JP2004020327A - Measuring instrument for measuring expansion coefficient of electrode - Google Patents

Measuring instrument for measuring expansion coefficient of electrode Download PDF

Info

Publication number
JP2004020327A
JP2004020327A JP2002174464A JP2002174464A JP2004020327A JP 2004020327 A JP2004020327 A JP 2004020327A JP 2002174464 A JP2002174464 A JP 2002174464A JP 2002174464 A JP2002174464 A JP 2002174464A JP 2004020327 A JP2004020327 A JP 2004020327A
Authority
JP
Japan
Prior art keywords
electrode
displacement measuring
displacement
volume
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002174464A
Other languages
Japanese (ja)
Inventor
Kazuyuki Murakami
村上 一幸
Toshiharu Nonaka
野中 俊晴
Hidetoshi Morotomi
諸富 秀俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2002174464A priority Critical patent/JP2004020327A/en
Publication of JP2004020327A publication Critical patent/JP2004020327A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To quantitatively measure a volume expansion or contraction phenomenon of an electrode in charge and discharge for a lithium ion secondary battery, an electric double layer capacitor or the like on the spot, when an electrode material is manufactured before assembled into the battery or the like. <P>SOLUTION: This expansion coefficient measuring instrument in the charge and discharge of the electrode is constituted of a displacement measuring instrument main body having a cell part for storing an electrolyte to immerse the electrode, a displacement measuring terminal contacting directly with the electrode to measure a displacement of an electrode volume in the charge and discharge, a sealing part for keeping inert measuring atmosphere, a volume displacement measuring part and a frame part for fixing a position of the cell part, and a data processing part for processing a signal from the displacement measuring instrument main body. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池や電気二重層キャパシタなどの充放電における電極の体積膨張および収縮現象をその場で定量的に測定することができる膨張率測定装置に関する。
【0002】
【従来の技術】
近年のIT化の発達により、各種携帯機器の技術革新が著しい。これら携帯機器の発達は、その使用するエネルギーの増加を伴っており、ニッケル水素やリチウムイオンなどを利用する二次電池、および電気二重層を用いたキャパシタなど、電気エネルギー供給部材に対してより高密度化が要求されている。
【0003】
各種電池などにおいて、限られた容積で高エネルギー密度を達成するために、電池の構成材料(例えば、電極)そのもの、あるいは電池などのパッケージ技術で種々検討が重ねられているが、電極自体が充放電によりどれだけ体積変化するかが重要な問題となっており、電極材料の改良のためには、充放電と同時に生じる電極の膨張・収縮挙動を定量的に評価できる装置が必要となる。
【0004】
しかしながら、従来技術では、電極の体積膨張などに関し、電池などの内圧変化からの間接情報や充放電後の電極の体積変化の測定による以外に適当な方法が知られていない。
従って本発明の目的は、リチウムイオン二次電池や電気二重層キャパシタなどの充放電時における電極の体積膨張および収縮現象を、電池などに組み込む前の電極材料の製造時に、その場で定量的に測定できる装置を提供することである。
【0005】
【課題を解決するための手段】
上記目的は以下の本発明によって達成される。すなわち、本発明は、電解液を収納し電極を浸漬するセル部と、該電極に直接接触し充放電時の電極体積の変位を測定する変位測定端子と、測定雰囲気を不活性に保つシール部と、体積変位測定部とセル部の位置を固定する架台部とを有する変位測定器本体と、該変位測定器本体からの信号を処理するデータ処理部とから構成されていることを特徴とする電極の充放電時の膨張率測定装置を提供する。
【0006】
【発明の実施の形態】
次に好ましい実施の形態を挙げて本発明をさらに詳しく説明するが、これらの実施の形態およびその考察の当否によって本発明は何ら制限されるものではない。
本発明の装置において、被検体である電極を電解液に浸漬するセル部は、電気絶縁性、セル内を不活性雰囲気に保つ気密構造、および測定端子を電極に直接接触することができる導入部を有していれば、その形状および材質は特に規定されるものではないが、例えば、ガラス製ビーカーセルや絶縁機構付ステンレスセルなどが好適に用いられる。
【0007】
また、電池などの充放電時の電極の体積変位を測定する変位測定端子は、電極の膨張および収縮現象を正確に反映できる剛性および電解液に対する耐薬品性、かつ自重による電極の膨張の抑制を起こさせない程度の軽量である必要があることから、CFRPロッド、あるいはポリテトラフルオロエチレン被覆アルミロッドなどが好適に用いられる。
【0008】
測定雰囲気を不活性に保つシール部は、化学実験の撹拌操作において一般的に用いられるシール機構をそのまま転用することができる。変位測定部とセル部の位置を固定する架台部は、充分な剛性、水平調整機構、セル固定部、変位測定器固定部およびその調整機構をもつことが必要とされる。これらの特性を満たすものとして、小型材料試験機の可動アーム部に変位測定器を取り付けた形状が好適に用いられる。
【0009】
また、変位測定器は、リニアエンコーダ、作動トランス、マイクロメータ、歪ゲージなどの電極の変位を電気信号に変換できるものであれば、いずれも用いることができるが、測定範囲および精度の点から、作動トランスを用いるのが好ましい。
【0010】
変位測定器本体からの信号を処理するデータ処理部は、アンプ、A/D変換機構、データ処理演算機構を有することが必要であり、市販のAD変換機および信号処理ソフトを有するパソコンが使用できる。
【0011】
【実施例】
次に実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれに限定されるものではない。
(実施例)
図1に本発明の電極の膨張率測定装置の全体構成を示す。本発明の装置は、変位測定装置本体、および信号アンプ部、およびデータ収集/処理パソコンなどを有するデータ処理部およびそれらを繋ぐケーブルよりなる。
【0012】
図2に、本発明の膨張率測定装置本体を示す。電極を入れるセル部は、ガラスビーカーセルを用いた。本セルは中央すり合わせで上下に分割でき、電極および電解液の出し入れを行うことができる。また、セル上部にポリテトラフルオロエチレン製ガスシール部を設けている。セルに導入する変位測定端子は軽量のポリテトラフルオロエチレン被覆アルミロッドを用いた。
【0013】
セル部は、本体架台下部に固定され、その直上に変位測定器として作動トランスを固定する変位測定器取付アームを有している。このアームを調整することにより、電極の充放電前に変位測定端子と変位測定器が接触されるように固定することができる。さらに充放電時には、変位測定器により得られた変位信号はアンプ部で増幅され、データ処理パソコンへ送られる。
【0014】
これら一連のシステムにより充放電における電極の膨張率が測定可能となった。図3に、本装置を用いた電気二重層キャパシタ用電極の充放電における膨張・収縮測定例を示す。縦軸は電極の膨張率(%)および電圧(V)を示し、横軸は測定時間を示している。図3において曲線Aは膨張率を示し、曲線Bは電圧を示す。図3に示すように電解液中における電極は、その充放電時に体積の膨張および収縮を繰り返すこと、および最大体積膨張率が容易に測定できることから、これらのデータを用いることによって、各種電池やキャパシタの設計が容易になり、製品の不良品発生率を著しく低下させることができる。
【0015】
【発明の効果】
本発明によれば、リチウムイオン二次電池や電気二重層キャパシタなどの充放電時における電極の体積膨張および収縮現象を、電池などに組み込む前の電極材料の製造時に、その場で定量的に測定できる装置を提供することができる。
【図面の簡単な説明】
【図1】膨張率測定装置全体構成図。
【図2】膨張率測定装置本体図。
【図3】電気二重層キャパシタの充放電時の電極体積の膨張収縮測定例。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an expansion rate measuring apparatus capable of quantitatively measuring the volume expansion and contraction phenomena of an electrode during charging and discharging of a lithium ion secondary battery, an electric double layer capacitor, and the like in situ.
[0002]
[Prior art]
With the development of IT in recent years, technical innovations of various portable devices have been remarkable. The development of these portable devices has been accompanied by an increase in the energy used, and higher power has been applied to electric energy supply members such as secondary batteries using nickel hydride or lithium ions, and capacitors using electric double layers. Densification is required.
[0003]
In order to achieve a high energy density in a limited volume in various batteries, various studies have been made on the materials of the batteries (for example, electrodes) or on the packaging technology of batteries, etc., but the electrodes themselves are not sufficient. An important issue is how much the volume changes due to electric discharge. In order to improve the electrode material, a device capable of quantitatively evaluating the expansion and contraction behavior of the electrode that occurs simultaneously with charging and discharging is required.
[0004]
However, in the related art, there is no known method for volume expansion of the electrode other than indirect information from a change in internal pressure of a battery or the like or measurement of a volume change of the electrode after charging and discharging.
Therefore, an object of the present invention is to quantitatively measure the volume expansion and contraction phenomena of an electrode during charging and discharging of a lithium ion secondary battery, an electric double layer capacitor, etc., at the time of manufacturing an electrode material before incorporating it into a battery or the like. It is to provide a device that can be measured.
[0005]
[Means for Solving the Problems]
The above object is achieved by the present invention described below. That is, the present invention provides a cell section for containing an electrolyte and immersing an electrode, a displacement measuring terminal for directly contacting the electrode and measuring the displacement of the electrode volume during charging and discharging, and a sealing section for keeping the measurement atmosphere inert. And a displacement measuring device main body having a volume displacement measuring unit and a gantry for fixing the position of the cell unit, and a data processing unit for processing a signal from the displacement measuring device main body. Provided is an apparatus for measuring an expansion coefficient during charging and discharging of an electrode.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in more detail with reference to preferred embodiments, but the present invention is not limited at all by these embodiments and the consideration of the considerations.
In the apparatus of the present invention, the cell section in which the electrode as the subject is immersed in the electrolytic solution has electrical insulation, an airtight structure for keeping the inside of the cell in an inert atmosphere, and an introduction section in which the measurement terminal can directly contact the electrode. The shape and material are not particularly limited as long as they have the following, but, for example, a glass beaker cell or a stainless steel cell with an insulating mechanism is preferably used.
[0007]
In addition, the displacement measurement terminal that measures the volume displacement of the electrode during charging and discharging of batteries etc. has rigidity and chemical resistance to electrolyte that can accurately reflect the expansion and contraction phenomenon of the electrode, and suppresses the expansion of the electrode due to its own weight. A CFRP rod, a polytetrafluoroethylene-coated aluminum rod, or the like is preferably used because it needs to be light enough to prevent it from being raised.
[0008]
As the seal portion for keeping the measurement atmosphere inert, a seal mechanism generally used in a stirring operation in a chemical experiment can be diverted as it is. The gantry for fixing the positions of the displacement measuring section and the cell section needs to have sufficient rigidity, a horizontal adjustment mechanism, a cell fixing section, a displacement measuring instrument fixing section, and its adjusting mechanism. As a material that satisfies these characteristics, a shape in which a displacement measuring device is attached to a movable arm portion of a small material testing machine is suitably used.
[0009]
In addition, any displacement measuring device can be used as long as it can convert the displacement of an electrode into an electric signal, such as a linear encoder, an operating transformer, a micrometer, and a strain gauge, but from the viewpoint of the measurement range and accuracy, It is preferred to use a working transformer.
[0010]
The data processing unit that processes signals from the displacement measuring device main body needs to have an amplifier, an A / D conversion mechanism, and a data processing operation mechanism, and a commercially available AD converter and a personal computer having signal processing software can be used. .
[0011]
【Example】
Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
(Example)
FIG. 1 shows an overall configuration of an electrode expansion coefficient measuring apparatus according to the present invention. The apparatus of the present invention comprises a displacement measuring device main body, a signal amplifier unit, a data processing unit having a data collection / processing personal computer and the like, and a cable connecting them.
[0012]
FIG. 2 shows the expansion coefficient measuring device main body of the present invention. A glass beaker cell was used as a cell part for placing an electrode. This cell can be divided into upper and lower parts by centering, so that electrodes and electrolyte can be taken in and out. Further, a gas seal portion made of polytetrafluoroethylene is provided on the upper part of the cell. As a displacement measuring terminal to be introduced into the cell, a lightweight polytetrafluoroethylene-coated aluminum rod was used.
[0013]
The cell section is fixed to a lower portion of the main body base, and has a displacement measuring instrument mounting arm for fixing an operation transformer as a displacement measuring instrument immediately above the cell section. By adjusting this arm, the displacement measuring terminal and the displacement measuring device can be fixed so as to be in contact with each other before charging and discharging of the electrode. Further, at the time of charge / discharge, the displacement signal obtained by the displacement measuring device is amplified by the amplifier and sent to the data processing personal computer.
[0014]
These series of systems have made it possible to measure the expansion rate of the electrodes during charging and discharging. FIG. 3 shows an example of measurement of expansion and contraction in charging and discharging of an electrode for an electric double layer capacitor using this device. The vertical axis indicates the expansion rate (%) and voltage (V) of the electrode, and the horizontal axis indicates the measurement time. In FIG. 3, curve A shows the expansion rate, and curve B shows the voltage. As shown in FIG. 3, the electrodes in the electrolytic solution repeatedly expand and contract in volume during charging and discharging, and the maximum volume expansion rate can be easily measured. Can be easily designed, and the incidence of defective products can be significantly reduced.
[0015]
【The invention's effect】
According to the present invention, the volume expansion and contraction phenomena of the electrodes during charging and discharging of lithium ion secondary batteries and electric double layer capacitors are quantitatively measured in situ during the production of electrode materials before being incorporated in batteries and the like. A device capable of providing the same can be provided.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of an expansion coefficient measuring device.
FIG. 2 is a diagram of the expansion coefficient measuring device main body.
FIG. 3 shows an example of measurement of expansion and contraction of an electrode volume during charging and discharging of an electric double layer capacitor.

Claims (1)

電解液を収納し電極を浸漬するセル部と、該電極に直接接触し充放電時の電極体積の変位を測定する変位測定端子と、測定雰囲気を不活性に保つシール部と、体積変位測定部とセル部の位置を固定する架台部とを有する変位測定器本体と、該変位測定器本体からの信号を処理するデータ処理部とから構成されていることを特徴とする電極の充放電時の膨張率測定装置。A cell section for containing the electrolyte and immersing the electrode, a displacement measuring terminal for directly contacting the electrode to measure the displacement of the electrode volume during charge and discharge, a seal section for keeping the measurement atmosphere inert, and a volume displacement measuring section And a displacement measuring device main body having a gantry portion for fixing the position of the cell portion, and a data processing unit for processing a signal from the displacement measuring device main body, which is characterized by being constituted by: Expansion coefficient measuring device.
JP2002174464A 2002-06-14 2002-06-14 Measuring instrument for measuring expansion coefficient of electrode Pending JP2004020327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002174464A JP2004020327A (en) 2002-06-14 2002-06-14 Measuring instrument for measuring expansion coefficient of electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002174464A JP2004020327A (en) 2002-06-14 2002-06-14 Measuring instrument for measuring expansion coefficient of electrode

Publications (1)

Publication Number Publication Date
JP2004020327A true JP2004020327A (en) 2004-01-22

Family

ID=31173425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002174464A Pending JP2004020327A (en) 2002-06-14 2002-06-14 Measuring instrument for measuring expansion coefficient of electrode

Country Status (1)

Country Link
JP (1) JP2004020327A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040406A (en) * 2008-08-07 2010-02-18 Toyota Motor Corp Electrode performance evaluation device
KR101077070B1 (en) * 2011-06-14 2011-10-26 (주)엠오텍 Secondary battery material characteristic evaluation device
JP2014165059A (en) * 2013-02-26 2014-09-08 Mitsubishi Heavy Ind Ltd Battery container deformation inspection equipment
CN106842054A (en) * 2017-02-09 2017-06-13 超威电源有限公司 A kind of device for detecting the performances of the lead-acid battery under different assembling pressures
CN109959360A (en) * 2019-03-20 2019-07-02 上海卡耐新能源有限公司 A kind of measuring system and method for soft package lithium battery cathode expansion rate
CN110082681A (en) * 2019-04-30 2019-08-02 上海卡耐新能源有限公司 A kind of method of in-situ test battery cathode expansion rate
CN111928805A (en) * 2020-07-31 2020-11-13 中国科学院宁波材料技术与工程研究所 Method for testing and analyzing expansion rate of silicon-based negative electrode material
CN114062929A (en) * 2021-11-15 2022-02-18 蜂巢能源科技有限公司 Design method of lithium battery expansion space and equipment for designing lithium battery expansion space

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040406A (en) * 2008-08-07 2010-02-18 Toyota Motor Corp Electrode performance evaluation device
KR101077070B1 (en) * 2011-06-14 2011-10-26 (주)엠오텍 Secondary battery material characteristic evaluation device
JP2014165059A (en) * 2013-02-26 2014-09-08 Mitsubishi Heavy Ind Ltd Battery container deformation inspection equipment
CN106842054A (en) * 2017-02-09 2017-06-13 超威电源有限公司 A kind of device for detecting the performances of the lead-acid battery under different assembling pressures
CN109959360A (en) * 2019-03-20 2019-07-02 上海卡耐新能源有限公司 A kind of measuring system and method for soft package lithium battery cathode expansion rate
CN109959360B (en) * 2019-03-20 2021-06-04 上海卡耐新能源有限公司 System and method for measuring expansion rate of negative electrode of soft package lithium battery
CN110082681A (en) * 2019-04-30 2019-08-02 上海卡耐新能源有限公司 A kind of method of in-situ test battery cathode expansion rate
CN111928805A (en) * 2020-07-31 2020-11-13 中国科学院宁波材料技术与工程研究所 Method for testing and analyzing expansion rate of silicon-based negative electrode material
CN114062929A (en) * 2021-11-15 2022-02-18 蜂巢能源科技有限公司 Design method of lithium battery expansion space and equipment for designing lithium battery expansion space
CN114062929B (en) * 2021-11-15 2023-09-22 蜂巢能源科技有限公司 Design method of expansion space of lithium battery and equipment for designing expansion space of lithium battery

Similar Documents

Publication Publication Date Title
JP5444762B2 (en) Pressure measuring device and thickness measuring device
US5438249A (en) Method of state-of-charge indication by measuring the thickness of a battery
KR102623517B1 (en) Apparatus and method for measuring mechanical property related to deformation of object
CN102980903B (en) A kind of synchrotron radiation X ray device for analyzing electrode material electrochemical performance and application thereof
CN209991940U (en) Battery pole piece thickness variation measuring device and system
CN108398446B (en) In-situ device for testing synchrotron radiation X-ray absorption spectrum of battery electrode material
CN208460908U (en) For measuring the three-electrode battery of battery electrochemical specific surface area active
CN212206442U (en) Expansive force testing device
JP2004020327A (en) Measuring instrument for measuring expansion coefficient of electrode
CN109974655A (en) A kind of apparatus and method for of online no pressure detection lithium battery silicon-carbon cathode pole piece expansion
CN105987855A (en) Method for measuring water of battery cell
CN113030138A (en) All-solid-state battery reaction chamber for in-situ XRD and Raman tests and test method
CN111129432A (en) Novel reference electrode and three-electrode system for nondestructive testing of lithium ion battery industry and method
KR20170116539A (en) Vertical resistance measurement device of lithium-sulfur battery and method for evaluating cathode of lithium-sulfur battery using the same
CN109752657A (en) Nuclear magnetic resonance original position battery testing attachment and its test method
CN111122036A (en) Battery cell circulating expansion detection method and detection device thereof
CN113358019B (en) Measuring and calculating method for electrochemical specific surface area of lithium ion battery anode material and application thereof
CN104730465B (en) Lithium ion battery detection system and detection method adopting same
JP2010230355A (en) Analysis system, electrochemical cell for analysis, and analysis method
CN111580001A (en) Battery volume change in-situ testing device
Zheng Resistance distribution in electrochemical capacitors with a bipolar structure
JP2016122505A (en) Nonaqueous electrolyte secondary battery, and method for evaluation of in-battery gas generation amount with such battery
CN211856411U (en) X-ray photoelectron spectroscopy electrochemical in-situ cell
CN109916769A (en) A kind of test method of the compacted density for powder material
CN210268587U (en) Laminate polymer battery normal position pressurization thickness measuring device