrode installation portion 24, so that the electrode, the charge / discharge device 12 and the electrode evaluation device 13 (hereinafter referred to as charge / discharge evaluation device). ) Are connected to each other. The electrode terminal 25 is a member having a function of electrically connecting the electrode and the charge / discharge evaluation apparatus, and also has a function of stably supporting the electrode. As shown in FIG. 2, the electrode terminal 25 has a cylindrical shape, and the diameter of the cylinder is designed to be slightly smaller than the inner diameter of the through hole 23. Therefore, as shown in FIG. 4, the electrode terminal 25 can be inserted into the through hole 23, and the electrode is sandwiched and supported stably by the electrode installation portion 24 and the electrode terminal 25. The electrode terminal 25 is in pressure contact with the current collector 34 constituting the electrode, and enables charging and discharging of the pseudo battery cell.

図3に示すように、貫通孔23に挿入され、電極に圧接される電極ターミナル25を、ストッパ33によって固定することができる。このように、ストッパ33によって電極ターミナル25が固定されるので、充放電過程等において導電性が低下する等のおそれがなく、同じ条件(電極設置圧力等)を維持して耐久性試験を継続することが可能である。また、耐久性試験終了後には、ストッパ33を外すことにより電極ターミナル25を引き抜いて評価対象電極の交換を容易に行うことができる。   As shown in FIG. 3, the electrode terminal 25 inserted into the through hole 23 and pressed against the electrode can be fixed by the stopper 33. As described above, since the electrode terminal 25 is fixed by the stopper 33, there is no fear that the conductivity is lowered in the charge / discharge process or the like, and the durability test is continued while maintaining the same conditions (electrode installation pressure and the like). It is possible. Further, after the endurance test is completed, the electrode 33 can be pulled out by removing the stopper 33 and the electrode to be evaluated can be easily replaced.

第2電極支持体14Bを回転させて、擬似電池セル配置及び電極評価セル配置を形成するとき、図4に示すように、各電極支持体14の貫通孔23同士が繋がって電解液溜め18が形成される。即ち、貫通孔23の一部が電解液溜め18となる。なお、電解液溜め18のサイズは、上述のように、電極間距離、即ち電極設置部24の位置を調整することによって決定される。   When the second electrode support 14B is rotated to form the pseudo battery cell arrangement and the electrode evaluation cell arrangement, as shown in FIG. 4, the through holes 23 of each electrode support 14 are connected to each other and the electrolyte reservoir 18 is formed. It is formed. That is, a part of the through hole 23 becomes the electrolyte reservoir 18. The size of the electrolyte reservoir 18 is determined by adjusting the distance between the electrodes, that is, the position of the electrode installation portion 24 as described above.

第2電極支持体14Bは、上記のように、回転可能であって、回転操作の際に把持される操作レバー26を備える。また、充放電過程等において、第2電極支持体14Bが回転しないように、固定台19には、操作レバー26を固定するための操作レバー固定部27を設けることができる。   As described above, the second electrode support 14B includes the operation lever 26 that can be rotated and is gripped during the rotation operation. Further, an operation lever fixing portion 27 for fixing the operation lever 26 can be provided on the fixing base 19 so that the second electrode support 14B does not rotate in the charge / discharge process or the like.

電極支持体14の構成材質としては、絶縁性、耐薬品性、加工性等が良好な材料であることが好ましく、有機化合物(樹脂)、金属酸化物や金属窒化物等の無機化合物、絶縁性が確保できれば金属材料も適用することができる。これらのうち、絶縁性や加工性等の観点から、樹脂材料であることが好ましく、その中でも耐薬品性の高い樹脂、例えば、ポリエーテルエーテルケトン(PEEK)等であることが好ましい。   The constituent material of the electrode support 14 is preferably a material having good insulation, chemical resistance, workability, and the like. Organic compounds (resins), inorganic compounds such as metal oxides and metal nitrides, insulation A metal material can also be applied if this can be ensured. Among these, from the viewpoints of insulation and workability, a resin material is preferable, and among them, a resin having high chemical resistance, for example, polyetheretherketone (PEEK) is preferable.

電極支持体14には、電解液溜め18に電解液を充填する電解液充填路が形成される。電解液充填路は、擬似電池セル本体11を分解することなく、電解液溜め18に電解液を供給するための流路である。加工コストの低減や電解液充填操作の簡素化等の観点から、電解液充填路は、電極支持体14の一方に設けることが好ましく、具体的には、固定台19に固定された第1電極支持体14Aに設けることが好ましい。   The electrode support 14 is formed with an electrolyte filling path for filling the electrolyte reservoir 18 with the electrolyte. The electrolytic solution filling path is a flow path for supplying the electrolytic solution to the electrolytic solution reservoir 18 without disassembling the pseudo battery cell main body 11. From the viewpoint of reducing the processing cost and simplifying the electrolyte filling operation, the electrolyte filling path is preferably provided on one side of the electrode support 14. Specifically, the first electrode fixed to the fixed base 19 is provided. It is preferable to provide the support 14A.

第1電極支持体14Aに設けられる電解液充填路は、図2に示すように、電解液導入路28と、電解液流通溝29と、電解液導出路30と、から構成されることが好ましい。電解液導入路及28及び電解液導出路30は、内部円盤面から電極支持体14Aを貫通して形成され、前者が電解液を導入するための流路、後者が余剰の電解液を導出するための流路である。電解液流通溝29は、内部円盤面上に形成され、一端が電解液導入路28と繋がり各貫通孔23を連通して他端が電解液導出路30に繋がる溝である。電解液流通溝29は、第1及び第2電極支持体14A、14Bが当接対向配置(図3、図4)されることにより、第2電極支持体14Bの内部円盤面により溝が電解液を漏れることなく流通できる流通路(以下、電解液流通路とする)となり、電解液は、電解液導入路28から電解液流通路を通って、各電解液溜め18に電解液が充填され、余剰の電解液は電解液導出路30から導出される。   As shown in FIG. 2, the electrolyte solution filling path provided in the first electrode support 14 </ b> A is preferably composed of an electrolyte solution introduction path 28, an electrolyte solution flow groove 29, and an electrolyte solution lead-out path 30. . The electrolyte solution introduction path 28 and the electrolyte solution lead-out path 30 are formed through the electrode support 14A from the inner disk surface, the former is a flow path for introducing the electrolyte solution, and the latter is the excess electrolyte solution. It is a flow path for. The electrolyte solution flow groove 29 is a groove formed on the inner disk surface, one end of which is connected to the electrolyte solution introduction path 28, which communicates with each through hole 23, and the other end which is connected to the electrolyte solution outlet path 30. The electrolyte flow groove 29 is formed so that the first and second electrode supports 14A and 14B are disposed in contact with each other (FIGS. 3 and 4) so that the groove is formed by the inner disk surface of the second electrode support 14B. And the electrolyte solution passes through the electrolyte solution introduction passage 28 and passes through the electrolyte solution passage passage, and each electrolyte reservoir 18 is filled with the electrolyte solution. Excess electrolyte is led out from the electrolyte lead-out path 30.

第1電極支持体14Aは、電解液導入路30の外部開口部に、シリンジ31を設置するシリンジ取付け部32を備えることができる。電解液の充填が終了した場合には、上記のように、電解液導出路30から余剰の電解液が排出され、シリンジ31に供給される。従って、シリンジ31に電解液が溜まると各電解質溜め18に電解液の充填が完了したことが判る。シリンジ31には、目盛りが付いており、充填された電解液量、また、充放電時におけるガス発生量を定量することができる。   The first electrode support 14 </ b> A can include a syringe attachment portion 32 that installs the syringe 31 in the external opening of the electrolyte solution introduction path 30. When the filling of the electrolytic solution is completed, the excess electrolytic solution is discharged from the electrolytic solution outlet path 30 and supplied to the syringe 31 as described above. Therefore, it can be seen that when the electrolytic solution is accumulated in the syringe 31, filling of each electrolytic reservoir 18 with the electrolytic solution is completed. The syringe 31 is graduated, and the amount of electrolyte filled and the amount of gas generated during charging and discharging can be quantified.

上記構成の性能評価装置10(図2〜図4に示す性能評価装置10)による電極性能評価について、図5を加えて以下詳細に説明する。図5は、2次電池電極の性能評価の手順を示すフローチャートであり、電極性能評価項目は、電極抵抗及び電極容量である。   Electrode performance evaluation by the performance evaluation apparatus 10 having the above configuration (performance evaluation apparatus 10 shown in FIGS. 2 to 4) will be described in detail below with reference to FIG. FIG. 5 is a flowchart showing a procedure for evaluating the performance of the secondary battery electrode, and the electrode performance evaluation items are electrode resistance and electrode capacity.

まず初めに、各電極支持体14に、評価対象である正電極15及び負電極16と、電極容量評価の基準となる電極である基準電極17と、を取り付ける(S10)。電極の取り付け順序としては、上述のように、各電極支持体14において同じ順序であることが好ましい。同じ順序となるように各電極支持体14の電極設置部24に電極を接合した後、貫通孔23に電極ターミナル25を挿入して、電極ターミナル25を電極の集電体34接触させる。この状態において、電極ターミナル25は、ストッパ33によって固定されて、電極と充放電評価装置との電気的接続を確保できると共に、電極を安定して支持することができる。   First, the positive electrode 15 and the negative electrode 16 that are evaluation targets and the reference electrode 17 that is an electrode serving as a reference for electrode capacity evaluation are attached to each electrode support 14 (S10). As described above, the electrode mounting order is preferably the same order in each electrode support 14. After the electrodes are joined to the electrode placement portions 24 of the electrode supports 14 in the same order, the electrode terminals 25 are inserted into the through holes 23 to bring the electrode terminals 25 into contact with the electrode current collectors 34. In this state, the electrode terminal 25 is fixed by the stopper 33 and can secure the electrical connection between the electrode and the charge / discharge evaluation apparatus and can stably support the electrode.

各電極及び電極ターミナル25が固定された各電極支持体14を、図3に示すように当接対向配置する(S11)。具体的には、第1電極支持体14Aを固定台19に螺子20で固定した後、第1電極支持体14Aの回転軸21に、第2電極支持体14Bの回転軸受け孔22を嵌め込んで、第2電極支持体14Bを固定台19にセットする。この状態において、各電極支持体14の内部円盤面は隙間なく当接(密着)されている。なお、第2電極支持体14Bは、固定台19に螺子止めされず、回転可能に設置されている。第2電極支持体14Aの操作レバー26が図3において左側、即ち操作レバー26が操作レバー固定部27に嵌る位置まで回転させることにより、擬似電池セル配置が形成される。即ち、第1正電極15Aと第2負電極16B及び第1負電極16Aと第2正電極15Bがそれぞれ対向した状態である。   The electrode supports 14 to which the electrodes and the electrode terminals 25 are fixed are disposed in contact with each other as shown in FIG. 3 (S11). Specifically, after the first electrode support 14A is fixed to the fixing base 19 with screws 20, the rotation shaft receiving hole 22 of the second electrode support 14B is fitted into the rotation shaft 21 of the first electrode support 14A. The second electrode support 14B is set on the fixed base 19. In this state, the inner disk surface of each electrode support 14 is in contact (contacted) with no gap. The second electrode support 14 </ b> B is rotatably installed without being screwed to the fixed base 19. When the operation lever 26 of the second electrode support 14A is rotated to the left side in FIG. 3, that is, to the position where the operation lever 26 is fitted to the operation lever fixing portion 27, a pseudo battery cell arrangement is formed. That is, the first positive electrode 15A and the second negative electrode 16B, and the first negative electrode 16A and the second positive electrode 15B face each other.

S11において各電極支持体14が当接対向配置されることにより形成された電解液溜め18に電解液を充填する(S12)。電解液の充填は、電解液導入路28に電解液供給用のポンプ等を接続して行う。電解液導入路28から電解液流通路(電解液流通溝29)を通って各電解液溜め18に電解液が充填され、余剰の電解液は電解液導出路30から排出される。その際に、シリンジ31によって充填された電解液量を確認することができる。S10〜S12において、擬似電池セルが構成され、耐久性試験の準備が完了する。   In S <b> 11, the electrolyte solution is filled in the electrolyte solution reservoir 18 formed by arranging the electrode support members 14 so as to face each other (S <b> 12). The electrolytic solution is filled by connecting an electrolytic solution supply pump or the like to the electrolytic solution introduction path 28. Each electrolyte reservoir 18 is filled with the electrolyte from the electrolyte introduction path 28 through the electrolyte flow path (electrolyte flow groove 29), and excess electrolyte is discharged from the electrolyte lead-out path 30. At that time, the amount of the electrolyte filled with the syringe 31 can be confirmed. In S <b> 10 to S <b> 12, pseudo battery cells are configured, and preparation for the durability test is completed.

耐久性試験として、まず、擬似電池セルの充放電を実施する(S13)。具体的には、電極ターミナル25を介して電極と接続された充放電評価装置を所定のパターン(例えば、定電流充放電)で作動させて充放電サイクルを実行する。   As a durability test, first, charge / discharge of the pseudo battery cell is performed (S13). Specifically, the charge / discharge evaluation apparatus connected to the electrode via the electrode terminal 25 is operated in a predetermined pattern (for example, constant current charge / discharge) to execute the charge / discharge cycle.

所定の充放電サイクルが終了したか否かを判定する(S14)。所定の充放電サイクルとしては、一般的に、数千〜数万回のサイクルであり、充放電評価装置は、設定された所定のサイクル数に達するまで充放電を繰り返し実行する。   It is determined whether or not a predetermined charge / discharge cycle has been completed (S14). The predetermined charging / discharging cycle is generally several thousand to several tens of thousands of cycles, and the charging / discharging evaluation apparatus repeatedly executes charging / discharging until the predetermined number of cycles is reached.

所定の充放電サイクルが終了した場合には、第2電極支持体14Bを図3において右方向に120°回転させて、第1正電極と15Aと第2正電極15Bとが対向配置された正電極15の電極抵抗評価セルを形成する。また、第1負電極16Aと第2基準電極17B、第2負電極16Bと第1基準電極17Aとが対向した負電極16の電極容量評価セルを形成する(S15)。なお、S10における電極配置の順序を変更すれば、セル形成の順序を変更することができる。   When the predetermined charging / discharging cycle is completed, the second electrode support 14B is rotated 120 ° rightward in FIG. 3 so that the first positive electrode 15A and the second positive electrode 15B are opposed to each other. An electrode resistance evaluation cell for the electrode 15 is formed. Further, an electrode capacity evaluation cell of the negative electrode 16 is formed in which the first negative electrode 16A and the second reference electrode 17B, and the second negative electrode 16B and the first reference electrode 17A are opposed to each other (S15). In addition, if the order of electrode arrangement in S10 is changed, the order of cell formation can be changed.

S15によって形成された電極評価セルに基いて、正電極15の電極抵抗評価、及び負電極16の電極容量評価が実施される(S16)。所定の電極評価が終了するまで評価が継続される(S17)。   Based on the electrode evaluation cell formed in S15, the electrode resistance evaluation of the positive electrode 15 and the electrode capacity evaluation of the negative electrode 16 are performed (S16). The evaluation is continued until the predetermined electrode evaluation is completed (S17).

所定の電極評価が終了した場合には、第2電極支持体14Bを右方向にさらに120°回転させて、第1負電極16Aと第2負電極16Bとが対向配置された負電極16の電極抵抗評価セルを形成する。また、第1正電極15Aと第2基準電極17B、第2正電極15Bと第1基準電極17Aとが対向した正電極16の電極容量評価セルを形成する(S18)。   When the predetermined electrode evaluation is completed, the second electrode support 14B is further rotated 120 ° in the right direction, and the electrode of the negative electrode 16 in which the first negative electrode 16A and the second negative electrode 16B are arranged to face each other. A resistance evaluation cell is formed. Further, an electrode capacity evaluation cell of the positive electrode 16 in which the first positive electrode 15A and the second reference electrode 17B, and the second positive electrode 15B and the first reference electrode 17A are opposed to each other is formed (S18).

S18によって形成された電極評価セルに基いて、負電極16の電極抵抗評価、及び正電極15の電極容量評価が実施される(S19)。所定の電極評価が終了するまで評価が継続される(S20)。   Based on the electrode evaluation cell formed in S18, the electrode resistance evaluation of the negative electrode 16 and the electrode capacity evaluation of the positive electrode 15 are performed (S19). The evaluation is continued until the predetermined electrode evaluation is completed (S20).

S13〜S20が擬似電池セルの充放電から性能評価までのワンサイクル、即ち耐久性試験のワンサイクルを示す手順である。第2電極支持体14Aを元の状態(操作レバー26が操作レバー固定部27に嵌る位置まで)まで回転させることにより、再び擬似電池セルが形成され、充放電サイクルを実行することができる。従って、S13〜S20のサイクルを繰り返すことができ、継続して耐久性試験を実施することが可能になる。   S13 to S20 are procedures showing one cycle from charge / discharge of the pseudo battery cell to performance evaluation, that is, one cycle of the durability test. By rotating the second electrode support 14A to the original state (up to the position where the operation lever 26 fits the operation lever fixing portion 27), the pseudo battery cell is formed again, and the charge / discharge cycle can be executed. Therefore, the cycle of S13 to S20 can be repeated, and the durability test can be continuously performed.

また、性能評価装置10によれば、擬似電池セル本体11を分解する必要がないため(即ち、非破壊検査である)、電極抵抗評価の前後で、電極間距離や電極設置圧力等の条件(電池セルの状態)が変化することなく、同じ条件を維持して耐久性試験を継続することが可能になる。   Moreover, according to the performance evaluation apparatus 10, since it is not necessary to disassemble the pseudo battery cell main body 11 (that is, nondestructive inspection), conditions such as an interelectrode distance and an electrode installation pressure (before and after the electrode resistance evaluation) It is possible to continue the durability test while maintaining the same conditions without changing the state of the battery cells.

2次電池電極の性能評価装置の構成を示すブロック図である。It is a block diagram which shows the structure of the performance evaluation apparatus of a secondary battery electrode. 擬似電池セル本体を構成する2つの電極支持体が分離された状態を示す図である。It is a figure which shows the state by which the two electrode support bodies which comprise a pseudo battery cell main body were isolate | separated. 図2において電極支持体が当接対向配置された状態を示す図である。It is a figure which shows the state by which the electrode support body was contact | abutted and arranged in FIG. 図3の要部断面を示す模式図である。It is a schematic diagram which shows the principal part cross section of FIG. 2次電池電極の性能評価の手順を示すフローチャートである。It is a flowchart which shows the procedure of the performance evaluation of a secondary battery electrode.

符号の説明Explanation of symbols

10 電池電極の性能評価装置、11 擬似電池セル本体、12 充放電装置、13 電極評価装置、14 電極支持体、15 正電極、16 負電極、17 基準電極、18 電解液溜め、19 固定台、20 螺子、21回転軸、22 回転軸受け孔、23 貫通孔、24 貫通孔電極設置部、25 電極ターミナル、26 操作レバー、27 操作レバー固定部、28 電解液導入路、29 電解液流通溝、30 電解液導出路、31 シリンジ、32 シリンジ取付け部、33 ストッパ、34 集電体。   DESCRIPTION OF SYMBOLS 10 Battery electrode performance evaluation apparatus, 11 Pseudo battery cell main body, 12 Charging / discharging apparatus, 13 Electrode evaluation apparatus, 14 Electrode support body, 15 Positive electrode, 16 Negative electrode, 17 Reference electrode, 18 Electrolyte reservoir, 19 Fixing stand, 20 Screw, 21 Rotating shaft, 22 Rotating bearing hole, 23 Through hole, 24 Through hole electrode installation part, 25 Electrode terminal, 26 Operation lever, 27 Operation lever fixing part, 28 Electrolyte introduction path, 29 Electrolyte flow channel, 30 Electrolyte outlet path, 31 syringe, 32 syringe mounting part, 33 stopper, 34 current collector.

Claims (5)

性能評価対象となる正負電極を支持する少なくとも2つの電極支持体と電極間隙に充填される電解液とを含み、2つの電極支持体の相対位置を変化させることで、擬似セルと電極評価セルとを形成する擬似セル本体、擬似セルを充放電するための充放電装置、及び電極評価セルの電極を評価するための電極評価装置を備え、
擬似セル本体は、
少なくとも第1正電極及び第1負電極を支持する第1電極支持体と、
少なくとも第2正電極及び第2負電極を支持する第2電極支持体と、
を有し、
2つの電極支持体の相対位置を変化させることにより、第1正電極と第2負電極及び第1負電極と第2正電極がそれぞれ対向して充放電を行う擬似セル配置と、第1正電極と第2正電極及び第1負電極と第2負電極がそれぞれ対向して正負電極の電極抵抗を測定する電極抵抗評価セル配置とを形成することを特徴とする電極性能評価装置。
Including at least two electrode supports that support positive and negative electrodes that are performance evaluation targets and an electrolyte that fills the electrode gap, and by changing the relative positions of the two electrode supports, a pseudo cell and an electrode evaluation cell, A pseudo cell main body, a charge / discharge device for charging / discharging the pseudo cell, and an electrode evaluation device for evaluating an electrode of the electrode evaluation cell,
The pseudo cell body is
A first electrode support that supports at least the first positive electrode and the first negative electrode;
A second electrode support that supports at least the second positive electrode and the second negative electrode;
Have
By changing the relative positions of the two electrode supports, a pseudo-cell arrangement in which the first positive electrode and the second negative electrode and the first negative electrode and the second positive electrode face each other to charge and discharge, and the first positive electrode, An electrode performance evaluation apparatus comprising an electrode resistance evaluation cell arrangement in which an electrode and a second positive electrode, and a first negative electrode and a second negative electrode face each other to measure the electrode resistance of the positive and negative electrodes.
請求項1に記載の電極性能評価装置において、
第1及び第2電極支持体は、
さらに、正負電極それぞれの電極容量を測定する際に、正負電極の対電極となる第1及び第2基準電極をそれぞれ有し、
2つの電極支持体の相対位置を変化させることにより、擬似セル配置及び電極抵抗評価セル配置に加えて、第1正電極と第2基準電極、第1負電極と第2基準電極、第1基準電極と第2正電極、及び第1基準電極と第2負電極がそれぞれ対向して正負電極の電極容量を測定する電極容量評価セル配置を形成することを特徴とする電極性能評価装置。
In the electrode performance evaluation apparatus according to claim 1,
The first and second electrode supports are
Furthermore, when measuring the electrode capacity of each of the positive and negative electrodes, each of the first and second reference electrodes that are counter electrodes of the positive and negative electrodes,
By changing the relative position of the two electrode supports, in addition to the pseudo cell arrangement and the electrode resistance evaluation cell arrangement, the first positive electrode and the second reference electrode, the first negative electrode and the second reference electrode, the first reference An electrode capacity evaluation cell arrangement in which an electrode capacity evaluation cell arrangement is formed in which an electrode and a second positive electrode and a first reference electrode and a second negative electrode face each other to measure the electrode capacity of the positive and negative electrodes.
請求項1又は2に記載の電極性能評価装置において、
各電極支持体は、
相対的に回転可能な円盤形状であって、円盤面が対向して配置されると共に、円盤面上に回転の中心となる回転中心が形成され、
回転中心から等距離の円周上であって円周方向に沿った電極間距離が均等となる位置に各電極が支持或いは固定され、
2つの電極支持体の少なくとも一方を回転させて、その相対位置を変化させることにより、擬似セル配置及び電極評価セル配置を形成するときに、対向配置される各電極の間隙に電解液を充填するための電解液溜めが形成されることを特徴とする電極性能評価装置。
In the electrode performance evaluation apparatus according to claim 1 or 2,
Each electrode support is
It is a relatively rotatable disk shape, the disk surfaces are arranged opposite to each other, and a rotation center that is the center of rotation is formed on the disk surface,
Each electrode is supported or fixed at a position on the circumference equidistant from the center of rotation and the distance between the electrodes along the circumferential direction is equal,
By rotating at least one of the two electrode supports and changing the relative position thereof, when forming the pseudo cell arrangement and the electrode evaluation cell arrangement, the gap between the electrodes arranged opposite to each other is filled with the electrolytic solution. Electrode performance evaluation apparatus, wherein an electrolyte reservoir is formed.
請求項3に記載の電極性能評価装置において、
各電極支持体は、
円盤面同士が当接して対向配置され、
回転中心から等距離の円周上であって円周方向に沿った距離が均等となる位置に電極支持体を貫通する貫通孔を備え、
貫通孔の内部に電極を支持又は固定する貫通孔電極設置部材が設けられ、貫通孔に挿入され貫通孔電極設置部材に支持又は固定された電極に当接して、電極と充放電装置及び電極評価装置の少なくとも一方とを接続する電極ターミナルを有し、
2つの電極支持体の少なくとも一方を回転させて、擬似セル配置及び電極評価セル配置を形成するときに、各電極支持体の貫通孔同士が繋がって電解液溜めを形成し、
さらに、少なくとも1つの電極支持体は、電解液溜めに電解液を充填するための電解液充填路を有することを特徴とする電極性能評価装置。
In the electrode performance evaluation apparatus according to claim 3,
Each electrode support is
The disk surfaces are in contact with each other and arranged to face each other.
Provided with a through-hole penetrating the electrode support at a position on the circumference equidistant from the center of rotation and at equal distance along the circumferential direction,
A through-hole electrode installation member for supporting or fixing the electrode is provided inside the through-hole, and is in contact with the electrode inserted into the through-hole and supported or fixed by the through-hole electrode installation member, and the electrode, charge / discharge device, and electrode evaluation Having an electrode terminal connecting at least one of the devices;
When at least one of the two electrode supports is rotated to form a pseudo cell arrangement and an electrode evaluation cell arrangement, the through holes of each electrode support are connected to form an electrolyte reservoir,
Furthermore, at least one electrode support body has an electrolytic solution filling path for filling the electrolytic solution reservoir with the electrolytic solution, and an electrode performance evaluation apparatus.
請求項4に記載の電極性能評価装置において、
電解液充填路は、
内部円盤面から電極支持体を貫通して形成された電解液を導入するための電解液導入路及び余剰の電解液を導出するための電解液導出路と、
内部円盤面上に形成され、一端が電解液導入貫通路と繋がり各貫通孔を連通して他端が電解液導出貫通路に繋がる電解液流通溝と、
から構成され、
電解液溝が形成された一方の電極支持体の円盤面と他方の電極支持体の円盤面とが当接することにより電解液流通路が形成され、2つの電極支持体の少なくとも一方を回転させて、擬似セル配置及び電極評価セル配置を形成するときに、電解液導入路から電解液流通路を通って各電解液溜めに電解液が充填され、余剰の電解液は電解液導出路から導出されることを特徴とする電極性能評価装置。
In the electrode performance evaluation apparatus according to claim 4,
The electrolyte filling path is
An electrolyte solution introduction path for introducing an electrolyte solution formed through the electrode support from the inner disk surface and an electrolyte solution lead-out path for deriving excess electrolyte solution;
An electrolyte circulation groove formed on the inner disk surface, one end connected to the electrolyte introduction through passage and the other through the through hole, and the other end connected to the electrolyte discharge through passage;
Consisting of
An electrolyte flow path is formed when the disk surface of one electrode support in which the electrolyte groove is formed and the disk surface of the other electrode support are in contact with each other, and at least one of the two electrode supports is rotated. When forming the pseudo cell arrangement and the electrode evaluation cell arrangement, each electrolyte reservoir is filled with the electrolyte through the electrolyte flow path from the electrolyte introduction path, and the excess electrolyte is led out from the electrolyte lead-out path. An electrode performance evaluation apparatus.
JP2008203862A 2008-08-07 2008-08-07 Electrode performance evaluation device Expired - Fee Related JP5365089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008203862A JP5365089B2 (en) 2008-08-07 2008-08-07 Electrode performance evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008203862A JP5365089B2 (en) 2008-08-07 2008-08-07 Electrode performance evaluation device

Publications (2)

Publication Number Publication Date
JP2010040406A true JP2010040406A (en) 2010-02-18
JP5365089B2 JP5365089B2 (en) 2013-12-11

Family

ID=42012727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008203862A Expired - Fee Related JP5365089B2 (en) 2008-08-07 2008-08-07 Electrode performance evaluation device

Country Status (1)

Country Link
JP (1) JP5365089B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101255353B1 (en) * 2011-04-27 2013-04-16 에스케이이노베이션 주식회사 Manufacturing method for battery
KR20180022595A (en) * 2016-08-23 2018-03-06 주식회사 엘지화학 Test Cell Providing High-Reliable Test Result Regarding Test of Electrode Characteristic
WO2022257566A1 (en) * 2021-06-09 2022-12-15 蜂巢能源科技股份有限公司 Three-electrode cell structure and preparation method therefor, and method for testing negative electrode potential

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888039A (en) * 1994-09-19 1996-04-02 Tooma Japan:Kk Terminal board common to various kinds of batteries
JP2000285909A (en) * 1999-03-31 2000-10-13 Mitsubishi Cable Ind Ltd Testing device of electrode plate for lithium ion secondary battery
JP2004020327A (en) * 2002-06-14 2004-01-22 Jfe Chemical Corp Measuring instrument for measuring expansion coefficient of electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888039A (en) * 1994-09-19 1996-04-02 Tooma Japan:Kk Terminal board common to various kinds of batteries
JP2000285909A (en) * 1999-03-31 2000-10-13 Mitsubishi Cable Ind Ltd Testing device of electrode plate for lithium ion secondary battery
JP2004020327A (en) * 2002-06-14 2004-01-22 Jfe Chemical Corp Measuring instrument for measuring expansion coefficient of electrode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101255353B1 (en) * 2011-04-27 2013-04-16 에스케이이노베이션 주식회사 Manufacturing method for battery
KR20180022595A (en) * 2016-08-23 2018-03-06 주식회사 엘지화학 Test Cell Providing High-Reliable Test Result Regarding Test of Electrode Characteristic
CN108369259A (en) * 2016-08-23 2018-08-03 株式会社Lg化学 The test battery with high reliability in electrode characteristic test
KR102003709B1 (en) * 2016-08-23 2019-10-17 주식회사 엘지화학 Test Cell Providing High-Reliable Test Result Regarding Test of Electrode Characteristic
US11081736B2 (en) 2016-08-23 2021-08-03 Lg Chem, Ltd. Test cell with high reliability in electrode characteristic test
WO2022257566A1 (en) * 2021-06-09 2022-12-15 蜂巢能源科技股份有限公司 Three-electrode cell structure and preparation method therefor, and method for testing negative electrode potential

Also Published As

Publication number Publication date
JP5365089B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5850492B2 (en) Battery system and battery evaluation method
Momma et al. Distinction of impedance responses of Li-ion batteries for individual electrodes using symmetric cells
CN101311703B (en) Method and device for measuring non-aqueous electrolyte battery moisture
CN107959056A (en) Battery is tested in three poles
CN111009679A (en) Three-electrode battery cell, three-electrode soft package battery and preparation method thereof
CN113138345B (en) Method for evaluating performance of lithium ion battery by using symmetrical battery
CN112557931B (en) Device and method for detecting health degree of metal lithium battery
KR20200035594A (en) Non-destructive method for detecting disconnection of battery cell using pressing force
Horváth et al. Quantifying the effect of separator thickness on rate performance in lithium-ion batteries
JP5365089B2 (en) Electrode performance evaluation device
CN211088434U (en) Three-electrode battery
KR101471775B1 (en) Method of inspecting for lithium ion secondary battery
JP2011100634A (en) Nonaqueous electrolyte secondary battery with nonaqueous electrolyte injection function, and nonaqueous electrolyte secondary battery and nonaqueous electrolyte injector used for this
JP6531388B2 (en) Non-aqueous electrolyte secondary battery and method of evaluating gas generation amount in battery using the battery.
CN110146826A (en) Commercial li-ion battery electrode degradation analysis method based on three-electrode system
JP2013134843A (en) Inspection method of secondary battery
CN105785270A (en) Measurement method for measuring energy state operation interval of battery string
WO2023149532A1 (en) Secondary battery diagnostic method and secondary battery diagnostic program
Ahmadi et al. A modeling approach for optimization of printed nmc622 cathode for capacity density improvement under fast charging condition-3d simulation and experimental validation
Mendoza-Hernandez et al. Electrochemical impedance study of LiCoO 2 cathode reactions in a lithium ion cell incorporating a reference electrode
KR101653689B1 (en) Method of nondestructive stiffness inspection in battery cell and apparatus thereof
CN102192935A (en) Electrolytic cell, apparatus and method for electrochemical measurement
KR101442403B1 (en) Method of manufacturing lithium secondary battery
KR20200144269A (en) Device and Method for Testing Characteristics of Electrode
JP2019158448A (en) Electrode plate inspection apparatus and electrode plate inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R151 Written notification of patent or utility model registration

Ref document number: 5365089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees