JP3686528B2 - Fluid collision device - Google Patents

Fluid collision device Download PDF

Info

Publication number
JP3686528B2
JP3686528B2 JP17085598A JP17085598A JP3686528B2 JP 3686528 B2 JP3686528 B2 JP 3686528B2 JP 17085598 A JP17085598 A JP 17085598A JP 17085598 A JP17085598 A JP 17085598A JP 3686528 B2 JP3686528 B2 JP 3686528B2
Authority
JP
Japan
Prior art keywords
fluid
sphere
collision
hard sphere
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17085598A
Other languages
Japanese (ja)
Other versions
JP2000000448A (en
Inventor
昭夫 高木
正雄 中谷
浩三 市江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sugino Machine Ltd
Original Assignee
Sugino Machine Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sugino Machine Ltd filed Critical Sugino Machine Ltd
Priority to JP17085598A priority Critical patent/JP3686528B2/en
Priority to KR1019990022481A priority patent/KR100571692B1/en
Publication of JP2000000448A publication Critical patent/JP2000000448A/en
Application granted granted Critical
Publication of JP3686528B2 publication Critical patent/JP3686528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Disintegrating Or Milling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高圧流体を硬質体に衝突させることにより、流体を乳化或いは流体に随体する物質を微粒子化するための流体衝突装置に関するものである。
【0002】
【従来の技術】
従来、この種の流体衝突装置では、噴射ノズルから噴射される高圧流体を板状の硬質体に衝突させることによって流体内の物質(媒質)を粉砕して微粒子化したり、或いは流体を乳化させるプレート衝突方式が用いられている。
【0003】
これは、本体チャンバ内に固定設置された硬質プレートに、チャンバ外の流路から導入される流体を、噴射ノズルから高圧噴射して衝突させるものであり、衝突部材としての硬質プレートには、平板状の焼結ダイヤモンドなどが用いられている。
【0004】
このような流体衝突装置による流体媒質の微粒子化や流体の乳化は、食品、化粧品、塗料、セラミックス、電子材料などの広範囲な分野の素材を対象として利用されている。
【0005】
例えば、化粧品では、ファンデーション用素材を微粒子化したりすることにより、皮膚被覆力や分泌物の吸収性を高めるなど、化粧品として望まれる特性を更に向上させている。また、セラミックス素材では微粒子化に伴ってその機械的強度が向上する。その他、飲料を含む各種食品や塗料、化粧品の乳液など、乳化(エマルジョン化)による組成物同士の親和性の向上と媒質の均一分散化が必要とされるものを対象として流体衝突装置が広く利用されている。
【0006】
【発明が解決しようとする課題】
しかしながら、上記の如き従来のプレート衝突方式の流体衝突装置では、プレート表面上の高圧流体の衝突部位のみが局所的に摩耗し、場合によっては数時間で貫通してしまう。このように衝突部材としての硬質プレートの寿命が非常に短いため、比較的大量の流体を対象とする場合は、プレートの頻繁な交換が必要となり、手間の係る煩雑な工程となるだけでなくコスト高となってしまう。
【0007】
本発明は、上記問題点に鑑み、衝突部材の寿命を従来よりも延長でき、効率的に流体の媒質微粒子化や乳化処理を行うことのできる流体衝突装置を提供しようとするものである。
【0008】
【課題を解決するための手段】
上記課題を解決するため、請求項1に記載の発明に係る流体衝突装置は、チャンバ本体内に配置された硬質体に噴射ノズルからの高圧流体を衝突させる流体衝突装置において、前記硬質体は、前記チャンバ本体内で、高圧流体の噴射軸線から偏心して回転可能に支承された球体からなるものである。
【0009】
また、請求項2に記載の発明に係る流体衝突装置は、請求項1に記載の流体衝突装置において、前記球体を高圧流体の噴射軸線に対して交叉する方向に変位して位置決めする偏心量調節機構を備えたものである。
【0010】
また、請求項3に記載の発明に係る流体衝突装置は、請求項1に記載の流体衝突装置において、前記高圧流体の衝突力に対して前記球体を直接点接触状態で支承する回転自在な第2の球体をさらに備えたものである。
【0011】
本発明においては、衝突部材としての硬質体を球体とし、この硬質球体をチャンバ本体内の噴射ノズルから噴射される高圧流体の噴射軸線から偏心した状態で回転可能に支承したものであるため、高圧流体は、硬質球体表面上に入射角の余角が90度未満で衝突することになり、衝突力の分力によって硬質球体に回転が生じる。
【0012】
従って、本発明による流体衝突装置では、硬質球体が高圧流体の衝突を受けている間は常に回転することとなる。そのため硬質球体表面上の衝突位置は常に変化し、従来のように衝突部材表面の局所的な摩耗が回避される。
【0013】
本発明における硬質球体でも使用時間の経過に伴って表面は徐々に摩耗されて行くが、球体の回転によって高圧流体の衝突位置が常に変化するため、摩耗も球体表面上で分散することとなり、使用に耐えなくなるほど小さくなるまで耐用寿命が延長される。従って、この硬質球体は、従来の平板状衝突部材に比べて長期の使用に耐え、部材の交換頻度も大幅に減少し、その分、交換のための手間もコストも省け、大量の流体を対象とした場合も作業効率の向上が図れる。
【0014】
なお、硬質球体の材質としては、セラミックスや焼結ダイヤモンド等の従来から用いられている素材を使用可能である。
【0015】
硬質球体の高圧流体噴射軸線に対する偏心量は、噴射軸線に交叉する方向の硬質球体の配置位置によって決定する。従って、硬質球体を前記噴射軸線に対して交叉する方向に変位させて任意の配置位置に位置決めできる調節機構を設ければ、その位置調節をすることによって任意の偏心量を得ることができる。具体的には、チャンバ本体内で硬質球体を支承している支持部材ごと噴射軸線と交叉する方向へ変位して固定できる構成とすれば良い。
【0016】
また、高圧流体の衝突力に対して硬質球体を点接触状態で直接支承する回転自在な第2の球体を設けることによって、硬質球体自身の回転がよりスムーズとなり、摩耗位置の分散もより均一となり、硬質球体の衝突部材としての寿命の延長に寄与する。
【0017】
なお、第2の球体は、硬質球体の底面(流体衝突表面に対向する表面)部を支承する一個の球体、あるいは、複数個の球体で構成しても良く、硬質球体を回転可能に支承する固定支承に代えて第2の球体による回転支持を増加するほど硬質球体の回転はスムーズとなる。例えば、硬質球体に対して3点以上の回転支承とすれば、全ての支承を第2の球体による回転支承で構成して、固定支承を一切含まない構成とすることも可能である。
【0018】
また、通常、衝突装置のチャンバ本体内には、硬質球体に衝突した後の流体をチャンバ本体外へ導出するための流路が形成されるものであるが、本発明における衝突装置においても、硬質球体の周囲の部材の噴射ノズル側表面に、衝突後の流体を流下させるための溝を設けておくことは好ましいことである。
【0019】
なお、流体の衝突による微粒子化効果は、硬質球体表面に対して直交方向に衝突する場合、即ち硬質球体に対する噴射軸線の偏心量が0であり衝突衝撃が最大である場合に最も大きく、偏心量が大きくなるに従って、流体の衝突時の衝撃が低下し、微粒子化効果も低下する。さらに、偏心量によってボールの回転速度も変わり、回転が速すぎる場合もまた流体媒質の微粒子化効果が低下する。従って硬質球体の偏心量は、目的とする流体媒質の微粒子化効果あるいは乳化効果が充分得られる衝突角度および回転数となる範囲内に調整するものとする。
【0020】
また、流体噴射ノズルと硬質球体表面との間の距離は小さいほど微粒子化効果は大きくなるが硬質球体の摩耗速度も速くなる。従って、前記距離は微粒子化の対象物およびその処理量に応じて適宜設定する必要がある。
【0021】
あるいは、硬質球体の回転が速すぎる場合にその回転を抑えたり、流体衝突作業途中において一次停止が必要な場合、球体の回転が惰性で続いているのを速やかに止めたりするための手段として、球体に対するブレーキ機構を設けておくことも考えられる。
【0022】
【発明の実施の形態】
以下に、本発明による流体衝突装置の一実施形態を示す。図1は、本実施形態による衝突装置の主要部の構成を示した概略断面図であり、図2は要部の分解組立図である。
【0023】
図1及び図2に示すように、本実施形態におけるチャンバ本体1は、主に三つの部材がO−リング等のシール部材を介して互いに組み合わされてなり、中心軸上の流体導入プラグ及び排出口以外は密閉された高圧流体衝突空間50内部に形成している。即ち、チャンバ本体1は、セラミックス製の硬質球体2のための保持部12を備えた後方壁部材10と、この後方壁部材10の周縁部に嵌合し、硬質球体保持部12を囲む円筒部材30と、この円筒部材30の前方側周縁部に嵌合し、チャンバ内方へ向けた噴出ノズル41を備えた前方壁部材40とを備えたものである。
【0024】
保持部12は、後方壁部材10の内面側から衝突空間50へ突出する円筒を斜めにカットしたような凹形状を持つ。この凹部13内に硬質球体2を納め、これを覆うようにカバー部材20を前方側から保持部12にネジ止め固定し、凹部13内で球体2を回転自在としている。本実施形態においては、硬質球体2を直径15mm〜20mmとし、保持部12は、このサイズの硬質球体2を回転可能に収納できるサイズに設定されている。
【0025】
保持部12には、凹部13内の底面(後方側)及び内周側面に、硬質球体2を回転自在に支承するための第2の球体として、それぞれ底面支承球体14、側面支承球体15が回転可能に取付けられている。一方、カバー部材20には、硬質球体2の、後述する衝突部位となる一部表面が露出するような開口21が設けられており、前記両支承球体(14,15)による硬質球体2の表面点接触での支承状態が維持されるように、開口21の縁部を硬質球体2の露出部周辺に摺接可能に当接させた状態でカバー部材20を保持部12に固定しているため、硬質球体2は保持部12の凹部13内で回転自在に保持されることとなる。
【0026】
また、保持部12は、円筒部材30の軸心、即ち、チャンバ本体1の軸心に対して直交する方向に、後方壁部材10内壁面上で変位でき、この変位によって位置決め可能である。この保持部12の変位量は、円筒部材30に螺合貫通し、更に保持部12に回転可能に連結された偏心量調節ネジ3の回動操作によって調節可能となっている。本実施形態においては、この変位方向は、前記軸心に対して図1の紙面に平行な上下直交方向とした。
【0027】
また、前方壁部材40の噴射ノズル41は、その流体噴射軸線が前記軸心と合致するように取り付けられている。従って、偏心量調節ネジ3の回動によって保持部12が軸心と直交する方向に変位すると、これに伴って凹部13内に保持されている硬質球体2も同方向に変位するため、硬質球体2を噴射ノズル41の噴射軸線に対して所定の偏心量で位置決めすることができる。即ち、本実施形態では調節ネジ3が硬質球体2の偏心位置決めのための偏心量調節機構を構成している。
【0028】
さらに、本実施形態では、図1に示すように、保持部12が円筒をその軸心に対して斜めの平面でカット(図1で上部側が下部側よりも長く)したような特殊な形状のため、カバー部材20をネジ固定したとき、カバー部材20のほぼ中央の噴射ノズル41側に設けられている開口21には、硬質球体2の表面がノズルの噴射軸線に対して下方へ偏った状態で露出することとなる。
【0029】
このように噴射軸線から下方に偏った位置に露出している硬質球体2の表面に向かって、噴射ノズル41から噴射される高圧流体を或る偏心量で、入射角の余角が90度未満にて衝突させると、衝突後の流体が、主に硬質球体2の曲面に沿って下方及び後方へ流れると共に、硬質球体2に対して衝突力の分力が下後方へ作用し、この分力の作用によって硬質球体2が矢印Aで示すように自転する。
【0030】
この硬質球体2の自転に対して、硬質球体2を互いに表面点接触状態で支承している底面支承球体14および側面支承球体15も回転し、これら支承球体による支承位置を衝突点に対して適宜定めることによって硬質球体2の自転軸を自然に揺動させ、高圧流体の衝突点が硬質球体のほぼ全表面に分散される構成となっている。
【0031】
さらに、後方壁部材10には、衝突後の流体を導出するための排出口11が形成されているが、保持部12の下方にはこの排出口11に連通する流体流路16が形成されており、またカバー部材20の表面側にも、衝突後の流体をチャンバ下方へ導く溝22が形成されている。
【0032】
本実施形態による流体衝突装置の使用に際しては、図2に示すように、後方壁部材10,保持部12,硬質球体2,カバー部材20,円筒部材30,および前方壁部材40からなる本体チャンバ1を組み立てておき、調節ネジ3によって、硬質球体2を噴射ノズル41の噴射軸線に対して所定の偏心量となるように位置決めしておく。本実施形態においては、直径15mm〜20mmの硬質球体2の偏心量が0〜5mmの範囲内となるように調節した。この範囲内の偏心量であれば、流体媒質の微粒子化効果を決定する衝突時の衝撃の低下は小さい。
【0033】
一方、衝突による微粒子化を目的とする媒質を含有する流体の供給源(不図示)からの加圧された流体を導く高圧流体供給管(不図示)をチャンバ本体1の前方側プラグ42に連結し、また、排出口11には処理済の流体を回収するための容器(不図示)を配管しておく。
【0034】
このような作業準備が整ったら、前記供給源から噴射ノズル41への高圧流体の供給を開始する。噴射ノズル41から高圧流体が噴出されると、その噴射軸線に対して偏心している硬質球体2の下方に偏った表面へ噴射流体が衝突し始めると同時に硬質球体2がその衝突を受けて自転を開始する。
【0035】
この高圧流体の連続的な噴射衝突が進められる間、硬質球体2の回転も持続する。従って、硬質球体2の表面上における高圧流体の衝突位置は、硬質球体2の回転によって常に変化しており、衝突による摩耗が硬質球体2の表面上で分散していくため、従来のように特定の一カ所のみの局部摩耗が進んで衝突部材に貫通孔が生じることは避けられる。
【0036】
この硬質球体2においては、全体的な摩耗が進んで、保持部12内における回転可能な保持状態の維持が困難になるまで使用可能であり、従来の固定的な衝突プレートに比べて衝突部材としての寿命は大幅に長くなる。従って、衝突対象流体が大量で長時間処理の場合でも、硬質球体2の交換頻度は少なく、交換に要する手間や時間が省け、作業効率が向上する。
【0037】
なお、上記の実施形態においては、硬質球体2の偏心量調節は、チャンバ本体1の軸心と同軸の噴射ノズル41の噴射軸線に対して調節ネジ3により垂直上下方向への保持部12の位置決め変位によって行う構成を示したが、本発明はこれに限定されるものではなく、さらに図1の紙面上での表裏方向に相当する水平方向、あるいはその他の交叉方向への変位による偏心調節を可能とした構成としても良い。
【0038】
また、上記実施形態では、第2の球体として底面支承球体14と側面支承球体13の二つの球体を備えた構成を示したが、もちろん、3つ以上の球体で硬質球体2の多点接触支持を行う構成としても良く、この場合は硬質球体2のカバー部材20に対して実質的に非接触の状態で装置を作動させることも可能となる。
【0039】
また、上記実施形態においては、硬質球体の偏心方向をチャンバ本体の軸心に対して図1の紙面に平行な上下直交方向としたが、本発明はこれに限定されるものではなく、高圧流体の噴射軸線に対して交叉する方向であればいずれの方向でもよい。
【0040】
【発明の効果】
以上説明したとおり、本発明の流体衝突装置によれば、衝突部材の耐用寿命を長くすることができ、流体の媒質微粒子化や乳化処理が効率的に行えるという効果がある。
【図面の簡単な説明】
【図1】本発明の一実施形態による流体衝突装置の主要部も構成を示す概略断面図である。
【図2】図1のチャンバ本体の分解組立図である。
【符号の説明】
1:チャンバ本体
2:硬質球体
3:偏心量調節ネジ
10:後方壁部材
11:排出口
12:保持部
13:凹部
14:底面支承球体
15:側面支承球体
16:流路
20:カバー部材
21:開口
22:溝
30:円筒部材
40:前方壁部材
41:噴射ノズル
42:プラグ
50:衝突空間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fluid collision device for emulsifying a fluid or atomizing a substance associated with the fluid by colliding a high-pressure fluid with a hard body.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in this type of fluid collision device, a plate that pulverizes a substance (medium) in a fluid by colliding a high-pressure fluid ejected from an ejection nozzle against a plate-like hard body, or emulsifies the fluid. A collision method is used.
[0003]
In this case, a fluid introduced from a flow path outside the chamber is caused to collide with a hard plate fixedly installed in the main body chamber by high-pressure jet from the jet nozzle. A shaped sintered diamond is used.
[0004]
Such fluid medium micronization and fluid emulsification by a fluid collision device are used for a wide range of materials such as foods, cosmetics, paints, ceramics, and electronic materials.
[0005]
For example, in cosmetics, the properties desired for cosmetics are further improved by, for example, increasing the skin covering power and the absorbability of secretions by making the foundation material fine. In addition, the mechanical strength of ceramic materials improves as the particles become finer. In addition, fluid collision devices are widely used for foods that contain beverages, paints, cosmetic emulsions, etc. that require improved affinity between compositions by emulsification (emulsification) and uniform dispersion of the medium. Has been.
[0006]
[Problems to be solved by the invention]
However, in the conventional plate collision type fluid collision apparatus as described above, only the collision site of the high-pressure fluid on the plate surface is locally worn, and in some cases, it penetrates in several hours. As described above, since the life of the hard plate as the collision member is very short, when a relatively large amount of fluid is targeted, frequent replacement of the plate is required, which is not only a troublesome and troublesome process but also cost. It will be high.
[0007]
SUMMARY OF THE INVENTION In view of the above problems, the present invention is intended to provide a fluid collision apparatus that can extend the life of a collision member as compared with the conventional one and can efficiently perform the formation of a fluid medium into a fine particle or an emulsification treatment.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problem, a fluid collision apparatus according to the invention described in claim 1 is a fluid collision apparatus that causes a high-pressure fluid from an injection nozzle to collide with a hard body disposed in a chamber body, wherein the hard body includes: In the chamber main body, it is composed of a sphere that is rotatably supported eccentrically from the injection axis of the high-pressure fluid.
[0009]
According to a second aspect of the present invention, there is provided the fluid collision apparatus according to the first aspect, wherein the sphere is displaced and positioned in a direction crossing the jet axis of the high pressure fluid. It has a mechanism.
[0010]
According to a third aspect of the present invention, the fluid collision device according to the first aspect is the fluid collision device according to the first aspect, wherein the spherical body is supported in a direct point contact state against the collision force of the high pressure fluid. 2 spheres are further provided.
[0011]
In the present invention, since the hard body as the collision member is a sphere, and the hard sphere is rotatably supported while being eccentric from the injection axis of the high-pressure fluid injected from the injection nozzle in the chamber body, The fluid collides with the hard sphere surface with an incident angle less than 90 degrees, and the hard sphere is rotated by the component force of the collision force.
[0012]
Therefore, in the fluid collision apparatus according to the present invention, the hard sphere always rotates while receiving the collision of the high-pressure fluid. For this reason, the collision position on the surface of the hard sphere always changes, and local wear on the surface of the collision member is avoided as in the prior art.
[0013]
Even in the hard sphere in the present invention, the surface gradually wears with the passage of time of use, but since the collision position of the high-pressure fluid always changes due to the rotation of the sphere, the wear is also dispersed on the surface of the sphere. The service life is extended until it becomes too small to withstand. Therefore, this hard sphere can withstand long-term use compared to the conventional flat collision member, and the frequency of replacement of the member is greatly reduced. In this case, the work efficiency can be improved.
[0014]
As the material of the hard sphere, conventionally used materials such as ceramics and sintered diamond can be used.
[0015]
The amount of eccentricity of the hard sphere with respect to the high-pressure fluid ejection axis is determined by the arrangement position of the hard sphere in the direction crossing the ejection axis. Therefore, if an adjustment mechanism that can displace the hard sphere in the direction crossing the injection axis and position it at an arbitrary arrangement position is provided, an arbitrary amount of eccentricity can be obtained by adjusting the position. Specifically, the support member supporting the hard sphere in the chamber main body may be displaced and fixed in the direction crossing the injection axis.
[0016]
Also, by providing a rotatable second sphere that directly supports the hard sphere in a point contact state against the impact force of the high pressure fluid, the rotation of the hard sphere itself becomes smoother and the distribution of wear positions becomes more uniform. This contributes to extending the life of the hard sphere as a collision member.
[0017]
The second sphere may be constituted by a single sphere or a plurality of spheres that support the bottom surface (surface facing the fluid collision surface) of the hard sphere, and the hard sphere is rotatably supported. The rotation of the hard sphere becomes smoother as the rotation support by the second sphere is increased instead of the fixed bearing. For example, if there are three or more rotating bearings for the hard sphere, all the bearings may be constituted by a rotating bearing by the second sphere, and a fixed bearing may not be included.
[0018]
Usually, a flow path for leading the fluid after colliding with the hard sphere to the outside of the chamber body is formed in the chamber body of the collision apparatus. It is preferable to provide a groove for allowing the fluid after collision to flow down on the jet nozzle side surface of the member around the sphere.
[0019]
The effect of atomization by the fluid collision is the largest when the surface collides with the surface of the hard sphere in the orthogonal direction, that is, when the amount of eccentricity of the injection axis with respect to the hard sphere is 0 and the impact impact is maximum. As the value increases, the impact at the time of fluid collision decreases, and the effect of atomization also decreases. Furthermore, the rotation speed of the ball also changes depending on the amount of eccentricity, and the effect of atomizing the fluid medium also decreases when the rotation is too fast. Accordingly, the amount of eccentricity of the hard sphere is adjusted within the range of the collision angle and the rotational speed at which the effect of atomizing or emulsifying the target fluid medium can be sufficiently obtained.
[0020]
Also, the smaller the distance between the fluid ejection nozzle and the hard sphere surface, the greater the effect of atomization, but the faster the wear rate of the hard sphere. Therefore, the distance needs to be set as appropriate according to the object to be atomized and its processing amount.
[0021]
Alternatively, if the rotation of the hard sphere is too fast, or if the primary stop is necessary during the fluid collision work, as a means to quickly stop the rotation of the sphere in inertia, It is also conceivable to provide a brake mechanism for the sphere.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a fluid collision apparatus according to the present invention will be described. FIG. 1 is a schematic cross-sectional view showing the configuration of the main part of the collision device according to the present embodiment, and FIG. 2 is an exploded view of the main part.
[0023]
As shown in FIGS. 1 and 2, the chamber main body 1 in the present embodiment is mainly composed of three members that are combined with each other via a seal member such as an O-ring. Other than the outlet, it is formed inside a sealed high-pressure fluid collision space 50. That is, the chamber main body 1 includes a rear wall member 10 having a holding portion 12 for the ceramic hard sphere 2 and a cylindrical member that is fitted to the peripheral portion of the rear wall member 10 and surrounds the hard sphere holding portion 12. 30 and a front wall member 40 fitted to the front peripheral edge of the cylindrical member 30 and provided with an ejection nozzle 41 directed inward of the chamber.
[0024]
The holding part 12 has a concave shape such that a cylinder protruding from the inner surface side of the rear wall member 10 to the collision space 50 is cut obliquely. The hard sphere 2 is housed in the recess 13, and the cover member 20 is screwed and fixed to the holding portion 12 from the front side so as to cover the hard sphere 2, and the sphere 2 is rotatable in the recess 13. In the present embodiment, the hard sphere 2 has a diameter of 15 mm to 20 mm, and the holding portion 12 is set to a size that can store the hard sphere 2 of this size in a rotatable manner.
[0025]
In the holding part 12, a bottom support sphere 14 and a side support sphere 15 rotate as second spheres for rotatably supporting the hard sphere 2 on the bottom surface (rear side) and the inner peripheral side surface in the recess 13, respectively. Installed as possible. On the other hand, the cover member 20 is provided with an opening 21 that exposes a part of the surface of the hard sphere 2 that becomes a collision site, which will be described later, and the surface of the hard sphere 2 formed by the both supporting spheres (14, 15). The cover member 20 is fixed to the holding portion 12 in a state where the edge portion of the opening 21 is slidably contacted with the periphery of the exposed portion of the hard sphere 2 so that the supporting state in the point contact is maintained. The hard sphere 2 is held rotatably in the recess 13 of the holding part 12.
[0026]
The holding portion 12 can be displaced on the inner wall surface of the rear wall member 10 in a direction orthogonal to the axis of the cylindrical member 30, that is, the axis of the chamber body 1, and can be positioned by this displacement. The amount of displacement of the holding portion 12 can be adjusted by rotating the eccentric amount adjusting screw 3 that is screwed into the cylindrical member 30 and is rotatably connected to the holding portion 12. In the present embodiment, the displacement direction is a vertical and orthogonal direction parallel to the paper surface of FIG.
[0027]
Further, the ejection nozzle 41 of the front wall member 40 is attached so that the fluid ejection axis coincides with the axis. Therefore, when the holding portion 12 is displaced in the direction perpendicular to the axis by the rotation of the eccentricity adjusting screw 3, the hard sphere 2 held in the recess 13 is also displaced in the same direction. 2 can be positioned with a predetermined eccentricity with respect to the injection axis of the injection nozzle 41. That is, in this embodiment, the adjusting screw 3 constitutes an eccentricity adjusting mechanism for eccentric positioning of the hard sphere 2.
[0028]
Furthermore, in this embodiment, as shown in FIG. 1, the holding part 12 has a special shape such that the cylinder is cut in a plane oblique to the axis (the upper side is longer than the lower side in FIG. 1). Therefore, when the cover member 20 is fixed with a screw, the surface of the hard sphere 2 is biased downward with respect to the nozzle injection axis in the opening 21 provided on the substantially central nozzle side of the cover member 20. Will be exposed.
[0029]
In this way, the high-pressure fluid ejected from the ejection nozzle 41 toward the surface of the hard sphere 2 exposed at a position deviated downward from the ejection axis is a certain amount of eccentricity, and the incident angle is less than 90 degrees. , The fluid after the collision flows downward and rearward mainly along the curved surface of the hard sphere 2, and the component force of the collision force acts on the hard sphere 2 downward and rearward. As a result, the hard sphere 2 rotates as indicated by an arrow A.
[0030]
In response to the rotation of the hard sphere 2, the bottom support sphere 14 and the side support sphere 15 that support the hard sphere 2 in a surface point contact state with each other also rotate, and the support position by these support spheres is appropriately set with respect to the collision point. By defining, the rotation axis of the hard sphere 2 is naturally swung, and the collision points of the high-pressure fluid are distributed over almost the entire surface of the hard sphere.
[0031]
Further, the rear wall member 10 is formed with a discharge port 11 for leading out the fluid after the collision. A fluid flow path 16 communicating with the discharge port 11 is formed below the holding portion 12. A groove 22 is also formed on the surface side of the cover member 20 to guide the fluid after the collision downward in the chamber.
[0032]
When the fluid collision apparatus according to the present embodiment is used, as shown in FIG. 2, the main body chamber 1 including the rear wall member 10, the holding portion 12, the hard sphere 2, the cover member 20, the cylindrical member 30, and the front wall member 40. Are assembled, and the hard sphere 2 is positioned with the adjusting screw 3 so as to have a predetermined eccentricity with respect to the injection axis of the injection nozzle 41. In this embodiment, it adjusted so that the eccentric amount of the hard sphere 2 with a diameter of 15 mm-20 mm might be in the range of 0-5 mm. If the amount of eccentricity is within this range, the impact drop during collision that determines the effect of atomizing the fluid medium is small.
[0033]
On the other hand, a high-pressure fluid supply pipe (not shown) for guiding a pressurized fluid from a fluid supply source (not shown) containing a medium intended for atomization by collision is connected to the front side plug 42 of the chamber body 1. In addition, a container (not shown) for collecting the processed fluid is piped to the discharge port 11.
[0034]
When such work preparation is completed, supply of high-pressure fluid from the supply source to the injection nozzle 41 is started. When the high-pressure fluid is ejected from the ejection nozzle 41, the ejection fluid begins to collide with the surface of the hard sphere 2 that is eccentric with respect to the ejection axis, and at the same time, the hard sphere 2 rotates by receiving the collision. Start.
[0035]
While the continuous jetting collision of the high-pressure fluid proceeds, the rotation of the hard sphere 2 also continues. Therefore, the collision position of the high-pressure fluid on the surface of the hard sphere 2 is constantly changed by the rotation of the hard sphere 2, and wear due to the collision is dispersed on the surface of the hard sphere 2, so that it is specified as in the past. It is possible to avoid the occurrence of a through hole in the collision member due to the local wear of only one point.
[0036]
The hard sphere 2 can be used until the overall wear progresses and it is difficult to maintain a rotatable holding state in the holding portion 12, and as a collision member compared to a conventional fixed collision plate. The lifetime of the is significantly increased. Accordingly, even when the collision target fluid is large and processed for a long time, the replacement frequency of the hard sphere 2 is low, and labor and time required for the replacement can be saved, and the work efficiency is improved.
[0037]
In the above embodiment, the eccentric amount of the hard sphere 2 is adjusted by positioning the holding portion 12 in the vertical vertical direction by the adjusting screw 3 with respect to the injection axis of the injection nozzle 41 coaxial with the axis of the chamber body 1. Although the configuration performed by displacement is shown, the present invention is not limited to this, and further eccentricity adjustment by displacement in the horizontal direction corresponding to the front and back direction on the paper surface of FIG. 1 or other crossing direction is possible. It is good also as a structure.
[0038]
Further, in the above-described embodiment, the configuration in which two spheres of the bottom support sphere 14 and the side support sphere 13 are provided as the second sphere, but of course, the multi-point contact support of the hard sphere 2 with three or more spheres. In this case, the apparatus can be operated in a substantially non-contact state with respect to the cover member 20 of the hard sphere 2.
[0039]
Further, in the above embodiment, the eccentric direction of the hard sphere is the vertical and orthogonal direction parallel to the paper surface of FIG. 1 with respect to the axis of the chamber body, but the present invention is not limited to this, and the high-pressure fluid Any direction may be used as long as the direction intersects the injection axis.
[0040]
【The invention's effect】
As described above, according to the fluid collision apparatus of the present invention, the service life of the collision member can be extended, and there is an effect that the medium fine particles and the emulsification can be efficiently performed.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a configuration of a main part of a fluid collision apparatus according to an embodiment of the present invention.
2 is an exploded view of the chamber body of FIG. 1. FIG.
[Explanation of symbols]
1: Chamber body 2: Hard sphere 3: Eccentricity adjusting screw 10: Back wall member 11: Discharge port 12: Holding portion 13: Recess 14: Bottom support sphere 15: Side support sphere 16: Channel 20: Cover member 21: Opening 22: Groove 30: Cylindrical member 40: Front wall member 41: Injection nozzle 42: Plug 50: Collision space

Claims (3)

チャンバ本体内に配置された硬質体に噴射ノズルからの高圧流体を衝突させる流体衝突装置において、
前記硬質体は、前記チャンバ本体内で、高圧流体の噴射軸線から偏心して回転可能に支承された球体からなることを特徴とする流体衝突装置。
In a fluid collision apparatus that collides a high-pressure fluid from an injection nozzle with a hard body arranged in a chamber body,
The fluid collision apparatus according to claim 1, wherein the rigid body is formed of a spherical body that is rotatably supported in an eccentric manner with respect to an injection axis of the high-pressure fluid in the chamber body.
前記球体を高圧流体の噴射軸線に対して交叉する方向に変位して位置決めする偏心量調節機構を備えたことを特徴とする請求項1に記載の流体衝突装置。The fluid collision apparatus according to claim 1, further comprising an eccentricity adjustment mechanism that positions the sphere by displacing the sphere in a direction crossing the jet axis of the high-pressure fluid. 前記高圧流体の衝突力に対して前記球体を直接点接触状態で支承する回転自在な第2の球体をさらに備えたことを特徴とする請求項1に記載の流体衝突装置。The fluid collision apparatus according to claim 1, further comprising a rotatable second sphere that supports the sphere in a direct point contact state with respect to a collision force of the high-pressure fluid.
JP17085598A 1998-06-18 1998-06-18 Fluid collision device Expired - Fee Related JP3686528B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17085598A JP3686528B2 (en) 1998-06-18 1998-06-18 Fluid collision device
KR1019990022481A KR100571692B1 (en) 1998-06-18 1999-06-16 Apparatus for crashing fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17085598A JP3686528B2 (en) 1998-06-18 1998-06-18 Fluid collision device

Publications (2)

Publication Number Publication Date
JP2000000448A JP2000000448A (en) 2000-01-07
JP3686528B2 true JP3686528B2 (en) 2005-08-24

Family

ID=15912578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17085598A Expired - Fee Related JP3686528B2 (en) 1998-06-18 1998-06-18 Fluid collision device

Country Status (2)

Country Link
JP (1) JP3686528B2 (en)
KR (1) KR100571692B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016066A (en) * 2009-07-08 2011-01-27 Sugino Machine Ltd Collision apparatus
JP2011115729A (en) * 2009-12-04 2011-06-16 Sugino Machine Ltd Atomizing device
EP3088736A1 (en) 2015-05-01 2016-11-02 Sugino Machine Limited Piston pump and material processing apparatus having piston pump

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284524A (en) * 2007-05-21 2008-11-27 Sugino Mach Ltd Atomizing apparatus
JP2008284525A (en) * 2007-05-21 2008-11-27 Sugino Mach Ltd Atomizing apparatus
JP2009113002A (en) * 2007-11-09 2009-05-28 Sugino Mach Ltd Pulverizing apparatus
JP5202171B2 (en) * 2008-08-05 2013-06-05 花王株式会社 Method for producing oil-in-water emulsion composition
JP5081762B2 (en) * 2008-08-05 2012-11-28 花王株式会社 Method for producing oil-in-water emulsion composition
JP5334055B2 (en) * 2009-09-14 2013-11-06 独立行政法人産業技術総合研究所 Production method of bionanofiber
JP5566175B2 (en) * 2010-04-27 2014-08-06 株式会社オプトクリエーション Nano bubble fucoidan water production method and production system
KR101597200B1 (en) * 2014-09-12 2016-02-24 (주)씨엔엔티 Apparatus for crashing fluid
KR101597201B1 (en) * 2014-09-12 2016-02-24 (주)씨엔엔티 Apparatus for crashing fluid
JP6494041B2 (en) * 2016-07-21 2019-04-03 株式会社スギノマシン Atomizer with back pressure function that can be cleaned and sterilized
JP6596392B2 (en) * 2016-07-21 2019-10-23 株式会社スギノマシン Atomizer
JP7349118B2 (en) * 2018-12-06 2023-09-22 三陽メリヤス株式会社 foot cover

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016066A (en) * 2009-07-08 2011-01-27 Sugino Machine Ltd Collision apparatus
JP2011115729A (en) * 2009-12-04 2011-06-16 Sugino Machine Ltd Atomizing device
EP3088736A1 (en) 2015-05-01 2016-11-02 Sugino Machine Limited Piston pump and material processing apparatus having piston pump

Also Published As

Publication number Publication date
JP2000000448A (en) 2000-01-07
KR100571692B1 (en) 2006-04-17
KR20000006212A (en) 2000-01-25

Similar Documents

Publication Publication Date Title
JP3686528B2 (en) Fluid collision device
US7850105B2 (en) Jet mill
JP2876484B2 (en) Rotating nozzle
US6126524A (en) Apparatus for rapid repetitive motion of an ultra high pressure liquid stream
KR20160111344A (en) Flat jet nozzle, and use of a flat jet nozzle
JP3151706B2 (en) Jet collision device
JP2005144329A (en) Pulverizing apparatus
WO1992017318A1 (en) Adjustable fluid jet cleaner
FI82616B (en) Air jet mill for fine and/or cryogrinding and surface treatment of preferably hard, elastic and/or thermoplastic materials
CN211026522U (en) Multifunctional grinding machine
JP3087201B2 (en) Jet mill
JPH07114979B2 (en) Gyratory crusher
JP3161915U (en) Polishing equipment
JP3563067B2 (en) Method and apparatus for atomizing liquid
JPH07328471A (en) Pulverizer
JP5209576B2 (en) Collision equipment
JPH0443706B2 (en)
RU2232641C2 (en) Centrifugal impact mill
JP2010115625A (en) Method for controlling thickness of crushing layer in vertical mill, and vertical mill
SU1013528A1 (en) Apparatus for milling fibrous mass
JP2022089638A (en) Continuous powder treatment device
JP5234409B2 (en) Fluid polishing equipment
JPH0753252B2 (en) Rotary atomizing coating device
KR100595386B1 (en) Pulverizing nozzle, auxiliary pulverizing nozzle and jet mill comprising them
JP5864705B2 (en) Mist generating device, mist generating mechanism and mist generating method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees