JP2010034001A - Inspection method of battery and separator for battery - Google Patents

Inspection method of battery and separator for battery Download PDF

Info

Publication number
JP2010034001A
JP2010034001A JP2008197596A JP2008197596A JP2010034001A JP 2010034001 A JP2010034001 A JP 2010034001A JP 2008197596 A JP2008197596 A JP 2008197596A JP 2008197596 A JP2008197596 A JP 2008197596A JP 2010034001 A JP2010034001 A JP 2010034001A
Authority
JP
Japan
Prior art keywords
separator
current value
electrodes
battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008197596A
Other languages
Japanese (ja)
Other versions
JP5137730B2 (en
Inventor
Ikuko Harada
育幸 原田
Toshihiro Sakatani
敏宏 坂谷
Yasuhiro Kudo
康洋 工藤
Teruhito Nagae
輝人 長江
Masao Takee
正夫 武江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008197596A priority Critical patent/JP5137730B2/en
Publication of JP2010034001A publication Critical patent/JP2010034001A/en
Application granted granted Critical
Publication of JP5137730B2 publication Critical patent/JP5137730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To perform determination on defective or non-defective product with a high degree of accuracy without causing damages to separators, and to accurately select good products with less losses. <P>SOLUTION: An inspection method for a separator used for a cell with a hydrophilic treatment applied thereto includes a current-value measuring process for applying a constant AC voltage E (V) causing no partial discharge in between a pair of electrodes 11, 12, in order to measure a current value I (mA) across metallic electrodes, under such condition that the front and back sides of the separator 10 is sandwiched by the pair of metallic electrodes 11, 12 with a surfacial area S (cm<SP>2</SP>) and a gap t (mm) between the electrodes; and a withstanding-factor measuring process for measuring a withstanding factor Z (Z=I×t/SE), based on the current value I (mA) measured at the current-value measuring process. The measured separator is screened out as defective if the measured withstanding factor Z is above a predetermined constant level. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、親水化処理が施された電池用セパレータの検査方法および親水化処理が施されたセパレータを備えた電池の検査方法に関する。   The present invention relates to a method for inspecting a battery separator that has been subjected to a hydrophilic treatment and a method for inspecting a battery that includes a separator that has been subjected to a hydrophilic treatment.

近年、サイクル寿命が短く、将来的にショートにいたる可能性が大きい電池(所謂、潜在ショート電池)を正確に識別する必要が生じた。特に、多数の電池を直列接続したり、長寿命が必要とされるハイブリッド車(HEV:Hybrid Electric Vehicle)や電気自動車(PEV:Pure Electric Vehicle)等の用途に用いられる電池においては、より厳しく潜在ショート電池を選別する必要が生じた。   In recent years, it has become necessary to accurately identify batteries that have a short cycle life and are likely to be short-circuited in the future (so-called latent short batteries). In particular, batteries that are used for applications such as hybrid electric vehicles (HEVs) and electric vehicles (PEVs) that require long battery life in series or have a longer lifespan are more stringent. It became necessary to sort out the short battery.

そこで、正極と負極とからなる一対の電極をセパレータを介して巻回もしくは積層して形成した電極群を電解液に接触させない状態で、両電極間に電圧を印加し、両電極間が絶縁破壊する電流を検出して、潜在ショート電池と良品電池を識別する方法が、例えば特許文献1(特開2000−195565号公報)にて提案されるようになった。   Therefore, a voltage is applied between the electrodes in a state where the electrode group formed by winding or laminating a pair of electrodes consisting of a positive electrode and a negative electrode through a separator is not in contact with the electrolytic solution, and a dielectric breakdown occurs between the electrodes. For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2000-195565) has proposed a method of detecting a current to detect and distinguishing a latent short battery from a non-defective battery.

上述した特許文献1にて提案された識別方法においては、電解液の注液前に、電極間に印加する電圧を高くしていくと、絶縁破壊に至るアーク放電が起こる電圧よりも低い電圧で、局所的な放電、即ち、部分放電が起こることがある。この部分放電は、セパレータ中に不均一な部分(例えば、欠損、ボイドなど)が存在すると、その部分の静電容量が小さいために、電圧を印加したときに他の部分よりも低い電圧で放電が起きるために生じるものである。   In the identification method proposed in Patent Document 1 described above, when the voltage applied between the electrodes is increased before the electrolyte is injected, the voltage is lower than the voltage at which arc discharge leading to dielectric breakdown occurs. Local discharge, that is, partial discharge may occur. In this partial discharge, if there are non-uniform parts (for example, defects, voids, etc.) in the separator, the electrostatic capacity of that part is small, so when a voltage is applied, it is discharged at a lower voltage than other parts. Is caused by the occurrence of

このような部分放電が起こると、オゾンや窒素酸化物等が発生してセパレータが劣化する。このため、正常電池の電極群が絶縁破壊するよりも低い電圧であっても、セパレータ内では部分放電が起きる可能性があり、正常電池の電極群のセパレータにダメージを与える可能性がある。
このような背景にあって、正常電池の電極群にダメージを与えることなく、潜在ショート電池の電極群を精度よく判別する不良品検査方法が望まれるようになった。
When such partial discharge occurs, ozone, nitrogen oxides, etc. are generated and the separator is deteriorated. For this reason, even if the voltage of the normal battery electrode group is lower than the dielectric breakdown, partial discharge may occur in the separator, which may damage the separator of the normal battery electrode group.
Against this background, a defective product inspection method for accurately discriminating the electrode group of the latent short battery without damaging the electrode group of the normal battery has been desired.

そこで、潜在ショート電池の電極群を精度よく判別する不良品検査方法が特許文献2(特開2004−342476号公報)にて提案されるようになった。
この特許文献2にて提案された不良品検査方法においては、セパレータを介して対向する一対の電極からなる電極群に電圧を印加して電極群に電流を流し、計測された電流と、正常な電極群に流れる所定の電流とを比較することにより、電極群の品質を判定するようにしている。
特開2000−195565号公報 特開2004−342476号公報
Therefore, a defective product inspection method for accurately discriminating the electrode group of the latent short battery has been proposed in Japanese Patent Application Laid-Open No. 2004-342476.
In the defective product inspection method proposed in Patent Document 2, a voltage is applied to an electrode group composed of a pair of electrodes facing each other via a separator to cause a current to flow through the electrode group. The quality of the electrode group is determined by comparing with a predetermined current flowing through the electrode group.
JP 2000-195565 A JP 2004-342476 A

しかしながら、上述した特許文献2にて提案された不良品検査方法においては、通電電流の大小だけで良品、不良品を判定するため、信頼性に劣り、かつ高精度の判定を行うことができなかった。
これは、セパレータの物性値などのバラツキによって、通電電流がばらつくためである。即ち、潜在ショート判定の電流値を低く設定した場合には、良品電池まで不良と判定する場合もあって、ロスの発生割合が多い場合があった。一方、潜在ショート判定の電流値を高く設定した場合には、不良品であっても良品電池と判定されて、不良品が流出して信頼性が損なわれる恐れがあった。
However, in the defective product inspection method proposed in Patent Document 2 described above, since a non-defective product and a defective product are determined only by the magnitude of the energization current, the reliability is inferior and high-precision determination cannot be performed. It was.
This is because the energization current varies due to variations in the physical properties of the separator. In other words, when the current value of the latent short determination is set low, it may be determined that even the non-defective battery is defective, and the loss occurrence ratio may be large. On the other hand, when the current value of the latent short determination is set high, even a defective product is determined as a non-defective battery, and the defective product may flow out and reliability may be impaired.

このため、使用するセパレータの目付(即ち、繊維量)や、親水化処理の程度などについてのセパレータの検査が行われるようになった。
ところが、セパレータの物性値などのバラツキだけでなく、親水化処理のバラツキ(例えば、親水化処理に起因する官能基量や処理残留成分のバラツキ)や、セパレータの保管条件のバラツキ(例えば、フープ外側などの外気との接触程度に起因するセパレータの誘電率のバラツキ)などにより、良品電池であっても潜在ショート電池(擬似ショート)と判定される場合もあって、必ずしも潜在ショートの検出が精度よくなされているとは言えなかった。
For this reason, the separator is inspected for the basis weight (that is, the fiber amount) of the separator to be used and the degree of hydrophilic treatment.
However, not only variations in physical properties of separators, but also variations in hydrophilization treatment (for example, variations in functional group amounts and residual components resulting from hydrophilization treatment) and variations in separator storage conditions (for example, outside the hoop) Non-defective batteries may be judged as potential short batteries (pseudo shorts) due to variations in the dielectric constant of the separator due to the degree of contact with outside air, etc. I couldn't say it was done.

そこで、本発明は上記した問題を解決するためになされたものであって、セパレータにダメージを与えることなく、精度良くセパレータの良、不良の判定をして、ロスの発生が少なく、潜在ショート電池の判定を高精度に行える電池用セパレータの検査方法および電池の検査方法を提供することを目的とするものである。   Accordingly, the present invention has been made to solve the above-described problem, and it is possible to accurately determine whether a separator is good or bad without damaging the separator, and to reduce the occurrence of loss, and a potential short battery. It is an object of the present invention to provide a battery separator inspection method and a battery inspection method capable of accurately determining the above.

本発明の親水化処理が施された電池用セパレータの検査方法は、表面積がS(cm2)で電極間距離がt(mm)となるように配置された一対の金属電極でセパレータの表裏面を挟持した状態で部分放電が起きない交流電圧E(V)を当該一対の電極間に印加して当該金属電極間に流れる電流値I(mA)を測定する電流値測定工程と、電流値測定工程にて測定された電流値I(mA)に基づいて耐圧指数Z(Z=I×(t/SE))を求める耐圧指数算出工程とを備え、求めた耐圧指数Zが予め設定した値以上であれば不使用セパレータとして排除するようにしている。 The method for inspecting a battery separator having been subjected to the hydrophilization treatment according to the present invention comprises a pair of metal electrodes arranged so that the surface area is S (cm 2 ) and the distance between the electrodes is t (mm). A current value measuring step for measuring a current value I (mA) flowing between the pair of electrodes by applying an AC voltage E (V) between the pair of electrodes so that a partial discharge does not occur in a state where the electrode is sandwiched, and a current value measurement A withstand voltage index calculating step for obtaining a withstand voltage index Z (Z = I × (t / SE)) based on the current value I (mA) measured in the process, and the obtained withstand voltage index Z is equal to or greater than a preset value. If so, it is excluded as an unused separator.

一対の金属電極でセパレータの表裏面を挟持した状態で交流電圧を印加すると、これらの電極間は一種のコンデンサと見なすことができる。そして、一対の電極間に流れる電流は、電極間の距離が増大すれば電流が減少し、また対向面積が大きくなれば電流が増大することとなる。そこで、表面積がS(cm2)で、電極間距離がt(mm)の一対の金属電極間にE(V)の電圧を印加して、金属電極間にI(mA)の電流が流れたとすると、金属電極間に流れる電流量I(mA)は、電極間距離(t)、表面積(S)および印加電圧(E)の影響を受けるため、これらの値が変動する場合、補正する必要が生じる。 When an AC voltage is applied in a state where the front and back surfaces of the separator are sandwiched between a pair of metal electrodes, the space between these electrodes can be regarded as a kind of capacitor. The current flowing between the pair of electrodes decreases as the distance between the electrodes increases, and increases as the facing area increases. Therefore, when a voltage of E (V) is applied between a pair of metal electrodes having a surface area of S (cm 2 ) and a distance between electrodes of t (mm), a current of I (mA) flows between the metal electrodes. Then, the amount of current I (mA) flowing between the metal electrodes is affected by the interelectrode distance (t), the surface area (S), and the applied voltage (E). Therefore, when these values fluctuate, it is necessary to correct them. Arise.

そこで、金属電極間に流れる電流量の大きさを耐圧指数Zとして定義すると、Z=I×(t/SE)という関係式が得られることとなる。耐圧指数Zが大きいことはセパレータ間に流れる電流が大きいことを意味するので、基準となる値(閾値)を予め設定しておけば、耐圧指数Zが閾値よりも大きいセパレータ、即ち、バラツキの大きいセパレータを予め排除することが可能となる。このため、本発明においては、電流値測定工程にて測定された電流値I(mA)に基づいて耐圧指数Z(Z=I×(t/SE))を求める耐圧指数算出工程を備え、求めた耐圧指数Zが予め設定した値以上であれば不使用セパレータとして排除するようにしている。これにより、使用するセパレータのバラツキを小さくすることが可能となる。   Therefore, if the magnitude of the amount of current flowing between the metal electrodes is defined as a withstand voltage index Z, a relational expression of Z = I × (t / SE) is obtained. If the pressure index Z is large, it means that the current flowing between the separators is large. Therefore, if a reference value (threshold value) is set in advance, a separator having a pressure index Z larger than the threshold value, that is, large variation. The separator can be eliminated in advance. For this reason, the present invention includes a withstand voltage index calculating step for obtaining a withstand voltage index Z (Z = I × (t / SE)) based on the current value I (mA) measured in the current value measuring step. If the pressure index Z is equal to or greater than a preset value, it is excluded as an unused separator. Thereby, it becomes possible to reduce the variation of the separator to be used.

一方、本発明の親水化処理が施されたセパレータを備えた電池の検査方法は、表面積がS(cm2)で電極間距離がt(mm)となるように配置された一対の金属電極でセパレータの表裏面を挟持した状態で部分放電が起きない交流電圧E(V)を当該一対の電極間に印加して当該金属電極間に流れる電流値I(mA)を測定する電流値測定工程と、電流値測定工程にて測定された電流値I(mA)に基づいて耐圧指数Z(Z=I×(t/SE))を求める耐圧指数算出工程と、求めた耐圧指数Zが予め設定した値以上であれば不使用セパレータとして排除するセパレータ排除工程と、セパレータ排除工程により排除されなかったセパレータを介して正極板と負極板とが巻回または積層して形成された電極群の正・負電極間に部分放電が起きない交流電圧E(V)を印加して当該電極間に流れる電流値I(mA)を測定する電流値測定工程と、電流値測定工程にて測定された電流値I(mA)に基づいて潜在ショートを判定する潜在ショート判定工程とを備えるようにしている。 On the other hand, the method for inspecting a battery having a separator subjected to the hydrophilization treatment of the present invention is a pair of metal electrodes arranged so that the surface area is S (cm 2 ) and the distance between the electrodes is t (mm). A current value measuring step of measuring the current value I (mA) flowing between the pair of electrodes by applying an alternating voltage E (V) between the pair of electrodes, in which the partial discharge does not occur with the front and back surfaces of the separator sandwiched; The withstand voltage index calculating step for obtaining the withstand voltage index Z (Z = I × (t / SE)) based on the current value I (mA) measured in the current value measuring step, and the obtained withstand voltage index Z is preset. If the value is equal to or greater than the value, a separator exclusion process that eliminates the separator as an unused separator, and a positive / negative electrode group formed by winding or stacking a positive electrode plate and a negative electrode plate via a separator that is not excluded by the separator exclusion process Partial discharge occurs between the electrodes A current value measurement step of measuring a current value I (mA) flowing between the electrodes by applying a high AC voltage E (V), and a potential based on the current value I (mA) measured in the current value measurement step And a latent short determination step for determining a short.

これにより、用いられたセパレータはバラツキが小さいセパレータであるので、電極群での電圧印加検査における電流値のバラツキも抑制できるようになり、潜在ショートの判別精度が格段に向上することとなる。また、電極群に流れる電流値を小さくできるとともに、安定させることが可能となるので、測定装置の電流仕様を小さくでき、測定装置を安価に提供することも可能となる。   Thereby, since the used separator is a separator with small variations, it is possible to suppress variations in the current value in the voltage application inspection in the electrode group, and the discrimination accuracy of the potential short circuit is remarkably improved. In addition, since the current value flowing through the electrode group can be reduced and stabilized, the current specification of the measuring device can be reduced, and the measuring device can be provided at low cost.

本発明においては、求めた耐圧指数Zが予め設定した値以上であれば不使用セパレータとして排除するようにしているので、使用するセパレータのバラツキを小さくすることが可能となる。また、電極群を判定する前に、セパレータの良・否の判定を行い、良と判定されたセパレータのみを用いて電極群を形成するようにしている。これにより、セパレータのバラツキを抑制できて、電流値のバラツキも抑制できるようになるので、潜在ショートの判別精度が格段に向上する。   In the present invention, if the obtained withstand pressure index Z is equal to or greater than a preset value, it is excluded as a non-use separator. Therefore, it is possible to reduce variations in separators used. Before determining the electrode group, it is determined whether the separator is good or bad, and the electrode group is formed using only the separator determined to be good. As a result, variations in separators can be suppressed, and variations in current values can also be suppressed, so that the accuracy of determining potential short-circuits is greatly improved.

ついで、本発明の実施の形態を以下に詳細に説明するが、本発明はこれに限定されるものでなく、その要旨を変更しない範囲で適宜変更して実施することができる。なお、図1は本発明のセパレータに交流電圧を印加して電圧印加検査を行う状態を模式的に示す平面図である。図2は正極と負極とからなる一対の電極をセパレータを介して巻回して形成された渦巻状電極群を模式的に示す斜視図である。図3は、図2の渦巻状電極群に正・負の集電体を溶接して形成された渦巻状電極体に交流電圧を印加して電圧印加検査を行う状態を模式的に示す断面図である。図4は本発明の一例のニッケル−水素蓄電池を模式的に示す断面図である。   Next, embodiments of the present invention will be described in detail below. However, the present invention is not limited to these embodiments, and can be appropriately modified and implemented without departing from the scope of the present invention. FIG. 1 is a plan view schematically showing a state in which an AC voltage is applied to the separator of the present invention to perform a voltage application test. FIG. 2 is a perspective view schematically showing a spiral electrode group formed by winding a pair of electrodes composed of a positive electrode and a negative electrode through a separator. 3 is a cross-sectional view schematically showing a state in which a voltage application inspection is performed by applying an AC voltage to a spiral electrode body formed by welding positive and negative current collectors to the spiral electrode group of FIG. It is. FIG. 4 is a cross-sectional view schematically showing a nickel-hydrogen storage battery as an example of the present invention.

1.セパレータ
セパレータの機能として、保液性能を有していることは、電池特性の観点からすると必須である。この場合、セパレータに保液性能を保持させる方法としては、ポリオレフィン樹脂などの親水性がない繊維に親水化処理を行う方法の外、ナイロン樹脂などの元々親水性を有した繊維を使用する方法がある。ここで、HEVやPEVなどの高耐久性が要求される用途の電池に用いられるセパレータにおいては、ナイロン樹脂製繊維などの材質では分解や劣化が生じて耐久性に問題があるため、一般的には、ポリオレフィン樹脂製繊維に親水化処理する方法が用いられている。
1. Separator Having a liquid retention performance as a function of the separator is essential from the viewpoint of battery characteristics. In this case, as a method for retaining the liquid retention performance in the separator, there is a method of using a hydrophilic fiber such as a nylon resin in addition to a method of hydrophilizing a non-hydrophilic fiber such as a polyolefin resin. is there. Here, in separators used in batteries for applications that require high durability such as HEV and PEV, since materials such as nylon resin fibers are decomposed and deteriorated, there is a problem in durability. A method of hydrophilizing a polyolefin resin fiber is used.

そこで、本発明においては、セパレータ10としては、ポリプロピレンのみからなる単繊維と、ポリプロピレンおよびポリエチレンからなる芯鞘繊維とを湿式により抄紙して形成された不織布シートを用いている。この場合、この不織布シートに親水化処理を行うため、フッ素ガスと硫黄原子を含有する反応性ガスとを含む混合ガスに接触させるようにして、不織布シートにスルホン酸基などの官能基を導入している。なお、このセパレータ10は、目付が50g/m2で、厚みが0.13mmになるように形成されている。 Therefore, in the present invention, as the separator 10, a non-woven sheet formed by wet papermaking of a single fiber made only of polypropylene and a core-sheath fiber made of polypropylene and polyethylene is used. In this case, in order to hydrophilize the nonwoven fabric sheet, a functional group such as a sulfonic acid group is introduced into the nonwoven fabric sheet in contact with a mixed gas containing a fluorine gas and a reactive gas containing a sulfur atom. ing. The separator 10 is formed so as to have a basis weight of 50 g / m 2 and a thickness of 0.13 mm.

上述のように親水化処理を行った場合、官能基のバラツキや親水化処理の残留物のバラツキにより保液性能にバラツキが生じることとなる。このため、a,b,c,d,e,f,gからなる7種類のセパレータ10を用いて、各セパレータa,b,c,d,e,f,gの官能基量(この場合は、S(硫黄)量とした)をXPS(X-ray Photoelectron Spectroscopy:X線光電子分光)により求めた。すると、下記の表1に示すような結果となった。この場合、求めた官能基量に基づいて、セパレータaの官能基量を10とし、他のセパレータb,c,d,e,f,gの官能基量をそれとの比(官能基量比)で示した。なお、セパレータaは基準となるセパレータであって、生産過程から経験則などに基づいて、その品質が安定しているものとしてピックアップされたものである。   When the hydrophilization treatment is performed as described above, the liquid retention performance varies due to variations in functional groups and variations in the residue of the hydrophilization treatment. For this reason, using seven types of separators 10 consisting of a, b, c, d, e, f, and g, the functional group amount of each separator a, b, c, d, e, f, and g (in this case, , S (sulfur) amount) was determined by XPS (X-ray Photoelectron Spectroscopy). Then, the results shown in Table 1 below were obtained. In this case, based on the obtained functional group amount, the functional group amount of the separator a is set to 10, and the functional group amounts of the other separators b, c, d, e, f, and g are compared with the ratio (functional group amount ratio). It showed in. The separator a is a reference separator, and is picked up from the production process based on empirical rules and the like as having a stable quality.

ついで、上述した各セパレータa,b,c,d,e,f,gの耐圧指数Zを以下のようにして求めた。即ち、図1に示すように、厚みが0.13mmになるように形成されたセパレータ10(a,b,c,d,e,f,g)を、平面のサイズが5cm×5cm(平面の面積SはS=25cm2となる)の一対のニッケル金属製電極11,12の間に、間隔tが0.1mm(t=0.1mm)になるように挟み込んだ。この後、電極11の端子部11aと電極12の端子部12aとの間に60Hzで150Vの交流電圧(E=150V)と電流検出回路16とを接続した。 Next, the pressure resistance index Z of each of the separators a, b, c, d, e, f, and g described above was obtained as follows. That is, as shown in FIG. 1, a separator 10 (a, b, c, d, e, f, g) formed to have a thickness of 0.13 mm has a planar size of 5 cm × 5 cm (planar It was sandwiched between a pair of nickel metal electrodes 11 and 12 having an area S (S = 25 cm 2 ) so that the distance t was 0.1 mm (t = 0.1 mm). Thereafter, an AC voltage (E = 150 V) of 150 V at 60 Hz and the current detection circuit 16 were connected between the terminal portion 11 a of the electrode 11 and the terminal portion 12 a of the electrode 12.

ついで、これらの端子部11a,12a間に交流電圧源15より、60Hzで150Vの交流電圧(E=150V)を印加して、電極11,12間に流れた電流値I(mA)を電流検出回路16で測定した。そして、測定した電流値I(mA)に基づいて、耐圧指数ZをZ=I×(t/SE)として求めると、下記の表1に示すような結果となった。なお、表1においては、求めたセパレータaの耐圧指数Zを10として表し、他のセパレータb,c,d,e,f,gの耐圧指数Zをそれとの比(耐圧指数比)で表している。

Figure 2010034001
Next, an AC voltage of 150 V at 60 Hz (E = 150 V) is applied from the AC voltage source 15 between these terminal portions 11a and 12a, and the current value I (mA) flowing between the electrodes 11 and 12 is detected by current. Measured with circuit 16. And when the pressure | voltage resistant index | exponent Z was calculated | required as Z = I * (t / SE) based on the measured electric current value I (mA), the result as shown in following Table 1 was obtained. In Table 1, the obtained pressure resistance index Z of the separator a is expressed as 10, and the pressure resistance index Z of the other separators b, c, d, e, f, and g is expressed as a ratio (pressure resistance ratio). Yes.
Figure 2010034001

上記表1の結果から明らかなように、セパレータのバラツキの程度を知る指標として、官能基量(S量)を調べたものであるが、必ずしも、耐圧指数Z(なお、この耐圧指数Zはt,S,Eが一定であるため計測された電流値に比例することととなる)とは相関がないことが分かる。これは、親水化処理により導入された官能基量を知る意味で、S(硫黄)量を測定しているが、親水性(保液性能)は官能基量(S量)だけに依存するものではなく、官能基量(S量)と親水化処理の残留成分と空気中水分などが影響するためと考えられるからである。   As is clear from the results in Table 1, the amount of the functional group (S amount) was examined as an index for knowing the degree of variation of the separator, but the pressure resistance index Z (note that the pressure resistance index Z is t , S, and E are constant, which is proportional to the measured current value). This is to measure the amount of S (sulfur) in order to know the amount of functional groups introduced by the hydrophilization treatment, but hydrophilicity (liquid retention performance) depends only on the amount of functional groups (S amount). This is because it is considered that the functional group amount (S amount), the residual component of the hydrophilization treatment, the moisture in the air, and the like are affected.

そして、上記表1の結果に基づいて、耐圧指数比(Z比)が200(この場合、200が閾値となる)以上となるセパレータe,fを排除し、耐圧指数比(Z比)が200(閾値)未満であるセパレータa,b,c,d,gを良品セパレータとして採用することとした。なお、耐圧指数比(Z比)の設定値(閾値)を低く設定するほど、セパレータのバラツキを小さくできるようになる。この結果、後工程の電池の検査において、極間距離の短いものは排除されることとになって、品質の高い検査となる。ところが、セパレータとしては不良品として排除される確率は高くなる。結局、耐圧指数比(Z比)の設定値(閾値)は、セパレータのバラツキ程度と、それらを組み立てたときに不良になる(電池の検査基準を厳しくして疑似ショート品も排出する)かなどを考慮して適宜設定するのが望ましい。   Then, based on the results of Table 1, the separators e and f having a pressure index ratio (Z ratio) of 200 (in this case, 200 is a threshold) or more are excluded, and the pressure index ratio (Z ratio) is 200. The separators a, b, c, d, and g that are less than (threshold value) were adopted as non-defective separators. Note that as the set value (threshold value) of the pressure resistance index ratio (Z ratio) is set lower, the variation in the separator can be reduced. As a result, in the inspection of the battery in the post process, those having a short distance between the electrodes are excluded, and the inspection becomes high in quality. However, as a separator, the probability of being rejected as a defective product increases. After all, the set value (threshold value) of the pressure index ratio (Z ratio) is about the variation of the separators and whether they become defective when they are assembled (strict inspection standards for batteries are discharged and pseudo short products are also discharged) It is desirable to set appropriately considering this.

2.電極体
(1)水素吸蔵合金負極
まず、水素吸蔵合金粉末を100質量部に対して、0.1質量%のCMC(カルボキシメチルセルロース)と水(あるいは純水)とからなる水溶性結着剤に、スチレンブタジエンラテックス(SBR)と、炭素系導電剤とを添加した。この後、これらを混合し、混練して水素吸蔵合金スラリーを作製した。ついで、Niメッキ軟鋼材製の多孔性基板(パンチングメタル)からなる負極芯体21を用意し、この負極芯体21に、充填密度が5.0g/cm3となるように水素吸蔵合金スラリーを塗着し、乾燥させた後、所定の厚みになるように圧延して活物質層22を形成した。この後、所定の寸法になるように切断して、水素吸蔵合金負極20を作製した。
2. Electrode body (1) Hydrogen storage alloy negative electrode First, a water storage binder comprising 0.1 mass% of CMC (carboxymethylcellulose) and water (or pure water) with respect to 100 mass parts of the hydrogen storage alloy powder. A styrene butadiene latex (SBR) and a carbon-based conductive agent were added. Thereafter, these were mixed and kneaded to prepare a hydrogen storage alloy slurry. Next, a negative electrode core 21 made of a Ni-plated mild steel porous substrate (punching metal) is prepared, and a hydrogen storage alloy slurry is added to the negative electrode core 21 so that the filling density is 5.0 g / cm 3. After applying and drying, the active material layer 22 was formed by rolling to a predetermined thickness. Then, it cut | disconnected so that it might become a predetermined dimension, and the hydrogen storage alloy negative electrode 20 was produced.

(2)ニッケル正極
一方、多孔度が約85%の多孔性ニッケル焼結基板を比重が1.75の硝酸ニッケルと硝酸コバルトの混合水溶液に浸漬して、多孔性ニッケル焼結基板31の細孔内にニッケル塩およびコバルト塩を保持させた。この後、この多孔性ニッケル焼結基板を25質量%の水酸化ナトリウム(NaOH)水溶液中に浸漬して、ニッケル塩およびコバルト塩をそれぞれ水酸化ニッケルおよび水酸化コバルトに転換させた。
(2) Nickel Positive Electrode On the other hand, a porous nickel sintered substrate 31 having a porosity of about 85% is immersed in a mixed aqueous solution of nickel nitrate and cobalt nitrate having a specific gravity of 1.75. Inside, nickel salt and cobalt salt were retained. Thereafter, the porous nickel sintered substrate was immersed in a 25% by mass sodium hydroxide (NaOH) aqueous solution to convert the nickel salt and the cobalt salt into nickel hydroxide and cobalt hydroxide, respectively.

ついで、充分に水洗してアルカリ溶液を除去した後、乾燥を行って、多孔性ニッケル焼結基板31の細孔内に水酸化ニッケルを主成分とする活物質を充填した。このような活物質充填操作を所定回数(例えば6回)繰り返して、多孔性焼結基板31の細孔内に水酸化ニッケルを主体とする活物質32の充填密度が2.5g/cm3になるように充填した。この後、室温で乾燥させた後、所定の寸法に切断してニッケル正極30を作製した。 Next, after thoroughly washing with water to remove the alkaline solution, drying was performed, and the pores of the porous nickel sintered substrate 31 were filled with an active material mainly composed of nickel hydroxide. Such an active material filling operation is repeated a predetermined number of times (for example, 6 times), so that the packing density of the active material 32 mainly composed of nickel hydroxide in the pores of the porous sintered substrate 31 becomes 2.5 g / cm 3 . It filled so that it might become. Then, after making it dry at room temperature, it cut | disconnected to the predetermined dimension and the nickel positive electrode 30 was produced.

(3)電極体
この後、上述のように作製された水素吸蔵合金負極20とニッケル正極30とを用い、これらの間に、セパレータ10(a,b,c,d,g)を介在させて渦巻状に巻回して渦巻状電極群を作製した。なお、このようにして作製された渦巻状電極群の下部には水素吸蔵合金負極20の芯体露出部23が露出しており、その上部にはニッケル正極30の芯体露出部33が露出している。ついで、得られた渦巻状電極群の下端面に露出する芯体露出部23に負極集電体24を溶接するとともに、渦巻状電極群の上端面に露出するニッケル正極30の芯体露出部33の上に正極集電体34を溶接して、電極体A(A1〜A4,A7)とした。なお、セパレータaを備えたものを電極体A1とし、セパレータbを備えたものを電極体A2とし、セパレータcを備えたものを電極体A3とし、セパレータdを備えたものを電極体A4とし、セパレータgを備えたものを電極体A7とした。
(3) Electrode body Thereafter, the hydrogen storage alloy negative electrode 20 and the nickel positive electrode 30 produced as described above are used, and a separator 10 (a, b, c, d, g) is interposed therebetween. A spiral electrode group was prepared by spirally winding. The core exposed portion 23 of the hydrogen storage alloy negative electrode 20 is exposed at the lower part of the spiral electrode group thus produced, and the core exposed portion 33 of the nickel positive electrode 30 is exposed at the upper portion thereof. ing. Next, the negative electrode current collector 24 is welded to the core exposed portion 23 exposed at the lower end surface of the obtained spiral electrode group, and the core exposed portion 33 of the nickel positive electrode 30 exposed at the upper end surface of the spiral electrode group. A positive electrode current collector 34 was welded onto the electrode body A to obtain an electrode body A (A1 to A4, A7). The electrode body A1 is provided with the separator a, the electrode body A2 is provided with the separator b, the electrode body A3 is provided with the separator c, and the electrode body A4 is provided with the separator d. The electrode body A7 was provided with the separator g.

一方、水素吸蔵合金負極20とニッケル正極30とを用い、これらの間に、セパレータ10(a,b,c,d,e,f,g)を介在させて渦巻状に巻回して渦巻状電極群とした後、上述と同様にして、負極集電体24および正極集電体34を溶接して、電極体X(X1〜X7)とした。なお、セパレータaを備えたものを電極体X1とし、セパレータbを備えたものを電極体X2とし、セパレータcを備えたものを電極体X3とし、セパレータdを備えたものを電極体X4とし、セパレータeを備えたものを電極体X5とし、セパレータfを備えたものを電極体X6とし、セパレータgを備えたものを電極体X7とした。   On the other hand, a hydrogen storage alloy negative electrode 20 and a nickel positive electrode 30 are used, and a separator 10 (a, b, c, d, e, f, g) is interposed between them to form a spiral electrode. After forming the group, the negative electrode current collector 24 and the positive electrode current collector 34 were welded in the same manner as described above to obtain an electrode body X (X1 to X7). The electrode body X1 is provided with the separator a, the electrode body X2 is provided with the separator b, the electrode body X3 is provided with the separator c, and the electrode body X4 is provided with the separator d. The electrode body X5 was provided with the separator e, the electrode body X6 was provided with the separator f, and the electrode body X7 was provided with the separator g.

(4)電圧印加検査
ついで、得られた電極体A(A1〜A4,A7)および電極体X(X1〜X7)を用いて、負極集電体24に電圧印加電極25を接続するとともに、正極集電体34に電圧印加電極35を接続した後、これらの電極25,35間に交流電圧源40より、60Hzで150Vの交流電圧(E=150V)を5秒間だけ印加して、電極25,35間に流れた電流値I(mA)を電流検出回路50で測定した。ついで、得られた電流値I(mA)に基づいて、セパレータaを用いた電極体A1,X1の電流値I(mA)を10とし、他のセパレータb,c,d,e,f,gを用いた電極体A2〜A4,A7および電極体X2〜X7の電流値I(mA)をそれとの比(電流値比)で示すと、下記の表2に示すような結果となった。
なお、電圧印加検査後、電極体A1〜A4,A7および電極体X1〜X7をそれぞれ解体調査したところ、各電極体A1〜A4,A7および電極体X1〜X7に潜在ショートが発生してないことを確認した。

Figure 2010034001
(4) Voltage application inspection Next, using the obtained electrode body A (A1 to A4, A7) and electrode body X (X1 to X7), the voltage application electrode 25 was connected to the negative electrode current collector 24 and the positive electrode After connecting the voltage application electrode 35 to the current collector 34, an AC voltage of 150 V at 60 Hz (E = 150 V) is applied between these electrodes 25, 35 from the AC voltage source 40 for 5 seconds. The current value I (mA) flowing between the currents 35 was measured by the current detection circuit 50. Next, based on the obtained current value I (mA), the current value I (mA) of the electrode bodies A1, X1 using the separator a is set to 10, and the other separators b, c, d, e, f, g When the current values I (mA) of the electrode bodies A2 to A4 and A7 and the electrode bodies X2 to X7 using the above were shown as a ratio (current value ratio) to the current values I, the results shown in Table 2 below were obtained.
In addition, after the voltage application inspection, the electrode bodies A1 to A4 and A7 and the electrode bodies X1 to X7 were disassembled and examined, and no potential short circuit occurred in each of the electrode bodies A1 to A4 and A7 and the electrode bodies X1 to X7. It was confirmed.
Figure 2010034001

上記表2の結果から明らかなように、電極体Aでは最大電流値比が30であるのに対し、電極体Xでは最大電流値比が80であることが分かる。このことから、電極体Aの方が、電圧印加検査における電流値を低く抑えることが可能であることが分かる。
つまり、例えば、潜在ショートに起因した電流値増大が+30とした場合に、電極体Xでは不良品の判定ができない場合がある。これは、最大80に対して+30の110を閾値とした場合、10+30=40となった場合は良品と判定されるからである。また、良品まで不良品であると判定する場合もある。これは10+30=40を閾値とした場合、良品である80(X5)、45(X6)が不良品であると判定されるからである。
これらに対して、電極体Aでは、良品は良品と、不良品は不良品と判定されることとなる。これは、10+30=40を閾値とした場合に、全てが良品と判定できるからである。
なお、セパレータの通電量の閾値、および渦巻電極体の電圧印加検査での閾値については、セパレータ厚みや、極板表面積などの電池設計や、セバレータでの廃棄ロスと渦巻電極体での廃棄ロスとの関係などを考慮して設定するようにすればよい。
As is clear from the results of Table 2 above, it can be seen that the maximum current value ratio is 30 in the electrode body A, whereas the maximum current value ratio is 80 in the electrode body X. From this, it can be seen that the electrode body A can suppress the current value in the voltage application inspection to be lower.
That is, for example, when the increase in the current value due to the potential short is +30, the electrode body X may not be able to determine a defective product. This is because it is determined that the product is non-defective when 10 + 30 = 40 when 110 of +30 is set as the threshold for 80 at the maximum. In addition, it may be determined that even a non-defective product is a defective product. This is because it is determined that 80 (X5) and 45 (X6) which are non-defective products are defective when 10 + 30 = 40 is set as a threshold value.
On the other hand, in the electrode body A, a non-defective product is determined to be a non-defective product, and a defective product is determined to be a defective product. This is because when 10 + 30 = 40 is set as a threshold value, all can be determined as non-defective products.
Regarding the threshold value of the energization amount of the separator and the threshold value in the voltage application test of the spiral electrode body, the battery design such as the separator thickness and the electrode plate surface area, the waste loss in the separator and the waste loss in the spiral electrode body It may be set in consideration of the relationship of

3.ニッケル−水素蓄電池
ついで、上述のように作製された電極体A(A1〜A4,A7)を用いてニッケル−水素蓄電池を作製する一例を以下に説明する。この場合、得られた電極体A(A1〜A4,A7)を鉄にニッケルメッキを施した有底筒状の外装缶(底面の外面は負極外部端子となる)60内に収納した後、負極集電体24を外装缶60の内底面に溶接した。一方、正極集電体34より延出する集電リード部35を正極端子を兼ねるとともに外周部に絶縁ガスケット61が装着された封口体62の底部を構成する封口板62aに溶接した。なお、封口体62には正極キャップ62bが設けられていて、この正極キャップ62b内に所定の圧力になると変形する弁体62cとスプリング62dよりなる圧力弁が配置されている。
3. Nickel-hydrogen storage battery Next, an example of manufacturing a nickel-hydrogen storage battery using the electrode body A (A1 to A4, A7) manufactured as described above will be described below. In this case, after the obtained electrode body A (A1 to A4, A7) is accommodated in a bottomed cylindrical outer can 60 in which nickel is plated on iron (the outer surface of the bottom surface becomes a negative electrode external terminal), the negative electrode The current collector 24 was welded to the inner bottom surface of the outer can 60. On the other hand, the current collecting lead portion 35 extending from the positive electrode current collector 34 was welded to a sealing plate 62a constituting the bottom portion of the sealing body 62 that also served as a positive electrode terminal and was fitted with an insulating gasket 61 on the outer peripheral portion. The sealing body 62 is provided with a positive electrode cap 62b, and a pressure valve including a valve body 62c and a spring 62d which are deformed when a predetermined pressure is reached is disposed in the positive electrode cap 62b.

ついで、外装缶60の上部外周部に環状溝部63を形成した後、電解液を注液し、外装缶60の上部に形成された環状溝部63の上に封口体62の外周部に装着された絶縁ガスケット61を載置した。この後、外装缶60の開口端縁64をかしめることにより、ニッケル−水素蓄電池を作製する。この場合、外装缶60内に30質量%の水酸化カリウム(KOH)水溶液からなるアルカリ電解液を、電池容量(Ah)当り2.5g(2.5g/Ah)あるいは2.8g(2.8g/Ah)となるように注入する。   Next, after forming the annular groove 63 on the outer periphery of the upper portion of the outer can 60, the electrolyte was injected, and the outer peripheral portion of the sealing body 62 was mounted on the annular groove 63 formed on the upper portion of the outer can 60. An insulating gasket 61 was placed. Then, the nickel-hydrogen storage battery is produced by caulking the opening edge 64 of the outer can 60. In this case, an alkaline electrolyte composed of a 30% by mass potassium hydroxide (KOH) aqueous solution in the outer can 60 is 2.5 g (2.5 g / Ah) or 2.8 g (2.8 g) per battery capacity (Ah). / Ah).

なお、上述した実施形態においては、本発明をニッケル−水素蓄電池の製造方法に適用する例について説明したが、本発明の製造方法は、ニッケル−水素蓄電池のみに限られず、他のアルカリ蓄電の製造方法にも適用できことは勿論である。また、本発明の製造方法は、アルカリ蓄電の製造方法のみに限られず、親水化処理が施されたセパレータを備えた電池であればどのような電池にも適用できる。   In the above-described embodiment, an example in which the present invention is applied to a method for manufacturing a nickel-hydrogen storage battery has been described. However, the manufacturing method of the present invention is not limited to a nickel-hydrogen storage battery, and other alkaline storage batteries can be manufactured. Of course, the method can also be applied. Moreover, the manufacturing method of this invention is not restricted only to the manufacturing method of alkaline electrical storage, It can apply to any battery as long as it is a battery provided with the separator to which the hydrophilic treatment was performed.

本発明のセパレータに交流電圧を印加して電圧印加検査を行う状態を模式的に示す平面図である。It is a top view which shows typically the state which applies an alternating voltage to the separator of this invention and performs a voltage application test | inspection. 正極と負極とからなる一対の電極をセパレータを介して巻回して形成された渦巻状電極群を模式的に示す斜視図である。It is a perspective view which shows typically the spiral electrode group formed by winding a pair of electrode which consists of a positive electrode and a negative electrode through a separator. 図2の渦巻状電極群に正・負の集電体を溶接して形成された渦巻状電極体に交流電圧を印加して電圧印加検査を行う状態を模式的に示す断面図である。It is sectional drawing which shows typically the state which applies an alternating voltage to the spiral electrode body formed by welding a positive / negative collector to the spiral electrode group of FIG. 2, and performs a voltage application test | inspection. 本発明の一例のニッケル−水素蓄電池を模式的に示す断面図である。It is sectional drawing which shows typically the nickel-hydrogen storage battery of an example of this invention.

符号の説明Explanation of symbols

10…セパレータ、11,12…ニッケル金属製電極、15…交流電圧源、16…電流検出回路、20…水素吸蔵合金負極、21…負極芯体、22…活物質層、23…芯体露出部、24…負極集電体、30…ニッケル正極、31…ニッケル焼結基板、33…芯体露出部、34…正極集電体、34a…正極用リード、40…交流電圧源、50…電流検出回路、60…外装缶、61…絶縁ガスケット、62…封口体、62a…封口板、62b…正極キャップ、62c…弁板、62d…スプリング、63…環状溝部、64…開口端縁 DESCRIPTION OF SYMBOLS 10 ... Separator, 11, 12 ... Nickel metal electrode, 15 ... AC voltage source, 16 ... Current detection circuit, 20 ... Hydrogen storage alloy negative electrode, 21 ... Negative electrode core, 22 ... Active material layer, 23 ... Core body exposure part 24 ... negative electrode current collector, 30 ... nickel positive electrode, 31 ... nickel sintered substrate, 33 ... core exposed portion, 34 ... positive electrode current collector, 34a ... positive electrode lead, 40 ... AC voltage source, 50 ... current detection Circuit: 60 ... exterior can, 61 ... insulating gasket, 62 ... sealing body, 62a ... sealing plate, 62b ... positive electrode cap, 62c ... valve plate, 62d ... spring, 63 ... annular groove, 64 ... opening edge

Claims (2)

親水化処理が施された電池用セパレータの検査方法であって、
表面積がS(cm2)で電極間距離がt(mm)となるように配置された一対の金属電極でセパレータの表裏面を挟持した状態で部分放電が起きない交流電圧E(V)を当該一対の電極間に印加して当該金属電極間に流れる電流値I(mA)を測定する電流値測定工程と、
前記電流値測定工程にて測定された電流値I(mA)に基づいて耐圧指数Z(Z=I×(t/SE))を求める耐圧指数算出工程とを備え、
求めた耐圧指数Zが予め設定した値以上であれば不使用セパレータとして排除するようにしたことを特徴とする電池用セパレータの検査方法。
A method for inspecting a battery separator that has been subjected to a hydrophilic treatment,
AC voltage E (V) at which partial discharge does not occur in a state where the front and back surfaces of the separator are sandwiched between a pair of metal electrodes arranged so that the surface area is S (cm 2 ) and the distance between the electrodes is t (mm) A current value measuring step of measuring a current value I (mA) applied between the pair of electrodes and flowing between the metal electrodes;
A withstand voltage index calculating step of obtaining a withstand voltage index Z (Z = I × (t / SE)) based on the current value I (mA) measured in the current value measuring step,
An inspection method for a battery separator, characterized in that if the obtained pressure resistance index Z is equal to or greater than a preset value, it is excluded as an unused separator.
親水化処理が施されたセパレータを備えた電池の検査方法であって、
表面積がS(cm2)で電極間距離がt(mm)となるように配置された一対の金属電極でセパレータの表裏面を挟持した状態で部分放電が起きない交流電圧E(V)を当該一対の電極間に印加して当該金属電極間に流れる電流値I(mA)を測定する電流値測定工程と、
前記電流値測定工程にて測定された電流値I(mA)に基づいて耐圧指数Z(Z=I×(t/SE))を求める耐圧指数算出工程と、
求めた耐圧指数Zが予め設定した値以上であれば不使用セパレータとして排除するセパレータ排除工程と、
前記セパレータ排除工程により排除されなかったセパレータを介して正極板と負極板とが巻回または積層して形成された電極群の正・負電極間に部分放電が起きない交流電圧E(V)を印加して当該電極間に流れる電流値I(mA)を測定する電流値測定工程と、
前記電流値測定工程にて測定された電流値I(mA)に基づいて潜在ショートを判定する潜在ショート判定工程とを備えるようにしたことを特徴とする電池の検査方法。
A method for inspecting a battery comprising a separator subjected to a hydrophilic treatment,
AC voltage E (V) at which partial discharge does not occur in a state where the front and back surfaces of the separator are sandwiched between a pair of metal electrodes arranged so that the surface area is S (cm 2 ) and the distance between the electrodes is t (mm) A current value measuring step of measuring a current value I (mA) applied between the pair of electrodes and flowing between the metal electrodes;
A withstand voltage index calculating step for obtaining a withstand voltage index Z (Z = I × (t / SE)) based on the current value I (mA) measured in the current value measuring step;
If the determined pressure index Z is equal to or greater than a preset value, a separator removing step of eliminating as a non-use separator,
AC voltage E (V) at which partial discharge does not occur between the positive and negative electrodes of the electrode group formed by winding or laminating the positive electrode plate and the negative electrode plate through the separator not excluded by the separator excluding step. A current value measuring step of measuring a current value I (mA) flowing between the electrodes when applied;
A method for inspecting a battery, comprising: a potential short determination step for determining a potential short based on the current value I (mA) measured in the current value measurement step.
JP2008197596A 2008-07-31 2008-07-31 Battery separator inspection method and battery inspection method Active JP5137730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008197596A JP5137730B2 (en) 2008-07-31 2008-07-31 Battery separator inspection method and battery inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008197596A JP5137730B2 (en) 2008-07-31 2008-07-31 Battery separator inspection method and battery inspection method

Publications (2)

Publication Number Publication Date
JP2010034001A true JP2010034001A (en) 2010-02-12
JP5137730B2 JP5137730B2 (en) 2013-02-06

Family

ID=41738220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008197596A Active JP5137730B2 (en) 2008-07-31 2008-07-31 Battery separator inspection method and battery inspection method

Country Status (1)

Country Link
JP (1) JP5137730B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190091167A (en) * 2018-01-26 2019-08-05 주식회사 엘지화학 Detection method of defect position of seporator
JP2020181737A (en) * 2019-04-25 2020-11-05 住友化学株式会社 Slit separator manufacturing method and slit separator manufacturing device
JP2020181734A (en) * 2019-04-25 2020-11-05 住友化学株式会社 Separator manufacturing method and separator manufacturing device
US11287478B2 (en) 2018-08-09 2022-03-29 Lg Energy Solution, Ltd. Method and apparatus for detecting damage of battery separator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7404439B2 (en) 2022-05-17 2023-12-25 文化シヤッター株式会社 Fitting frame connection structure, fitting frame connecting tool, and fitting frame connecting method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297367A (en) * 1998-04-06 1999-10-29 Matsushita Electric Ind Co Ltd Short-circuit inspecting method and short-circuit inspecting device for electrode group of battery
JP2004342476A (en) * 2003-05-16 2004-12-02 Matsushita Electric Ind Co Ltd Inspection method and inspection device for secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297367A (en) * 1998-04-06 1999-10-29 Matsushita Electric Ind Co Ltd Short-circuit inspecting method and short-circuit inspecting device for electrode group of battery
JP2004342476A (en) * 2003-05-16 2004-12-02 Matsushita Electric Ind Co Ltd Inspection method and inspection device for secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190091167A (en) * 2018-01-26 2019-08-05 주식회사 엘지화학 Detection method of defect position of seporator
KR102350440B1 (en) 2018-01-26 2022-01-17 주식회사 엘지에너지솔루션 Detection method of defect position of seporator
US11287478B2 (en) 2018-08-09 2022-03-29 Lg Energy Solution, Ltd. Method and apparatus for detecting damage of battery separator
JP2020181737A (en) * 2019-04-25 2020-11-05 住友化学株式会社 Slit separator manufacturing method and slit separator manufacturing device
JP2020181734A (en) * 2019-04-25 2020-11-05 住友化学株式会社 Separator manufacturing method and separator manufacturing device
JP7277243B2 (en) 2019-04-25 2023-05-18 住友化学株式会社 Separator manufacturing method and separator manufacturing apparatus
JP7277244B2 (en) 2019-04-25 2023-05-18 住友化学株式会社 Slit separator manufacturing method and slit separator manufacturing apparatus

Also Published As

Publication number Publication date
JP5137730B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5137730B2 (en) Battery separator inspection method and battery inspection method
CN110168390B (en) Apparatus and method for inspecting secondary battery defects
JP5071747B2 (en) Secondary battery inspection device, secondary battery inspection method, secondary battery manufacturing method
WO2014167920A1 (en) Battery state determination device
JP2009252459A (en) Alkali storage battery inspecting method
KR20080073652A (en) Evaluation method and evaluation apparatus for evaluating battery safety, and battery whose safety indices have been determined with the same
JP6742937B2 (en) Secondary battery state determination method and secondary battery state determination device
US7239147B2 (en) Method and device for inspecting secondary battery precursor and method for manufacturing secondary battery using the inspection method
JP2014002009A (en) Method of inspecting secondary battery
JP2015103387A (en) Method for selecting used secondary battery, and method of manufacturing battery pack
JP5929865B2 (en) Manufacturing method of secondary battery
JP3677993B2 (en) Battery electrode group short circuit inspection method and short circuit inspection apparatus therefor
JP4313625B2 (en) Secondary battery manufacturing method and secondary battery precursor inspection apparatus
JP2000195565A (en) Inspection method of secondary battery
TWI621866B (en) Test method for semi-finished product of battery core
US20150180083A1 (en) Cylindrical battery
US20230152390A1 (en) Method for Detecting Soft Shorts, Test Stand and Production Line
KR20220138739A (en) Method for detecting abnormal battery through relative comparison
JP2018132487A (en) Deterioration determination method of secondary battery and deterioration determination device of secondary battery
KR20220118250A (en) Device and method for detecting damage to monocell type separator
JP2018067498A (en) Method of manufacturing battery
JP7222308B2 (en) Inspection method
JP2020072059A (en) Inspection method of secondary cell
US20240012061A1 (en) Method for evaluating a power storage device and method for producing the power storage device
JP2004006420A (en) Manufacturing method of battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121113

R151 Written notification of patent or utility model registration

Ref document number: 5137730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3