JP2010036119A - Collision device - Google Patents

Collision device Download PDF

Info

Publication number
JP2010036119A
JP2010036119A JP2008202384A JP2008202384A JP2010036119A JP 2010036119 A JP2010036119 A JP 2010036119A JP 2008202384 A JP2008202384 A JP 2008202384A JP 2008202384 A JP2008202384 A JP 2008202384A JP 2010036119 A JP2010036119 A JP 2010036119A
Authority
JP
Japan
Prior art keywords
collision
injection nozzle
injection
nozzle
hard body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008202384A
Other languages
Japanese (ja)
Inventor
Masao Nakatani
正雄 中谷
Atsushi Nakajima
淳 中島
Kota Ogura
孝太 小倉
Yasumasa Matsumoto
泰正 松本
Sumie Tarumoto
純枝 樽本
Hidetaka Iwai
秀隆 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Sugino Machine Ltd
Original Assignee
Kao Corp
Sugino Machine Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp, Sugino Machine Ltd filed Critical Kao Corp
Priority to JP2008202384A priority Critical patent/JP2010036119A/en
Publication of JP2010036119A publication Critical patent/JP2010036119A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Disintegrating Or Milling (AREA)
  • Accessories For Mixers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a collision device capable of prolonging the life of a hard collision ball relative to prior art and can improve the efficiency in the process of the collision treatment of a raw material liquid over a long period of time. <P>SOLUTION: The collision device wherein a high pressure ejection stream ejected from its ejection nozzle is allowed to hit a spherical hard body rotatably held in its collision chamber, is characterized by comprising a first ejection nozzle and a second ejection nozzle each ejecting a liquid and causing the resulting ejection streams to hit the surface of the spherical hard body on its mutually different positions, with the ejection axis of the first ejection nozzle and that of the second ejection nozzle each directed to mutually different eccentric positions on the spherical hard body relative to the spherical center thereof. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高圧流体を硬質球体に衝突させることによって流体の乳化や流体中の粒子の微粒子化、分散を行うための衝突装置に関するものである。   The present invention relates to a collision apparatus for emulsifying a fluid, atomizing particles in a fluid, and dispersing them by causing a high-pressure fluid to collide with a hard sphere.

従来から、原料液の乳化や液中の粒状原料物質の微粒化、分散を行う際に、噴射ノズルから原料液を高圧で噴射させてその高圧噴流を硬質体に衝突させることによる衝撃力を利用した衝突装置が用いられている。硬質体としては、板状のものを用いていたが、高圧噴流が常に同じ位置に衝突し続けるため、長時間運転により硬質板に穴が開いてしまい、頻繁な交換が必要で、そのための停止時間や手間、部材等、ランニングコストの増加を招く要素が少なくなく、製品の連続製造工程において、実用に適したものではなかった。   Conventionally, when emulsifying a raw material liquid or atomizing or dispersing a granular raw material substance in the liquid, the impact force generated by injecting the raw material liquid from the injection nozzle at a high pressure and causing the high-pressure jet to collide with a hard body is used. A collision device is used. As the hard body, a plate-shaped one was used, but since the high-pressure jet always collided with the same position, a hole was opened in the hard plate due to long-term operation, and frequent replacement is necessary, so stop There are many elements that increase running costs, such as time, labor, and members, and they are not suitable for practical use in the continuous production process of products.

そこで、硬質体として球状のものを用いることによってその長寿命化を図った衝突装置が考えられている。これは、衝突チャンバー内において硬質球体を高圧噴流の噴射軸線に対して偏心させた位置で回転自在に支承することにより、噴射ノズルから噴射される高圧噴流を硬質球体の表面に衝突点における入射法線に対して90度未満の傾斜角度をもって衝突させて硬質球体に衝突力の分力で回転を生じさせるものである。従って、硬質球体は高圧噴流が衝突している間は常に回転することとなるため、球体表面上の衝突位置は常に変化し、同一点で衝突し続けることによる穴開けの問題は回避される(例えば、特許文献1参照。)。   In view of this, there has been considered a collision device that has a long life by using a spherical hard body. This is because the hard sphere is rotatably supported at a position eccentric to the injection axis of the high-pressure jet in the collision chamber so that the high-pressure jet injected from the injection nozzle is incident on the surface of the hard sphere at the collision point. The hard sphere is caused to collide with the line at a tilt angle of less than 90 degrees to cause the hard sphere to rotate with a component of the collision force. Therefore, since the hard sphere always rotates while the high-pressure jet collides, the collision position on the surface of the sphere always changes, and the problem of drilling due to continuing collision at the same point is avoided ( For example, see Patent Document 1.)

特開2000−448号公報JP 2000-448

しかしながら、上記のように噴射軸線に対して偏心位置で支承された硬質球体を用いる衝突装置においても、硬質球体表面に対して高圧噴流が衝突する傾斜角度が一定であるため、硬質球体の回転方向も常に同じとなり、硬質球体表面の同一円周上に衝突が集中するため、長時間運転においては該円周に沿って溝状の損傷が生じてしまう。   However, even in the collision device using the hard sphere supported in an eccentric position with respect to the injection axis as described above, the inclination angle at which the high-pressure jet collides with the hard sphere surface is constant, so the rotation direction of the hard sphere Since the collision is concentrated on the same circumference on the surface of the hard sphere, a groove-like damage occurs along the circumference during long-time operation.

従って、硬質板を用いていた場合よりも、噴射軸線に対して偏心位置に配置した球状の硬質体の寿命は長くはなるが、やはり実用に即した長時間運転では上記溝状損傷により良好な衝突処理が維持できなくなって製品の品質低下を招くことになるため硬質球体の交換を余儀なくされ、原料液の連続衝突処理による製品製造工程の実用においては充分な効率化が望めなかった。   Therefore, although the life of the spherical hard body arranged in an eccentric position with respect to the injection axis is longer than that in the case of using a hard plate, it is still better due to the above groove-like damage in a long-time operation in accordance with practical use. Since the collision treatment cannot be maintained and the quality of the product is deteriorated, the hard sphere must be replaced, and sufficient efficiency cannot be expected in practical use of the product manufacturing process by the continuous collision treatment of the raw material liquid.

本発明の目的は、上記問題点に鑑み、従来よりもより衝突用の硬質球体の長期化を可能とし、長時間に亘る原料液の衝突処理工程における効率化が図れる衝突装置を提供することにある。   In view of the above problems, an object of the present invention is to provide a collision apparatus that enables a longer hard sphere for collision than in the past and can improve the efficiency of a raw material liquid collision treatment process over a long period of time. is there.

上記目的を達成するため、請求項1に記載の発明に係る衝突装置は、衝突用チャンバ内に回転自在に支承された球状の硬質体に噴射ノズルから噴射される高圧噴流を衝突させる衝突装置において、
前記硬質体に向けて流体を噴射して硬質体表面上の互いに異なる位置へ噴流を衝突させる第1の噴射ノズルと第2の噴射ノズルとを備え、
第1の噴射ノズルの噴射軸線と第2の噴射ノズルの噴射軸線とが、それぞれ前記硬質体の球心に対して偏心した位置に指向されていることを特徴とするものである。
In order to achieve the above object, a collision apparatus according to a first aspect of the present invention is a collision apparatus in which a high-pressure jet sprayed from an injection nozzle collides with a spherical hard body rotatably supported in a collision chamber. ,
Comprising a first injection nozzle and a second injection nozzle for injecting a fluid toward the hard body and causing the jets to collide with different positions on the surface of the hard body;
The injection axis of the first injection nozzle and the injection axis of the second injection nozzle are each directed to a position eccentric with respect to the spherical center of the hard body.

また、請求項2に記載の発明に係る衝突装置は、請求項1に記載の衝突装置において、前記第1の噴射ノズルと第2の噴射ノズルへの流体の加圧供給を行う流体供給手段と、
該流体供給手段による第1の噴射ノズルと第2の噴射ノズルへの流体の供給と停止をそれぞれ任意に制御すると共に、各噴射ノズルへ供給される流体に加える圧力をそれぞれ変更可能に制御する制御手段と、を備えているものである。
According to a second aspect of the present invention, there is provided a collision apparatus according to the first aspect, wherein the collision apparatus according to the first aspect includes a fluid supply means for performing pressurized supply of fluid to the first injection nozzle and the second injection nozzle. ,
Control for arbitrarily controlling supply and stop of the fluid to the first and second spray nozzles by the fluid supply means, and controlling the pressure applied to the fluid supplied to each spray nozzle to be changeable. Means.

さらに、請求項3に記載の発明に係る衝突装置は、請求項2に記載の衝突装置において、記第2の噴射ノズルの噴射軸線が、前記第1の噴射ノズルの噴射軸線に対して直交する平面上にあることを特徴とするものである。   Furthermore, the collision apparatus according to the invention described in claim 3 is the collision apparatus according to claim 2, wherein the injection axis of the second injection nozzle is orthogonal to the injection axis of the first injection nozzle. It is characterized by being on a plane.

本発明による衝突装置においては、球状の硬質体に高圧噴流を衝突させるものであって、それぞれ噴射軸線が球状硬質体の球心に対して偏心した位置に指向され、硬質体表面上の互いに異なる位置へ噴流を衝突させる第1の噴射ノズルと第2の噴射ノズルとを備えたものであるため、硬質体には、第1の噴射ノズルからの噴流が衝突する第1の衝突点と第2の噴射ノズルからの噴流が衝突する第2の衝突点とのそれぞれで衝突力の分力による回転力が生じ、この互いに異なる二方向への回転が相乗的に作用して被衝突領域は硬質体のほぼ全表面に亘るので、長時間運転においても特定箇所に衝突が集中して著しい損傷を生じることもなくなるので、従来より硬質体の長寿命化が図れ、実際の製品の製造工程に応じた長時間運転においても良好な連続衝突処理状態を維持でき、ランニングコストの低減も期待できるという効果がある。   In the collision device according to the present invention, a high-pressure jet is caused to collide with a spherical hard body, and the injection axes are directed to positions eccentric from the spherical center of the spherical hard body, and are different from each other on the surface of the hard body. Since the first injection nozzle and the second injection nozzle that cause the jet to collide with the position are provided, the first collision point where the jet from the first injection nozzle collides with the hard body and the second Rotational force due to the component force of the collision force is generated at each of the second collision points where the jet flow from the injection nozzle collides, and the rotation in the two different directions acts synergistically so that the collision target region is a hard body. Since it covers almost the entire surface, collisions do not concentrate at a specific location even during long-time operation, so there is no longer any significant damage. Good for long-term operation Continuous collision processing state can be maintained, even reduction of running costs there is an effect that can be expected.

本発明は、球状の硬質体に高圧噴流を衝突させる衝突装置において、それぞれ噴射軸線が球状硬質体の球心に対して偏心した位置に指向され、硬質体表面上の互いに異なる位置へ噴流を衝突させる第1の噴射ノズルと第2の噴射ノズルとを備えたことによって、硬質体には、第1の噴射ノズルからの噴流が衝突する第1の衝突点と第2の噴射ノズルからの噴流が衝突する第2の衝突点とのそれぞれで衝突力の分力による回転力が生じるため、噴流が衝突している間は、互いに異なる二方向への回転が相乗的に作用して、硬質体表面は実質的に2つの衝突位置に対し様々な方向に相対移動し、その被衝突箇所は全体的に分散したものとなる。   The present invention relates to a collision device that collides a high-pressure jet against a spherical hard body, and each jet axis is directed to a position eccentric to the spherical center of the spherical hard body, and the jets collide with different positions on the surface of the hard body. By providing the first injection nozzle and the second injection nozzle to be caused, the hard body has the first collision point where the jet flow from the first injection nozzle collides with the jet flow from the second injection nozzle. Since a rotational force is generated by a component of the collision force at each of the second collision points that collide, the rotation in two different directions acts synergistically while the jets collide, and the hard body surface Substantially moves relative to the two collision positions in various directions, and the collided portions are totally dispersed.

従って、本発明によれば、被衝突領域は硬質体のほぼ全表面に亘り、従来のような特定箇所に衝突が集中して著しい損傷を生じることがなくなり、さらなる硬質体の長寿命化が図れ、実際の製品の製造工程に応じた長時間運転においても良好な連続衝突処理状態を維持でき、ランニングコストの低減も期待できる。   Therefore, according to the present invention, the collision area extends over almost the entire surface of the hard body, and the collision does not concentrate at a specific location as in the prior art, causing significant damage, and the life of the hard body can be further extended. In addition, it is possible to maintain a good continuous collision treatment state even for a long time operation according to the actual product manufacturing process, and to expect a reduction in running cost.

即ち、本発明においては、第1と第2の噴射ノズルから噴射される噴流の球状硬質体表面上の衝突位置が、それぞれ各衝突点で生じる回転力の方向が互いに異なるものとなるように、言い換えればそれぞれの回転中心軸同士が一致しない回転方向に回転力が生じる位置であればよい。   That is, in the present invention, the collision positions on the spherical hard body surface of the jets ejected from the first and second ejection nozzles are different from each other in the direction of the rotational force generated at each collision point. In other words, any position where the rotational force is generated in the rotational direction where the respective rotation center axes do not coincide with each other may be used.

ただし、第1と第2の噴射ノズルの双方から同時に高圧噴流を噴射して同じ衝突力が硬質体に作用する場合、互いの衝突力が拮抗するなどして球状硬質体が良好に回転しない恐れがあるため、第1の噴射ノズルからの噴射と第2の噴射ノズルからの噴射とを交互に切り換えたり、第1と第2の噴射ノズルとで異なる衝突力となるように設定すれば、互いに異なる二つの方向への回転の相乗効果で、長時間の衝突処理工程の間中、噴流衝突位置に対する球状硬質体の表面被衝突箇所は相対的に様々に変位し、実質的にほぼ全面に亘って衝突部位が分散することになる。   However, when the same collision force acts on the hard body by simultaneously injecting a high-pressure jet from both the first and second injection nozzles, there is a risk that the spherical hard body will not rotate satisfactorily due to the mutual collision force antagonizing. Therefore, if the injection from the first injection nozzle and the injection from the second injection nozzle are alternately switched, or if the collision force is different between the first and second injection nozzles, Due to the synergistic effect of rotation in two different directions, the surface collision location of the spherical hard body relative to the jet collision position is displaced relatively variously during the long collision process, and substantially over the entire surface. The collision parts will be dispersed.

上記のような第1の噴射ノズルと第2の噴射ノズルとで互いに異なる衝突力となるように流体を噴射させるには、流量の異なるノズルを用いることによっても、また、各ノズルから噴射される流体の圧力を互いに異なるものとすることによって実現することができる。   In order to inject the fluid so that the first injection nozzle and the second injection nozzle have different collision forces as described above, the nozzles having different flow rates are also used and the nozzles are injected from each nozzle. This can be realized by making the fluid pressures different from each other.

実際には、第1の噴射ノズルと第2の噴射ノズルとで、流体噴射を切り換えたり、流体の圧力を互いに異なるものにするには、第1の噴射ノズルと第2の噴射ノズルとに加圧流体を供給する、例えばポンプ装置等の流体供給手段を駆動制御することによって行うことができる。   Actually, in order to switch the fluid injection between the first injection nozzle and the second injection nozzle or to make the fluid pressures different from each other, the first injection nozzle and the second injection nozzle are added. For example, it can be performed by driving and controlling fluid supply means such as a pump device that supplies pressurized fluid.

そこで、該流体供給手段による第1の噴射ノズルと第2の噴射ノズルへの流体の供給と停止をそれぞれ任意に制御すると共に、各噴射ノズルへ供給される流体に加える圧力をそれぞれ変更可能に制御する制御手段を備えれば、予め所望の噴射処理の切換運転に応じた各噴射ノズルへの流体供給開始から供給期間と停止期間、また各噴射ノズルへ供給される流体への加圧力を設定しておき、該設定を運転指令として制御手段に入力して該指令を実行させれば、簡便に、良好な硬質体の回転状態を維持できる衝突処理運転となるように流体供給手段を制御することができる。   Therefore, the supply and stop of the fluid to the first injection nozzle and the second injection nozzle by the fluid supply means are arbitrarily controlled, and the pressure applied to the fluid supplied to each injection nozzle can be changed. If a control means is provided, a supply period and a stop period from the start of fluid supply to each injection nozzle according to a desired switching operation of the injection process, and a pressure applied to the fluid supplied to each injection nozzle are set in advance. In addition, if the setting is input to the control means as the operation command and the command is executed, the fluid supply means is controlled so that the collision processing operation can be easily performed so that a good hard body rotation state can be maintained. Can do.

なお、第1の噴射ノズルと第2の噴射ノズルとで互いに異なる衝突力とする場合、一方が他方より弱い衝突力となるため、両ノズルからの噴流を原料液の衝突処理とするのでは、衝撃力の違いから、処理状態に差が生じてしまい、乳化、微粒化が均一になり難い。そこで、第1の噴射ノズルを衝突処理用として、乳化、微粒化に十分必要な衝撃が得られる衝突力となる高圧で原料液を噴射させ、第2の噴射ノズルを専ら球状硬質体に第1の噴射ノズルからの噴流衝突による回転とは別の方向の回転力を与えるための回転用として、たとえば原料液の媒質溶液を噴射させるものすれば、乳化、微粒化処理状態自体は第1の噴射ノズルからの噴流衝突にのみよるものであるから、処理の不均一化は避けられる。   Note that when the first injection nozzle and the second injection nozzle have different collision forces, one of them has a weaker collision force than the other. Due to the difference in impact force, a difference occurs in the treatment state, and emulsification and atomization are difficult to be uniform. Therefore, the first injection nozzle is used for the collision treatment, the raw material liquid is injected at a high pressure that provides a collision force sufficient to obtain an impact sufficient for emulsification and atomization, and the second injection nozzle is exclusively formed on the spherical hard body. For example, if the medium solution of the raw material liquid is jetted for rotation to give a rotational force in a direction different from that caused by jet collision from the jet nozzle, the emulsification and atomization processing state itself is the first jet. Since it depends only on the jet collision from the nozzle, non-uniform processing can be avoided.

以上のような第1の噴射ノズルと第2の噴射ノズルとが、双方ともに衝突処理用として用い同じ原料液を同時に噴射する場合には、硬質体の球心より偏心量が大きくなるほど衝突力が回転力に生じる分力側への偏りが大きくなって衝撃力が減少して乳化、微粒化効果が低減するため、ある程度以上の衝撃力を持って効率的に衝突処理を行うためには、両噴射ノズルとも前記球心に対する偏心量を抑える必要があり、結果として互いに比較的近接した衝突位置が望まれる。そこで、同一部材に両噴射ノズルを形成したものを本衝突装置に組み込む構成とすれば、互いに前記球心に対する偏心量を小さく抑えて良好な衝突処理が行えると同時に同一流体供給装置から加圧流体を同時供給するという簡便な装置設計が可能であり、少ない部品点数で装置の小型化にも有効である。   When both the first injection nozzle and the second injection nozzle as described above are used for collision processing and simultaneously inject the same raw material liquid, the collision force increases as the eccentric amount becomes larger than the spherical center of the hard body. Since the bias toward the component force generated in the rotational force increases and the impact force decreases and the effect of emulsification and atomization is reduced, in order to efficiently perform collision processing with a certain impact force, both It is necessary to suppress the amount of eccentricity with respect to the spherical center in both of the injection nozzles, and as a result, collision positions relatively close to each other are desired. Therefore, if a configuration in which both injection nozzles are formed on the same member is incorporated in the collision device, the amount of eccentricity with respect to the spherical center can be kept small, and good collision processing can be performed. It is possible to design a simple device that supplies the two at the same time, and it is effective for downsizing the device with a small number of parts.

一方、第1の噴射ノズルを衝突処理用とし、第2の噴射ノズルを硬質体回転用とする場合には、各噴射ノズルをそれぞれ別の部材に形成し、本衝突装置に組み込む構成とすれば、流体導入路も別に設けて、それぞれ原料液と媒質液とをそれぞれ異なる圧力で互いに切り換えてそれぞれの噴射ノズルへ供給制御するのが容易である。   On the other hand, when the first injection nozzle is used for collision processing and the second injection nozzle is used for rotation of a hard body, each injection nozzle is formed on a separate member and incorporated in the collision device. In addition, it is easy to separately provide a fluid introduction path and switch the raw material liquid and the medium liquid to each other at different pressures to control supply to the respective injection nozzles.

このように第1と第2の噴射ノズルをそれぞれ別体の部材に形成し、それぞれ衝突装置の異なる位置に組み込む構成とした場合、衝突処理用の第1の噴射ノズルの方は、できるだけ硬質体の球心からの偏心量をできるだけ小さく抑えて優れた原料液の乳化、微粒化等の衝突処理効果が得られる配置とすると共に、回転用の第2の噴射ノズルは、第1の噴射ノズルによる噴流衝突位置が硬質体表面上でより広範囲に亘って分散できるような回転力を生じることのできる配置となるように互いに影響なく別個の設定が容易となる。   In this way, when the first and second injection nozzles are formed as separate members and incorporated in different positions of the collision device, the first injection nozzle for collision processing is as hard as possible. The arrangement is such that the amount of eccentricity from the ball center is kept as small as possible to obtain an excellent collision treatment effect such as emulsification and atomization of the raw material liquid, and the second injection nozzle for rotation is a jet flow by the first injection nozzle Separate settings are facilitated without affecting each other so that the rotational position can be generated so that the collision position can be dispersed over a wider range on the surface of the hard body.

例えば、回転用の第2の噴射ノズルを、その噴射軸線が衝突処理用の第1の噴射ノズルの噴射軸線に直交する平面上にあるものとして、ある平面内にて両噴射ノズルの噴射軸線同士が90度の角度をなす設定とすることによって、第2の噴射ノズルによる回転用噴流の衝突位置として、より効率よく第1の噴射ノズルの噴流衝突による回転方向に沿った衝突領域の大きな変位をもたらし得ると同時に第1の噴射ノズルによる高圧噴流の衝突処理に影響の少ない離れた位置に設定することができる。   For example, assuming that the second injection nozzle for rotation is on a plane whose injection axis is orthogonal to the injection axis of the first injection nozzle for collision processing, the injection axes of both injection nozzles are in a plane. Is set at an angle of 90 degrees, as a collision position of the rotating jet by the second injection nozzle, a large displacement of the collision area along the rotation direction by the jet collision of the first injection nozzle can be more efficiently performed. At the same time, it can be set at a remote position with little influence on the collision process of the high-pressure jet by the first injection nozzle.

なお、本発明においては、第1と第2の二つの噴射ノズルのみを備えた構成に限定するものではなく、例えばさらに第3の噴射ノズルを備えた構成としてよい。この場合、全ノズルの噴流が球状硬質体表面上の互いに異なる位置を衝突点とし、各噴射軸線がそれぞれ該硬質体の球心より偏心していれば、全ての噴射ノズルを衝突処理用と設定しても、あるいは二つを衝突用として一つを回転用としたりまた逆に二つを回転用として一つを衝突用にするという組合せでも可能である。もちろん設計が困難でなければ、四つ以上の噴射ノズルを設けて衝突用と回転用とで様々な組合せとする構成も可能である。   In addition, in this invention, it is not limited to the structure provided only with the 1st and 2nd injection nozzle, For example, it is good also as a structure further provided with the 3rd injection nozzle. In this case, if the jets of all nozzles are at different positions on the surface of the spherical hard body and the respective injection axes are eccentric from the center of the hard body, all the injection nozzles are set for collision processing. Alternatively, a combination of two for collision and one for rotation, or conversely, two for rotation and one for collision is possible. Of course, if the design is not difficult, it is possible to employ a configuration in which four or more injection nozzles are provided to make various combinations for collision and rotation.

以下に、本発明の第1の実施例として、チャンバ本体に第1と第2の噴射ノズルの双方が形成されている一部材を組み込んだ場合の衝突装置を示す。図1は本衝突装置の主要部の概略断面図である。   Hereinafter, as a first embodiment of the present invention, a collision apparatus when a single member in which both a first and a second injection nozzle are formed is incorporated in a chamber main body will be described. FIG. 1 is a schematic sectional view of a main part of the collision device.

本衝突装置のチャンバ本体1は、略円筒状の後方チャンバハウジング2内と、該ハウジング2内に載置されて球状硬質体10を回転自在に支承するボールホルダー3と該ボールホルダーを前後で挟む後方支持部材4及びノズル部材5と該ノズル部材5をボールホルダー3との当接状態で前方からチャンバハウジング2に対して押圧固定する前方チャンバハウジング6とからから主に構成されている。本実施例では、流体流れに沿って上流側を前方、下流側を後方とする。   A chamber body 1 of the collision device includes a substantially cylindrical rear chamber housing 2, and a ball holder 3 that is placed in the housing 2 and rotatably supports a spherical hard body 10, and the ball holder is sandwiched between the front and rear. It is mainly composed of a rear support member 4 and a nozzle member 5 and a front chamber housing 6 that presses and fixes the nozzle member 5 against the chamber housing 2 from the front in contact with the ball holder 3. In this embodiment, the upstream side is the front and the downstream side is the rear along the fluid flow.

ノズル部材5には、第1の噴射ノズル11と第2の噴射ノズル12とが形成されており、第1の噴射ノズル11の第1噴射軸線11xと第2の噴射ノズル12の第2噴射軸線12xとが、ボールホルダー3の前面側開口窓に露呈する球状硬質体10の表面上の互いに異なると共に球状硬質体10の球心に対して偏心した位置に指向されている。図1に示す本装置のノズル部材5においては、球状硬質体10球心に対して第1噴射軸線11xが紙面上方向と及び手前方向に偏心し、第2噴射軸線12xが紙面下方向及び奥方向に偏心するように各噴射ノズル(11,12)が設定されている。   The nozzle member 5 is formed with a first injection nozzle 11 and a second injection nozzle 12, and the first injection axis 11 x of the first injection nozzle 11 and the second injection axis of the second injection nozzle 12. 12x are different from each other on the surface of the spherical hard body 10 exposed on the front-side opening window of the ball holder 3, and are directed to positions eccentric to the spherical center of the spherical hard body 10. In the nozzle member 5 of the present apparatus shown in FIG. 1, the first injection axis 11x is decentered in the upper direction and the front direction with respect to the spherical hard body 10 and the second injection axis 12x is in the lower direction and the rear direction. Each injection nozzle (11, 12) is set so as to be eccentric in the direction.

前方チャンバハウジング6には、各噴射ノズル(11,12)へ原料液を導入するための導入流路(13,14)が形成されており、ポンプ等を備えた流体供給装置20からチャンバ本体1へ加圧供給されてくる原料液が該導入流路(13,14)を介して第1の噴射ノズル11と第2の噴射ノズル12へ同時に供給される。   The front chamber housing 6 is formed with introduction passages (13, 14) for introducing the raw material liquid into the respective injection nozzles (11, 12), and the chamber main body 1 from the fluid supply device 20 provided with a pump or the like. The raw material liquid supplied under pressure is simultaneously supplied to the first injection nozzle 11 and the second injection nozzle 12 through the introduction flow path (13, 14).

原料液は、第1と第2の噴射ノズル(11,12)から噴射され、各高圧噴流となって第1の噴射軸線11xと第2の噴射軸線12xに沿って進み、球状硬質体10の表面に衝突し、その際の衝撃によって乳化、分散、あるいは原料液中の原料微粒子の微粒化等の衝突処理が行われ、後方支持部材4に形成された導出流路15を介して後方チャンバハウジング2の後端の排出口16から回収側へ排出される。   The raw material liquid is injected from the first and second injection nozzles (11, 12), becomes high-pressure jets, travels along the first injection axis 11x and the second injection axis 12x, and the spherical hard body 10 Collision processing such as emulsification, dispersion, or atomization of the raw material fine particles in the raw material liquid is performed by impact on the surface, and the rear chamber housing is connected via the outlet channel 15 formed in the rear support member 4. 2 is discharged from the outlet 16 at the rear end to the collection side.

この衝突時に、各点においてそれぞれ生じる衝突力の分力で互いに異なる方向へ球状硬質体10を回転させるため、衝突処理を行っている間は常に球状硬質体10は二方向への回転が相乗的に作用して実質的に球状硬質体10の表面の被衝突領域はほぼ全面に亘る。   During this collision, the spherical hard body 10 is rotated in different directions by the component force of the collision force generated at each point. Therefore, the spherical hard body 10 is always synergistic in two directions during the collision process. The collision area on the surface of the spherical hard body 10 substantially acts over the entire surface.

これによって球状硬質体10の被衝突箇所は全面的に分散し、従来の一方向のみの回転で同一円周上のみに衝突が集中して溝状の損傷が生じることもなくなるため、球状硬質体10自体の寿命が長期化し、硬質体の交換頻度も大幅に低減できるので、実際の長時間に亘る衝突処理運転に好適な衝突装置が実現できる。   As a result, the impacted portions of the spherical hard body 10 are dispersed all over, and the conventional hard rotation does not cause groove-like damage due to the collision concentrated only on the same circumference. Since the life of the 10 itself is prolonged and the replacement frequency of the hard body can be greatly reduced, a collision apparatus suitable for an actual collision processing operation for a long time can be realized.

また、本実施例においては、同一のノズル部材5に第1と第2の噴射ノズル(11,12)を形成したものであるため、両噴射ノズルともに、噴射軸線(11x、12x)の球状硬質体10の球心に対する偏心量を小さく抑えて互いに衝突位置を近接させた構成にできるため、いずれの噴射ノズルからの噴流も充分な衝撃力をもって球状硬質体10に衝突し、良好な乳化、微粒化効果が得られる。   In this embodiment, since the first and second injection nozzles (11, 12) are formed on the same nozzle member 5, both of the injection nozzles have a spherical rigid shape with an injection axis (11x, 12x). Since the amount of eccentricity with respect to the spherical center of the body 10 can be reduced and the collision positions can be made close to each other, the jet flow from any of the injection nozzles collides with the spherical hard body 10 with sufficient impact force, and good emulsification and fine particles Effect can be obtained.

なお、第1の噴射ノズル11と第2の噴射ノズル12への加圧流体の供給を同時に行い、同時に噴射衝突させる構成に限らず、加圧流体の供給・停止を互いに切り換えて第1の噴射ノズル11と第2の噴射ノズル12による衝突処理を交互に行う構成してもよい。   Note that the first injection nozzle 11 and the second injection nozzle 12 are simultaneously supplied with pressurized fluid, and the first injection is not limited to the configuration in which the injection collision occurs simultaneously, but the supply and stop of the pressurized fluid are switched to each other. You may comprise so that the collision process by the nozzle 11 and the 2nd injection nozzle 12 may be performed alternately.

以下に、本発明の第2の実施例として、チャンバ本体に衝突処理用の第1の噴射ノズルと回転用の第2の噴射ノズルがそれぞれ形成された別体の二部材を組み込んだ場合の衝突装置を示す。図2は本衝突装置の主要部の概略断面図である。   Hereinafter, as a second embodiment of the present invention, a collision when two separate members each having a collision treatment first injection nozzle and a rotation second injection nozzle formed in the chamber body are incorporated. Indicates the device. FIG. 2 is a schematic cross-sectional view of the main part of the collision device.

本衝突装置のチャンバ本体31は、略円筒状の後方チャンバハウジング32と、該ハウジング32内に載置されて球状硬質体40を回転自在に支承するボールホルダー33と該ボールホルダー33を前後で挟む後方支持部材34および第1ノズル部材36と、該第1ノズル部材36をボールホルダー33当接状態で前方からチャンバハウジング32に対して第1ノズル部材36周りの中間チャンバハウジング35を介して押圧固定する前方チャンバハウジング37と、後方チャンバハウジング32に装着された第2ノズル部材38とから主に構成されている。本実施例においても、流体流れに沿って上流側を前方、下流側を後方とする。   A chamber main body 31 of the collision device includes a substantially cylindrical rear chamber housing 32, a ball holder 33 mounted in the housing 32 and rotatably supporting the spherical rigid body 40, and the ball holder 33 sandwiched between the front and rear. The rear support member 34, the first nozzle member 36, and the first nozzle member 36 are pressed and fixed to the chamber housing 32 from the front through the intermediate chamber housing 35 around the first nozzle member 36 in a contact state with the ball holder 33. The front chamber housing 37 and the second nozzle member 38 attached to the rear chamber housing 32 are mainly configured. Also in this embodiment, the upstream side is the front and the downstream side is the rear along the fluid flow.

第1ノズル部材36には、衝突処理用の第1の噴射ノズル41が形成されており、その第1噴射軸線41xがチャンバ本体31の中心軸と平行で且つ球状硬質体40の球心に対して図2の紙面奥行き側に偏心する位置に指向するよう設定されている。この第1ノズル部材36においては、第1の噴射ノズル41が第1噴射軸線41xの球状硬質体40の球心に対する偏心量をできるだけ小さく抑えて衝突力のほとんどが乳化、微粒化のための衝撃力となって大きな衝突処理効果が得られる位置付けとなるように設定されている。   The first nozzle member 36 is formed with a first injection nozzle 41 for collision processing, the first injection axis 41x of which is parallel to the central axis of the chamber body 31 and with respect to the spherical center of the spherical hard body 40. Thus, it is set so as to be directed to a position eccentric to the depth side of FIG. In the first nozzle member 36, the first injection nozzle 41 suppresses the amount of eccentricity of the first injection axis 41x with respect to the spherical center of the spherical hard body 40 as much as possible, and most of the collision force is an impact for emulsification and atomization. It is set so that it can be used as a force to achieve a large collision processing effect.

一方、第2ノズル部材38には、回転用の第2の噴射ノズル42が形成されており、その第2噴射軸線42xがチャンバ本体31の中心軸および第1噴射軸線41xに直交する平面上で、球状硬質体40の球心に対して後方で且つ紙面奥方向に偏心する位置に指向するように設定されている。   On the other hand, a second injection nozzle 42 for rotation is formed in the second nozzle member 38, and the second injection axis 42x is on a plane orthogonal to the central axis of the chamber body 31 and the first injection axis 41x. It is set so as to be directed to a position that is eccentric with respect to the spherical center of the spherical hard body 40 in the rear direction and in the depth direction of the drawing.

即ち、第2ノズル部材38は、第2の噴射ノズル42が、図2の紙面上(装置側面視)で第1の噴射ノズル41と噴射軸線同士が直交する位置付けとして、第2の噴射ノズル42による回転用噴流の衝突位置を、効率的に乳化、微粒化効果が得られる位置付けとした第1の噴射ノズル41による高圧噴流の衝突位置から離れて該衝突処理に影響を与えることなく、同時に専らより効率良く第1の噴射ノズル41の噴流衝突による回転方向に沿った衝突領域の大きな変位をもたらし得る回転を球状硬質体40に与えることができる位置に設定したものである。   In other words, the second nozzle member 38 is configured such that the second injection nozzle 42 is positioned so that the first injection nozzle 41 and the injection axis are orthogonal to each other on the paper surface of FIG. The collision position of the rotating jet due to the nozzle is positioned so that the effect of efficiently emulsifying and atomizing can be obtained, and at the same time without affecting the collision processing away from the collision position of the high-pressure jet by the first injection nozzle 41. It is set at a position where the spherical hard body 40 can be rotated such that it can cause a large displacement of the collision area along the rotation direction due to the jet collision of the first injection nozzle 41 more efficiently.

前方チャンバハウジング37には、衝突処理用の第1の噴射ノズル41へ原料液を導入するための導入流路43が形成されており、ポンプ等を備えた流体供給装置50からチャンバ本体31へ加圧供給されてくる原料液が該導入流路43を介して第1の噴射ノズル41へ供給され、該噴射ノズル41から噴射され、高圧噴流となって第1の噴射軸線41xに沿って進み、球状硬質体40の表面に衝突し、その際の衝撃によって乳化、分散、あるいは原料液中の原料微粒子の微粒化等の衝突処理が行われ、後方支持部材34に形成された導出流路44を介して後方チャンバハウジング32の後端の排出口45から回収側へ排出される。   The front chamber housing 37 is formed with an introduction flow path 43 for introducing the raw material liquid into the first injection nozzle 41 for collision processing, and is added to the chamber main body 31 from a fluid supply device 50 equipped with a pump and the like. The pressure-supplied raw material liquid is supplied to the first injection nozzle 41 through the introduction flow path 43, and is injected from the injection nozzle 41 to become a high-pressure jet flow along the first injection axis 41x. Collision processing such as emulsification, dispersion, or atomization of the raw material fine particles in the raw material liquid is performed by impact on the surface of the spherical hard body 40, and the outlet passage 44 formed in the rear support member 34 is Through the outlet 45 at the rear end of the rear chamber housing 32.

また、流体供給装置50は、回転用の第2の噴射ノズル42へ原料液の媒質液を回転用流体として回転に必要なだけの衝突力相当の圧力、即ち、第1の噴射のノズル41へ衝突用として高圧で供給される原料液より低圧で供給できるものとする。   In addition, the fluid supply device 50 applies the pressure corresponding to the collision force necessary for rotation to the second injection nozzle 42 for rotation using the medium liquid of the raw material liquid as the rotation fluid, that is, to the nozzle 41 for the first injection. It can be supplied at a lower pressure than the raw material liquid supplied at a high pressure for collision.

従って、流体供給装置50に対して、所定時間毎に第1の噴射ノズル41への原料液の加圧供給を続けて衝突処理を行う合間の衝突処理停止状態において、第2の噴射ノズル42へ回転量流体を低圧供給を行わせれば、第2の噴射ノズル42からの低圧噴流の衝突によって球状硬質体40は回転し、直前の衝突処理において第1の噴射ノズル41からの高圧噴流が衝突していた円周領域を高圧噴流衝突位置から相対的に移動させ、次の衝突処理の際には、球状硬質体40の別の表面領域が衝突対象円周領域となる。   Accordingly, the fluid supply device 50 is supplied to the second injection nozzle 42 in a collision processing stop state in which the pressure supply of the raw material liquid to the first injection nozzle 41 is continuously performed every predetermined time and the collision processing is stopped. If the rotation amount fluid is supplied at a low pressure, the spherical hard body 40 rotates due to the collision of the low pressure jet from the second injection nozzle 42, and the high pressure jet from the first injection nozzle 41 collides in the previous collision process. The circumferential area that has been moved is relatively moved from the high-pressure jet collision position, and in the next collision process, another surface area of the spherical hard body 40 becomes the circumferential area to be collided.

このような流体供給装置50のポンプ装置に対するチャンバ本体31への加圧流体の供給、停止切換や圧力調整等をコンピュータを備えた制御装置60を介した指令により制御するものとすれば、予め所望の噴射処理の切換運転に応じた各噴射ノズルへの流体供給開始から供給期間と停止期間、また各噴射ノズルへ供給される流体への加圧力を設定しておき、該設定を運転指令として制御装置60に入力するだけで、流体供給装置50に対して指令を実行させ、良好な硬質体の回転状態を維持できる衝突処理運転を簡便に自動で行うことができる。   If the supply of pressurized fluid to the chamber body 31 to the pump device of the fluid supply device 50, stop switching, pressure adjustment, and the like are controlled by a command via the control device 60 provided with a computer, a desired one is obtained in advance. Set the supply period and stop period from the start of fluid supply to each injection nozzle according to the switching operation of the injection process, and the pressure applied to the fluid supplied to each injection nozzle, and control the setting as an operation command By simply inputting to the device 60, it is possible to simply and automatically perform a collision processing operation that allows the fluid supply device 50 to execute a command and maintain a good rotation state of the hard body.

本発明の第1実施例による衝突装置の主要部の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the principal part of the collision apparatus by 1st Example of this invention. 本発明の第2実施例による衝突装置の主要部の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the principal part of the collision apparatus by 2nd Example of this invention.

符号の説明Explanation of symbols

1:チャンバ本体
2:後方チャンバハウジング
3:ボールホルダー
4:後方支持部材
5:ノズル部材
6:前方チャンバハウジング
10:球状硬質体
11:第1の噴射ノズル(衝突処理用)
11x:第1噴射軸線
12:第2の噴射ノズル(衝突処理用)
12x:第2噴射軸線
13,14:原料液導入流路
15:導出流路
16:排出口
20:流体供給装置
31:チャンバ本体
32:後方チャンバハウジング
33:ボールホルダー
34:後方支持部材
35:中間チャンバハウジング
36:第1ノズル部材
37:前方チャンバハウジング
38:第2ノズル部材
40:球状硬質体
41:第1の噴射ノズル
41x:第1噴射軸線
42:第2の噴射ノズル
42x:第2噴射軸線
43:原料液導入流路
44:導出流路
45:排出口
50:流体供給装置
60:制御装置
1: Chamber body 2: Rear chamber housing 3: Ball holder 4: Rear support member 5: Nozzle member 6: Front chamber housing 10: Spherical rigid body 11: First injection nozzle (for collision processing)
11x: First injection axis 12: Second injection nozzle (for collision processing)
12x: second injection axes 13, 14: raw material liquid introduction channel 15: outlet channel 16: discharge port 20: fluid supply device 31: chamber body 32: rear chamber housing 33: ball holder 34: rear support member 35: middle Chamber housing 36: first nozzle member 37: front chamber housing 38: second nozzle member 40: spherical rigid body 41: first injection nozzle 41x: first injection axis 42: second injection nozzle 42x: second injection axis 43: Raw material liquid introduction channel 44: Outlet channel 45: Discharge port 50: Fluid supply device 60: Control device

Claims (3)

衝突用チャンバ内に回転自在に支承された球状の硬質体に噴射ノズルから噴射される高圧噴流を衝突させる衝突装置において、
前記硬質体に向けて流体を噴射して硬質体表面上の互いに異なる位置へ噴射流を衝突させる第1の噴射ノズルと第2の噴射ノズルとを備え、
第1の噴射ノズルの噴射軸線と第2の噴射ノズルの噴射軸線とが、それぞれ前記硬質体の球心に対して偏心した位置に指向されていることを特徴とする衝突装置。
In a collision device for colliding a high-pressure jet sprayed from a spray nozzle with a spherical hard body rotatably supported in a collision chamber,
Comprising a first injection nozzle and a second injection nozzle for injecting a fluid toward the hard body to cause the jet flow to collide with different positions on the surface of the hard body;
The collision apparatus characterized in that the injection axis of the first injection nozzle and the injection axis of the second injection nozzle are respectively directed to positions eccentric with respect to the spherical center of the hard body.
前記第1の噴射ノズルと第2の噴射ノズルへの流体の加圧供給を行う流体供給手段と、
該流体供給手段による第1の噴射ノズルと第2の噴射ノズルへの流体の供給と停止をそれぞれ任意に制御すると共に、各噴射ノズルへ供給される流体に加える圧力をそれぞれ変更可能に制御する制御手段と、を備えていることを特徴とする請求項1に記載の衝突装置。
Fluid supply means for pressurizing and supplying fluid to the first injection nozzle and the second injection nozzle;
Control for arbitrarily controlling supply and stop of the fluid to the first and second spray nozzles by the fluid supply means, and controlling the pressure applied to the fluid supplied to each spray nozzle to be changeable. The collision device according to claim 1, further comprising: means.
前記第2の噴射ノズルの噴射軸線が、前記第1の噴射ノズルの噴射軸線に対して直交する平面上にあることを特徴とする請求項2に記載の衝突装置。   The collision apparatus according to claim 2, wherein an injection axis of the second injection nozzle is on a plane orthogonal to the injection axis of the first injection nozzle.
JP2008202384A 2008-08-05 2008-08-05 Collision device Pending JP2010036119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008202384A JP2010036119A (en) 2008-08-05 2008-08-05 Collision device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008202384A JP2010036119A (en) 2008-08-05 2008-08-05 Collision device

Publications (1)

Publication Number Publication Date
JP2010036119A true JP2010036119A (en) 2010-02-18

Family

ID=42009212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008202384A Pending JP2010036119A (en) 2008-08-05 2008-08-05 Collision device

Country Status (1)

Country Link
JP (1) JP2010036119A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036116A (en) * 2008-08-05 2010-02-18 Kao Corp Manufacturing method of oil-in-water emulsion composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036116A (en) * 2008-08-05 2010-02-18 Kao Corp Manufacturing method of oil-in-water emulsion composition

Similar Documents

Publication Publication Date Title
KR101889041B1 (en) Flat jet nozzle, and method of using the flat jet nozzle
CN101495241B (en) Nozzle device, method of imparting chemical using it
KR101665289B1 (en) Spray angle adjustable nozzle for speed sprayer
JP2013144295A (en) Fluid spray apparatus
JPH05193090A (en) Apparatus for moistening trunk of offset rotary press
JP2004538166A5 (en)
KR20130041667A (en) Electrohydrodynamic ink ejecting apparatus
JP3151706B2 (en) Jet collision device
JP3686528B2 (en) Fluid collision device
WO2013146624A1 (en) Liquid jetting apparatus and liquid jetting method
JP2010036119A (en) Collision device
US5248094A (en) Adjustable fluid jet cleaner
US20110139907A1 (en) Tank-cleaning nozzle
JP4397014B2 (en) Jet collision device
JP2022128909A (en) Liquid jetting nozzle and liquid jetting device
KR102273574B1 (en) apparatus for oscillating fluid injection
JP6865402B2 (en) Cleaning method and cleaning equipment
KR102384218B1 (en) Apparatus for dispensing
JP4540031B2 (en) Rotating nozzle device for crushing concrete with water jet
JPH08168703A (en) Discharge nozzle and washing apparatus
JP2022063686A (en) Slit chamber for emulsification and emulsification device
JP2021102187A (en) Injection nozzle
JP2020131120A (en) Jet mill and crushing material crushing method using jet mill
JPH11267554A (en) Method and apparatus for two-pack mixing spray
JP2023174163A (en) Cloth processing device