JP5444762B2 - Pressure measuring device and thickness measuring device - Google Patents

Pressure measuring device and thickness measuring device Download PDF

Info

Publication number
JP5444762B2
JP5444762B2 JP2009047878A JP2009047878A JP5444762B2 JP 5444762 B2 JP5444762 B2 JP 5444762B2 JP 2009047878 A JP2009047878 A JP 2009047878A JP 2009047878 A JP2009047878 A JP 2009047878A JP 5444762 B2 JP5444762 B2 JP 5444762B2
Authority
JP
Japan
Prior art keywords
single cell
pressure
distribution
measured
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009047878A
Other languages
Japanese (ja)
Other versions
JP2010032492A (en
Inventor
勝之 北条
道明 有竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009047878A priority Critical patent/JP5444762B2/en
Publication of JP2010032492A publication Critical patent/JP2010032492A/en
Application granted granted Critical
Publication of JP5444762B2 publication Critical patent/JP5444762B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Secondary Cells (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

本発明は圧力測定装置に関する。特に、平板状の被測定物の体積変化を測定するために用いられる圧力測定装置に関する。本発明はまた、その圧力測定装置を利用した厚み測定装置にも関する。   The present invention relates to a pressure measuring device. In particular, the present invention relates to a pressure measuring device used for measuring a volume change of a flat object to be measured. The present invention also relates to a thickness measuring device using the pressure measuring device.

平板状の被測定物の特性を測定する技術が特許文献1に開示されている。特許文献1には、リチウムイオン二次電池の単セル(正極板とセパレータと負極板の積層体)の電気化学特性を測定する装置が開示されている。その装置は、平板状の単セルを表裏面から挟持する一対の固定部材を備えている。一対の固定部材の一方には溝が形成されている。その溝内に単セルと電解液を収容した後、一対の固定部材によって単セルと電解液を密封する。単セルの電気化学特性を知るために充放電に伴う体積変化を測定する場合、固定部材を貫通する孔を形成し、ピストンや変位センサを用いて単セルの体積変化を測定する。すなわち、単セルが膨張すると溝内の圧力が上昇し、単セルが収縮すると溝内の圧力が低下するという現象を利用して単セルの体積変化を測定する。   A technique for measuring the characteristics of a flat object to be measured is disclosed in Patent Document 1. Patent Document 1 discloses an apparatus for measuring electrochemical characteristics of a single cell (a laminate of a positive electrode plate, a separator, and a negative electrode plate) of a lithium ion secondary battery. The apparatus includes a pair of fixing members that clamp flat plate single cells from the front and back surfaces. A groove is formed in one of the pair of fixing members. After the single cell and the electrolytic solution are accommodated in the groove, the single cell and the electrolytic solution are sealed by a pair of fixing members. When measuring the volume change accompanying charging / discharging in order to know the electrochemical characteristics of the single cell, a hole penetrating the fixing member is formed, and the volume change of the single cell is measured using a piston or a displacement sensor. That is, the change in volume of the single cell is measured by utilizing the phenomenon that when the single cell expands, the pressure in the groove increases, and when the single cell contracts, the pressure in the groove decreases.

特開2006−147513号公報JP 2006-147513 A

例えばリチウムイオン二次電池は、充放電に伴って単セル内の体積が変化する。このとき、単セル内に充放電特性のばらつきが存在すれば、単セルに生じる体積変化にもばらつきが生じる。従って、単セル内の充放電特性が均一なリチウムイオン二次電池を得るためには、単セル内に生じる体積変化の分布を測定することが必要となる。
特許文献1の装置は、被測定物(単セル)全体の体積変化を測定することができる。換言すると、被測定物の平均的な体積変化を測定することができる。しかしながら、平板状の被測定物に生じた体積変化の分布を測定することができない。そのことから、特許文献1の装置を用いても、単セル内の充放電特性が均一か否かを確認することは不可能といえる。
本発明は、上記の課題を解決するものであり、平板状の被測定物に生じる体積変化の分布を測定可能な装置を提供することを目的とする。
For example, in a lithium ion secondary battery, the volume in a single cell changes with charge / discharge. At this time, if there is a variation in charge / discharge characteristics in the single cell, the volume change occurring in the single cell also varies. Therefore, in order to obtain a lithium ion secondary battery having uniform charge / discharge characteristics in a single cell, it is necessary to measure the distribution of volume changes occurring in the single cell.
The apparatus of Patent Document 1 can measure the volume change of the entire object to be measured (single cell). In other words, the average volume change of the object to be measured can be measured. However, it is impossible to measure the distribution of the volume change generated in the flat object to be measured. Therefore, even if the apparatus of Patent Document 1 is used, it can be said that it is impossible to confirm whether the charge / discharge characteristics in the single cell are uniform.
The present invention solves the above-described problems, and an object of the present invention is to provide an apparatus that can measure the distribution of volume change occurring in a flat plate-like object to be measured.

本明細書に開示する圧力測定装置は、平板状の被測定物を表裏面から挟持する一対の固定部材と、一対の固定部材の内側面の少なくとも一方に設けられているとともに、被測定物と固定部材の間に生じる圧力分布を検出する平板状の圧力センサを備えている。なお、「一対の固定部材が平板状の被測定物を表裏面から挟持する」とは、被測定物と固定部材の間に生じる圧力に係わらず一対の固定部材間の相対的な位置が変化しない形態、及び、被測定物と固定部材の間に生じる圧力に応じて一対の固定部材間の相対的な位置が変化する形態の双方を含む。また、一対の固定部材間の相対的な位置が変化する形態の場合、固定部材の自重だけで被測定部材を挟持してもよいし、固定部材を被測定物に対して付勢する部品を使用してもよい。なお、本明細書で開示する圧力測定装置は、被測定物が蓄電素子の単セルであり、その単セルを充放電する充放電装置をさらに備えている。 The pressure measuring device disclosed in the present specification is provided on at least one of a pair of fixing members for sandwiching a plate-like object to be measured from the front and back surfaces, and an inner surface of the pair of fixing members, A flat plate-shaped pressure sensor for detecting a pressure distribution generated between the fixed members is provided. Note that “the pair of fixing members sandwich the flat object to be measured from the front and back surfaces” means that the relative position between the pair of fixing members changes regardless of the pressure generated between the object to be measured and the fixing member. And a form in which the relative position between the pair of fixing members changes according to the pressure generated between the object to be measured and the fixing member. In the case where the relative position between the pair of fixing members is changed, the member to be measured may be clamped only by the weight of the fixing member, or a component that urges the fixing member against the object to be measured may be provided. May be used. Note that the pressure measurement device disclosed in the present specification further includes a charge / discharge device that charges and discharges the single cell, in which the object to be measured is a single cell of a power storage element.

平板状の被測定物の一部が体積変化すると、対応する位置の被測定物と固定部材の間の圧力が変化する。上記圧力測定装置では、固定部材の内側面に圧力分布を検出する圧力センサが設けられているので、被測定物に生じた体積変化の程度を位置毎に測定することができる。すなわち、平板上の被測定物に生じた体積変化の分布を測定することができる。なお、以下の説明で「圧力分布」という場合、圧力センサによって測定された「被測定物と固定部材の間に生じる圧力分布」のことをいう。   When a part of the flat object to be measured changes in volume, the pressure between the object to be measured at the corresponding position and the fixing member changes. In the pressure measuring device, since the pressure sensor for detecting the pressure distribution is provided on the inner surface of the fixed member, it is possible to measure the degree of volume change generated in the object to be measured for each position. That is, it is possible to measure the distribution of the volume change generated in the object to be measured on the flat plate. In the following description, the term “pressure distribution” refers to “pressure distribution generated between an object to be measured and a fixed member” measured by a pressure sensor.

上記したように、本明細書で開示する圧力測定装置は、被測定物が蓄電素子の単セルであ、その単セルを充放電する充放電装置をさらに備えている。
蓄電素子の単セルを充放電すると、単セルを構成している電極板に体積変化が生じる。単セルを構成している電極板に局所的な異常(配合の不均一や、異物の混入等)が存在すると、単セルに生じる体積変化も局所的に相違する。この圧力測定装置によると、充放電に伴って電極板に生じた体積変化の分布を測定することができ、電極板に存在する局所的な異常を検出することが可能となる。なお、「蓄電素子の単セル」とは、電解質を介して対向する一対の電極板のことをいう。
As described above, the pressure measuring equipment disclosed herein, Ri single cell der of the object to be measured is the power storage device, that further comprise a rechargeable device for charging and discharging the unit cell.
When charging / discharging the single cell of an electrical storage element, a volume change will arise in the electrode plate which comprises the single cell. If there is a local abnormality (unevenness of mixing, mixing of foreign substances, etc.) in the electrode plate constituting the single cell, the volume change occurring in the single cell is also locally different. According to this pressure measuring device, it is possible to measure the distribution of volume changes that occur in the electrode plate due to charge / discharge, and it is possible to detect local abnormalities existing in the electrode plate. Note that the “single cell of a power storage element” refers to a pair of electrode plates facing each other with an electrolyte interposed therebetween.

蓄電素子が二次電池の場合、圧力センサが、少なくとも単セルの負極側に位置する固定部材に設けられていることが好ましい。
二次電池の場合、充放電に伴って、正極板の体積変化よりも負極板の体積変化の方が顕著に現れることが多い。圧力センサが単セルの負極側に位置する固定部材に設けられていれば、単セルに生じた体積変化の分布を感度よく測定することができる。
In the case where the storage element is a secondary battery, it is preferable that the pressure sensor is provided on a fixing member positioned at least on the negative electrode side of the single cell.
In the case of a secondary battery, a change in volume of the negative electrode plate often appears more significantly than a change in volume of the positive electrode plate with charge and discharge. If the pressure sensor is provided on the fixing member located on the negative electrode side of the single cell, the distribution of the volume change generated in the single cell can be measured with high sensitivity.

被測定物が蓄電素子の単セルの場合、圧力測定装置は、一対の固定部材を収容するとともに、蓄電素子の電解質を貯留可能な電解質槽をさらに備えていることが好ましい。
蓄電素子では、イオンが電解質を介して一対の電極間を移動する。そのため、一対の電極間に電解質を保持させる必要がある。例えば、単セルをフィルム材等で覆い、そのフィルム材内に電解質を封入しなくてはいけない。単セルと圧力センサの間にフィルム材等が存在すると、そのフィルム材等によって、単セルと固定部材の間に生じた圧力変化の検出感度が低下することがある。それに対して、上記した電解質槽を備えていれば、単セルをフィルム材等で覆う必要がなくなり、蓄電素子の単セルと固定部材の間に生じた圧力をより正確に検出することができる。
When the object to be measured is a single cell of a power storage element, it is preferable that the pressure measuring device further includes an electrolyte tank capable of storing a pair of fixing members and storing the electrolyte of the power storage element.
In a power storage element, ions move between a pair of electrodes through an electrolyte. Therefore, it is necessary to hold the electrolyte between the pair of electrodes. For example, a single cell must be covered with a film material or the like, and an electrolyte must be enclosed in the film material. If a film material or the like exists between the single cell and the pressure sensor, the sensitivity of detection of a pressure change generated between the single cell and the fixing member may be reduced due to the film material or the like. On the other hand, if the above-described electrolyte tank is provided, it is not necessary to cover the single cell with a film material or the like, and the pressure generated between the single cell of the power storage element and the fixing member can be detected more accurately.

被測定物が蓄電素子の単セルの場合、圧力測定装置は、充放電装置による充電前に圧力センサによって測定された圧力分布と、充放電装置による充電後に圧力センサによって測定された圧力分布との差分の分布を計算する圧力分布計算装置をさらに備えていることが好ましい。
単セルに凹凸が存在すると、単セルを充電していないにも係わらず、単セルと固定部材の間に圧力分布が存在する。充電後の単セルと固定部材の間の圧力分布のみでは、その圧力分布が充電による単セルの体積変化によって生じたものか、単セルに固有の凹凸によるものかの判断ができない。上記圧力分布計算装置を備えていれば、充電に伴う単セルの体積変化の分布を正確に測定することができる。
When the object to be measured is a single cell of a storage element, the pressure measuring device is configured such that the pressure distribution measured by the pressure sensor before charging by the charging / discharging device and the pressure distribution measured by the pressure sensor after charging by the charging / discharging device. It is preferable to further include a pressure distribution calculation device that calculates the difference distribution.
If the single cell is uneven, a pressure distribution exists between the single cell and the fixing member, even though the single cell is not charged. Only by the pressure distribution between the single cell after charging and the fixing member, it cannot be determined whether the pressure distribution is caused by the volume change of the single cell due to charging or due to unevenness unique to the single cell. If the pressure distribution calculation device is provided, it is possible to accurately measure the volume change distribution of the single cell accompanying charging.

本明細書は、被測定物の厚み分布を測定する厚み測定装置も開示する。その厚み測定装置は、上記した圧力測定装置と、一対の固定部材間の相対的な位置を検出する変位センサを備えている。
上記の厚み測定装置では、固定部材と被測定物の間の圧力分布に加えて、その被測定物を挟持している一対の固定部材間の距離を、同時に測定することができる。固定部材と被測定物の間の圧力分布は、被測定物の各位置における厚みを相対的に示す。一対の固定部材間の距離は、被測定物の平均的な厚みを絶対的に示す。従って、これらの測定値が得られれば、被測定物の厚み分布を定量的に求めることができる。これにより、例えば被測定物に生じた局所的な体積変化を、定量的に把握することができる。
The present specification also discloses a thickness measuring device for measuring the thickness distribution of the object to be measured. The thickness measuring device includes the above-described pressure measuring device and a displacement sensor that detects a relative position between the pair of fixing members.
In the above thickness measuring apparatus, in addition to the pressure distribution between the fixing member and the object to be measured, the distance between the pair of fixing members sandwiching the object to be measured can be measured simultaneously. The pressure distribution between the fixing member and the object to be measured relatively indicates the thickness at each position of the object to be measured. The distance between the pair of fixing members absolutely indicates the average thickness of the object to be measured. Therefore, if these measured values are obtained, the thickness distribution of the object to be measured can be obtained quantitatively. Thereby, the local volume change which arose in the to-be-measured object can be grasped | ascertained quantitatively, for example.

厚み測定装置は、上記変位センサを少なくとも3つ以上備えており、任意の2つの変位センサの測定位置を結ぶ直線からオフセットされた位置に、少なくとも1つの変位センサが配置されていることが好ましい。すなわち、全ての変位センサが、同一直線上に配置されていないことが好ましい。
上記の厚み測定装置では、一対の固定部材間の相対的な傾きを測定することができる。これにより、一対の固定部材間の距離が全面に亘って一定であると仮定する場合よりも、被測定物の厚み分布をより正確に算出することが可能となる。
It is preferable that the thickness measuring apparatus includes at least three or more displacement sensors, and at least one displacement sensor is disposed at a position offset from a straight line connecting the measurement positions of any two displacement sensors. That is, it is preferable that all the displacement sensors are not arranged on the same straight line.
In the thickness measuring apparatus, the relative inclination between the pair of fixing members can be measured. Accordingly, it is possible to calculate the thickness distribution of the object to be measured more accurately than when assuming that the distance between the pair of fixing members is constant over the entire surface.

厚み測定装置は、変位センサによって測定された被測定物の全体的な厚みのデータと、圧力センサによって測定された圧力分布のデータに基づいて、被測定物の厚み分布を計算する厚み分布計算装置をさらに備えていることが好ましい。
上記したように、固定部材と被測定物の間の圧力分布と、その被測定物を挟持している一対の固定部材間の距離が判明すれば、被測定物の厚み分布を求めることができる。すなわち、一対の固定部材間の距離に、測定された圧力分布を重ね合わせれば、被測定物の厚み分布を得ることができる。上記厚み分布計算装置を備えていれば、例えば被測定物に生じた局所的な体積変化を、容易に検出することができる。
The thickness measuring device calculates the thickness distribution of the object to be measured based on the data of the overall thickness of the object to be measured measured by the displacement sensor and the data of the pressure distribution measured by the pressure sensor. Is preferably further provided.
As described above, if the pressure distribution between the fixing member and the object to be measured and the distance between the pair of fixing members holding the object to be measured are found, the thickness distribution of the object to be measured can be obtained. . That is, if the measured pressure distribution is superimposed on the distance between the pair of fixing members, the thickness distribution of the object to be measured can be obtained. If the thickness distribution calculating device is provided, for example, a local volume change generated in the object to be measured can be easily detected.

本発明によると、平板状の被測定物に生じた体積変化の分布を測定可能な装置を得ることができる。また、本発明によると、平板状の被測定物の体積変化の分布を定量的に測定可能な装置を得ることもできる。   According to the present invention, it is possible to obtain an apparatus capable of measuring the distribution of volume change generated in a flat object to be measured. In addition, according to the present invention, it is possible to obtain an apparatus capable of quantitatively measuring the volume change distribution of a flat object to be measured.

圧力測定装置の基本構造を示す。The basic structure of a pressure measuring device is shown. 単セルの体積変化の分布を測定する例(実施例1)を説明する図を示す。The figure explaining the example (Example 1) which measures distribution of the volume change of a single cell is shown. 単セルの体積変化の分布を測定する方法のフローチャートを示す。2 shows a flowchart of a method for measuring a distribution of volume change of a single cell. 単セルの初回充電前の圧力分布を示す。The pressure distribution before the first charge of a single cell is shown. 単セルの初回充電後の圧力分布を示す。The pressure distribution after the initial charge of a single cell is shown. 単セルの初回充電前後の体積変化の分布を示す。The distribution of the volume change before and after the initial charge of a single cell is shown. 単セルの体積変化の分布を測定する例(実施例2)を説明する図を示す。The figure explaining the example (Example 2) which measures distribution of the volume change of a single cell is shown. 実施例3の厚み測定装置の外観を示す。The external appearance of the thickness measuring apparatus of Example 3 is shown. 実施例4の厚み測定装置の外観を示す。The external appearance of the thickness measuring apparatus of Example 4 is shown. 単セルの厚み分布を説明する図を示す。The figure explaining the thickness distribution of a single cell is shown. 単セルの体積変化の実体値の分布を測定する方法のフローチャートを示す。The flowchart of the method of measuring the distribution of the entity value of the volume change of a single cell is shown.

図1に、圧力測定装置10の基本構造を示す。図1は、圧力測定装置10の基本構造を説明するための図であり、圧力測定装置10の構造の全てを図示するものではない。
図1に示すように、圧力測定装置10は、一対の固定部材2,12を備えている。一対の固定部材2,12の間には、被測定物が挟持される。固定部材12の内側面に、被測定物と固定部材12の間に生じる圧力分布を検出することができる圧力センサ8が設けられている。圧力センサ8として、例えば、感圧導電性変換方式の圧力センサ、静電容量方式の圧力センサ、圧電式の圧力センサ、ひずみ式の圧力センサ等を使用することができる。
上記構造を備えていれば、平板状の被測定物に生じる体積変化の分布を測定することができる。以下に説明する圧力測定装置10の特徴は、必須の構成ではないが、被測定物に生じる体積変化の分布を測定するために好適である。
FIG. 1 shows a basic structure of the pressure measuring device 10. FIG. 1 is a diagram for explaining the basic structure of the pressure measuring device 10, and does not illustrate the entire structure of the pressure measuring device 10.
As shown in FIG. 1, the pressure measuring device 10 includes a pair of fixing members 2 and 12. An object to be measured is sandwiched between the pair of fixing members 2 and 12. A pressure sensor 8 that can detect a pressure distribution generated between the object to be measured and the fixing member 12 is provided on the inner surface of the fixing member 12. As the pressure sensor 8, for example, a pressure-sensitive conductivity conversion type pressure sensor, a capacitance type pressure sensor, a piezoelectric pressure sensor, a strain type pressure sensor, or the like can be used.
If it has the above-mentioned structure, distribution of volume change which arises in a flat object to be measured can be measured. The features of the pressure measuring device 10 described below are not essential components, but are suitable for measuring the distribution of volume changes occurring in the object to be measured.

固定部材2,12の内側面は平坦である。固定部材12はガイド6に沿って移動することができるので、様々な厚みの被測定物を挟持しやすい。なお、固定部材2,12は、被測定物に圧力をかけた状態で、被測定物を挟持することができる。固定部材2,12が被測定物に圧力をかけた状態で、ガイド6と固定部材12を固定してもよい。あるいは、固定部材2,12が被測定物に圧力をかけた状態で、固定部材2と固定部材12が相対移動可能であってもよい。固定部材2,12が相対移動可能であれば、被測定物に体積変化が生じても、固定部材2,12と被測定物の間の圧力が変化しない。なお、ばね等の部品を採用して、固定部材2,12から被測定物に加えられる圧力を調整してもよい。固定部材12の重量を調節して、固定部材2,12から被測定物に加えられる圧力を調整してもよい。また、ガイド6は省略することもできる。   The inner surfaces of the fixing members 2 and 12 are flat. Since the fixing member 12 can move along the guide 6, it is easy to pinch objects to be measured having various thicknesses. Note that the fixing members 2 and 12 can sandwich the object to be measured in a state where pressure is applied to the object to be measured. The guide 6 and the fixing member 12 may be fixed in a state where the fixing members 2 and 12 apply pressure to the object to be measured. Alternatively, the fixing member 2 and the fixing member 12 may be relatively movable while the fixing members 2 and 12 apply pressure to the object to be measured. If the fixing members 2 and 12 can be moved relative to each other, the pressure between the fixing members 2 and 12 and the object to be measured does not change even if a volume change occurs in the object to be measured. A pressure such as a spring may be employed to adjust the pressure applied to the object to be measured from the fixing members 2 and 12. The pressure applied to the object to be measured from the fixing members 2 and 12 may be adjusted by adjusting the weight of the fixing member 12. Further, the guide 6 can be omitted.

固定部材2,12が金属の場合、圧力センサ8は、絶縁性を有していることが好ましい。また、図1に示すように、固定部材2の表面側に絶縁膜4を設けることが好ましい。被測定物が導電性を有していても、被測定物と固定部材2,12を絶縁することができる。なお、「絶縁性を有する圧力センサ」とは、圧力センサそのものが絶縁性の材料で製造されている形態の他、導電性を有する圧力センサを絶縁性の材料で被覆する形態も含む。   When the fixing members 2 and 12 are metal, it is preferable that the pressure sensor 8 has insulation. Further, as shown in FIG. 1, an insulating film 4 is preferably provided on the surface side of the fixing member 2. Even if the object to be measured has conductivity, the object to be measured and the fixing members 2 and 12 can be insulated. The “insulating pressure sensor” includes not only a form in which the pressure sensor itself is manufactured from an insulating material, but also a form in which the pressure sensor having conductivity is covered with an insulating material.

圧力測定装置10を利用して、様々な被測定物の体積変化の分布を測定することができる。図2に示すように、被測定物が蓄電素子の単セル40の場合、圧力測定装置10は充放電装置20を備えていることが好ましい。単セル40の充放電特性を、単セル40の体積変化の分布として捉えることができる。なお、蓄電素子の具体例として、リチウムイオン二次電池、ニッケル水素二次電池、固体ポリマー二次電池等の二次電池、一次電池、及びキャパシタ等が挙げられる。   By using the pressure measuring device 10, it is possible to measure the distribution of volume changes of various objects to be measured. As shown in FIG. 2, when the object to be measured is a single cell 40 of a storage element, the pressure measuring device 10 preferably includes a charge / discharge device 20. The charge / discharge characteristics of the single cell 40 can be understood as a distribution of volume change of the single cell 40. Specific examples of the storage element include secondary batteries such as lithium ion secondary batteries, nickel hydride secondary batteries, and solid polymer secondary batteries, primary batteries, and capacitors.

図2には、被測定物の例として、リチウムイオン二次電池の単セル40を示している。単セル40は、正極28とセパレータ30と負極36が順に積層されている。そして、圧力センサ8が負極36側の固定部材12に設けられている。リチウムイオン二次電池の単セル40の場合、充放電に伴い、負極36が顕著に体積変化することが多い。そのため、圧力センサ8を負極36側だけに設ければ、単セル40の体積変化の分布を十分に測定することができる。しかしながら、圧力センサ8を正極28側の固定部材2に設けてもよいし、圧力センサ8を固定部材2,12の双方に設けてもよい。いずれの場合も、単セル40の体積変化の分布を十分に測定することができる。   FIG. 2 shows a single cell 40 of a lithium ion secondary battery as an example of the object to be measured. In the single cell 40, a positive electrode 28, a separator 30 and a negative electrode 36 are laminated in this order. The pressure sensor 8 is provided on the fixing member 12 on the negative electrode 36 side. In the case of the single cell 40 of a lithium ion secondary battery, the negative electrode 36 often changes significantly in volume with charge / discharge. Therefore, if the pressure sensor 8 is provided only on the negative electrode 36 side, the volume change distribution of the single cell 40 can be sufficiently measured. However, the pressure sensor 8 may be provided on the fixing member 2 on the positive electrode 28 side, or the pressure sensor 8 may be provided on both the fixing members 2 and 12. In either case, the volume change distribution of the single cell 40 can be measured sufficiently.

図2に示すように、圧力測定装置10は電解質槽14を備えている。後述するように、電解質槽14は必須の構成ではないが、電解質槽14槽を備えていると、固定部材2,12に単セル40を挟持させた後に、単セル40を電解液16内に浸漬することができる。   As shown in FIG. 2, the pressure measuring device 10 includes an electrolyte tank 14. As will be described later, the electrolyte tank 14 is not an essential component. However, when the electrolyte tank 14 is provided, the single cell 40 is placed in the electrolyte 16 after the single cell 40 is sandwiched between the fixing members 2 and 12. Can be dipped.

圧力測定装置10は、圧力分布計算装置22を備えている。圧力分布計算装置22も必須の構成ではないが、圧力分布計算装置22を備えていると、充電前に圧力センサ8によって測定された圧力分布と充電後に圧力センサ8によって測定された圧力分布の差分を計算することができる。充電に伴う単セル40の体積変化の分布を正確に測定することができる。
より正確にいうと、圧力分布計算装置22は、以下の計算をすることができる
(1)単セル40を初回充電する前(単セル40を固定部材2,12に設置したとき)に測定された圧力分布と、単セル40を初回充電した後に測定された圧力分布の差を計算する。
(2)単セル40を初回充電する前に測定された圧力分布と、単セル40を既定の回数充放電したときの充電後の圧力分布の差を計算する。
(3)単セル40を既定の回数充放電したときの充電前後の圧力分布の差を計算する。
The pressure measuring device 10 includes a pressure distribution calculating device 22. Although the pressure distribution calculation device 22 is not essential, if the pressure distribution calculation device 22 is provided, the difference between the pressure distribution measured by the pressure sensor 8 before charging and the pressure distribution measured by the pressure sensor 8 after charging. Can be calculated. It is possible to accurately measure the distribution of volume change of the single cell 40 accompanying charging.
More precisely, the pressure distribution calculation device 22 can perform the following calculations: (1) Measured before the unit cell 40 is charged for the first time (when the unit cell 40 is installed on the fixed members 2 and 12). The difference between the measured pressure distribution and the pressure distribution measured after the unit cell 40 is charged for the first time is calculated.
(2) The difference between the pressure distribution measured before charging the single cell 40 for the first time and the pressure distribution after charging when the single cell 40 is charged and discharged a predetermined number of times is calculated.
(3) The difference in pressure distribution before and after charging when the single cell 40 is charged and discharged a predetermined number of times is calculated.

単セル40を充放電しているときに、圧力分布を連続的に測定してもよい。その場合、圧力分布計算装置22に代えて、充電前に圧力センサ8によって測定された圧力分布と、充放電中に圧力センサ8によって連続的に測定される圧力分布の差を、リアルタイムに計算する圧力分布計算装置を採用することが好ましい。   When the single cell 40 is being charged / discharged, the pressure distribution may be continuously measured. In that case, instead of the pressure distribution calculation device 22, the difference between the pressure distribution measured by the pressure sensor 8 before charging and the pressure distribution continuously measured by the pressure sensor 8 during charging and discharging is calculated in real time. It is preferable to employ a pressure distribution calculation device.

図2を参照し、単セル40の体積変化の分布を測定する例を詳細に説明する。なお、図2では、図1に示しているガイド6の図示を省略している。
図2に示すように、圧力測定装置10は、単セル40を充放電する充放電装置20と、圧力センサ8によって測定された圧力分布を記憶・処理する圧力分布計算装置22と、固定部材2,12を収容するとともに、電解質を貯留することができる電解質槽14を備えている。電解質槽14内に、電解液16が貯留されている。固定部材2,12は、単セル40を挟持した状態で電解液16内に配置されている。
With reference to FIG. 2, the example which measures distribution of the volume change of the single cell 40 is demonstrated in detail. 2, illustration of the guide 6 shown in FIG. 1 is omitted.
As shown in FIG. 2, the pressure measurement device 10 includes a charge / discharge device 20 that charges and discharges the single cell 40, a pressure distribution calculation device 22 that stores and processes the pressure distribution measured by the pressure sensor 8, and the fixing member 2. , 12 and an electrolyte tank 14 that can store an electrolyte. An electrolyte solution 16 is stored in the electrolyte tank 14. The fixing members 2 and 12 are disposed in the electrolytic solution 16 with the single cell 40 sandwiched therebetween.

ここで、単セル40について説明する。
単セル40は、正極28とセパレータ30と負極36が積層された積層体である。正極28は、正極集電板26と、正極集電板26の両面に形成されている正極活物質24を備えている。負極36は、負極集電板34と、負極集電板34の両面に形成されている負極活物質32を備えている。セパレータ30は、多孔質であり、内部に電解液16が含浸されている。そのため、正極28と負極36は、電解液16を介して対向しているといえる。正極28と負極36の間を、イオンが移動することができる。なお、正極活物質24は、正極集電板26の片面にだけ形成されていてもよい。同様に、負極活物質32は、負極集電板34の片面にだけ形成されていてもよい。正極活物質24と負極活物質32が、セパレータ30を介して対向していればよい。
負極36の負極活物質32は、圧力センサ8を介して固定部材12に対向している。上記したように、圧力センサ8が絶縁性を有しているので、負極36と固定部材12が絶縁される。また、正極28の正極活物質24は、絶縁膜4に接触し、固定部材2に直接接していない。正極28と固定部材2が絶縁される。その結果、単セル40と固定部材2,12が絶縁される。
Here, the single cell 40 will be described.
The single cell 40 is a laminate in which the positive electrode 28, the separator 30, and the negative electrode 36 are laminated. The positive electrode 28 includes a positive electrode current collector plate 26 and a positive electrode active material 24 formed on both surfaces of the positive electrode current collector plate 26. The negative electrode 36 includes a negative electrode current collector plate 34 and a negative electrode active material 32 formed on both surfaces of the negative electrode current collector plate 34. The separator 30 is porous and is impregnated with the electrolytic solution 16 inside. Therefore, it can be said that the positive electrode 28 and the negative electrode 36 are opposed to each other with the electrolytic solution 16 interposed therebetween. Ions can move between the positive electrode 28 and the negative electrode 36. The positive electrode active material 24 may be formed only on one side of the positive electrode current collector plate 26. Similarly, the negative electrode active material 32 may be formed only on one side of the negative electrode current collector plate 34. It is sufficient that the positive electrode active material 24 and the negative electrode active material 32 face each other with the separator 30 interposed therebetween.
The negative electrode active material 32 of the negative electrode 36 faces the fixing member 12 via the pressure sensor 8. As described above, since the pressure sensor 8 has an insulating property, the negative electrode 36 and the fixing member 12 are insulated. Further, the positive electrode active material 24 of the positive electrode 28 is in contact with the insulating film 4 and is not in direct contact with the fixing member 2. The positive electrode 28 and the fixing member 2 are insulated. As a result, the single cell 40 and the fixing members 2 and 12 are insulated.

図2に示すように、電解質槽14内にリチウム(Li)を材料とする参照極18が配置されている。参照極18が配置されているので、負極36の特性と正極28の特性を別々に測定することもできる。参照極18は、単セル40に接していないので、負極36あるいは正極28と短絡することはない。なお、参照極18は、電解液16に接してさえいれば、任意の位置に配置することができる。また、参照極18の数も任意である。
参照極18は、配線20aを介して充放電装置20に接続されている。正極集電板26は、配線20bを介して充放電装置20に接続されている。負極集電板34は、配線20cを介して充放電装置20に接続されている。また、圧力センサ8は、配線22aを介して圧力分布計算装置22に接続されている。圧力センサ8で検出された圧力分布は、圧力分布計算装置22に入力される。
As shown in FIG. 2, a reference electrode 18 made of lithium (Li) is disposed in the electrolyte tank 14. Since the reference electrode 18 is disposed, the characteristics of the negative electrode 36 and the characteristics of the positive electrode 28 can be measured separately. Since the reference electrode 18 is not in contact with the single cell 40, it does not short-circuit with the negative electrode 36 or the positive electrode 28. The reference electrode 18 can be disposed at any position as long as it is in contact with the electrolytic solution 16. Further, the number of reference electrodes 18 is also arbitrary.
The reference electrode 18 is connected to the charging / discharging device 20 via the wiring 20a. The positive electrode current collector plate 26 is connected to the charge / discharge device 20 via the wiring 20b. The negative electrode current collector plate 34 is connected to the charging / discharging device 20 through the wiring 20c. Moreover, the pressure sensor 8 is connected to the pressure distribution calculation device 22 via the wiring 22a. The pressure distribution detected by the pressure sensor 8 is input to the pressure distribution calculation device 22.

図2では、固定部材2,12の全体が電解液16内に配置されている。少なくとも単セル40が電解液16中に位置していればよく、必ずしも固定部材2,12の全体を電解液16内に配置する必要はない。また、必ずしも単セル40が電解液16中に位置していなくてもよい。正極28と負極36の間をイオンが移動可能であればよく、例えば予めセパレータ30に電解液を含浸させた後に、大気中で充放電を行ってもよい。   In FIG. 2, the entire fixing members 2 and 12 are disposed in the electrolyte solution 16. It is sufficient that at least the single cell 40 is located in the electrolytic solution 16, and the entire fixing members 2 and 12 are not necessarily arranged in the electrolytic solution 16. Further, the single cell 40 does not necessarily have to be located in the electrolyte solution 16. It is only necessary that ions can move between the positive electrode 28 and the negative electrode 36. For example, the separator 30 may be previously impregnated with an electrolytic solution and then charged and discharged in the atmosphere.

図3を参照し、単セル40の体積変化の分布を測定する方法について説明する。図3は、体積変化の分布を測定するフローチャートを示している。
まず、圧力測定装置10に単セル40を設置する(S1)。このときに、負極集電板34と正極集電板26を、充放電装置20に接続する。また、圧力センサ8を、圧力分布計算装置22に接続する。次に、単セル40を充電する前に、単セル40と固定部材12の間に生じる圧力分布を測定する(S2)。この測定では、単セル40を初回充電する前の圧力分布を測定する。この測定によって、単セル40に固有の凹凸による圧力分布を測定することができる。圧力分布の測定結果は、圧力分布計算装置22に入力される。
A method for measuring the volume change distribution of the single cell 40 will be described with reference to FIG. FIG. 3 shows a flowchart for measuring the distribution of volume change.
First, the single cell 40 is installed in the pressure measuring device 10 (S1). At this time, the negative electrode current collector plate 34 and the positive electrode current collector plate 26 are connected to the charge / discharge device 20. The pressure sensor 8 is connected to the pressure distribution calculation device 22. Next, before charging the single cell 40, the pressure distribution generated between the single cell 40 and the fixing member 12 is measured (S2). In this measurement, the pressure distribution before the unit cell 40 is charged for the first time is measured. By this measurement, the pressure distribution due to the unevenness unique to the single cell 40 can be measured. The measurement result of the pressure distribution is input to the pressure distribution calculation device 22.

次に、単セル40を充電する(S3)。充電の完了後、今回の充電によって、充放電回数が既定の測定対象回数に達しているか否かを判定する(S4)。充放電回数が測定対象回数に達していれば(S4:YES)、単セル40と固定部材12の間に生じる圧力分布を測定する(S5)。この測定対象回数には、例えば1回、100回、500回、1000回、2000回、・・・といった回数が設定されている。それにより、1回目(初回)の充電後の圧力分布、100回目の充電後の圧力分布、500回目の充電後の圧力分布、1000回の充電後の圧力分布、・・・が測定されるようになっている。圧力分布の測定結果は、圧力分布計算装置22に入力される。
次に、圧力分布計算装置22が、S2工程で測定された充電前の圧力分布とS5工程で測定された充電後の圧力分布の差分の分布を計算する(S6)。例えば、先のS5工程で初回充電後の圧力分布が測定されていれば、ここでは初回充電の前後で測定された圧力分布の差が計算される。それにより、初回充電の前後で単セル40に生じた体積変化の分布を測定することができる。その後、単セル40を放電する(S7)。単セル40の放電完了後、前記した測定対象回数の全てについて測定が完了していれば(S8:YES)、測定を終了する。測定対象回数の全てについて測定が完了していなければ(S8:NO)、S3工程に戻って単セル40を再度充電する。
Next, the single cell 40 is charged (S3). After the completion of the charging, it is determined whether or not the number of times of charging / discharging has reached the predetermined number of times of measurement by the current charging (S4). If the number of times of charging / discharging has reached the number of times of measurement (S4: YES), the pressure distribution generated between the single cell 40 and the fixed member 12 is measured (S5). As the number of times of measurement, for example, a number of times such as 1 time, 100 times, 500 times, 1000 times, 2000 times,. Thereby, the pressure distribution after the first charge (first time), the pressure distribution after the 100th charge, the pressure distribution after the 500th charge, the pressure distribution after the 1000th charge, etc. are measured. It has become. The measurement result of the pressure distribution is input to the pressure distribution calculation device 22.
Next, the pressure distribution calculation device 22 calculates a difference distribution between the pre-charging pressure distribution measured in step S2 and the post-charging pressure distribution measured in step S5 (S6). For example, if the pressure distribution after the first charge is measured in the previous step S5, the difference in the pressure distribution measured before and after the first charge is calculated here. Thereby, the distribution of the volume change produced in the single cell 40 before and after the first charge can be measured. Thereafter, the single cell 40 is discharged (S7). After the discharge of the single cell 40 is completed, if the measurement has been completed for all the above-described measurement target times (S8: YES), the measurement is terminated. If the measurement has not been completed for all the measurement target times (S8: NO), the process returns to step S3 and the single cell 40 is charged again.

単セル40を充電した後、単セル40の充放電回数が測定対象回数に達していなければ(S4:NO)、単セル40の放電が直ちに行われる(S7)。この場合、充電後の圧力分布の測定は行われない。単セル40の放電が行われた後、S3工程に戻り(S8:NO)、単セル40を再度充電する(S3)。それにより、充放電回数が測定対象回数に達するまで、単セル40の充放電を繰り返す。すなわち、充放電回数が測定対象回数に達するまで(S3),(S4:NO),(S7),(S8:NO)の工程を繰り返す。   After the single cell 40 is charged, if the number of charge / discharge of the single cell 40 has not reached the number of measurement objects (S4: NO), the single cell 40 is immediately discharged (S7). In this case, the pressure distribution after charging is not measured. After the unit cell 40 is discharged, the process returns to step S3 (S8: NO), and the unit cell 40 is charged again (S3). Thereby, charging / discharging of the single cell 40 is repeated until the number of times of charging / discharging reaches the number of times of measurement. That is, the steps (S3), (S4: NO), (S7), and (S8: NO) are repeated until the number of times of charge / discharge reaches the number of times of measurement.

S7工程とS8工程の間に、単セル40と固定部材12の間に生じる圧力分布を測定する工程を追加してもよい。単セル40を既定の測定対象回数だけ充放電したときの放電前後の圧力分布の差分の分布を計算することができる。   You may add the process of measuring the pressure distribution which arises between the single cell 40 and the fixing member 12 between S7 process and S8 process. It is possible to calculate the distribution of the difference in pressure distribution before and after the discharge when the single cell 40 is charged and discharged a predetermined number of times of measurement.

図4〜6を参照し、単セル40の体積変化の分布を測定した測定例について説明する。ここでは、単セル40の初回充電前の圧力分布(S2工程)と、単セル40の初回充電後の圧力分布(S5工程)から、単セル40の体積変化の分布を測定した例について説明する。図4は単セル40を固定部材2,12に設置したとき(初回充電前)における圧力分布を示し、図5は単セル40の初回充電後における圧力分布を示している。図6は単セル40の初回充電前後における体積変化の分布を示している。なお、符号8aは圧力分布の測定範囲を示しており、符号50は単セル40と固定部材12の間に生じた圧力分布を示す等圧線である。
図4に示すように、単セル40を充放電しなくても、単セル40と固定部材12の間には圧力分布が生じる。すなわち、図4は、単セル40に固有の凹凸を示している。
図5に示すように、単セル40の初回充電後の圧力分布は、図4の圧力分布よりも複雑になっている。図5の圧力分布は、単セル40に固有の凹凸と、単セル40の充電による体積変化の分布が重畳した分布である。そのため、図5は、単セル40の充電による体積変化の分布を正確に示すものではない。
そこで、圧力分布計算装置22を利用して、図4の圧力分布と図5の圧力分布の差分の分布を計算する。図6は、図4の圧力分布と図5の圧力分布の差分の分布を示している。図6の圧力分布は、単セル40に固有の凹凸に起因する圧力分布が除去されている。そのため、図6は、単セル40の初回充電後の体積変化の分布を示しているといえる。
With reference to FIGS. 4-6, the measurement example which measured distribution of the volume change of the single cell 40 is demonstrated. Here, an example in which the volume change distribution of the single cell 40 is measured from the pressure distribution before the initial charging of the single cell 40 (step S2) and the pressure distribution after the initial charging of the single cell 40 (step S5) will be described. . FIG. 4 shows the pressure distribution when the single cell 40 is installed on the fixing members 2 and 12 (before the first charge), and FIG. 5 shows the pressure distribution after the first charge of the single cell 40. FIG. 6 shows the volume change distribution before and after the initial charging of the single cell 40. Reference numeral 8a indicates a measurement range of the pressure distribution, and reference numeral 50 indicates an isobaric line indicating the pressure distribution generated between the single cell 40 and the fixing member 12.
As shown in FIG. 4, even if the single cell 40 is not charged / discharged, a pressure distribution is generated between the single cell 40 and the fixing member 12. That is, FIG. 4 shows unevenness unique to the single cell 40.
As shown in FIG. 5, the pressure distribution after the initial charging of the single cell 40 is more complicated than the pressure distribution of FIG. The pressure distribution in FIG. 5 is a distribution in which unevenness unique to the single cell 40 and a distribution of volume change due to charging of the single cell 40 are superimposed. Therefore, FIG. 5 does not accurately show the distribution of volume change due to charging of the single cell 40.
Therefore, the difference distribution between the pressure distribution of FIG. 4 and the pressure distribution of FIG. 5 is calculated using the pressure distribution calculation device 22. FIG. 6 shows a difference distribution between the pressure distribution of FIG. 4 and the pressure distribution of FIG. The pressure distribution due to the unevenness unique to the single cell 40 is removed from the pressure distribution of FIG. Therefore, it can be said that FIG. 6 shows the distribution of the volume change after the initial charging of the single cell 40.

上記の説明では、単セル40の初回充電前後の体積変化の分布を測定する方法について説明した。単セル40を初回充電する前の圧力分布と、単セル40の充放電を測定対象回数だけ繰り返したときの充電後の圧力分布を利用して、単セル40を測定対象回数だけ充放電したときの初回充電前に対する体積変化の分布を測定することもできる。また、単セル40の充放電を測定対象回数だけ繰り返したときの充電前後の圧力分布を利用して、単セル40の充放電を測定対象回数だけ繰り返したときの充電前後の体積変化の分布を測定することもできる。あるいは、単セル40を初回充電する前の圧力分布と、単セル40の充放電中の圧力分布の連続的な変化を利用して、単セル40の充放電中の体積変化の分布をリアルタイムに測定することもできる。   In the above description, the method for measuring the volume change distribution before and after the initial charging of the single cell 40 has been described. When the single cell 40 is charged / discharged the number of times of measurement using the pressure distribution before the first charge of the single cell 40 and the pressure distribution after charging when the charge / discharge of the single cell 40 is repeated the number of times of measurement. It is also possible to measure the distribution of volume change before the first charge. In addition, by using the pressure distribution before and after charging when the charge / discharge of the single cell 40 is repeated for the number of times of measurement, the distribution of the volume change before and after charging when the charge / discharge of the single cell 40 is repeated for the number of times of measurement. It can also be measured. Alternatively, the distribution of the volume change during charging / discharging of the single cell 40 is made in real time using the pressure distribution before the initial charging of the single cell 40 and the continuous change of the pressure distribution during charging / discharging of the single cell 40. It can also be measured.

図7を参照し、単セル40の体積変化の分布を測定する別の例を説明する。
図7に示すように、単セル40はフィルム60内に密封されている。そして、フィルム60には、単セル40とともに電解液62が密封されている。なお、単セル40のうち、負極集電板34の一部と正極集電板26の一部は、フィルム60から突出している。そして、負極集電板34と充放電装置20が、フィルム60の外で接続されている。また、正極集電板26と充放電装置20も、フィルム60の外で接続されている。
本実施例では、単セル40と電解液62が予めフィルム60内に密封されている。そのため、図2のように電解質槽14を必要としない。
With reference to FIG. 7, another example of measuring the volume change distribution of the single cell 40 will be described.
As shown in FIG. 7, the single cell 40 is sealed in the film 60. The film 60 is sealed with an electrolytic solution 62 together with the single cell 40. In the single cell 40, a part of the negative electrode current collector plate 34 and a part of the positive electrode current collector plate 26 protrude from the film 60. The negative electrode current collector plate 34 and the charge / discharge device 20 are connected outside the film 60. The positive electrode current collector plate 26 and the charge / discharge device 20 are also connected outside the film 60.
In this embodiment, the single cell 40 and the electrolytic solution 62 are sealed in the film 60 in advance. Therefore, the electrolyte tank 14 is not required as shown in FIG.

また、単セル40がフィルム60で覆われているので、固定部材2に設けている絶縁膜4を省略することもできる。同様に、圧力センサ8が絶縁性を有していなくてもよい。すなわち、圧力測定装置10から、単セル40と固定部材2,12を絶縁するための部材を省略することができる。
なお、フィルム60の内部に参照極を配置してもよい。第1実施例と同様に、負極36の特性と正極28の特性を別々に測定することができる。
Further, since the single cell 40 is covered with the film 60, the insulating film 4 provided on the fixing member 2 can be omitted. Similarly, the pressure sensor 8 may not have insulation. That is, a member for insulating the single cell 40 and the fixing members 2 and 12 from the pressure measuring device 10 can be omitted.
A reference electrode may be disposed inside the film 60. Similar to the first embodiment, the characteristics of the negative electrode 36 and the characteristics of the positive electrode 28 can be measured separately.

図8は、圧力測定装置10を使用した厚み測定装置100の外観を示す。なお、圧力測定装置10の詳細については、説明を省略する。
厚み測定装置100では、圧力測定装置10にガイド6(図1を参照)が設けられていない。単セル40は、固定部材12の自重によって、固定部材2,12間に挟持されている。換言すると、単セル40には、固定部材12の自重分だけの圧力が加えられている。厚み測定装置100は、圧力測定装置10に加え、変位センサ74(74a〜74c)と、変位量計算装置70と、厚み量計算装置80を有している。夫々の変位センサ74は、配線72を介して変位量計算装置70に接続されている。変位量計算装置70は、配線82によって厚み量計算装置80に接続されている。また、圧力分布計算装置22も、配線78によって厚み量計算装置80に接続されている。なお、図示は省略するが、厚み測定装置100では、圧力センサ8(図1を参照)が固定部材2に取付けられている。
FIG. 8 shows the appearance of the thickness measuring apparatus 100 using the pressure measuring apparatus 10. In addition, about the detail of the pressure measuring apparatus 10, description is abbreviate | omitted.
In the thickness measuring apparatus 100, the pressure measuring apparatus 10 is not provided with the guide 6 (see FIG. 1). The single cell 40 is sandwiched between the fixing members 2 and 12 by the weight of the fixing member 12. In other words, a pressure corresponding to the weight of the fixing member 12 is applied to the single cell 40. In addition to the pressure measurement device 10, the thickness measurement device 100 includes a displacement sensor 74 (74 a to 74 c), a displacement amount calculation device 70, and a thickness amount calculation device 80. Each displacement sensor 74 is connected to a displacement amount calculation device 70 via a wiring 72. The displacement amount calculation device 70 is connected to the thickness amount calculation device 80 by a wiring 82. The pressure distribution calculation device 22 is also connected to the thickness amount calculation device 80 by a wiring 78. In addition, although illustration is abbreviate | omitted, in the thickness measuring apparatus 100, the pressure sensor 8 (refer FIG. 1) is attached to the fixing member 2. FIG.

複数の変位センサ74を有することによって、固定部材2,12間の隙間を複数個所において測定することができる。図8に示すように、変位センサ74bは、変位センサ74aの測定位置と変位センサ74cの測定位置を結ぶ直線76からオフセットされた位置に設けられている。そのため、固定部材12の固定部材2に対する傾きを、平面的に捉えることができる。なお、変位センサとして、レーザ三角測量式の変位センサ、レーザトップラ式の変位センサ、レーザ共焦点式の変位センサ、渦電流式の変位センサ、超音波式の変位センサ、差動トランス式の変位センサ、静電容量式の変位センサ等を使用することができる。   By having the plurality of displacement sensors 74, the gaps between the fixing members 2 and 12 can be measured at a plurality of locations. As shown in FIG. 8, the displacement sensor 74b is provided at a position offset from a straight line 76 connecting the measurement position of the displacement sensor 74a and the measurement position of the displacement sensor 74c. Therefore, the inclination of the fixing member 12 with respect to the fixing member 2 can be grasped in a plane. As displacement sensors, laser triangulation displacement sensors, laser top displacement displacement sensors, laser confocal displacement sensors, eddy current displacement sensors, ultrasonic displacement sensors, differential transformer displacements A sensor, a capacitance type displacement sensor, or the like can be used.

ここで、固定部材12と固定部材2の間の傾きについて説明する。図9は、図8のIX-IX線に沿った断面において、単セル40の一部が膨張している状態を示す。2点鎖線で示す単セル40と固定部材12は、単セル40が膨張していない状態を示している。実線で示す単セル40aと固定部材12aは、単セル40が膨張している状態を示している。
図9に示すように、単セル40が膨張すると、固定部材12と固定部材2の間の相対的な位置が変化する。両者の相対的な位置の変化は、変位センサ74によって、固定部材12の変位量として検出される。そのときに、固定部材12と固定部材2の間の相対的な傾きが変化すると、変位センサ74a,74cの変位量が異なる。変位センサ74a,74cの変位量を変位量計算装置70で計算することにより、固定部材12と固定部材2の間の相対的な傾きを検出することができる。なお、固定部材12から単セル40に加えられる全体的な圧力は、単セル40が膨張する前と変わらない。そのため、充放電を繰り返している間、常に、固定部材2,12と単セル40の間の全体的な圧力を一定に保つことができる。
Here, the inclination between the fixing member 12 and the fixing member 2 will be described. FIG. 9 shows a state in which a part of the unit cell 40 is expanded in the cross section taken along the line IX-IX in FIG. The single cell 40 and the fixing member 12 indicated by a two-dot chain line indicate a state where the single cell 40 is not expanded. A single cell 40a and a fixing member 12a indicated by solid lines indicate a state in which the single cell 40 is expanded.
As shown in FIG. 9, when the single cell 40 expands, the relative position between the fixing member 12 and the fixing member 2 changes. A change in the relative position between the two is detected by the displacement sensor 74 as a displacement amount of the fixed member 12. At that time, if the relative inclination between the fixing member 12 and the fixing member 2 changes, the displacement amounts of the displacement sensors 74a and 74c differ. By calculating the displacement amount of the displacement sensors 74a and 74c by the displacement amount calculation device 70, the relative inclination between the fixed member 12 and the fixed member 2 can be detected. The overall pressure applied to the single cell 40 from the fixing member 12 is the same as before the single cell 40 expands. Therefore, the entire pressure between the fixing members 2 and 12 and the single cell 40 can always be kept constant while charging and discharging are repeated.

厚み測定装置100の他の利点を説明する。
上記したように、厚み測定装置100では、固定部材2と固定部材12が拘束されていない。そのため、例えば環境温度が変化して固定部材2、12の体積が変化しても、固定部材2、12と単セル40の間の圧力に影響を及ぼさない。すなわち、固定部材2、12の体積変化が単セル40の体積変化として検出されることを抑制することができる。単セル40の体積変化の分布をより正確に検出することができる。
厚み測定装置100は、固定部材2、12間の厚み変化を測定することにより、単セル40の厚み変化を実測することができる。すなわち、単セル40の実際の厚み変化を位置毎に測定することができる。
Another advantage of the thickness measuring apparatus 100 will be described.
As described above, in the thickness measuring apparatus 100, the fixing member 2 and the fixing member 12 are not restrained. Therefore, for example, even if the environmental temperature changes and the volumes of the fixing members 2 and 12 change, the pressure between the fixing members 2 and 12 and the single cell 40 is not affected. That is, it can suppress that the volume change of the fixing members 2 and 12 is detected as the volume change of the single cell 40. The volume change distribution of the single cell 40 can be detected more accurately.
The thickness measuring apparatus 100 can measure the thickness change of the single cell 40 by measuring the thickness change between the fixing members 2 and 12. That is, the actual thickness change of the single cell 40 can be measured for each position.

上記したように、単セル40が体積変化すると、固定部材12と固定部材2の間の相対的な位置が変化する。そのため、単セル40の体積変化が大きい部位の圧力と、小さい部位の圧力を、圧力センサ8で区別しにくい。そのため、固定部材12と固定部材2の傾きによって、圧力センサ8の検出値を補正する。すなわち、体積変化が大きい部位の圧力センサ8の値を大きく補正し、体積変化が小さい部位の圧力センサ8の値を小さく補正する。その結果、単セル40の体積変化を位置毎により精度よく検出することができる。   As described above, when the volume of the single cell 40 changes, the relative position between the fixing member 12 and the fixing member 2 changes. For this reason, it is difficult for the pressure sensor 8 to distinguish the pressure at a portion where the volume change of the single cell 40 is large and the pressure at a small portion. Therefore, the detection value of the pressure sensor 8 is corrected by the inclination of the fixing member 12 and the fixing member 2. That is, the value of the pressure sensor 8 at the site where the volume change is large is corrected to be large, and the value of the pressure sensor 8 at the site where the volume change is small is corrected to be small. As a result, the volume change of the single cell 40 can be detected more accurately for each position.

図10を参照し、単セル40の体積変化(厚み変化)の分布を測定する方について説明する。図10は、体積変化の分布を測定するフローチャートを示している。
まず、厚み測定装置100に単セル40を設置する(S11)。次に、単セル40と固定部材12の間に生じる圧力分布を測定する(S12)。S11とS12の工程は、実施例1で説明したS1とS2の工程と実質的に等しい。厚み測定装置100では、工程S11の後に、各変位センサ74a〜74cの値を、変位量計算装置70に入力する(S13)。工程S13によって、固定部材12と固定部材2の初期状態の傾きを測定することができる。なお、各変位センサ74a〜74cの値を変位量計算装置70入力した後に、変位センサ74a〜74c値を「ゼロ」に初期化してもよい。
With reference to FIG. 10, how to measure the distribution of volume change (thickness change) of the single cell 40 will be described. FIG. 10 shows a flowchart for measuring the distribution of volume change.
First, the single cell 40 is installed in the thickness measuring apparatus 100 (S11). Next, the pressure distribution generated between the single cell 40 and the fixing member 12 is measured (S12). The steps S11 and S12 are substantially the same as the steps S1 and S2 described in the first embodiment. In the thickness measuring apparatus 100, the value of each displacement sensor 74a-74c is input into the displacement amount calculation apparatus 70 after process S11 (S13). By step S13, the inclination of the fixing member 12 and the initial state of the fixing member 2 can be measured. Note that the values of the displacement sensors 74a to 74c may be initialized to “zero” after the displacement amount calculation device 70 has input the values.

工程S12、S13に続いて、単セル40を所定回数充放電する(S14)。次に、単セル40の充電前の圧力分布と充電後の圧力分布の差分の分布を計算する(S15)。S14とS15の工程は、実施例1で説明した工程S3〜S8に実質的に等しい。厚み測定装置100では、充電前後の圧力分布に加え、充電前後の各変位センサ74の値の差分の値を計算する(S16)。次に、変位量計算装置70は、各変位センサ74の値を利用して、充電後の固定部材12の傾きの変化を計算する(S17)。単セル40の体積変化に部分的な差異が存在すると、充電後の固定部材12の傾きが変化する。次に、工程S17で得られた傾きを利用して、位置係数を決定する(S18)。位置係数は、傾きの変化に応じて、単セル40の位置毎に決定される。すなわち、単セル40の体積変化が大きい部分には、大きな位置係数を与え、単セル40の体積変化が小さい部分には、小さな位置係数が与えられる。   Following the steps S12 and S13, the single cell 40 is charged and discharged a predetermined number of times (S14). Next, the distribution of the difference between the pressure distribution before charging the single cell 40 and the pressure distribution after charging is calculated (S15). Steps S14 and S15 are substantially equal to steps S3 to S8 described in the first embodiment. In the thickness measuring apparatus 100, in addition to the pressure distribution before and after charging, a difference value between the values of the displacement sensors 74 before and after charging is calculated (S16). Next, the displacement amount calculation device 70 uses the value of each displacement sensor 74 to calculate the change in the inclination of the fixed member 12 after charging (S17). If there is a partial difference in the volume change of the single cell 40, the inclination of the fixing member 12 after charging changes. Next, a position coefficient is determined using the inclination obtained in step S17 (S18). The position coefficient is determined for each position of the single cell 40 in accordance with the change in inclination. That is, a large position coefficient is given to a portion where the volume change of the single cell 40 is large, and a small position coefficient is given to a portion where the volume change of the single cell 40 is small.

次に、工程S15で得られた単セル40の圧力分布結果を、位置係数で修正する。その結果、単セル40の位置毎の厚み変化率が計算される(S19)。すなわち、単セル40の位置毎の相対的な体積変化が計算される。厚み測定装置100では、工程S16の結果を利用して、各変位センサ74の値の平均値を算出する。すなわち、単セル40の全体の厚み変化量を計算する(S20)。次に、工程S19で得られた単セル40の位置毎の厚み変化率と、工程S20で得られた単セル40の全体の厚み変化量を利用して、単セル40の位置毎の厚み変化量を計算する(S21)。以上の工程によって、単セル40の位置毎の厚み変化量を定量的に測定することができる。   Next, the pressure distribution result of the single cell 40 obtained in step S15 is corrected with the position coefficient. As a result, the thickness change rate for each position of the single cell 40 is calculated (S19). That is, the relative volume change for each position of the single cell 40 is calculated. In the thickness measuring apparatus 100, the average value of the values of the displacement sensors 74 is calculated using the result of step S16. That is, the total thickness change amount of the single cell 40 is calculated (S20). Next, using the thickness change rate for each position of the single cell 40 obtained in step S19 and the total thickness change amount of the single cell 40 obtained in step S20, the thickness change for each position of the single cell 40 is obtained. The amount is calculated (S21). Through the above steps, the thickness change amount for each position of the unit cell 40 can be quantitatively measured.

図11は、厚み測定装置100aの外観を示す。厚み測定装置100aでは、変位センサ74の本体が固定部材2に固定されている。変位センサ74のセンサ部は、固定部材2には接触しないで、固定部材12にだけ接触している。変位センサ74を位置決めするための拘束アーム等を省略することができる。   FIG. 11 shows the appearance of the thickness measuring apparatus 100a. In the thickness measuring apparatus 100a, the main body of the displacement sensor 74 is fixed to the fixing member 2. The sensor part of the displacement sensor 74 does not contact the fixed member 2 but contacts only the fixed member 12. A restraint arm or the like for positioning the displacement sensor 74 can be omitted.

上記実施例3、4では、電解液を貯留するための構造の図示を省略している。実施例1で説明したように、固定部材2,12を収容する電解質槽14(図1を参照)を使用してもよいし、実施例2で説明したように、単セル40を密封するフィルム60(図7を参照)を使用してもよい。   In the said Example 3, 4, the illustration for the structure for storing electrolyte solution is abbreviate | omitted. As described in the first embodiment, the electrolyte tank 14 (see FIG. 1) that accommodates the fixing members 2 and 12 may be used. As described in the second embodiment, the film that seals the single cell 40 is used. 60 (see FIG. 7) may be used.

以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項に記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数の目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。   In addition, the technical elements described in the present specification or drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in the present specification or the drawings can achieve a plurality of objects at the same time, and has technical utility by achieving one of the objects.

2:固定部材
8:圧力センサ
10:圧力測定装置
12:固定部材
14:電解質槽
20:充放電装置
22:圧力分布計算装置
40:単セル(被測定物)
70:変位量計算装置
74:変位センサ
80:厚み量計算装置
100:厚み測定装置
2: Fixed member 8: Pressure sensor 10: Pressure measuring device 12: Fixed member 14: Electrolyte tank 20: Charge / discharge device 22: Pressure distribution calculating device 40: Single cell (measurement object)
70: Displacement amount calculation device 74: Displacement sensor 80: Thickness amount calculation device 100: Thickness measurement device

Claims (7)

平板状の蓄電素子の単セルを表裏面から挟持する一対の固定部材と、
一対の固定部材の内側面の少なくとも一方に設けられているとともに、単セルと固定部材の間に生じる圧力分布を検出する圧力センサと、
単セルを充放電する充放電装置と、
を備えていることを特徴とする圧力測定装置。
A pair of fixing members for sandwiching the single cell of the plate-shaped power storage element from the front and back surfaces;
A pressure sensor that is provided on at least one of the inner surfaces of the pair of fixing members and detects a pressure distribution generated between the single cell and the fixing member;
A charge / discharge device for charging / discharging a single cell;
A pressure measuring device comprising:
前記蓄電素子が二次電池であり、
前記圧力センサが、少なくとも単セルの負極側に位置する固定部材に設けられていることを特徴とする請求項の圧力測定装置。
The power storage element is a secondary battery;
2. The pressure measuring device according to claim 1 , wherein the pressure sensor is provided at least on a fixing member positioned on the negative electrode side of the single cell.
前記一対の固定部材を収容するとともに、電解質を貯留可能な電解質槽を備えていることを特徴とする請求項又はに記載の圧力測定装置。 Wherein accommodates a pair of fixing members, a pressure measuring device according to claim 1 or 2, characterized in that it comprises an electrolyte bath capable of storing an electrolyte. 前記充放電装置による充電前に前記圧力センサによって測定された圧力分布と、前記充放電装置による充電後に前記圧力センサによって測定された圧力分布との差分の分布を計算する圧力分布計算装置をさらに備えていることを特徴とする請求項からのいずれか1項に記載の圧力測定装置。 A pressure distribution calculation device that calculates a difference distribution between the pressure distribution measured by the pressure sensor before charging by the charge / discharge device and the pressure distribution measured by the pressure sensor after charging by the charge / discharge device; The pressure measuring device according to any one of claims 1 to 3 , wherein the pressure measuring device is provided. 蓄電素子の単セルの厚み分布を測定する厚み測定装置であって、
請求項1からのいずれか1項に記載の圧力測定装置と、
前記一対の固定部材間の相対的な位置を検出する変位センサと、
備えていることを特徴とする厚み測定装置。
A thickness measuring device for measuring a thickness distribution of a single cell of a storage element ,
A pressure measuring device according to any one of claims 1 to 4 ;
A displacement sensor for detecting a relative position between the pair of fixing members;
A thickness measuring device comprising:
前記変位センサを少なくとも3つ以上備えており、
任意の2つの変位センサの測定位置を結ぶ直線からオフセットされた位置に、少なくとも1つの変位センサが配置されていることを特徴とする請求項に記載の厚み測定装置。
Comprising at least three displacement sensors;
6. The thickness measuring apparatus according to claim 5 , wherein at least one displacement sensor is arranged at a position offset from a straight line connecting the measurement positions of any two displacement sensors.
前記変位センサによって測定された単セルの全体的な厚みのデータと、前記圧力センサによって測定された圧力分布のデータに基づいて、単セルの厚み分布を計算する厚み分布計算装置をさらに備えていることを特徴とする請求項又はの厚み測定装置。 The apparatus further comprises a thickness distribution calculating device for calculating the thickness distribution of the single cell based on the data of the overall thickness of the single cell measured by the displacement sensor and the data of the pressure distribution measured by the pressure sensor. The thickness measuring device according to claim 5 or 6 .
JP2009047878A 2008-07-02 2009-03-02 Pressure measuring device and thickness measuring device Expired - Fee Related JP5444762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009047878A JP5444762B2 (en) 2008-07-02 2009-03-02 Pressure measuring device and thickness measuring device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008173891 2008-07-02
JP2008173891 2008-07-02
JP2009047878A JP5444762B2 (en) 2008-07-02 2009-03-02 Pressure measuring device and thickness measuring device

Publications (2)

Publication Number Publication Date
JP2010032492A JP2010032492A (en) 2010-02-12
JP5444762B2 true JP5444762B2 (en) 2014-03-19

Family

ID=41737125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009047878A Expired - Fee Related JP5444762B2 (en) 2008-07-02 2009-03-02 Pressure measuring device and thickness measuring device

Country Status (1)

Country Link
JP (1) JP5444762B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704539B2 (en) * 2011-05-18 2015-04-22 独立行政法人産業技術総合研究所 Electrode thickness change measuring device
JP5790219B2 (en) * 2011-07-12 2015-10-07 トヨタ自動車株式会社 Battery status detection device
JP5733146B2 (en) * 2011-10-04 2015-06-10 トヨタ自動車株式会社 Secondary battery measuring method and measuring system
JP5843222B2 (en) * 2011-11-11 2016-01-13 トヨタ自動車株式会社 Battery system
JP5609859B2 (en) * 2011-12-21 2014-10-22 トヨタ自動車株式会社 Battery system
CN103217136B (en) * 2013-03-22 2017-08-01 东莞新能源科技有限公司 A kind of cell thickness measurement apparatus
KR101660443B1 (en) * 2013-09-27 2016-09-27 주식회사 엘지화학 Device for detecting inner pressure of secondary battery, and method for detecting inner pressure of secondary battery by using the same
KR101741193B1 (en) * 2014-11-28 2017-05-29 주식회사 엘지화학 Battery pack
KR101994346B1 (en) * 2015-08-13 2019-06-28 주식회사 엘지화학 Charging-Discharging Apparatus Capable of Measuring Thickness of Battery Cell
KR102476002B1 (en) * 2015-10-07 2022-12-09 에스케이온 주식회사 Apparatus for measuring thickness of bettery cell
KR102125399B1 (en) * 2015-12-18 2020-06-22 주식회사 엘지화학 Apparatus for pressing a secondary battery cell
KR102000632B1 (en) * 2016-06-09 2019-10-01 주식회사 엘지화학 Thickness change measurement apparatus for electrode of secondary battery and secondary battery mounting the same
KR101692414B1 (en) * 2016-06-20 2017-01-03 주식회사 엘지화학 Device for detecting inner pressure of secondary battery, and method for detecting inner pressure of secondary battery by using the same
CN106768548B (en) * 2016-12-11 2021-01-05 安徽省华腾农业科技有限公司经开区分公司 Automatic searching device and method for double tips of Buddha linden
CN106785119B (en) * 2016-12-26 2023-04-07 清华大学 Automobile-used plastic-aluminum membrane battery thickness variation testing arrangement
KR102192676B1 (en) 2017-01-24 2020-12-17 주식회사 엘지화학 Apparatus for predicting deformation of battery module
JP6790950B2 (en) * 2017-03-22 2020-11-25 Tdk株式会社 State detector
KR102183535B1 (en) * 2017-06-13 2020-11-26 주식회사 엘지화학 Volume change measuring equipment and volume change measuring method of rechargeable battery internal gas
JP6788640B2 (en) * 2018-08-06 2020-11-25 ミネベアミツミ株式会社 Deterioration judgment system and deterioration judgment method for secondary batteries
DE102018216189A1 (en) * 2018-09-24 2020-03-26 Robert Bosch Gmbh Biasing device for an energy storage element
KR102623517B1 (en) 2018-10-26 2024-01-10 삼성전자주식회사 Apparatus and method for measuring mechanical property related to deformation of object
CN110260804A (en) * 2019-08-01 2019-09-20 安徽科达新材料有限公司 A kind of online thickness measure of polymer battery and recording device
KR20210117829A (en) * 2020-03-20 2021-09-29 주식회사 엘지에너지솔루션 Apparatus for examining battery swelling
KR20210150215A (en) * 2020-06-03 2021-12-10 주식회사 엘지에너지솔루션 Apparatus and method for inspecting battery swelling
KR20220029969A (en) * 2020-09-02 2022-03-10 주식회사 엘지에너지솔루션 Apparatus for battery cell pressure measuring
CN112665548B (en) * 2020-12-14 2022-05-10 天津市捷威动力工业有限公司 Method for quantitatively determining flatness of battery core

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727006A (en) * 1986-02-12 1988-02-23 The United States Of America As Represented By The Secretary Of The Army Method of monitoring electrochemical cells
JPH05326027A (en) * 1992-05-22 1993-12-10 Honda Motor Co Ltd Charge control method for secondary battery
JP2001166016A (en) * 1999-12-06 2001-06-22 Nec Fielding Ltd Life detecting device for storage battery, uninteruptible power supply with it, and power supply system
JP2002289265A (en) * 2001-03-23 2002-10-04 Mitsubishi Heavy Ind Ltd Lithium secondary battery monitoring device
JP4529516B2 (en) * 2004-03-30 2010-08-25 Tdk株式会社 Power supply
JP4655568B2 (en) * 2004-05-25 2011-03-23 トヨタ自動車株式会社 Secondary battery state estimation method and system
US20080097704A1 (en) * 2005-01-20 2008-04-24 Koninklijke Philips Electronics, N.V. Arrangement and Method for Monitoring Pressure within a Battery Cell
JP2007294198A (en) * 2006-04-24 2007-11-08 Toyota Motor Corp Lithium secondary battery and its manufacturing method

Also Published As

Publication number Publication date
JP2010032492A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP5444762B2 (en) Pressure measuring device and thickness measuring device
US12027715B2 (en) Battery module having swelling gauge, and battery pack comprising same
US5438249A (en) Method of state-of-charge indication by measuring the thickness of a battery
Bucci et al. Measurement and modeling of the mechanical and electrochemical response of amorphous Si thin film electrodes during cyclic lithiation
JP5067302B2 (en) Charging depth measuring mechanism and measuring method, and secondary battery equipped with the measuring mechanism
KR20120125619A (en) Methods and systems for measuring state of charge
KR102707220B1 (en) Non-destructive method for detecting disconnection of battery cell using pressing force
CN210572643U (en) Lithium battery extrusion force and expansion pressure detection device
JP2016126943A (en) Power storage device and power storage system
CN207398300U (en) Battery modules and electronic product
Aufschläger et al. High precision measurement of reversible swelling and electrochemical performance of flexibly compressed 5 Ah NMC622/graphite lithium-ion pouch cells
US20240219477A1 (en) Method and device for measuring and estimating the state of charge and the state of aging of a battery
Jiang et al. Mechanical behavior of lithium-ion battery component materials and error sources analysis for test results
Hendricks et al. Lithium-ion battery strain gauge monitoring and depth of discharge estimation
JP5693302B2 (en) Battery system
KR102091768B1 (en) Pouch sealing gap measuring apparatus
CN104730465B (en) Lithium ion battery detection system and detection method adopting same
JP7392363B2 (en) Estimation device, estimation method and computer program
US10020546B2 (en) Device for managing an accumulator
CN111580001A (en) Battery volume change in-situ testing device
KR20220013101A (en) Cell jig for measuring swelling of battery cell including ultrasonic sensor and method for measuring swelling of the battery cell using the same
Simunovic et al. Laser scanning method for high-resolution thickness mapping of lithium-ion pouch cells
CN212341403U (en) Battery volume change in-situ testing device
JP2020092016A (en) Manufacturing device of power storage device
JP2018133199A (en) Battery module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

LAPS Cancellation because of no payment of annual fees