JP2010031310A - White gold alloy - Google Patents

White gold alloy Download PDF

Info

Publication number
JP2010031310A
JP2010031310A JP2008193123A JP2008193123A JP2010031310A JP 2010031310 A JP2010031310 A JP 2010031310A JP 2008193123 A JP2008193123 A JP 2008193123A JP 2008193123 A JP2008193123 A JP 2008193123A JP 2010031310 A JP2010031310 A JP 2010031310A
Authority
JP
Japan
Prior art keywords
mass
hardness
gold alloy
white gold
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008193123A
Other languages
Japanese (ja)
Other versions
JP5264345B2 (en
Inventor
Nobuo Ishii
信雄 石井
Koichi Hasegawa
浩一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP2008193123A priority Critical patent/JP5264345B2/en
Publication of JP2010031310A publication Critical patent/JP2010031310A/en
Application granted granted Critical
Publication of JP5264345B2 publication Critical patent/JP5264345B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a white gold alloy in which embrittlement caused by overaging is suppressed while improving its hardness. <P>SOLUTION: Disclosed is the white gold alloy composed of an Au alloy obtained by adding, to 75 to 77 mass% Au, 10 to 17 mass% Cu and 0.01 to 0.5 mass% Ru, and, as necessary, 0.1 to 2.0 mass% Ga, and the balance Pd. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、75〜77mass%のAuおよびCuを10〜17mass%、Ruを0.01〜0.5mass%と残部がPdとするホワイトゴールド合金の技術分野に属する。   The present invention belongs to the technical field of white gold alloys in which 75 to 77 mass% Au and Cu are 10 to 17 mass%, Ru is 0.01 to 0.5 mass% and the balance is Pd.

ホワイトゴールド合金の製造方法としてNiは、Auに一定量添加することにより、色調を白くし機械的特性を向上させるため、色調や硬さを向上させる元素として有効であった。しかしながら、Niにより引き起こされるアレルギー問題が顕著になり、特許文献1のようにNiを含まないホワイトゴールド合金が開発されている。
特開平9−184033号公報
As a method for producing a white gold alloy, Ni was effective as an element for improving the color tone and hardness because a certain amount of Ni was added to Au to make the color tone white and improve the mechanical properties. However, the allergy problem caused by Ni becomes remarkable, and a white gold alloy not containing Ni has been developed as in Patent Document 1.
JP-A-9-184033

Niの他に色調を白くする元素としてPdが有効であるが、Niに比べて、Pdでは十分な硬さが得られず、キズがつきやすい、装身具の止め具等の硬さやバネ性が必要な箇所での使用に適さない問題があった。   Pd is effective as an element to make the color tone white in addition to Ni, but Pd does not provide sufficient hardness compared to Ni, and it is easy to be scratched. There was a problem that was not suitable for use in various places.

Niを添加せず、硬さを向上させる方法として、Cuを添加し、Au3Cuといった規則格子を析出させる方法がある。これは規則化温度、例えば200〜400℃の比較的低温で熱処理することにより硬さが向上する。
ただし、この温度領域はロストワックス法といった従来の鋳造法で作製した際、埋没材の冷却速度によっては、規則化温度で保持され、過時効を起こし、埋没材から取り出す際に破折を起こす場合がある。特に破折は粒界から発生する場合が多い。宝飾品や装身具は、様々な形状なため埋没材の大きさ等がまちまちで、冷却速度が変わるため、過時効による破折の低減が望まれている。
As a method of improving the hardness without adding Ni, there is a method of adding Cu and depositing an ordered lattice such as Au 3 Cu. This is improved in hardness by heat treatment at a regular temperature, for example, a relatively low temperature of 200 to 400 ° C.
However, when this temperature range is produced by a conventional casting method such as the lost wax method, depending on the cooling rate of the investment material, it may be maintained at a regularized temperature, causing overaging, and breaking when taking out from the investment material. There is. In particular, fractures often occur from grain boundaries. Since jewelry and jewelry have various shapes, the size of the investment material varies, and the cooling rate changes. Therefore, it is desired to reduce breakage due to overaging.

Niを添加せず、硬さを向上させるには、Au3Cuといった規則格子を析出させる方法があるが、単にAuにCuを添加しただけだと、過時効による脆化を起こし、粒界を起点とした破折が発生する場合が多い。 In order to improve the hardness without adding Ni, there is a method of depositing a regular lattice such as Au 3 Cu, but simply adding Cu to Au causes embrittlement due to overaging, and grain boundaries There are many cases where breakage occurs as a starting point.

本願の発明者らは、上記従来の課題を解決すべく鋭意研究を重ねた結果、Ruを微量添加することにより、結晶粒を微細にすることにより、粒界からの破折を低減させたホワイトゴールド合金を得ることができた。   The inventors of the present application have conducted extensive research to solve the above-described conventional problems, and as a result, by adding a small amount of Ru, the crystal grains are made fine, thereby reducing the breakage from the grain boundaries. A gold alloy could be obtained.

本発明において、Auに、Ruを0.01〜0.5mass%、Cuを10〜17mass%、残部をPdとすることで、析出強化により、硬さを向上させるとともに、結晶粒を微細にすることにより、粒界破壊を低減させる。
またGaを添加することにより、過時効に寄与することなく硬さを向上させ、より高い硬さを得ることができる。
In the present invention, in Au, Ru is 0.01 to 0.5 mass%, Cu is 10 to 17 mass%, and the balance is Pd.By precipitation strengthening, the hardness is improved and the crystal grains are made finer. Reduce grain boundary fracture.
Further, by adding Ga, it is possible to improve hardness without contributing to overaging, and to obtain higher hardness.

75〜77mass%のAuに、Cuを10〜17mass%、Ruを0.01〜0.5mass%、場合によってはGaを0.1〜2.0mass%を添加することにより、析出強化による硬さの向上を図りつつ、結晶粒を微細にし、粒界からの破折を抑制するホワイトゴールド合金を得ることができる。   While adding 75 to 77 mass% Au, Cu to 17 to 17 mass%, Ru to 0.01 to 0.5 mass%, and in some cases Ga to 0.1 to 2.0 mass%, while improving the hardness by precipitation strengthening, It is possible to obtain a white gold alloy that makes crystal grains fine and suppresses breakage from grain boundaries.

本発明は、75〜77mass%のAuに、Ruを0.01〜0.5mass%、Cuを10〜17mass%含有し、残部をPdとしたホワイトゴールド合金である。
詳しくはRuの添加量が0.01mass%未満だと、結晶粒の微細化効果が得られず、0.5mass%を超えるとRuの偏析が起こりやすくなり、偏析箇所の色調が周囲と異なるため変色したかのように見えるためである。
またCuの添加量が10mass%未満だと、析出強化が得られず、17mass%を超えると過時効により脆化が起こりやすくなるためである。
The present invention is a white gold alloy containing Ru of 0.01 to 0.5 mass%, Cu of 10 to 17 mass%, and the balance of Pd in 75 to 77 mass% Au.
Specifically, if the amount of Ru added is less than 0.01 mass%, the effect of crystal grain refinement cannot be obtained, and if it exceeds 0.5 mass%, Ru segregation is likely to occur, and the color of the segregated portion is different from the surroundings, causing discoloration. This is because it looks like.
Further, if the amount of Cu added is less than 10 mass%, precipitation strengthening cannot be obtained, and if it exceeds 17 mass%, embrittlement tends to occur due to overaging.

また本発明は、75〜77mass%のAuに、Ruを0.01〜0.5mass%、Cuを10〜17mass%、Gaを0.1〜2.0mass%含有し、残部をPdとしたホワイトゴールド合金を特徴とする。
詳しくはRuの添加量が0.01mass%未満だと、結晶粒の微細化効果が得られず、0.5mass%を超えるとRuの偏析が起こりやすくなり、偏析箇所の色調が周囲と異なるため変色したかのように見えるためである。
またCuの添加量が10mass%未満だと、析出強化が得られず、17mass%を超えると過時効により脆化が起こりやすくなるためである。
Gaの添加量が0.1mass%未満だと硬さの向上が見られず、2.0mass%を超えると、脆化し加工ができなくなるためである。
The present invention is characterized by a white gold alloy containing 75 to 77 mass% Au, 0.01 to 0.5 mass% Ru, 10 to 17 mass% Cu, 0.1 to 2.0 mass% Ga, and the balance being Pd. .
Specifically, if the amount of Ru added is less than 0.01 mass%, the effect of crystal grain refinement cannot be obtained, and if it exceeds 0.5 mass%, Ru segregation is likely to occur, and the color of the segregated portion is different from the surroundings, causing discoloration. This is because it looks like.
Further, if the amount of Cu added is less than 10 mass%, precipitation strengthening cannot be obtained, and if it exceeds 17 mass%, embrittlement tends to occur due to overaging.
This is because when Ga addition amount is less than 0.1 mass%, the hardness is not improved, and when it exceeds 2.0 mass%, it becomes brittle and cannot be processed.

以下、本発明の具体的実施例を示す。   Specific examples of the present invention will be described below.

表1に示す実施例1〜5と比較例1〜5の各成分組成のAu合金について、加工性、硬さ、硬化処理に伴う脆化調査、平均結晶粒径、色調を調査した。   For the Au alloys having the respective component compositions of Examples 1 to 5 and Comparative Examples 1 to 5 shown in Table 1, workability, hardness, an embrittlement investigation accompanying the hardening treatment, an average crystal grain size, and a color tone were investigated.

表2に、加工性、軟化処理後の硬さ、硬化処理後の硬さを示す。   Table 2 shows the workability, the hardness after the softening treatment, and the hardness after the hardening treatment.

表2に示すように、実施例はすべてt0.5mmまで圧延が可能であった。
Gaが2.0mass%を超えた比較例4は、1パスでクラックが入り、圧延できなかった。
以後、比較例4の特性調査は実施していない。
As shown in Table 2, all examples could be rolled up to t0.5 mm.
In Comparative Example 4 in which Ga exceeded 2.0 mass%, cracking occurred in one pass and rolling was not possible.
Thereafter, the characteristic investigation of Comparative Example 4 is not performed.

時効硬化の効果を調べるため、硬化処理後の硬さと軟化処理後の硬さの差分ΔHVを算出した。算出方法を式1に示す。
また過時効調査するため、硬化処理後のt0.5mm×w5mm×L20mmの板を90°曲げ、破折の有無を調べる破折試験を行った。
結果を表3に示す。
In order to examine the effect of age hardening, the difference ΔHV between the hardness after the curing treatment and the hardness after the softening treatment was calculated. The calculation method is shown in Formula 1.
In addition, in order to investigate overaging, a t0.5 mm × w5 mm × L20 mm plate after the curing treatment was bent 90 ° and a breakage test was conducted to check for breakage.
The results are shown in Table 3.

式1: ΔHV=硬化処理後の硬さ(HV)−軟化処理後の硬さ(HV)   Formula 1: ΔHV = hardness after curing (HV) −hardness after softening (HV)

表3で分かるように、実施例1〜5は硬化処理後、硬さが上昇しており、破折試験でも特に欠陥は無かった。
比較例2のようにCuの添加量が10mass%未満だと、硬さが向上せず、時効硬化しないことがわかる。
Ruを添加していない比較例1や、Cuの添加量が17mass%を超えた比較例3は、硬さの増加は著しいが、破折試験で、比較例1では折り曲げ部で一部クラックが発生、比較例3では破折した。
このことからRuを添加しない場合やCu添加量が17mass%を超えると、時効硬化時に脆化しやすいことが分かった。
As can be seen from Table 3, in Examples 1 to 5, the hardness increased after the curing treatment, and there was no defect in the fracture test.
It can be seen that when the added amount of Cu is less than 10 mass% as in Comparative Example 2, the hardness does not improve and age hardening does not occur.
In Comparative Example 1 in which Ru is not added and in Comparative Example 3 in which the added amount of Cu exceeds 17 mass%, the increase in hardness is remarkable, but in the fracture test, in Comparative Example 1, some cracks are observed at the bent portion. Occurrence, broken in Comparative Example 3.
From this, it was found that when Ru is not added or when the amount of Cu exceeds 17 mass%, embrittlement tends to occur during age hardening.

結晶粒径が粗いと結晶粒界に沿って破壊することが多く、結晶粒は細かいものが求められており、表1の試料の50%圧延後、700℃×15min水冷した軟化処理材の平均結晶粒径を調べた。
平均結晶粒径の求め方は、式2に示す。
結果を表4に示す。
If the grain size is coarse, it often breaks along the grain boundaries, and fine grains are required. The average of the softened material that is water-cooled at 700 ° C for 15 min after 50% rolling of the sample in Table 1 The crystal grain size was examined.
The method for obtaining the average crystal grain size is shown in Formula 2.
The results are shown in Table 4.

式2: D=2×〔A/[π(μ1+(μ2/2))]〕0.5
D:平均結晶粒径
A:測定面積
μ1:測定面積内に存在する測定端部に接していない結晶粒の個数
μ2:測定面積内に存在する測定端部に接している結晶粒の個数
Equation 2: D = 2 × [A / [π (μ 1 + (μ 2/2))] ] 0.5
D: Average crystal grain size
A: Measurement area
μ 1 : Number of crystal grains not in contact with the measurement edge existing in the measurement area
μ 2 : Number of crystal grains in contact with the measurement edge existing within the measurement area

Ruを添加していない比較例1の平均結晶粒径が50μmに対し、Ruを添加した実施例1〜5は平均結晶粒径が16〜25μmと、平均結晶粒径が半分以下となり、Ruの添加効果が確認できた。   In Comparative Example 1 in which Ru is not added, the average crystal grain size is 50 μm, whereas in Examples 1 to 5 in which Ru is added, the average crystal grain size is 16 to 25 μm, and the average crystal grain size is less than half. The effect of addition was confirmed.

比較例5については一部色調が異なる箇所があり、EPMAによる面分析を行った。
結果を図1に示す。
In Comparative Example 5, there was a portion where the color tone was partially different, and surface analysis by EPMA was performed.
The results are shown in FIG.

図1の結果から分かるように、Ruの偏析が確認され、Ru添加量が0.5mass%を超えると偏析が起きやすいことが分かった。   As can be seen from the results in FIG. 1, Ru segregation was confirmed, and it was found that segregation is likely to occur when the amount of Ru added exceeds 0.5 mass%.

色調を調査するため、0.5mm程度まで圧延した実施例1〜5を、エメリー紙および平均粒径1μmのダイヤモンドペーストで鏡面した後、CIEL*a*b*方式で色彩を測定した。
L*a*b*の意味を以下に示す。
In order to investigate the color tone, Examples 1 to 5 rolled to about 0.5 mm were mirror-finished with emery paper and diamond paste having an average particle diameter of 1 μm, and then the color was measured by the CIEL * a * b * method.
The meaning of L * a * b * is shown below.

L*=明度(数値が大きいほど明るい)
a*=+赤/−緑(数値が大きいほど赤色が強く、−になるほど緑色が強い)
b*=+黄/−青(数値が大きいほど黄色が強く、−になるほど青色が強い)
L * = lightness (larger value means brighter)
a * = + red / -green (the larger the value, the stronger the red and the minus the green)
b * = + yellow / -blue (the larger the value, the stronger yellow, and the minus value-stronger blue)

測定条件については、照明/視野:D65/10°とした。   The measurement conditions were illumination / field of view: D65 / 10 °.

上記の測定方法でRhメッキ材との色差ΔE*値を求めた。
ΔE*の求め方を式3に示す。
The color difference ΔE * value from the Rh plating material was determined by the above measurement method.
Equation 3 shows how to obtain ΔE * .

式3: ΔE*=〔(ΔL*)2+(Δa*)2+(Δb*)20.5
Rhメッキ材測定値: L* 87.55, a* 1.18, b* 2.68
ΔL*=(試料測定値−87.55)
Δa*=(試料測定値−1.18)
Δb*=(試料測定値−2.68)
Formula 3: ΔE * = [(ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 ] 0.5
Rh plating value: L * 87.55, a * 1.18, b * 2.68
ΔL * = (sample measurement value-87.55)
Δa * = (sample measurement value-1.18)
Δb * = (sample measurement value-2.68)

本件での白色の定義は、ΔE*=14以下とする。 The definition of white in this case is ΔE * = 14 or less.

表5の結果から、実施例1〜5はΔE*=14以下であることが確認できた。 From the results in Table 5, it was confirmed that Examples 1 to 5 were ΔE * = 14 or less.

上記で説明したように、75〜77mass%のAuにCuを10〜17mass%、Ruを0.01〜0.5mass%、場合によってはGaを0.1〜2.0mass%を添加し、残部がPdからなるAu合金より構成されていることを特徴とする本発明によれば、析出強化による硬さの向上を図りつつ、結晶粒を微細にし、粒界からの破折を抑制するホワイトゴールド合金を得ることができた。   As explained above, 75 to 77 mass% Au is added to Cu from 10 to 17 mass%, Ru is added from 0.01 to 0.5 mass%, and in some cases, Ga is added from 0.1 to 2.0 mass%, and the balance is made of Pd. According to the present invention, which is characterized in that, it is possible to obtain a white gold alloy that refines crystal grains and suppresses breakage from grain boundaries while improving hardness by precipitation strengthening. It was.

比較例5のEPMAによる面分析結果を示す図である。It is a figure which shows the surface analysis result by EPMA of the comparative example 5.

Claims (2)

Auを75〜77mass%、Cuを10〜17mass%、Ruを0.01〜0.5mass%とし、残部がPdからなるホワイトゴールド合金。   White gold alloy with 75 to 77 mass% for Au, 10 to 17 mass% for Cu, 0.01 to 0.5 mass% for Ru, and the balance of Pd. Auを75〜77mass%、Cuを10〜17mass%、Ruを0.01〜0.5mass%、Gaを0.1〜2.0mass%とし、残部がPdからなるホワイトゴールド合金。   White gold alloy with 75 to 77 mass% for Au, 10 to 17 mass% for Cu, 0.01 to 0.5 mass% for Ru, 0.1 to 2.0 mass% for Ga, and the balance of Pd.
JP2008193123A 2008-07-28 2008-07-28 White gold alloy Expired - Fee Related JP5264345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008193123A JP5264345B2 (en) 2008-07-28 2008-07-28 White gold alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008193123A JP5264345B2 (en) 2008-07-28 2008-07-28 White gold alloy

Publications (2)

Publication Number Publication Date
JP2010031310A true JP2010031310A (en) 2010-02-12
JP5264345B2 JP5264345B2 (en) 2013-08-14

Family

ID=41736134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008193123A Expired - Fee Related JP5264345B2 (en) 2008-07-28 2008-07-28 White gold alloy

Country Status (1)

Country Link
JP (1) JP5264345B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100573A (en) * 2011-11-08 2013-05-23 Fukui Megane Kogyo Kk WHITE-BASED Au ALLOY
CN110468297A (en) * 2019-09-09 2019-11-19 上海电缆研究所有限公司 A kind of high performance audio transmission alloy wire and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183836A (en) * 1990-11-19 1992-06-30 Seiko Instr Inc Surface hardened colored gold alloy
JPH09184033A (en) * 1996-01-08 1997-07-15 Tanaka Kikinzoku Kogyo Kk White gold alloy
JPH10245646A (en) * 1997-03-07 1998-09-14 Seiko Epson Corp Gold alloy, ornamental member, portable watch and production of ornamental member
US6156266A (en) * 2000-01-07 2000-12-05 Argen Corporation Gold alloy for firing on porcelain
DE19958800A1 (en) * 1999-06-30 2001-01-04 Wieland Edelmetalle White gold jewelry alloy for all jewelry purposes contains alloying additions of silver and iron
JP2006519922A (en) * 2003-02-11 2006-08-31 メタロール・テクノロジーズ・インターナショナル・ソシエテ・アノニム Gold alloy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183836A (en) * 1990-11-19 1992-06-30 Seiko Instr Inc Surface hardened colored gold alloy
JPH09184033A (en) * 1996-01-08 1997-07-15 Tanaka Kikinzoku Kogyo Kk White gold alloy
JPH10245646A (en) * 1997-03-07 1998-09-14 Seiko Epson Corp Gold alloy, ornamental member, portable watch and production of ornamental member
DE19958800A1 (en) * 1999-06-30 2001-01-04 Wieland Edelmetalle White gold jewelry alloy for all jewelry purposes contains alloying additions of silver and iron
US6156266A (en) * 2000-01-07 2000-12-05 Argen Corporation Gold alloy for firing on porcelain
GB2358024A (en) * 2000-01-07 2001-07-11 Argen Corp Gold alloy for firing on porcelain
JP2006519922A (en) * 2003-02-11 2006-08-31 メタロール・テクノロジーズ・インターナショナル・ソシエテ・アノニム Gold alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100573A (en) * 2011-11-08 2013-05-23 Fukui Megane Kogyo Kk WHITE-BASED Au ALLOY
CN110468297A (en) * 2019-09-09 2019-11-19 上海电缆研究所有限公司 A kind of high performance audio transmission alloy wire and preparation method thereof

Also Published As

Publication number Publication date
JP5264345B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
TWI287584B (en) Cu-Ni-Si based alloy having excellent fatigue property
TWI443204B (en) Cu-Ni-Si alloy used for conductive spring material
TWI400342B (en) Cu-Ni-Si-Co based copper alloy for electronic materials and its manufacturing method
TWI406959B (en) Cu-Ni-Si-Mg alloy with improved conductivity and bending properties
TWI425101B (en) Cu-Ni-Si alloy excellent in bending workability
JP5793136B2 (en) Gray gold alloy without nickel and copper
TW200918678A (en) Cu-ni-si-co copper alloy for electronic materials and methodfor manufacturing same
JP2009242895A (en) High-strength copper alloy of excellent bending processability
TW201425604A (en) Cu-Ni-Co-Si based copper alloy sheet material and manufacturing method thereof
JP5610643B2 (en) Cu-Ni-Si-based copper alloy strip and method for producing the same
TW200902732A (en) Cu-Ni-Si-based alloy for electronic material
TW200821394A (en) Copper alloy sheet material for electric and electronic instruments and method of producing the same
TWI695075B (en) Copper alloy material and its manufacturing method
TW201224171A (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
KR101715532B1 (en) Copper alloy and production method thereof
JP5214282B2 (en) Copper alloy plate for QFN package with excellent dicing workability
US20140212324A1 (en) Fine crystallite high-function metal alloy member and method for manufacturing same
JP5264345B2 (en) White gold alloy
EP3307920B1 (en) Steel strip for cutlery
JP4166197B2 (en) Cu-Ni-Si-based copper alloy strips with excellent BadWay bending workability
TWI593814B (en) Copper alloy with excellent heat resistance
JP5438296B2 (en) Pt alloy for jewelry
JP2009108392A (en) High-strength nickel silver superior in bendability, and manufacturing method therefor
JP2007031801A (en) Titanium-copper alloy excellent in spring characteristic and electric conductivity
JP2009228088A (en) Gold alloy for dental use, for ornament and for industrial product age-hardened as cast

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100415

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5264345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees