JP2010038578A - Automatic analyzing apparatus - Google Patents

Automatic analyzing apparatus Download PDF

Info

Publication number
JP2010038578A
JP2010038578A JP2008198747A JP2008198747A JP2010038578A JP 2010038578 A JP2010038578 A JP 2010038578A JP 2008198747 A JP2008198747 A JP 2008198747A JP 2008198747 A JP2008198747 A JP 2008198747A JP 2010038578 A JP2010038578 A JP 2010038578A
Authority
JP
Japan
Prior art keywords
dispensing
reagent
nozzle
sample
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008198747A
Other languages
Japanese (ja)
Inventor
Naoya Imai
直也 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2008198747A priority Critical patent/JP2010038578A/en
Publication of JP2010038578A publication Critical patent/JP2010038578A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To grasp dispensation accuracy of a dispensation mechanism reliably in a short time, and to perform highly-accurate analysis processing. <P>SOLUTION: An automatic analyzing apparatus 1 for dispensing a specimen and a reagent into a reaction container 24 by a specimen dispensation mechanism 12 and a first reagent dispensation mechanism 17, measuring an absorbance of reaction liquid reacted in the reaction container 24, and analyzing the specimen, includes a photometric part 22 for measuring each absorbance to the liquid in each reaction container 24, acquired by dispensing pigment liquid and dilution liquid into a prescribed number of reaction containers 24 by the specimen dispensation mechanism 12 and the first reagent dispensation mechanism 17 after removing clogging in a dispensation nozzle; a calculation part 34b for calculating the degree of dispersion of each absorbance measured by the photometric part 22; and a dispensation accuracy determination part 34c for determining that the dispensation accuracy of the specimen dispensation mechanism 12 is normal, when the degree of dispersion calculated by the calculation part 34b is within a set range. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、検体と試薬とを反応容器に分注し、この反応容器内で生じる反応液の吸光度を測定することで検体を分析する自動分析装置に関するものである。   The present invention relates to an automatic analyzer that analyzes a sample by dispensing a sample and a reagent into a reaction vessel and measuring the absorbance of a reaction solution generated in the reaction vessel.

従来から、検体と試薬とを反応容器に分注し、この反応容器内で生じる反応液の吸光度を測定することで検体を分析する自動分析装置が知られている。この自動分析装置は、検体または試薬を分注するために、分注ノズルや分注ポンプ等によって実現される分注機構を備えている。   2. Description of the Related Art Conventionally, an automatic analyzer that analyzes a sample by dispensing a sample and a reagent into a reaction container and measuring the absorbance of a reaction solution generated in the reaction container is known. This automatic analyzer includes a dispensing mechanism realized by a dispensing nozzle, a dispensing pump, or the like in order to dispense a sample or a reagent.

このような分注機構は、分析中に検体のフィブリン等の固形物が分注ノズル内に詰まることによって、検体が規定液量で反応容器に分注されないことがある。このため、この分注機構は、分注ノズルと分注ポンプとの間に圧力センサを設け、この圧力センサが検出した情報をもとに、分注ノズル内にノズル詰まりがあるか否かを判定する判定手段を備えている。この判定手段が分注ノズル内にノズル詰まりがあると判定した場合、分注ノズル内のノズル詰まりを解消するため、一旦分注を中断し、分注ノズル内を洗浄することで、分注ノズル内のノズル詰まりを解消し、その後、分注を再開する分注機構を備えた自動分析装置が知られている(特許文献1参照)。   In such a dispensing mechanism, a solid substance such as fibrin of the sample is clogged in the dispensing nozzle during the analysis, so that the sample may not be dispensed into the reaction container at a specified liquid amount. For this reason, this dispensing mechanism is provided with a pressure sensor between the dispensing nozzle and the dispensing pump, and based on the information detected by this pressure sensor, whether or not there is a nozzle clogging in the dispensing nozzle. Judgment means for judging is provided. When this determination means determines that the nozzle is clogged in the dispensing nozzle, in order to eliminate the nozzle clogging in the dispensing nozzle, the dispensing nozzle is temporarily stopped and the inside of the dispensing nozzle is washed. There is known an automatic analyzer equipped with a dispensing mechanism that eliminates nozzle clogging inside and then resumes dispensing (see Patent Document 1).

特開2006−063240号公報JP 2006-063240 A

しかしながら、特許文献1に記載の自動分析装置では、ノズル詰まりがあった場合に、分注ノズルを洗浄してノズル詰まりが解消できたものとし、その後、分注処理を行うようにしており、ノズル詰まりの解消が確実に行われたか否かを確認していないため、ノズル詰まりを完全に排除することができていない場合があった。このようなノズル詰まりの排除を完全に行うことができない場合、分注量にばらつきが生じ、精度の高い分析結果を得ることができないという問題点があった。一方、ノズル詰まりの排除が完全に行われたか否かを確認しようとすると、そのための装置等が必要となり、勢い多大な時間と労力とがかかるという問題点があった。   However, in the automatic analyzer described in Patent Document 1, when the nozzle is clogged, it is assumed that the nozzle clogging has been eliminated by washing the dispensing nozzle, and then the dispensing process is performed. Since it has not been confirmed whether clogging has been reliably eliminated, there are cases where nozzle clogging has not been completely eliminated. In the case where such nozzle clogging cannot be completely eliminated, there is a problem that the dispensing amount varies and a highly accurate analysis result cannot be obtained. On the other hand, if it is attempted to confirm whether or not nozzle clogging has been completely eliminated, an apparatus for that purpose is required, and there is a problem that it takes a lot of time and labor.

本発明は、上記に鑑みてなされたものであって、分注ノズルのノズル詰まりの排除状態を確実かつ短時間に把握して精度の高い分析処理を行うことができる自動分析装置を提供することを目的とする。   The present invention has been made in view of the above, and provides an automatic analyzer capable of performing a highly accurate analysis process by reliably and quickly grasping a nozzle clogging state of a dispensing nozzle. With the goal.

上述した課題を解決し、目的を達成するために、本発明は、分注ノズル内にノズル詰まりが生じた場合、該分注ノズル内を洗浄してノズル詰まりを排除する分注機構を備え、前記分注機構によって検体と試薬とを反応容器に分注し、該反応容器内で反応する反応液の吸光度を測定することで前記検体を分析する自動分析装置において、前記ノズル詰まりの排除後に、前記分注機構を用いて色素液と希釈液とを複数の反応容器にそれぞれ分注する分注手段と、前記分注手段によって分注された前記複数の反応容器内の液体に対する各吸光度を測定する測定手段と、前記測定手段が測定した各吸光度の分散度を算出する算出手段と、前記算出手段が算出した分散度が設定範囲内である場合、前記分注機構による分注精度が正常であると判定する判定手段と、を備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention includes a dispensing mechanism that cleans the inside of the dispensing nozzle and eliminates the nozzle clogging when the nozzle is clogged. In the automatic analyzer that analyzes the sample by dispensing the sample and the reagent into the reaction container by the dispensing mechanism and measuring the absorbance of the reaction solution that reacts in the reaction container, after eliminating the nozzle clogging, Dispensing means for dispensing a dye solution and a diluent into a plurality of reaction containers using the dispensing mechanism, respectively, and measuring each absorbance for the liquid in the plurality of reaction containers dispensed by the dispensing means Measuring means, a calculating means for calculating the degree of dispersion of each absorbance measured by the measuring means, and when the degree of dispersion calculated by the calculating means is within a set range, the dispensing accuracy by the dispensing mechanism is normal. Judging that there is Characterized by comprising a means.

また、本発明にかかる自動分析装置は、上記の発明において、前記分注機構の移動軌跡上に、前記色素液を収容する色素液収容部を設けたことを特徴とする。   Moreover, the automatic analyzer according to the present invention is characterized in that, in the above-mentioned invention, a dye solution storage unit for storing the dye solution is provided on the movement locus of the dispensing mechanism.

また、本発明にかかる自動分析装置は、上記の発明において、前記分注機構の移動軌跡上に、前記希釈液を収容する希釈液収容部を設けたことを特徴とする。   Moreover, the automatic analyzer according to the present invention is characterized in that, in the above-mentioned invention, a diluent storage section for storing the diluent is provided on the movement locus of the dispensing mechanism.

本発明によれば、分注ノズルのノズル詰まりの排除後に、色素液と希釈液とを分注した複数の反応容器に対する各吸光度を測定し、測定した各吸光度の分散を算出し、算出した分散が設定範囲内である場合、分注機構の分注精度が正常であると判定するようにしているため、確実かつ短時間に分注機構の分注精度を把握でき、精度の高い分析処理を行うことができる。   According to the present invention, after eliminating the nozzle clogging of the dispensing nozzle, the respective absorbances for a plurality of reaction containers into which the dye solution and the diluent have been dispensed are measured, and the dispersion of each measured absorbance is calculated, and the calculated dispersion Is within the set range, it is determined that the dispensing accuracy of the dispensing mechanism is normal, so the dispensing accuracy of the dispensing mechanism can be grasped reliably and in a short time, and high-precision analysis processing can be performed. It can be carried out.

以下、図面を参照して、本発明の自動分析装置にかかる好適な実施の形態について説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、図面の記載において、同一の部分には同一の符号を付している。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of an automatic analyzer according to the invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments. In the description of the drawings, the same parts are denoted by the same reference numerals.

図1は、この発明の実施の形態における自動分析装置の概略構成を示す模式図である。図1に示すように、この発明の実施の形態にかかる自動分析装置1は、反応容器24に第1試薬、分析対象である検体、および第2試薬を分注し、これら第1試薬、検体、および第2試薬を反応容器24内で反応させ、この反応液の吸光度を測定する測定機構2と、測定機構2を含む自動分析装置1全体の制御を行うとともに測定機構2における測定結果の分析を行う制御機構3とを備える。自動分析装置1は、これらの二つの機構が連携することによって複数の検体の分析を自動的に行う。   FIG. 1 is a schematic diagram showing a schematic configuration of an automatic analyzer according to an embodiment of the present invention. As shown in FIG. 1, the automatic analyzer 1 according to the embodiment of the present invention dispenses a first reagent, a sample to be analyzed, and a second reagent into a reaction vessel 24, and these first reagent and sample. And the measurement mechanism 2 for reacting the second reagent in the reaction vessel 24 and measuring the absorbance of the reaction solution, and the entire automatic analyzer 1 including the measurement mechanism 2 is controlled and the measurement result in the measurement mechanism 2 is analyzed. And a control mechanism 3 for performing The automatic analyzer 1 automatically analyzes a plurality of specimens by the cooperation of these two mechanisms.

まず、測定機構2について説明する。図1に示すように、測定機構2は、血液や尿等の液体である検体を収容した複数の検体容器11aを保持する検体ラック11bを図中の矢印方向に順次移送する検体移送機構11と、検体移送機構11の検体容器11aから検体を吸引して反応容器24に検体を吐出して分注を行う検体分注機構12と、反応容器24への検体や試薬の分注、攪拌、測光および洗浄を行うために反応容器24を所定の位置まで移送する反応テーブル13と、反応容器24内に分注される第1試薬が収容された試薬容器16を複数収容する第1試薬庫15と、第1試薬庫15内の試薬容器16から第1試薬を吸引して反応容器24に第1試薬を吐出して分注を行う第1試薬分注機構17と、反応容器24内に分注される第2試薬が収容された試薬容器19を複数収容する第2試薬庫18と、第2試薬庫18内の試薬容器19から第2試薬を吸引して反応容器24に第2試薬を吐出して分注を行う第2試薬分注機構20と、反応容器24に分注された液体を攪拌する第1攪拌部14および第2攪拌部21と、反応容器24に分注された液体の吸光度を測定する測光部22と、測光部22による測定が終了した反応容器24に対して洗浄する洗浄部23と、検体分注機構12の移動軌跡上に設けられ、色素液が収容された色素液収容部25と、第1試薬分注機構17の移動軌跡上に設けられ、希釈液が収容された希釈液収容部26とを備える。   First, the measurement mechanism 2 will be described. As shown in FIG. 1, the measurement mechanism 2 includes a sample transport mechanism 11 that sequentially transports a sample rack 11b holding a plurality of sample containers 11a containing a sample such as blood or urine, in the direction of the arrow in the figure. , A sample dispensing mechanism 12 that sucks a sample from the sample container 11a of the sample transfer mechanism 11 and discharges the sample into the reaction container 24 for dispensing, and dispensing, stirring, and photometry of the sample and the reagent into the reaction container 24 And a reaction table 13 for transferring the reaction container 24 to a predetermined position for cleaning, and a first reagent container 15 for storing a plurality of reagent containers 16 storing the first reagent dispensed in the reaction container 24; The first reagent dispensing mechanism 17 for aspirating the first reagent from the reagent container 16 in the first reagent container 15 and discharging the first reagent into the reaction container 24 to perform dispensing, and dispensing into the reaction container 24 A plurality of reagent containers 19 containing the second reagent to be stored A second reagent storage 18 that accommodates, and a second reagent dispensing mechanism 20 that sucks the second reagent from the reagent container 19 in the second reagent storage 18 and discharges the second reagent into the reaction container 24 to perform dispensing. The first stirring unit 14 and the second stirring unit 21 that stir the liquid dispensed into the reaction vessel 24, the photometric unit 22 that measures the absorbance of the liquid dispensed into the reaction vessel 24, and the measurement by the photometric unit 22 Of the reaction vessel 24 that has been completed, the dye solution storage unit 25 that is provided on the movement locus of the sample dispensing mechanism 12 and stores the dye solution, and the first reagent dispensing mechanism 17 And a diluent storage unit 26 provided on the movement locus and storing the diluent.

なお、色素液としては、たとえば、アシッドレッド等が使用され、測光部22による分析光の波長(340〜800nm)範囲で検出できるものであればよい。また、色素液の濃度は、希釈液の液量を考慮したうえで、測光部22による測定可能範囲に入ればよい。希釈液としては、イオン交換水または蒸留水が用いられ、この希釈液は、色素液の濃度が測光部22の測光可能範囲となるように希釈する。   As the dye solution, for example, acid red or the like is used, as long as it can be detected in the wavelength range (340 to 800 nm) of the analysis light by the photometry unit 22. Moreover, the density | concentration of a pigment solution should just enter into the measurable range by the photometry part 22 after considering the liquid volume of a dilution liquid. As the diluting solution, ion-exchanged water or distilled water is used, and this diluting solution is diluted so that the concentration of the dye solution is within the photometric range of the photometric unit 22.

つぎに、制御機構3について説明する。制御機構3は、制御部31、入力部32、分析部33、自己診断判定部34、記憶部35、出力部36および送受信部37を備える。測定機構2および制御機構3が備えるこれらの各部は、制御部31に接続されている。   Next, the control mechanism 3 will be described. The control mechanism 3 includes a control unit 31, an input unit 32, an analysis unit 33, a self-diagnosis determination unit 34, a storage unit 35, an output unit 36, and a transmission / reception unit 37. These units included in the measurement mechanism 2 and the control mechanism 3 are connected to the control unit 31.

制御部31は、CPU等によって実現され、自動分析装置1の各部の処理および動作を制御する。制御部31は、これらの各構成部位に入出力される情報について所定の入出力制御を行い、かつ、この情報に対して所定の情報処理を行う。   The control unit 31 is realized by a CPU or the like, and controls processing and operation of each unit of the automatic analyzer 1. The control unit 31 performs predetermined input / output control on information input / output to / from each of these components, and performs predetermined information processing on this information.

入力部32は、キーボート、マウス、入出力機能を備えたタッチパネル等によって実現され、検体の分析に必要な諸情報や分析動作の指示情報等を外部から取得する。また、入力部32は、図示しない通信ネットワークを介して制御部31への指示情報を取得し、送信する。   The input unit 32 is realized by a keyboard, a mouse, a touch panel having an input / output function, and the like, and acquires various information necessary for analyzing a sample, instruction information for analysis operation, and the like from the outside. The input unit 32 acquires and transmits instruction information to the control unit 31 via a communication network (not shown).

分析部33は、測光部22によって測定された吸光度の測定結果に基づいて検体の成分分析等を行う。   The analysis unit 33 performs component analysis of the specimen based on the measurement result of the absorbance measured by the photometry unit 22.

自己診断判定部34は、詰まり判定部34a、算出部34b、分注精度判定部34cを有する。詰まり判定部34aは、圧力センサ48が検出した情報をもとに分注ノズル41内のノズル詰まりがあったか否かを判定する。算出部34bは、ノズル詰まりがあった場合に、複数の反応容器24内に分注された希釈液と色素液との混合液の各吸光度の分散度を算出する。分注精度判定部34cは、算出部34bが算出した分散度が所定範囲内である場合、検体分注機構12の分注精度が正常であると判定する。この分散度とは、たとえば標準偏差を平均値で除算した値の百分率である変動係数(CV:Coefficient of Variation)である。   The self-diagnosis determination unit 34 includes a clogging determination unit 34a, a calculation unit 34b, and a dispensing accuracy determination unit 34c. The clogging determination unit 34a determines whether there is a nozzle clogging in the dispensing nozzle 41 based on information detected by the pressure sensor 48. When there is nozzle clogging, the calculation unit 34b calculates the degree of dispersion of each absorbance of the mixture of the diluted solution and the dye solution dispensed in the plurality of reaction vessels 24. The dispensing accuracy determination unit 34c determines that the dispensing accuracy of the sample dispensing mechanism 12 is normal when the degree of dispersion calculated by the calculation unit 34b is within a predetermined range. The degree of dispersion is, for example, a coefficient of variation (CV) that is a percentage of a value obtained by dividing a standard deviation by an average value.

記憶部35は、情報を磁気的に記憶するハードディスクと、自動分析装置1が処理を実行する際にその処理にかかる各種プログラムをハードディスクからロードして電気的に記憶するメモリとを用いて実現され、検体の分析結果等を含む諸情報を記憶する。記憶部35は、CD−ROM、DVD−ROM、PCカード等の記憶媒体に記憶された情報を読み取ることができる補助記憶装置を備えてもよい。   The storage unit 35 is realized by using a hard disk that magnetically stores information and a memory that electrically loads various programs related to the process from the hard disk when the automatic analyzer 1 executes the process. Various information including the analysis result of the specimen is stored. The storage unit 35 may include an auxiliary storage device that can read information stored in a storage medium such as a CD-ROM, a DVD-ROM, or a PC card.

出力部36は、ディスプレイ、プリンタ、スピーカ等によって実現され、検体の分析結果を含む諸情報を出力する。出力部36は、自己診断判定部34が検体分注機構12の分注ノズル41内にノズル詰まりが生じたと判定した場合、検体分注機構12に異常が生じた旨を報知する。また、出力部36は、自己診断判定部34が検体分注機構12の分注精度に異常が生じたと判定した場合、検体分注機構12に異常が生じた旨を報知する。   The output unit 36 is realized by a display, a printer, a speaker, and the like, and outputs various information including the analysis result of the sample. When the self-diagnosis determination unit 34 determines that nozzle clogging has occurred in the dispensing nozzle 41 of the sample dispensing mechanism 12, the output unit 36 notifies the sample dispensing mechanism 12 that an abnormality has occurred. In addition, when the self-diagnosis determination unit 34 determines that an abnormality has occurred in the dispensing accuracy of the sample dispensing mechanism 12, the output unit 36 notifies the sample dispensing mechanism 12 that an abnormality has occurred.

送受信部37は、図示しない通信ネットワークを介して所定の形式にしたがって情報の送受信を行うインターフェースとしての機能を有する。   The transmission / reception unit 37 has a function as an interface for transmitting / receiving information according to a predetermined format via a communication network (not shown).

以上のように構成された自動分析装置1では、列をなして順次搬送される複数の反応容器24に対して、第1試薬分注機構17が試薬容器16内の試薬を分注後、検体分注機構12が検体容器11a内の検体を分注し、第2試薬分注機構20が試薬容器19内の試薬を分注する。さらに、測光部22が第1試薬、検体および第2試薬を反応させた状態の反応液の吸光度を測定し、この測定結果を分析部33が分析することで、検体の成分分析等が自動的に行われる。また、洗浄部23が測光部22による測定が終了した後に搬送される反応容器24を搬送させながら洗浄し、反応容器24を再利用する。この反応容器24の再利用を行いつつ、上述した一連の分析動作を繰り返し行う。   In the automatic analyzer 1 configured as described above, after the first reagent dispensing mechanism 17 dispenses the reagent in the reagent container 16 to the plurality of reaction containers 24 that are sequentially transported in a row, The dispensing mechanism 12 dispenses the sample in the sample container 11a, and the second reagent dispensing mechanism 20 dispenses the reagent in the reagent container 19. Further, the photometry unit 22 measures the absorbance of the reaction solution in a state where the first reagent, the sample, and the second reagent are reacted, and the analysis unit 33 analyzes the measurement result, so that the component analysis of the sample is automatically performed. To be done. In addition, the cleaning unit 23 cleans the reaction container 24 that is transported after the measurement by the photometry unit 22 is completed, and reuses the reaction container 24. While reusing the reaction container 24, the above-described series of analysis operations are repeated.

つぎに、図1に示した検体分注機構12について詳細に説明する。図2は、この発明の実施の形態に用いられる検体分注機構12の概略構成を示す模式図である。検体分注機構12は、図2に示すように、分注ノズル41、分注ポンプ46、圧力センサ48および洗浄水ポンプ50を備える。   Next, the sample dispensing mechanism 12 shown in FIG. 1 will be described in detail. FIG. 2 is a schematic diagram showing a schematic configuration of the specimen dispensing mechanism 12 used in the embodiment of the present invention. The sample dispensing mechanism 12 includes a dispensing nozzle 41, a dispensing pump 46, a pressure sensor 48, and a washing water pump 50, as shown in FIG.

分注ノズル41は、ステンレス等によって棒管状に形成されたものからなり、アーム42に装着されている。このアーム42は、駆動部43の駆動によって動作するものであり、アーム42と駆動部43とを連結する連結部44を介して、鉛直方向の昇降および連結部44を通る鉛直軸Oを中心とする回動を自在に行う。   The dispensing nozzle 41 is made of a rod-like tube made of stainless steel or the like, and is attached to the arm 42. The arm 42 is operated by the drive of the drive unit 43, and is centered on the vertical axis O passing through the connecting unit 44 through the connecting unit 44 that connects the arm 42 and the driving unit 43. Rotate freely.

分注ポンプ46は、シリンジポンプで実現され、配管45を介して分注ノズル41と、配管45内の圧力を検出する圧力センサ48と、洗浄水Waの流量を調整する電磁弁49とに接続されている。分注ポンプ46は、プランジャ駆動部47によるプランジャ46aの往復動によって、分注ノズル41内に検体を吸引し、反応容器24に吸引した検体を吐出して分注を行う。プランジャ駆動部47は、制御部31による制御のもと、プランジャ46aの移動量等を制限する。電磁弁49には、別の配管52が接続され、この配管52の他端は、洗浄水Waを供給する洗浄水ポンプ50に接続されている。さらに、洗浄水ポンプ50には、別の配管53が接続され、この配管53の他端は、洗浄水Waを収容する洗浄水タンク51に達している。圧力センサ48は、配管45内の圧力を検出し、検出した情報を制御部31に出力する。   The dispensing pump 46 is realized by a syringe pump, and is connected to a dispensing nozzle 41, a pressure sensor 48 for detecting the pressure in the piping 45, and an electromagnetic valve 49 for adjusting the flow rate of the washing water Wa via the piping 45. Has been. The dispensing pump 46 aspirates the sample into the dispensing nozzle 41 by the reciprocating movement of the plunger 46 a by the plunger driving unit 47 and discharges the sample sucked into the reaction container 24 to perform dispensing. The plunger drive unit 47 limits the amount of movement of the plunger 46 a under the control of the control unit 31. Another pipe 52 is connected to the electromagnetic valve 49, and the other end of the pipe 52 is connected to a cleaning water pump 50 that supplies the cleaning water Wa. Further, another pipe 53 is connected to the cleaning water pump 50, and the other end of the pipe 53 reaches a cleaning water tank 51 that stores the cleaning water Wa. The pressure sensor 48 detects the pressure in the pipe 45 and outputs the detected information to the control unit 31.

洗浄水ポンプ50は、洗浄水タンク51に貯蔵された洗浄水Waを吸い上げ、圧力センサ48との間に設けた電磁弁49を介して配管45内に洗浄水Waを供給する。ここで、電磁弁49は、制御部31の制御のもと、吸い上げた洗浄水Waを配管45内に供給する場合には開かれ、分注ポンプ46によって分注ノズル41が検体を吸引または吐出する場合には閉じられる。なお、洗浄水Waは、脱気されたイオン交換水または蒸留水等の非圧縮性流体である。   The washing water pump 50 sucks up the washing water Wa stored in the washing water tank 51 and supplies the washing water Wa into the pipe 45 through an electromagnetic valve 49 provided between the washing water pump 51 and the pressure sensor 48. Here, the electromagnetic valve 49 is opened when the suctioned wash water Wa is supplied into the pipe 45 under the control of the control unit 31, and the dispensing nozzle 41 sucks or discharges the sample by the dispensing pump 46. If you do, it will be closed. The washing water Wa is an incompressible fluid such as deionized ion exchange water or distilled water.

第1試薬分注機構17および第2試薬分注機構20は、検体分注機構12と同様の構成を有しており、制御部31の制御のもとに動作し、第1試薬および第2試薬の吸引または吐出する分注を行う。   The first reagent dispensing mechanism 17 and the second reagent dispensing mechanism 20 have the same configuration as the sample dispensing mechanism 12, operate under the control of the control unit 31, and operate with the first reagent and the second reagent. Dispensing reagent aspirate or dispense.

ここで、図3に示すフローチャートを参照して、自己診断判定部34による検体分注機構12の自己診断判定処理手順について説明する。まず、詰まり判定部34aは、検体分注機構12が分注する際に、圧力センサ48が検出した情報をもとに、分注ノズル41にノズル詰まりがあるか否かを判定する(ステップS101)。分注ノズル41にノズル詰まりが無いと判定した場合(ステップS101:No)、このステップS101に移行し、この判定処理を繰り返す。一方、分注ノズル41にノズル詰まりがあると判定した場合(ステップS101:Yes)、制御部31を介して分注ノズル41の洗浄処理を実行させる(ステップS102)。この分注ノズル41の洗浄処理は、分注ノズル41と分注ポンプ46とを配管45で接続した分注流路内に満たされた洗浄水Waを分注ノズル41から所定量を吐出することによって実行される。この分注ノズル41の洗浄処理によって、分注ノズル41の詰まり、例えば、検体のフィブリン等の固形物が洗浄水Waと共に吐出される。   Here, the self-diagnosis determination processing procedure of the sample dispensing mechanism 12 by the self-diagnosis determination unit 34 will be described with reference to the flowchart shown in FIG. First, the clogging determination unit 34a determines whether or not the dispensing nozzle 41 is clogged based on information detected by the pressure sensor 48 when the sample dispensing mechanism 12 dispenses (step S101). ). When it is determined that there is no nozzle clogging in the dispensing nozzle 41 (step S101: No), the process proceeds to step S101, and this determination process is repeated. On the other hand, when it is determined that the dispensing nozzle 41 is clogged (step S101: Yes), a cleaning process for the dispensing nozzle 41 is executed via the control unit 31 (step S102). In the cleaning process of the dispensing nozzle 41, a predetermined amount of the cleaning water Wa filled in the dispensing flow path in which the dispensing nozzle 41 and the dispensing pump 46 are connected by the pipe 45 is discharged from the dispensing nozzle 41. Executed by. Due to the washing process of the dispensing nozzle 41, the dispensing nozzle 41 is clogged, for example, solid matter such as fibrin of the specimen is discharged together with the washing water Wa.

その後、詰まり判定部34aは、再度、分注ノズル41にノズル詰まりがあるか否かを判定する(ステップS103)。分注ノズル41にノズル詰まりがあると判定した場合(ステップS103:Yes)、既に分注ノズル41の洗浄処理が行われているので、検体分注機構12そのものに異常が発生したものと判断し、検体分注機構12に異常が発生している旨を出力部36から異常告知して(ステップS112)、ステップS113に移行する。   Thereafter, the clogging determination unit 34a determines again whether or not the dispensing nozzle 41 is clogged (step S103). If it is determined that the dispensing nozzle 41 is clogged (step S103: Yes), since the dispensing nozzle 41 has already been cleaned, it is determined that an abnormality has occurred in the sample dispensing mechanism 12 itself. Then, an abnormality is notified from the output unit 36 that an abnormality has occurred in the sample dispensing mechanism 12 (step S112), and the process proceeds to step S113.

一方、分注ノズル41にノズル詰まりがないと判定した場合(ステップS103:No)、自己診断判定部34は、ノズル詰まりが発生した場合に行う分注精度判定処理が設定されているか否かを判定する(ステップS104)。分注精度判定処理が設定されていない場合(ステップS104:No)、ステップS113へ移行する。一方、分注精度判定処理が設定されている場合(ステップS104:Yes)、自己診断判定部34は、記憶部35から設定項目を取得する(ステップS105)。この設定項目には、予め、分注精度判定処理時に検体分注機構12が行う分注量、分注回数、および判定基準としての分散度の範囲が設定される。具体的には、分注量を1μl、分注回数を10回、および分散度が2.0%の範囲に設定される。   On the other hand, when it is determined that there is no nozzle clogging in the dispensing nozzle 41 (step S103: No), the self-diagnosis determination unit 34 determines whether or not the dispensing accuracy determination process to be performed when nozzle clogging has been set. Determination is made (step S104). When the dispensing accuracy determination process is not set (step S104: No), the process proceeds to step S113. On the other hand, when the dispensing accuracy determination process is set (step S104: Yes), the self-diagnosis determination unit 34 acquires a setting item from the storage unit 35 (step S105). In this setting item, the amount of dispensing performed by the sample dispensing mechanism 12 during the dispensing accuracy determination process, the number of times of dispensing, and the range of dispersion as a determination criterion are set in advance. Specifically, the dispensing amount is set to 1 μl, the number of dispensings is 10 times, and the dispersity is set to a range of 2.0%.

その後、自己診断判定部34は、取得した設定項目をもとに、制御部31を介して、検体分注機構12よって色素液収容部25に収容された色素液を吸引し、この吸引した色素液を反応容器24に分注する(ステップS106)。さらに、自己診断判定部34は、取得された設定項目をもとに、制御部31を介して、第1試薬分注機構17によって希釈液収容部26に収容された希釈液を吸引し、この吸引した希釈液を、色素液が分注された反応容器24に分注する(ステップS107)。その後、自己診断判定部34は、制御部31を介して、測光部22によって色素液と希釈液とが分注された反応容器24に対する測光処理を行わせ(ステップS108)、自己診断判定部34は、分注回数が設定項目で設定された設定回数以上であるか否かを判定する(ステップS109)。分注回数が設定回数以上でない場合(ステップS109:No)、ステップS106へ移行し、上述したステップS106〜ステップS108による分注と測光との処理を繰り返す。   Thereafter, the self-diagnosis determination unit 34 sucks the dye solution stored in the dye solution storage unit 25 by the sample dispensing mechanism 12 via the control unit 31 based on the acquired setting item, and this sucked dye The liquid is dispensed into the reaction vessel 24 (step S106). Further, the self-diagnosis determination unit 34 sucks the diluent stored in the diluent storage unit 26 by the first reagent dispensing mechanism 17 via the control unit 31 based on the acquired setting item. The sucked diluted solution is dispensed into the reaction container 24 into which the dye solution has been dispensed (step S107). Thereafter, the self-diagnosis determination unit 34 causes the photometry unit 22 to perform photometry processing on the reaction container 24 into which the dye solution and the diluent have been dispensed via the control unit 31 (step S108). Determines whether or not the number of dispensing is equal to or greater than the set number set in the setting item (step S109). If the number of times of dispensing is not equal to or greater than the set number of times (step S109: No), the process proceeds to step S106, and the processes of dispensing and photometry in steps S106 to S108 described above are repeated.

一方、分注回数が設定回数以上である場合(ステップS109:Yes)、算出部34bは、色素液と希釈液とが分注された各反応容器24の各吸光度を記憶部35から取得し、この取得した各吸光度をもとに分散度を算出する(ステップS110)。   On the other hand, when the number of times of dispensing is equal to or greater than the set number of times (step S109: Yes), the calculation unit 34b acquires the absorbance of each reaction container 24 into which the dye solution and the diluent have been dispensed from the storage unit 35, The degree of dispersion is calculated on the basis of each acquired absorbance (step S110).

その後、分注精度判定部34cは、算出部34bが算出した分散度が設定範囲内であるか否かを判定する(ステップS111)。設定範囲内である場合(ステップS111:Yes)、ステップS113へ移行する。一方、設定範囲内でない場合(ステップS111:No)、制御部31を介して、出力部36に分注ノズル41が異常である旨の異常告知を行わせる(ステップS112)。   Thereafter, the dispensing accuracy determination unit 34c determines whether or not the degree of dispersion calculated by the calculation unit 34b is within the set range (step S111). When it is within the setting range (step S111: Yes), the process proceeds to step S113. On the other hand, when it is not within the set range (step S111: No), the control unit 31 is caused to notify the output unit 36 that the dispensing nozzle 41 is abnormal (step S112).

その後、自己診断判定部34は、制御部31から分析終了の指示を受けたか否か判定し(ステップS113)、分析終了の指示を受けていない場合(ステップS113:No)、ステップS101へ移行し、上述した処理を繰り返し、分析終了の指示を受けた場合(ステップS113:Yes)、本処理を終了する。   Thereafter, the self-diagnosis determination unit 34 determines whether or not an analysis end instruction has been received from the control unit 31 (step S113). If no analysis end instruction has been received (step S113: No), the process proceeds to step S101. When the above-described process is repeated and an instruction to end the analysis is received (step S113: Yes), this process ends.

この発明の実施の形態では、分注ノズル41のノズル詰まりの排除後に、色素液と希釈液とを分注した所定数の反応容器24に対して各吸光度を測定し、この各吸光度の分散度を算出することで、検体分注機構12の分注精度を判定するようにしているので、確実かつ短時間に分注機構の分注精度を把握でき、精度の高い分析処理を行うことができる。   In the embodiment of the present invention, after eliminating the nozzle clogging of the dispensing nozzle 41, each absorbance is measured with respect to a predetermined number of reaction vessels 24 into which the dye solution and the diluent are dispensed, and the degree of dispersion of each absorbance is measured. Since the dispensing accuracy of the sample dispensing mechanism 12 is determined by calculating, the dispensing accuracy of the dispensing mechanism can be grasped reliably and in a short time, and a highly accurate analysis process can be performed. .

また、上述した実施の形態では、標準検体を用いた通常の精度確認処理のように検体と試薬とを反応させる必要がないので、検体および試薬を節約してコストを抑えることができるとともに、分注精度の確認を容易に行うことが可能となる。   In the above-described embodiment, it is not necessary to react the sample and the reagent as in the normal accuracy check process using the standard sample. Therefore, the sample and the reagent can be saved and the cost can be reduced. It is possible to easily check the accuracy of the injection.

なお、上述した実施の形態では、検体分注機構12の分析精度の判定について説明したが、これに限らず、第1試薬分注機構17および第2試薬分注機構20に対して、上述した自己診断判定処理を行うことによって第1試薬分注機構17および第2試薬分注機構20の分注精度を確認することができる。   In the above-described embodiment, the determination of the analysis accuracy of the sample dispensing mechanism 12 has been described. However, the present invention is not limited to this, and the first reagent dispensing mechanism 17 and the second reagent dispensing mechanism 20 are described above. By performing the self-diagnosis determination process, the dispensing accuracy of the first reagent dispensing mechanism 17 and the second reagent dispensing mechanism 20 can be confirmed.

また、上述した実施の形態では、検体分注機構12が行う1つの設定分注量の分注精度について説明したが、これに限らず、設定分注量を複数設定し、この設定分注量毎に分注精度の判定を行なってもよい。これによって、検体分注機構12の分注精度をより正確に把握でき、精度の高い分析結果を得ることができる。   In the above-described embodiment, the dispensing accuracy of one set dispensing amount performed by the sample dispensing mechanism 12 has been described. However, the present invention is not limited to this, and a plurality of set dispensing amounts are set, and this set dispensing amount is set. The dispensing accuracy may be determined every time. Thereby, the dispensing accuracy of the sample dispensing mechanism 12 can be grasped more accurately, and a highly accurate analysis result can be obtained.

なお、上述した実施の形態では、希釈液収容部26に希釈液を収容しているが、これに限らず、第1試薬庫15の試薬容器16に収容してもよい。これによって、別途、希釈液収容部26を設けなくてよいので、自動分析装置1をコンパクトにすることができる。   In the above-described embodiment, the diluent is stored in the diluent storage unit 26. However, the present invention is not limited to this, and the diluent may be stored in the reagent container 16 of the first reagent storage 15. Accordingly, it is not necessary to provide the diluent storage unit 26 separately, so that the automatic analyzer 1 can be made compact.

また、上述した実施の形態では、希釈液の代わりに検体分注機構12内の洗浄水Waを用いてもよい。要は、反応容器24内に分注された色素液を希釈できればよく、検体分注機構12が吸引した色素液とともに洗浄水Waを反応容器24に吐出するようにすればよい。これによって、色素液と希釈液との分注動作を1回で行えるので、検体分注機構12の分注精度の判定処理を一層簡易化することができるとともに、希釈液収容部26を設けずともよくなるので、自動分析装置1の小型化を促進することができる。   In the above-described embodiment, the washing water Wa in the specimen dispensing mechanism 12 may be used instead of the diluent. In short, it is only necessary to dilute the dye solution dispensed in the reaction container 24, and the washing water Wa may be discharged to the reaction container 24 together with the dye solution sucked by the sample dispensing mechanism 12. Thereby, since the dispensing operation of the dye solution and the diluent can be performed at a time, the determination process of the dispensing accuracy of the sample dispensing mechanism 12 can be further simplified, and the diluent container 26 is not provided. Therefore, downsizing of the automatic analyzer 1 can be promoted.

自動分析装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of an automatic analyzer. 検体分注機構の概略構成を示す模試図である。FIG. 3 is a schematic diagram showing a schematic configuration of a sample dispensing mechanism. 自己診断判定部による自己診断判定処理手順を示すフローチャートである。It is a flowchart which shows the self-diagnosis determination processing procedure by a self-diagnosis determination part.

符号の説明Explanation of symbols

1 自動分析装置
2 測定機構
3 制御機構
11 検体移送機構
11a 検体容器
11b 検体ラック
12 検体分注機構
13 反応テーブル
14 第1攪拌部
15 第1試薬庫
16,19 試薬容器
17 第1試薬分注機構
18 第2試薬庫
19 試薬容器
20 第2試薬分注機構
21 第2攪拌部
22 測光部
23 洗浄部
24 反応容器
25 色素液収容部
26 希釈液収容部
31 制御部
32 入力部
33 分析部
34 自己診断判定部
34a 詰まり判定部
34b 算出部
34c 分注精度判定部
35 記憶部
36 出力部
37 送受信部
41 分注ノズル
42 アーム
43 駆動部
44 連結部
45,52,53 配管
46 分注ポンプ
46a プランジャ
47 プランジャ駆動部
48 圧力センサ
49 電磁弁
50 洗浄水ポンプ
51 洗浄水タンク
Wa 洗浄水
DESCRIPTION OF SYMBOLS 1 Automatic analyzer 2 Measurement mechanism 3 Control mechanism 11 Specimen transfer mechanism 11a Specimen container 11b Specimen rack 12 Specimen dispensing mechanism 13 Reaction table 14 1st stirring part 15 1st reagent storage 16, 19 Reagent container 17 1st reagent dispensing mechanism 18 Second reagent storage 19 Reagent container 20 Second reagent dispensing mechanism 21 Second stirring unit 22 Photometric unit 23 Washing unit 24 Reaction vessel 25 Dye solution storage unit 26 Diluent solution storage unit 31 Control unit 32 Input unit 33 Analysis unit 34 Self Diagnosis determination section 34a Clogging determination section 34b Calculation section 34c Dispensing accuracy determination section 35 Storage section 36 Output section 37 Transmission / reception section 41 Dispensing nozzle 42 Arm 43 Drive section 44 Connecting section 45, 52, 53 Piping 46 Dispensing pump 46a Plunger 47 Plunger drive part 48 Pressure sensor 49 Solenoid valve 50 Washing water pump 51 Washing water tank Wa Washing Water

Claims (3)

分注ノズル内にノズル詰まりが生じた場合、該分注ノズル内を洗浄してノズル詰まりを排除する分注機構を備え、前記分注機構によって検体と試薬とを反応容器に分注し、該反応容器内で反応する反応液の吸光度を測定することで前記検体を分析する自動分析装置において、
前記ノズル詰まりの排除後に、前記分注機構を用いて色素液と希釈液とを複数の反応容器にそれぞれ分注する分注手段と、
前記分注手段によって分注された前記複数の反応容器内の液体に対する各吸光度を測定する測定手段と、
前記測定手段が測定した各吸光度の分散度を算出する算出手段と、
前記算出手段が算出した分散度が設定範囲内である場合、前記分注機構による分注精度が正常であると判定する判定手段と、
を備えたことを特徴とする自動分析装置。
When nozzle clogging occurs in the dispensing nozzle, the dispensing nozzle is provided with a dispensing mechanism for cleaning the inside of the dispensing nozzle to eliminate nozzle clogging, and dispensing the sample and the reagent into the reaction container by the dispensing mechanism, In an automatic analyzer that analyzes the sample by measuring the absorbance of the reaction solution that reacts in the reaction vessel,
Dispensing means for dispensing the dye solution and the diluted solution into a plurality of reaction containers, respectively, using the dispensing mechanism after eliminating the nozzle clogging;
Measuring means for measuring the absorbance of the liquid in the plurality of reaction vessels dispensed by the dispensing means;
Calculating means for calculating the degree of dispersion of each absorbance measured by the measuring means;
When the degree of dispersion calculated by the calculation unit is within a setting range, a determination unit that determines that the dispensing accuracy by the dispensing mechanism is normal;
An automatic analyzer characterized by comprising:
前記分注機構の移動軌跡上に、前記色素液を収容する色素液収容部を設けたことを特徴とする請求項1に記載の自動分析装置。   The automatic analyzer according to claim 1, wherein a dye solution storage unit for storing the dye solution is provided on a movement trajectory of the dispensing mechanism. 前記分注機構の移動軌跡上に、前記希釈液を収容する希釈液収容部を設けたことを特徴とする請求項1または2に記載の自動分析装置。   3. The automatic analyzer according to claim 1, wherein a diluent storage unit that stores the diluent is provided on a movement trajectory of the dispensing mechanism. 4.
JP2008198747A 2008-07-31 2008-07-31 Automatic analyzing apparatus Pending JP2010038578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008198747A JP2010038578A (en) 2008-07-31 2008-07-31 Automatic analyzing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008198747A JP2010038578A (en) 2008-07-31 2008-07-31 Automatic analyzing apparatus

Publications (1)

Publication Number Publication Date
JP2010038578A true JP2010038578A (en) 2010-02-18

Family

ID=42011304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008198747A Pending JP2010038578A (en) 2008-07-31 2008-07-31 Automatic analyzing apparatus

Country Status (1)

Country Link
JP (1) JP2010038578A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172488A (en) * 2014-03-11 2015-10-01 日本電子株式会社 automatic analyzer and abnormality detection method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627120A (en) * 1992-07-08 1994-02-04 Aloka Co Ltd Dispenser with closure detection
JPH06207944A (en) * 1993-01-11 1994-07-26 Hitachi Ltd Automatic analyzer with washing function
JP2000105239A (en) * 1998-09-29 2000-04-11 Hitachi Ltd Biochemical automatic analyzer
JP2004125780A (en) * 2002-08-07 2004-04-22 Hitachi High-Technologies Corp Sample dispensing apparatus and automatic analyzer using it
JP3119773U (en) * 2005-12-22 2006-03-09 株式会社日立ハイテクノロジーズ Automatic analyzer
JP2007327779A (en) * 2006-06-06 2007-12-20 Olympus Corp Automatic analyzer, and dispensing accuracy confirmation method of same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627120A (en) * 1992-07-08 1994-02-04 Aloka Co Ltd Dispenser with closure detection
JPH06207944A (en) * 1993-01-11 1994-07-26 Hitachi Ltd Automatic analyzer with washing function
JP2000105239A (en) * 1998-09-29 2000-04-11 Hitachi Ltd Biochemical automatic analyzer
JP2004125780A (en) * 2002-08-07 2004-04-22 Hitachi High-Technologies Corp Sample dispensing apparatus and automatic analyzer using it
JP3119773U (en) * 2005-12-22 2006-03-09 株式会社日立ハイテクノロジーズ Automatic analyzer
JP2007327779A (en) * 2006-06-06 2007-12-20 Olympus Corp Automatic analyzer, and dispensing accuracy confirmation method of same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172488A (en) * 2014-03-11 2015-10-01 日本電子株式会社 automatic analyzer and abnormality detection method

Similar Documents

Publication Publication Date Title
US8734721B2 (en) Analyzer
US9989549B2 (en) Automatic analyzer
US9513305B2 (en) Multiple cleaning stations for a dispensing probe
EP3415921B1 (en) Automated analyzer
JP4948020B2 (en) Liquid quality control method and automatic analyzer for analysis support of automatic analyzer
JP4416579B2 (en) Automatic analyzer
JP5140491B2 (en) Automatic analyzer and dispensing accuracy confirmation method
JP5231186B2 (en) Sample dispensing method and analyzer
JP2007327779A (en) Automatic analyzer, and dispensing accuracy confirmation method of same
JPH04329362A (en) Automatic analyzer
JP3120180U (en) Automatic analyzer
JP2010038578A (en) Automatic analyzing apparatus
EP3767299B1 (en) Automatic analyzing apparatus, and method for detecting flow path clogging of the automatic analyzing apparatus
JP6675162B2 (en) Automatic analyzer
US11879902B2 (en) Test method and dispensing device
JP6928712B2 (en) Automatic analyzer
US20190369130A1 (en) Automatic Analyzer
JP5487275B2 (en) Automatic analyzer
JP5192316B2 (en) Automatic analyzer
JPH07333228A (en) Automatic analyser
JP7167037B2 (en) Abnormal detection method for automatic analyzer and specimen pipetting mechanism
US11971426B2 (en) Automatic analysis device
WO2021215068A1 (en) Dispensing device, automated analysis device, and dispensing method
JP2010112832A (en) Autoanalyzer
JP2017096763A (en) Automatic analyzer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20100208

Free format text: JAPANESE INTERMEDIATE CODE: A711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120821

A131 Notification of reasons for refusal

Effective date: 20120828

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20130501

Free format text: JAPANESE INTERMEDIATE CODE: A02