JP2010030997A - Optically responsive chiral compound - Google Patents

Optically responsive chiral compound Download PDF

Info

Publication number
JP2010030997A
JP2010030997A JP2009149586A JP2009149586A JP2010030997A JP 2010030997 A JP2010030997 A JP 2010030997A JP 2009149586 A JP2009149586 A JP 2009149586A JP 2009149586 A JP2009149586 A JP 2009149586A JP 2010030997 A JP2010030997 A JP 2010030997A
Authority
JP
Japan
Prior art keywords
liquid crystal
compound
chiral
nematic liquid
chiral compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009149586A
Other languages
Japanese (ja)
Other versions
JP5334115B2 (en
Inventor
Nobuyuki Tamaoki
信之 玉置
Mathews Manoj
マシューズ マノジ
Junichi Nagasawa
順一 長沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009149586A priority Critical patent/JP5334115B2/en
Publication of JP2010030997A publication Critical patent/JP2010030997A/en
Application granted granted Critical
Publication of JP5334115B2 publication Critical patent/JP5334115B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Crystal (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optically responsive chiral compound. <P>SOLUTION: The optically responsive chiral compound is represented by general formula (1). A nematic liquid crystal mixture containing this optically responsive chiral compound is also provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光学素子、光−光学スイッチング素子などの光応答性液晶表示材料の添加剤として有用な新規な光学的に活性なキラル化合物およびこのものを含有する液晶表示材料に関する。   The present invention relates to a novel optically active chiral compound useful as an additive for a light-responsive liquid crystal display material such as an optical element and a light-optical switching element, and a liquid crystal display material containing the same.

液晶性化合物は、その流動性、光学異方性及び電場に対する分子配列の応答性により、現在、表示媒体として用いられている。それらに給されるのはネマティック液晶またはツイステッド液晶で光の透過率を電場で制御するシャッターの作用をする素子として用いられている(特許文献1)。   Liquid crystal compounds are currently used as display media due to their fluidity, optical anisotropy, and molecular alignment responsiveness to electric fields. Nematic liquid crystal or twisted liquid crystal is used as an element that acts as a shutter that controls the light transmittance with an electric field (Patent Document 1).

カラー表示をするためには、各液晶素子の前面に赤、緑、青のカラーフィルターを設けており、液晶自身に色情報を制御させてはいない。   In order to perform color display, red, green, and blue color filters are provided in front of each liquid crystal element, and the liquid crystal itself does not control color information.

一方で、液晶自身が呈色するものも古くから知られている(非特許文献1)。キラルネマティック(コレステリック液晶)である。キラルネマティック液晶は、液晶分子骨格内もしくは添加剤として光学活性な部位を含み、結果的に液晶分子が液晶状態でらせんを描く超分子構造(分子の配列にらせん構造がある)を示す。   On the other hand, the color of the liquid crystal itself has been known for a long time (Non-Patent Document 1). Chiral nematic (cholesteric liquid crystal). A chiral nematic liquid crystal contains an optically active site in the liquid crystal molecular skeleton or as an additive, and as a result, exhibits a supramolecular structure in which the liquid crystal molecules draw a helix in the liquid crystal state (the molecular arrangement has a helical structure).

このらせん状の超分子構造のために、らせん周期Pと物質の平均の屈折率nの積Pnを中心とする波長の光のうち一方の円偏光成分をらせん軸に対して平行の方向に反射する。もし、Pnが可視光の波長に相当する場合、可視光線(白色光線)の内の一定の波長の光を反射することになるため色づいて見える。   Because of this helical supermolecular structure, one circularly polarized component of light having a wavelength centered on the product Pn of the helical period P and the average refractive index n of the substance is reflected in a direction parallel to the helical axis. To do. If Pn corresponds to the wavelength of visible light, light of a certain wavelength in visible light (white light) is reflected, so that it looks colored.

このようにして見える反射の色を反射色ということもある。一部のキラルネマティック液晶の反射色は、温度によって変化することから、キラルネマティック液晶は色で温度を表示する温度計や物質の表面温度を計測する材料として用いられてきた(非特許文献2)。   The color of reflection that looks like this is sometimes referred to as a reflection color. Since the reflected color of some chiral nematic liquid crystals changes with temperature, chiral nematic liquid crystals have been used as thermometers that display temperature by color and materials that measure the surface temperature of substances (Non-Patent Document 2). .

一方、キラルネマティック液晶の反射色を、カラー表示に応用しようという試みもなされている(特許文献2)。キラルネマティック液晶のらせん軸の方向を電場によって制御し、基板に対してらせん軸が垂直となっているときに反射色が見え、平行になっているときに反射色が見えないことを利用して表示を可能としている。   On the other hand, an attempt has been made to apply the reflected color of chiral nematic liquid crystal to color display (Patent Document 2). The direction of the helical axis of the chiral nematic liquid crystal is controlled by an electric field, and the reflected color can be seen when the helical axis is perpendicular to the substrate, and the reflected color cannot be seen when parallel. Display is possible.

キラルネマティック液晶に高分子を添加することで上記の二つの状態を、電場を取り除いた後も安定に保てる(双安定)ようにすることも可能である(非特許文献3)。
また、温度や光によって反射色を変化させ、かつ急冷却によって一時的に反射色を固定できるキラルネマティック液晶も知られている(非特許文献4、5)。
By adding a polymer to the chiral nematic liquid crystal, the above two states can be kept stable (bistable) even after the electric field is removed (Non-patent Document 3).
Also known is a chiral nematic liquid crystal that can change the reflection color by temperature and light and can temporarily fix the reflection color by rapid cooling (Non-Patent Documents 4 and 5).

これが書き換え可能なフルカラー表示メディアとして利用可能であることも提案されている。キラルネマティック液晶の反射色を光化学反応によって自由に変化させることは、カラー表示メディアとして重要である。その理由は、光はそれに対して透明な媒体(空気や透明基板)を通して非接触で与えることができるため、電場による制御のように電極を接触させて設ける必要がないからである。   It has also been proposed that this can be used as a rewritable full-color display medium. It is important as a color display medium to freely change the reflected color of a chiral nematic liquid crystal by a photochemical reaction. The reason is that light can be applied in a non-contact manner through a transparent medium (air or a transparent substrate), and therefore it is not necessary to provide electrodes in contact as in the case of control by an electric field.

光に応答するキラルネマティック液晶を実現する一つの方法としては、ネマティック液晶に添加するキラル添加剤を分子修飾によって光応答性にすることが知られている。   As one method for realizing a chiral nematic liquid crystal that responds to light, it is known to make the chiral additive added to the nematic liquid crystal light-responsive by molecular modification.

ネマティック液晶とキラル添加剤の混合物からなるキラルネマティック液晶のらせん周期は、キラル添加剤のねじり力といわれる化合物の有する物性値と添加量で決定されるので、光反応によってキラル添加剤の分子構造が可逆的に変化すれば、ねじり力が変化し、結果として反射色が可逆的に制御できる。   The helical period of a chiral nematic liquid crystal consisting of a mixture of a nematic liquid crystal and a chiral additive is determined by the physical property value of the compound called the twisting force of the chiral additive and the amount added, so that the molecular structure of the chiral additive is determined by photoreaction. If reversible, the torsional force changes, and as a result, the reflected color can be reversibly controlled.

このような技術に使うことができる光応答キラル添加剤としては、エチレン誘導体、フルギド誘導体、アゾベンゼン誘導体が知られている(非特許文献6)。   As photoresponsive chiral additives that can be used in such a technique, ethylene derivatives, fulgide derivatives, and azobenzene derivatives are known (Non-Patent Document 6).

この光応答キラル添加剤に求められる性能としては、元々のねじり力が大きいことと光照射前後のねじり力の変化が大きいこと及び光の波長を変えるだけでねじり力を可逆的に変化させることができることである。   The performance required for this photoresponsive chiral additive is that the original torsional force is large, the change in torsional force before and after light irradiation is large, and that the torsional force can be reversibly changed simply by changing the wavelength of light. It can be done.

しかし、従来知られている光応答キラル添加剤では、上記のすべてを満足するものがなく、可視域の特定の色の間の変化を実現するのみであったり、可逆的な変化が光反応のみでは実現できなかったり、低いねじり力を補うために光応答性のない第二の添加物が必要である等の問題点があった。   However, none of the conventionally known photoresponsive chiral additives satisfy all of the above, and only realize a change between specific colors in the visible range, or a reversible change is only a photoreaction. However, there is a problem that a second additive having no photoresponsiveness is necessary to compensate for a low torsional force.

特公昭51−13666号Japanese Patent Publication No.51-13666 特公昭43−390号Japanese Patent Publication No.43-390

F. Reinitzer, Monatsch. Chem., 1889, 9, 421.F. Reinitzer, Monatsch. Chem., 1889, 9, 421. J. L. Fergason, Appl. Phys., 1968, 7, 1729.J. L. Fergason, Appl. Phys., 1968, 7, 1729. J. L. West, R. B. Akins, J. Francl, J. W. Doane, Appl. Phys. Lett., 1993, 63, 1471.J. L. West, R. B. Akins, J. Francl, J. W. Doane, Appl. Phys. Lett., 1993, 63, 1471. N. Tamaoki, A. Parfenov, A. Masaki, H. Matsuda, Adv. Mater., 1997, 9, 1102.N. Tamaoki, A. Parfenov, A. Masaki, H. Matsuda, Adv. Mater., 1997, 9, 1102. N. Tamaoki, S. Song, M. Moriyama, H. Matsuda, Adv. Mater., 2000, 12, 94.N. Tamaoki, S. Song, M. Moriyama, H. Matsuda, Adv. Mater., 2000, 12, 94. N. Tamaoki, Adv. Mater., 2001, 13, 1135.N. Tamaoki, Adv. Mater., 2001, 13, 1135.

本発明は、前記のごとき従来技術の問題点を克服するためになされたものであって、光のみで可視域全域で反射色を制御可能な光応答性キラルネマティック液晶を実現するための、ねじり力が大きく、光照射前後のねじり力の変化が大きくかつ光の波長を変えるだけでねじり力を可逆的に変化させることができる新規な光応答性キラル化合物およびこのものをキラル添加剤として含有する液晶表示材料を提供することを目的とする。   The present invention has been made to overcome the problems of the prior art as described above, and is a twist for realizing a photoresponsive chiral nematic liquid crystal capable of controlling the reflected color in the entire visible range with only light. A novel photoresponsive chiral compound that has a large force, has a large change in torsional force before and after light irradiation, and can reversibly change the torsional force simply by changing the wavelength of light, and this compound as a chiral additive An object is to provide a liquid crystal display material.

すなわち、この出願は、以下の発明を提供するものである。
〈1〉下記一般式(1)で示される光学応答性キラル化合物。
(式中、X,Yは二価の有機基;Zは芳香環を含み、芳香環のπ共役面に対して垂直な方向にC2対称軸を有するがその軸を含むいかなる面も対称面とならない二価の有機基を示し、ZはX、Yと結合した軸を中心にした360度以上の回転運動がアゾベンゼン部との立体的な衝突のために起こらないほど十分嵩高い基を示す)
〈2〉下記一般式(1A)で示される光学応答性キラル化合物。
(式中、Xは、-CH2-CH2-O-、-O-CH2-CH2 -、-CH2-O-CH2- または- CH2-CH2-CH2 -を示す)
〈3〉〈1〉または〈2〉に記載の光応答性キラル化合物を含有するネマティック液晶混合物。
〈4〉〈3〉に記載のネマティック液晶混合物を表示材料とした光学液晶素子。
That is, this application provides the following invention.
<1> An optically responsive chiral compound represented by the following general formula (1).
(In the formula, X and Y are divalent organic groups; Z contains an aromatic ring and has a C2 axis of symmetry in a direction perpendicular to the π-conjugated plane of the aromatic ring, but any plane containing that axis is a plane of symmetry. Z represents a group that is sufficiently bulky that no rotational movement of 360 degrees or more about the axis bonded to X and Y occurs due to steric collision with the azobenzene moiety)
<2> An optically responsive chiral compound represented by the following general formula (1A).
(Wherein, X 1 is, -CH 2 -CH 2 -O -, - O-CH 2 -CH 2 -, - CH 2 -O-CH 2 - or - CH 2 -CH 2 -CH 2 - shows the )
<3> A nematic liquid crystal mixture containing the photoresponsive chiral compound according to <1> or <2>.
<4> An optical liquid crystal element using the nematic liquid crystal mixture according to <3> as a display material.

本発明に係る新規な一般式(1)で示される光応答性キラル化合物は、ねじり力が大きく、光照射前後のねじり力の変化が大きくかつ光の波長を変えるだけでねじり力を可逆的に変化させることができる。したがって、このものをキラル添加剤として含有するネマティック液晶混合物は、光のみで可視域全域で反射色を制御することができるので、書き換え可能なフルカラー表示メディアとして有用なものである。   The photoresponsive chiral compound represented by the general formula (1) according to the present invention has a large twisting force, a large change in torsional force before and after light irradiation, and a reversible twisting force by simply changing the wavelength of light. Can be changed. Therefore, a nematic liquid crystal mixture containing this as a chiral additive can be used as a rewritable full-color display medium because it can control the reflected color in the entire visible range with only light.

本発明の液晶表示材料の反射スペクトルReflection spectrum of the liquid crystal display material of the present invention

本発明の光応答性キラル化合物は、前記一般式(1)で表される。この化合物は、中心不斉や軸不斉やヘリカル不斉の構造的特長を持たないが面不斉であるために光学活性となる。   The photoresponsive chiral compound of the present invention is represented by the general formula (1). This compound does not have structural features such as central asymmetry, axial asymmetry, and helical asymmetry, but is optically active due to surface asymmetry.

面不斉を示すための要件は、一般式(1)において、Zが面の構造を有する二価の有機基で、その面に対して垂直な方向にC2対称軸を有するがその軸を含むいかなる面も対称面とならないことと、ZはX、Yを結ぶ軸を中心にした360度以上の回転運動がアゾベンゼン部との立体的な衝突のために起こらないほど十分嵩高いことの二つの条件を同時に満足することが必要である。   The requirement for exhibiting plane asymmetry is that in general formula (1), Z is a divalent organic group having a plane structure and has a C2 symmetry axis in a direction perpendicular to the plane, but includes that axis. Two planes are that no plane becomes a symmetric plane, and Z is sufficiently bulky that a rotational movement of 360 degrees or more around the axis connecting X and Y does not occur due to a three-dimensional collision with the azobenzene moiety. It is necessary to satisfy the conditions simultaneously.

たとえば、Zとアゾベンゼン部位をつなぐXとYは、Zとアゾベンゼンを結ぶ距離に直接関わる原子の数が3よりも多い場合、例えば、-O-CH2-CH2-O-のような場合であるが、ZがX、Yを結ぶ軸を中心にした360度以上の回転運動が可能となるために分子が光学活性とはならない。また、Zとアゾベンゼンを結ぶ距離に直接関わる原子の数が3よりも少ない場合には、環構造を成立させるためにアゾベンゼンとZとの間の立体反発が大きく、合成が困難となるので、XとYの原子数はそれぞれ3とすることが好ましい。 For example, X and Y that connect Z and the azobenzene moiety have more than 3 atoms directly related to the distance connecting Z and azobenzene, for example, -O-CH 2 -CH 2 -O- However, since the rotation of 360 degrees or more about the axis connecting Z and X is possible, the molecule does not become optically active. In addition, when the number of atoms directly related to the distance connecting Z and azobenzene is less than 3, the steric repulsion between azobenzene and Z is large in order to establish a ring structure, which makes synthesis difficult. The number of atoms of Y and Y is preferably 3 respectively.

具体的な構造に関しては、特に限定されるものではないが、合成の容易さから例えば、アゾベンゼン側からナフタレン部位に向けて-CH2-CH2-O-か -O-CH2-CH2 -、-CH2-O-CH2- または- CH2-CH2-CH2 -などが望ましい。特に、合成原料の入手のしやすさを考慮すると-CH2-CH2-O-が望ましい。XやYとアゾベンゼンの結合位置は、オルト、メタ、パラのいずれでもかまわないが、合成の容易さとZの回転運動のし難さからメタがより望ましい。 The specific structure is not particularly limited, but for ease of synthesis, for example, —CH 2 —CH 2 —O— or —O—CH 2 —CH 2 — from the azobenzene side toward the naphthalene moiety. , -CH 2 -O-CH 2 - or - CH 2 -CH 2 -CH 2 -, etc. are preferable. In particular, —CH 2 —CH 2 —O— is desirable in view of the availability of synthetic raw materials. The bonding position of X or Y and azobenzene may be any of ortho, meta, and para, but meta is more preferable because of ease of synthesis and difficulty in rotational movement of Z.

Zの構造としては、分子全体の面不斉の要件を満足させる構造として例えば1,5−置換−ナフタレン、2,6−置換−ナフタレン、2,5−ジアルキル−1,4−置換−ベンゼン(アルキル基は炭素数1〜5のものが好適である)、2,5−ジアルコキシ−1,4−置換−ベンゼン(アルコキシ基は炭素数1〜5のものが好適である)などがあげられるがこれに限定されるものではない。この中で、1,5−置換−ナフタレンは合成原料の入手のしやすさから望ましい構造である。   As the structure of Z, for example, 1,5-substituted-naphthalene, 2,6-substituted-naphthalene, 2,5-dialkyl-1,4-substituted-benzene (as a structure satisfying the requirement of plane asymmetry of the whole molecule ( The alkyl group preferably has 1 to 5 carbon atoms), 2,5-dialkoxy-1,4-substituted-benzene (the alkoxy group preferably has 1 to 5 carbon atoms), and the like. However, it is not limited to this. Among these, 1,5-substituted naphthalene is a desirable structure because of the availability of synthetic raw materials.

本発明の光応答性キラル化合物の反応と働きを下記図の(S)E-1を例にして説明する。(S)E-1は(R)E-1とは鏡像異性体の関係にある。しかし、熱的に十分安定であるためにラセミ化反応((S)E-1と(R)E-1の間の変換)は起こらない。また、(S)E-1は(S)Z-1とは幾何異性(シス−トランス異性)の関係にある。これらの間では紫外線または可視光による光化学反応や熱反応により変換が可能である。(R)E-1においても(R)Z-1と同様の関係がある。従って、(S)E-1または(R)E-1は面不斉による固有のキラリティーとネマティック液晶中では固有のねじり力を有し、光反応によって可逆的に生成する(S)Z-1または(R)Z-1は、(S)E-1、(R)E-1とは異なったキラリティー及びねじり力を示す。その結果、光反応によってねじり力を可逆的に変化させることができる。   The reaction and action of the photoresponsive chiral compound of the present invention will be described by taking (S) E-1 in the following diagram as an example. (S) E-1 is in an enantiomeric relationship with (R) E-1. However, the racemization reaction (conversion between (S) E-1 and (R) E-1) does not occur because it is thermally stable enough. In addition, (S) E-1 has a geometric isomerism (cis-trans isomerism) relationship with (S) Z-1. Between these, conversion is possible by photochemical reaction or thermal reaction with ultraviolet rays or visible light. (R) E-1 has the same relationship as (R) Z-1. Therefore, (S) E-1 or (R) E-1 has inherent chirality due to surface asymmetry and inherent torsional force in nematic liquid crystals, and is reversibly generated by photoreaction (S) Z- 1 or (R) Z-1 exhibits different chirality and torsional force from (S) E-1 and (R) E-1. As a result, the torsional force can be reversibly changed by photoreaction.

本発明の光応答性キラル化合物を得るには、後記するように、たとえば相当するジニトロ化合物を水素化アルミニウムリチウムなどの還元剤で還元して得ることができる。
得られる化合物は、二つのエナンチオマーの混合物であるので、キラルカラムによる分離などの方法により、純粋な一方のエナンチオマーとして単離して光応答性キラル添加剤とする。
In order to obtain the photoresponsive chiral compound of the present invention, as described later, for example, the corresponding dinitro compound can be obtained by reduction with a reducing agent such as lithium aluminum hydride.
Since the obtained compound is a mixture of two enantiomers, it is isolated as one pure enantiomer by a method such as separation using a chiral column to make a photoresponsive chiral additive.

この光応答性キラル化合物を用いて光応答性のキラルネマティック液晶を調製するには、当該光応答性キラル化合物とネマティック液晶を混合すればよい。使用できるネマティック液晶としては、例えば、シアノビフェニル型ネマティック液晶やシアノフェニルシクロヘキシル型ネマティック液晶やエステル型ネマティック液晶などがあげられるがこれらに限定されるものではない。
ネマティック液晶中の光応答性キラル添加剤の濃度は、それぞれの物質の構造によって異なる。一般的には0.01重量%から30重量%の範囲で用いられる。より望ましくは0.5重量%から15重量%の範囲で用いられる。光応答性キラル添加剤の濃度がこの範囲よりも低いと光の反射波長が可視光よりも長波長になってしまい、濃度がこの範囲よりも高いと光応答性キラル添加剤がネマティック液晶から析出してくるか、光の反射波長が可視光よりも短波長になってしまう。
In order to prepare a photoresponsive chiral nematic liquid crystal using this photoresponsive chiral compound, the photoresponsive chiral compound and nematic liquid crystal may be mixed. Examples of nematic liquid crystals that can be used include, but are not limited to, cyanobiphenyl nematic liquid crystals, cyanophenylcyclohexyl nematic liquid crystals, and ester nematic liquid crystals.
The concentration of the photoresponsive chiral additive in the nematic liquid crystal varies depending on the structure of each substance. Generally, it is used in the range of 0.01% to 30% by weight. More desirably, it is used in the range of 0.5 to 15% by weight. If the concentration of the photoresponsive chiral additive is lower than this range, the reflection wavelength of light becomes longer than that of visible light. If the concentration is higher than this range, the photoresponsive chiral additive is precipitated from the nematic liquid crystal. Or the reflected wavelength of light will be shorter than visible light.

上記光応答性キラル化合物を添加剤として含有するネマティック液晶混合物は、光のみで可視域全域で反射色を制御することができるので、書き換え可能なフルカラー表示メディアとして有用なものである。   Since the nematic liquid crystal mixture containing the photoresponsive chiral compound as an additive can control the reflected color in the entire visible range with only light, it is useful as a rewritable full-color display medium.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

実施例1
(光応答性キラル化合物の合成)
この例では、光応答性キラル添加剤例1を以下のプロセスに従って合成した。
Example 1
(Synthesis of photoresponsive chiral compounds)
In this example, photoresponsive chiral additive example 1 was synthesized according to the following process.

まず、トリエチルアミン1.3mlを塩化メチレン3mlに溶解し、3−ニトロフェネチルアルコール2.5gとp−トルエンスルフォニルクロリド2.52gを15mlの塩化メチレンに溶解した溶液に0−5℃で滴下した。攪拌しながら室温までゆっくりと暖め、終夜で攪拌を続けた。1規定の塩酸を4ml加えた後、分液ロートを用いて有機層を分取しNaHCO3水溶液および食塩水で有機層を洗浄した。溶液を乾燥し、濃縮することで粗生成物を得た。得られた粗生成物はヘキサン−酢酸エチル混合物を用いるカラムクロマトグラフィーによってさらに精製し、化合物1を得た。収量3.2g、収率83%。
1H NMR (300 MHz, CDCl3): δ8.07 (dd, 1H, J = 1.7, 7.8Hz), 7.90 (s, 1H), 7.65 (d,2H, J = 8.3Hz), 7.51-7.42 (m, 2H), 7.28-7.25 (m, 2H), 4.29 (t, 2H, J = 6.4Hz),3.06 (t, 2H, J = 6.4Hz), 2.42 (s, 3H).
First, 1.3 ml of triethylamine was dissolved in 3 ml of methylene chloride, and added dropwise at 0-5 ° C. to a solution of 2.5 g of 3-nitrophenethyl alcohol and 2.52 g of p-toluenesulfonyl chloride in 15 ml of methylene chloride. The mixture was slowly warmed to room temperature with stirring, and stirring was continued overnight. After adding 4 ml of 1N hydrochloric acid, the organic layer was separated using a separating funnel, and the organic layer was washed with an aqueous NaHCO 3 solution and brine. The solution was dried and concentrated to give the crude product. The resulting crude product was further purified by column chromatography using a hexane-ethyl acetate mixture to obtain Compound 1. Yield 3.2 g, 83% yield.
1 H NMR (300 MHz, CDCl 3 ): δ8.07 (dd, 1H, J = 1.7, 7.8Hz), 7.90 (s, 1H), 7.65 (d, 2H, J = 8.3Hz), 7.51-7.42 ( m, 2H), 7.28-7.25 (m, 2H), 4.29 (t, 2H, J = 6.4Hz), 3.06 (t, 2H, J = 6.4Hz), 2.42 (s, 3H).

次に、化合物1(16.3g)、1,5−ジヒドロキシナフタレン2.0g、炭酸カリウム8.8gを乾燥ジメチルホルムアミド25mlに溶解し、60℃に加熱して12時間攪拌した。反応混合物は150mlの水の中に加え、粗生成物を茶色の沈殿物として得た。その粗生成物を酢酸エチルで洗浄し、純粋な化合物2を白色固体として得た。収量4.2g、収率73%。
1H NMR (300 MHz, DMSO-d6): δ8.31 (s, 2H), 8.10 (d, 2H, J = 8.1Hz), 7.89 (d, 2H,J = 7.5Hz), 7.65-7.60 (m, 4H), 7.33 (t, 2H, J = 7.9Hz), 6.99 (d, 2H, J = 7.7Hz), 4.40 (t, 4H, J = 6.1Hz), 3.32 (t, 4H, J = 6.2Hz); MALDI-TOF MS (M+H) calcd forC26H23N2O6: 459.52, found: 459.59
Next, Compound 1 (16.3 g), 2.0 g of 1,5-dihydroxynaphthalene and 8.8 g of potassium carbonate were dissolved in 25 ml of dry dimethylformamide, heated to 60 ° C. and stirred for 12 hours. The reaction mixture was added into 150 ml of water to give the crude product as a brown precipitate. The crude product was washed with ethyl acetate to give pure compound 2 as a white solid. Yield 4.2 g, 73% yield.
1 H NMR (300 MHz, DMSO-d 6 ): δ8.31 (s, 2H), 8.10 (d, 2H, J = 8.1 Hz), 7.89 (d, 2H, J = 7.5 Hz), 7.65-7.60 ( m, 4H), 7.33 (t, 2H, J = 7.9Hz), 6.99 (d, 2H, J = 7.7Hz), 4.40 (t, 4H, J = 6.1Hz), 3.32 (t, 4H, J = 6.2 Hz); MALDI-TOF MS (M + H) calcd forC 26 H 23 N 2 O 6 : 459.52, found: 459.59

最後に化合物2(2.0g)を乾燥テトラヒドロフラン300mlに溶かし、その溶液を、アルゴン雰囲気下、1.7gの水素化アルミニウムリチウムを100mlの乾燥テトラヒドロフランに溶解した溶液中に6時間かけて滴下した。反応混合物は、化合物2を滴下する際は乾留し、さらに、12時間室温で攪拌を続けた。反応混合物を氷水で冷却した後、水を注意深く添加した。沈殿物を濾別し、減圧下で溶媒を除去した。残った有機固体を酢酸エチルに溶解し、水で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減圧下で除去した後、残留物をヘキサン−酢酸エチル(4:1)を展開溶媒とするシリカゲルのクロマトグラフィーで精製し、目的の化合物3を橙色の固体として得た。収量10.7mg、収率1%。
1H NMR (300 MHz, CDCl3): δ7.67 (d, 2H, J = 8.3Hz), 7.55 (d, 2H, J = 7.8Hz), 7.35 (t, 2H, J = 7.6Hz), 7.23 (d, 2H, J = 7.5Hz), 7.05 (t, 2H, J = 8.1Hz), 6.79 (s,2H), 6.60 (d, 2H, J = 7.7Hz), 4.76 (dt, 2H, J = 14.6, 3.6 Hz), 4.60 (dt, 2H, J= 12.5, 3.8 Hz), 3.21 (dd, 4H, J = 11.5, 3.2 Hz); 13C NMR (75 MHz, CDCl3): δ154.1, 152.3, 140.4, 130.6, 128.9, 127.9, 125.6, 125.0, 120.0, 114.6, 107.7, 68.4,35.9; ESIMS m/z 395.2 (M +H+), 417.2 (M +Na+).
この合成された化合物3は2つのエナンチオマーの混合物であるため、キラルカラム(ダイセル化学工業製キラルパックIA)を用い、酢酸エチル/ヘキサンの混合溶媒を展開溶媒として分割することで純粋な光応答性キラル添加剤4Rと4Sを得た。
Finally, Compound 2 (2.0 g) was dissolved in 300 ml of dry tetrahydrofuran, and the solution was added dropwise over 6 hours to a solution of 1.7 g of lithium aluminum hydride dissolved in 100 ml of dry tetrahydrofuran under an argon atmosphere. The reaction mixture was dry-distilled when Compound 2 was added dropwise, and further stirred at room temperature for 12 hours. After the reaction mixture was cooled with ice water, water was carefully added. The precipitate was filtered off and the solvent was removed under reduced pressure. The remaining organic solid was dissolved in ethyl acetate, washed with water, and dried over anhydrous magnesium sulfate. After removing the solvent under reduced pressure, the residue was purified by silica gel chromatography using hexane-ethyl acetate (4: 1) as a developing solvent to obtain the target compound 3 as an orange solid. Yield 10.7 mg, 1% yield.
1 H NMR (300 MHz, CDCl 3 ): δ7.67 (d, 2H, J = 8.3Hz), 7.55 (d, 2H, J = 7.8Hz), 7.35 (t, 2H, J = 7.6Hz), 7.23 (d, 2H, J = 7.5Hz), 7.05 (t, 2H, J = 8.1Hz), 6.79 (s, 2H), 6.60 (d, 2H, J = 7.7Hz), 4.76 (dt, 2H, J = 14.6, 3.6 Hz), 4.60 (dt, 2H, J = 12.5, 3.8 Hz), 3.21 (dd, 4H, J = 11.5, 3.2 Hz); 13 C NMR (75 MHz, CDCl 3 ): δ154.1, 152.3 , 140.4, 130.6, 128.9, 127.9, 125.6, 125.0, 120.0, 114.6, 107.7, 68.4, 35.9; ESIMS m / z 395.2 (M + H +), 417.2 (M + Na +).
Since this synthesized compound 3 is a mixture of two enantiomers, a pure photoresponsive chiral compound is obtained by splitting a mixed solvent of ethyl acetate / hexane as a developing solvent using a chiral column (Chiral Pack IA manufactured by Daicel Chemical Industries). Additives 4R and 4S were obtained.

(光応答性キラル化合物のねじり力の測定)
光応答性コレステリック液晶は、ネマティック液晶に光応答性キラル添加物である化合物4Rを一定の重量%で添加し、サンプルチューブ中で少量の塩化メチレンを加えて溶解し、溶媒を減圧下で除去して得た。得られた光応答性コレステリック液晶を室温下、キャピラリー効果でウェッジセルに添加して、観察されるCanoラインの間隔を測定することでコレステリックらせんピッチを見積もった。光応答性キラル添加物の濃度とコレステリックらせんピッチの逆数が直線関係となる領域の傾きから光応答性キラル添加物のねじり力を算出した。その結果、各ネマティック液晶5CB(東京化成工業製)、ZLI−1132(MERK社製)、DON−103(大日本インキ社製)中でそれぞれ43、40、16μm-1であった。366nm光を照射して光定常状態とした後のねじり力は、同様の測定から、5CB、ZLI−1132、DON−103中で、それぞれ36、28、19μm-1へと変化した。その後、さらに436nm光を照射して光定常状態とした後のねじり力を測定したところ同様の測定から、5CB、ZLI−1132、DON−103中で、それぞれ40、36、17μm-1へと変化した。
(Measurement of torsional force of photoresponsive chiral compounds)
In the photoresponsive cholesteric liquid crystal, compound 4R, which is a photoresponsive chiral additive, is added to nematic liquid crystal at a constant weight%, and a small amount of methylene chloride is added to dissolve in a sample tube, and the solvent is removed under reduced pressure. I got it. The obtained photoresponsive cholesteric liquid crystal was added to the wedge cell by capillary effect at room temperature, and the distance between the observed Cano lines was measured to estimate the cholesteric helical pitch. The torsional force of the photoresponsive chiral additive was calculated from the slope of the region where the concentration of the photoresponsive chiral additive and the reciprocal of the cholesteric helical pitch are linearly related. As a result, it was 43, 40, and 16 μm −1 in each nematic liquid crystal 5CB (manufactured by Tokyo Chemical Industry), ZLI-1132 (manufactured by MERK), and DON-103 (manufactured by Dainippon Ink, Inc.). From the same measurement, the torsional force after irradiating 366 nm light to the light steady state changed to 36, 28, and 19 μm−1 in 5CB, ZLI-1132, and DON-103, respectively. Thereafter, the torsional force was measured after further irradiation with 436 nm light to obtain a light steady state. From the same measurement, it changed to 40, 36, and 17 μm-1 in 5CB, ZLI-1132, and DON-103, respectively. did.

実施例2
(液晶表示材料の作製)
次に、ZLI−1132に12重量%の前記化合物4Rを添加した光応答性コレステリック液晶を、ポリイミドを配向膜としてコーティングした二枚のガラス板間に5ミクロンの間隔を保って挟んだ。得られた薄膜の366nm光(UV)照射前後の反射スペクトルを測定した。120秒照射後の光定常状態から今度は436nm光(Vis)を30秒、120秒照射して反射スペクトルを測定した。得られた反射スペクトルを図1に示す。
Example 2
(Production of liquid crystal display materials)
Next, a photoresponsive cholesteric liquid crystal in which 12 wt% of the compound 4R was added to ZLI-1132 was sandwiched between two glass plates coated with polyimide as an alignment film with a spacing of 5 microns. The reflection spectrum of the obtained thin film before and after 366 nm light (UV) irradiation was measured. From the light steady state after irradiation for 120 seconds, 436 nm light (Vis) was irradiated for 30 seconds for 120 seconds, and the reflection spectrum was measured. The obtained reflection spectrum is shown in FIG.

実施例3
化合物9を1,5-ジアミノナフタレン(化合物4)と3−ニトロフェノール(化合物7)を出発原料として以下の方法で合成した。

合成スキーム
Example 3
Compound 9 was synthesized by the following method using 1,5-diaminonaphthalene (compound 4) and 3-nitrophenol (compound 7) as starting materials.

Synthesis scheme

化合物5:亜硝酸ナトリウム(1.5 g, 0.022 mol)の濃硫酸溶液(12.5mL)に、1,5-ジアミノナフタレン(4)(1.5 g, 0.0095 mol)の酢酸溶液(12.5 mL)を0 ℃で滴下した。この混合溶液を15分間撹拌し、氷(15 g)と尿素(0.125 g)を加えた後ヨウ化カリウム(50 g, 0.3 mol)水溶液(50 ml)を加え、減圧下において終夜撹拌した。濾過して得られた固形物を、乾燥後ジクロロメタンにより抽出した。活性炭存在下で全抽出液を還流し、最後に溶出溶媒としてヘキサン/ジクロロメタン(2:1)を用いたシリカゲルカラムクロマトグラフィーによって精製し、淡黄色針状化合物5を得た。収率(2.5 g, 69%)。
1H NMR (300 MHz, CDCl3): δ7.26 (t, 2H, J = 7.5 Hz), 8.13 (d, 4H, J = 6.9 Hz), MALDI-TOF MS (M+H+) calcd for C10H6I2: 379.96, found: 379.57.
Compound 5: Concentrated sulfuric acid solution (12.5 mL) of sodium nitrite (1.5 g, 0.022 mol) and acetic acid solution (12.5 mL) of 1,5-diaminonaphthalene (4) (1.5 g, 0.0095 mol) at 0 ° C It was dripped. The mixed solution was stirred for 15 minutes, ice (15 g) and urea (0.125 g) were added, potassium iodide (50 g, 0.3 mol) aqueous solution (50 ml) was added, and the mixture was stirred overnight under reduced pressure. The solid obtained by filtration was extracted with dichloromethane after drying. The whole extract was refluxed in the presence of activated carbon, and finally purified by silica gel column chromatography using hexane / dichloromethane (2: 1) as an elution solvent to obtain pale yellow acicular compound 5. Yield (2.5 g, 69%).
1 H NMR (300 MHz, CDCl 3 ): δ7.26 (t, 2H, J = 7.5 Hz), 8.13 (d, 4H, J = 6.9 Hz), MALDI-TOF MS (M + H + ) calcd for C 10 H 6 I 2 : 379.96, found: 379.57.

化合物6:1,5-ジヨードナフタレン(2.28 g, 0.006 mol)の36 mLエーテル懸濁液を-78 ℃に冷却し、n-ブチルリチウム溶液15 mL(1.6 M ヘキサン溶液, 0.024 mol)を加えた。この薄桃色懸濁液を1時間撹拌後シアン化銅(I)を268.8 mg(0.003 mol)加え、さらに-55〜-65 ℃で45分間撹拌を続けた。この間懸濁液は黄色に変化した。エチレンオキシド150 ml(1 Mエーテル溶液, 0.150 mol)を一気に加えた後、室温で終夜撹拌した。換気装置内でこの混合液に10%硫酸を注ぎ、濾過後ジクロロメタンによって抽出した。無水硫酸ナトリウムで脱水後減圧濃縮した粗固形試料を、酢酸エチル/ジクロロメタン(1:1)を溶出液としたシリカゲルクロマトグラフィーによって精製し、白色固体6を得た。収率(0.57 g, 44%)。
1H NMR (300 MHz, CDCl3): δ3.37 (t, 4H, J = 6.8 Hz), 4.01 (t, 4H, J = 6.33 Hz), 7.45 (m, 4H), 8.00 (d, 2H, J = 7.95 Hz). MALDI-TOF MS (M+H+) calcd for C14H16O2: 216.27, found: 216.41.
Compound 6: 36 mL ether suspension of 1,5-diiodonaphthalene (2.28 g, 0.006 mol) was cooled to -78 ° C, and 15 mL of n-butyllithium solution (1.6 M hexane solution, 0.024 mol) was added. It was. After stirring this light pink suspension for 1 hour, 268.8 mg (0.003 mol) of copper (I) cyanide was added, and stirring was further continued at -55 to -65 ° C for 45 minutes. During this time, the suspension turned yellow. 150 ml of ethylene oxide (1 M ether solution, 0.150 mol) was added at once, and the mixture was stirred overnight at room temperature. 10% sulfuric acid was poured into this mixture in a ventilator, and after filtration, extracted with dichloromethane. A crude solid sample dehydrated with anhydrous sodium sulfate and concentrated under reduced pressure was purified by silica gel chromatography using ethyl acetate / dichloromethane (1: 1) as an eluent to obtain white solid 6. Yield (0.57 g, 44%).
1 H NMR (300 MHz, CDCl 3 ): δ 3.37 (t, 4H, J = 6.8 Hz), 4.01 (t, 4H, J = 6.33 Hz), 7.45 (m, 4H), 8.00 (d, 2H, J = 7.95 Hz). MALDI-TOF MS (M + H + ) calcd for C 14 H 16 O 2 : 216.27, found: 216.41.

化合物8:ジイソプロピルアゾジカルボキシラート(40%トルエン溶液,5 mL,9.9 mmol)を一滴ずつ、化合物6(0.713 g, 3.3 mmol)、3-ニトロフェノール(1.146 g, 8.2 mmol)、トリフェニルホスフィン(2.6 g, 9.9 mmol)の脱水THF溶液(25 mL)に0 ℃で加えた。溶液は室温で終夜撹拌した。反応溶液に過剰の水(150 mL)を加えて得られた茶色沈殿物の粗生成試料を酢酸エチルで洗浄後、精製化合物8を白色固体として得た。収率(0.8 g, 53%)。
1H NMR (300 MHz, DMSO-d6): δ3.57 (t, 4H, J = 6.8 Hz), 4.44 (t, 4H, J = 6.8 Hz), 7.39 (d, 2H, J = 5.8 Hz), 7.52-7.57 (m, 4H), 7.57 (s, 2H), 7.67 (t, 2H, J = 2.3 Hz), 7.78 (d, 2H, J = 6.9 Hz), 8.11 (t, 2H, J = 4.8); MALDI-TOF MS (M+H+) calcd for C26H22N2O6: 458.46, found: 481.67 (M +Na+).
Compound 8: Diisopropyl azodicarboxylate (40% toluene solution, 5 mL, 9.9 mmol) is added dropwise, compound 6 (0.713 g, 3.3 mmol), 3-nitrophenol (1.146 g, 8.2 mmol), triphenylphosphine ( 2.6 g, 9.9 mmol) was added to a dehydrated THF solution (25 mL) at 0 ° C. The solution was stirred overnight at room temperature. A crude product sample of a brown precipitate obtained by adding excess water (150 mL) to the reaction solution was washed with ethyl acetate, and then purified compound 8 was obtained as a white solid. Yield (0.8 g, 53%).
1 H NMR (300 MHz, DMSO-d 6 ): δ3.57 (t, 4H, J = 6.8 Hz), 4.44 (t, 4H, J = 6.8 Hz), 7.39 (d, 2H, J = 5.8 Hz) , 7.52-7.57 (m, 4H), 7.57 (s, 2H), 7.67 (t, 2H, J = 2.3 Hz), 7.78 (d, 2H, J = 6.9 Hz), 8.11 (t, 2H, J = 4.8 ); MALDI-TOF MS (M + H + ) calcd for C 26 H 22 N 2 O 6 : 458.46, found: 481.67 (M + Na + ).

化合物9:化合物8(0.5 g, 1.09 mmol)の脱水THF溶液(300 mL)をLiAlH4 (0.42 g, 10.9 mol)の脱水THF溶液(100 mL)に、アルゴン雰囲気下において4時間以上かけて一滴ずつ加えた。ジニトロ化合物溶液を滴下する際、反応溶液を還流し、その後室温で終夜撹拌した。反応溶液を氷浴で冷却しながら、注意深く水を添加することでクエンチした。不溶物を濾別し、濾液を減圧濃縮した。橙色の残滓固形物をジクロロメタンに溶かし、水で洗浄後無水硫酸マグネシウムで脱水した。溶媒を減圧下で除去し、残滓をヘキサンと酢酸エチル(4:1)を溶出液としてシリカゲルカラムクロマトグラフィーで精製し、橙色固形物9を得た。収率30 mg(7%)。
1H NMR (300 MHz, CD2Cl2): δ3.44 (dt, 2H, J = 4.7, 4.7 Hz); 3.77 (tt, 2H, J = 3.2, 3.2 Hz); 4.62 (tt, 2H, J = 4.5, 4.5 Hz); 4.88 (dd, 2H, J = 3.2, 7.9 Hz); 6.11 (d, 2H, J = 1.7 Hz); 7.0 (dd, 2H, J = 4.7, 4.5 Hz), 7.29-7.38 (m, 8H), 7.94 (dd, 2H, J = 2.9, 2.8 Hz); 13C NMR (75 MHz, CD2Cl2): δ33.0, 70.1, 108.8, 114.2, 120.0, 122.6, 125.7, 127.2, 129.4, 132.3, 136.9, 152.9, 159.6; ESIMS m/z 395.2 (M +H+), 417.2 (M +Na+).
Compound 9: A dehydrated THF solution (300 mL) of Compound 8 (0.5 g, 1.09 mmol) is added dropwise to a dehydrated THF solution (100 mL) of LiAlH 4 (0.42 g, 10.9 mol) over 4 hours in an argon atmosphere. Added one by one. When the dinitro compound solution was added dropwise, the reaction solution was refluxed and then stirred overnight at room temperature. The reaction solution was quenched by careful addition of water while cooling in an ice bath. Insolubles were filtered off, and the filtrate was concentrated under reduced pressure. The orange residue solid was dissolved in dichloromethane, washed with water and then dried over anhydrous magnesium sulfate. The solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography using hexane and ethyl acetate (4: 1) as an eluent to give an orange solid 9. Yield 30 mg (7%).
1 H NMR (300 MHz, CD 2 Cl 2 ): δ3.44 (dt, 2H, J = 4.7, 4.7 Hz); 3.77 (tt, 2H, J = 3.2, 3.2 Hz); 4.62 (tt, 2H, J = 4.5, 4.5 Hz); 4.88 (dd, 2H, J = 3.2, 7.9 Hz); 6.11 (d, 2H, J = 1.7 Hz); 7.0 (dd, 2H, J = 4.7, 4.5 Hz), 7.29-7.38 (m, 8H), 7.94 (dd, 2H, J = 2.9, 2.8 Hz); 13 C NMR (75 MHz, CD 2 Cl 2 ): δ33.0, 70.1, 108.8, 114.2, 120.0, 122.6, 125.7, 127.2 , 129.4, 132.3, 136.9, 152.9, 159.6; ESIMS m / z 395.2 (M + H + ), 417.2 (M + Na + ).

実施例1と同様の方法で本化合物のねじり力を測定した。光学分割した鏡像異性体の化合物9がZLI-1132中で、光照射前に6.9μm-1, 紫外線照射後に7.9μm-1, 可視光照射後に7.1μm-1のねじり力を示した。 The torsional force of this compound was measured in the same manner as in Example 1. Compound 9 of the optical divided enantiomer in ZLI-1132, 6.9 [mu] m -1 before irradiation, 7.9 .mu.m -1 after UV irradiation, showed torsional force of 7.1 [mu] m -1 after irradiation with visible light.

実施例4
以下の方法で化合物10を合成した。
Example 4
Compound 10 was synthesized by the following method.

粉末にした水酸化カリウム198mgをジメチルスルホキシド10mlに懸濁した中に、アゾベンゼン−3,3’−ジメタノール121mgと1,5−ビス(ブロモメチル)ナフタレン157mgをテトラヒドロフラン10mlに溶かした溶液を、50℃で攪拌しながらゆっくり滴下した。滴下後30分間攪拌した後、分液ロートに移し、酢酸エチルを加えて、水で3回洗浄した。有機層を無水硫酸マグネシウムで乾燥・濃縮後、ジクロロメタンを溶出液としてシリカゲルカラムクロマトグラフィーによって精製した。収量19.7mg、収率10%。
1H NMR (300 MHz, CDCl3): δ8.18 (br d, 2H, J = 8.0 Hz), 7.55 (br d, 2H, J = 7.8 Hz), 7.44 (br d, 2H, J = 6.9 Hz), 7.38 (t, 2H, J = 7.6 Hz), 7.32 (t, 2H, J = 7.7 Hz), 7.21 (br d, 2H, J = 7.5 Hz), 6.77 (s, 2H), 5.62 (d, 2H, J = 13.2 Hz), 5.04 (d, 2H, J = 13.8 Hz), 4.86 (d, 2H, J = 13.8 Hz), 4.79 (d, 2H, J = 13.2 Hz); 13C NMR (75 MHz, CDCl3): 152.4, 140.4, 135.3, 132.5, 128.4, 128.0, 127.1, 125.7, 125.2, 124.1, 119.8, 73.4, 72.8; ESIMS m/z 395.2 (M+H+), 417.2 (M+Na+).
In a suspension of 198 mg of powdered potassium hydroxide in 10 ml of dimethyl sulfoxide, a solution of 121 mg of azobenzene-3,3′-dimethanol and 157 mg of 1,5-bis (bromomethyl) naphthalene in 10 ml of tetrahydrofuran was prepared at 50 ° C. The solution was slowly added dropwise with stirring. After dropping, the mixture was stirred for 30 minutes, then transferred to a separatory funnel, ethyl acetate was added, and the mixture was washed 3 times with water. The organic layer was dried over anhydrous magnesium sulfate and concentrated, and then purified by silica gel column chromatography using dichloromethane as an eluent. Yield 19.7 mg, 10% yield.
1 H NMR (300 MHz, CDCl 3 ): δ8.18 (br d, 2H, J = 8.0 Hz), 7.55 (br d, 2H, J = 7.8 Hz), 7.44 (br d, 2H, J = 6.9 Hz) ), 7.38 (t, 2H, J = 7.6 Hz), 7.32 (t, 2H, J = 7.7 Hz), 7.21 (br d, 2H, J = 7.5 Hz), 6.77 (s, 2H), 5.62 (d, 2H, J = 13.2 Hz), 5.04 (d, 2H, J = 13.8 Hz), 4.86 (d, 2H, J = 13.8 Hz), 4.79 (d, 2H, J = 13.2 Hz); 13 C NMR (75 MHz , CDCl 3 ): 152.4, 140.4, 135.3, 132.5, 128.4, 128.0, 127.1, 125.7, 125.2, 124.1, 119.8, 73.4, 72.8; ESIMS m / z 395.2 (M + H + ), 417.2 (M + Na + ) .

実施例1と同様の方法で本化合物のねじり力を測定した。光学分割した鏡像異性体の化合物10がZLI-1132中で、光照射前に27μm-1, 紫外線照射後に20μm-1, 可視光照射後に26μm-1のねじり力を示した。 The torsional force of this compound was measured in the same manner as in Example 1. Compound 10 of the optical divided enantiomer in ZLI-1132, 27 [mu] m -1 before irradiation, 20 [mu] m -1 after UV irradiation, showed torsional force of 26 .mu.m -1 after irradiation with visible light.

実施例5
以下の方法で化合物11を合成した。
Example 5
Compound 11 was synthesized by the following method.

12.36mmolのジイソプロピルアゾジカルボキシラートを窒素雰囲気下でトリフェニルホスフィン(12.36 mmol)、 2−フェネチルアルコール(9.88 mmol)、 2,5-ジメトキシ-1,4-ジヒドロキノン(4.12 mmol)のTHF溶液(5 mL)に0 ℃で滴下した。その後室温で12時間激しく攪拌した。150 mLの水を加えると粗生成物が沈殿した。これを酢酸エチルで洗浄すると純粋なジニトロ化合物が得られた。得られたジニトロ化合物1.07 mmolを乾燥THF(250 mL)に溶解し、6時間かけてLiAlH4 (10.7 mmol)の乾燥THF溶液(100 mL)に滴下した。滴下中は溶媒を加熱して還流し続けた。12時間反応後氷浴で冷却し、注意深く水を加えた。溶媒を減圧除去後、残渣をジクロロメタンを溶出液としたシリカゲルカラムクロマトグラフィーにより精製して目的の化合物11を得た。収量 5.27 mg。
1H NMR (400 MHz, CDCl3): δ 7.55 (d, 2H, J= 8.35 Hz), 7.46 (t, 2H, J= 14.6 Hz), 7.21-7.25 (m, 2H), 7.13 (d, 2H, J= 7.6 Hz), 6.0 (s, 2H), 4.69 (m, 4H), 4.18-3.31 (m, 4H) 3.18 (s, 6H). ESI MS m/z=427.1 (M+Na+) Exact Mass: 404.2.
12.36 mmol of diisopropyl azodicarboxylate in a nitrogen atmosphere with a THF solution of triphenylphosphine (12.36 mmol), 2-phenethyl alcohol (9.88 mmol), 2,5-dimethoxy-1,4-dihydroquinone (4.12 mmol) 5 mL) was added dropwise at 0 ° C. Thereafter, the mixture was vigorously stirred at room temperature for 12 hours. When 150 mL of water was added, the crude product precipitated. This was washed with ethyl acetate to obtain a pure dinitro compound. The dinitro compound 1.07 mmol obtained was dissolved in dry THF (250 mL), was added dropwise to LiAlH 4 (10.7 mmol) in dry THF solution (100 mL) over a period of 6 hours. During the addition, the solvent was heated to continue to reflux. After the reaction for 12 hours, the mixture was cooled in an ice bath and water was carefully added. After removing the solvent under reduced pressure, the residue was purified by silica gel column chromatography using dichloromethane as an eluent to obtain the target compound 11. Yield 5.27 mg.
1 H NMR (400 MHz, CDCl 3 ): δ 7.55 (d, 2H, J = 8.35 Hz), 7.46 (t, 2H, J = 14.6 Hz), 7.21-7.25 (m, 2H), 7.13 (d, 2H , J = 7.6 Hz), 6.0 (s, 2H), 4.69 (m, 4H), 4.18-3.31 (m, 4H) 3.18 (s, 6H). ESI MS m / z = 427.1 (M + Na + ) Exact Mass: 404.2.

実施例1と同様の方法で本化合物のねじり力を測定した。光学分割した鏡像異性体の化合物11がZLI-1132中で、光照射前に5.5μm-1, 紫外線照射後に3.4μm-1, 可視光照射後に5.5μm-1のねじり力を示した。 The torsional force of this compound was measured in the same manner as in Example 1. Compound 11 of the optical divided enantiomer in ZLI-1132, 5.5 [mu] m -1 before irradiation, 3.4 .mu.m -1 after UV irradiation, showed torsional force of 5.5 [mu] m -1 after irradiation with visible light.

Claims (4)

下記一般式(1)で示される光学応答性キラル化合物。
(式中、X, Yは二価の有機基;Zは芳香環を含み、芳香環のπ共役面に対して垂直な方向にC2対称軸を有するがその軸を含むいかなる面も対称面とならない二価の有機基を示し、ZはX、Yと結合した軸を中心にした360度以上の回転運動がアゾベンゼン部との立体的な衝突のために起こらないほど十分嵩高い基を示す)
An optically responsive chiral compound represented by the following general formula (1).
(Wherein X and Y are divalent organic groups; Z contains an aromatic ring and has a C2 axis of symmetry in a direction perpendicular to the π-conjugated plane of the aromatic ring, but any plane containing that axis is a plane of symmetry. Z represents a group that is sufficiently bulky that no rotational movement of 360 degrees or more about the axis bonded to X and Y occurs due to steric collision with the azobenzene moiety)
一般式(1A)で示される光学応答性キラル化合物。
(式中、Xは、-CH2-CH2-O-、-O-CH2-CH2 -、-CH2-O-CH2- または- CH2-CH2-CH2 -を示す)
An optically responsive chiral compound represented by the general formula (1A).
(Wherein, X 1 is, -CH 2 -CH 2 -O -, - O-CH 2 -CH 2 -, - CH 2 -O-CH 2 - or - CH 2 -CH 2 -CH 2 - shows the )
請求項1または2に記載の光応答性キラル化合物を含有するネマティック液晶混合物。   A nematic liquid crystal mixture containing the photoresponsive chiral compound according to claim 1. 請求項3に記載のネマティック液晶混合物を表示材料とした光学液晶素子。   An optical liquid crystal element using the nematic liquid crystal mixture according to claim 3 as a display material.
JP2009149586A 2008-06-25 2009-06-24 Photoresponsive chiral compound Expired - Fee Related JP5334115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009149586A JP5334115B2 (en) 2008-06-25 2009-06-24 Photoresponsive chiral compound

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008166409 2008-06-25
JP2008166409 2008-06-25
JP2009149586A JP5334115B2 (en) 2008-06-25 2009-06-24 Photoresponsive chiral compound

Publications (2)

Publication Number Publication Date
JP2010030997A true JP2010030997A (en) 2010-02-12
JP5334115B2 JP5334115B2 (en) 2013-11-06

Family

ID=41735933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009149586A Expired - Fee Related JP5334115B2 (en) 2008-06-25 2009-06-24 Photoresponsive chiral compound

Country Status (1)

Country Link
JP (1) JP5334115B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159569A (en) * 2012-02-02 2013-08-19 Tokyo Institute Of Technology Photoresponsive chiral compound, liquid crystal composition, and photoresponsive liquid crystal element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238510A (en) * 2006-03-09 2007-09-20 Institute Of Physical & Chemical Research Optically active compound, optical recording material, optical film and information recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238510A (en) * 2006-03-09 2007-09-20 Institute Of Physical & Chemical Research Optically active compound, optical recording material, optical film and information recording medium

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6013005265; J. Am. Chem. Soc. vol.130, no.34, 2008, p.11409-11416 *
JPN6013005266; Tetrahedron vol.54, no.19, 1998, p.4977-4990 *
JPN6013005269; Chemische Berichte vol.123, no.6, 1990, p.1397-1401 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159569A (en) * 2012-02-02 2013-08-19 Tokyo Institute Of Technology Photoresponsive chiral compound, liquid crystal composition, and photoresponsive liquid crystal element

Also Published As

Publication number Publication date
JP5334115B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP4725516B2 (en) Polymerizable liquid crystal compound, liquid crystal composition, and optically anisotropic material
JP5248468B2 (en) Dichroic dye, dye composition thereof, microencapsulated liquid crystal containing dichroic dye, liquid crystal composition and liquid crystal display device
US8608977B2 (en) Polymerizable chiral compounds comprising 2,6-naphthyl and isomannitol units, and use thereof as chiral dopants
CN106833680B (en) Photoresponse tristable chiral molecular material and preparation method and application thereof
TWI493022B (en) Chiral dopants, liquid crystal matrix and manufacturing method thereof and liquid crystal display
KR101150589B1 (en) Chiral compounds and compositions containing the same
JP5186821B2 (en) Dichroic dye, and liquid crystal composition and liquid crystal element using the same
JP4955697B2 (en) Temperature compensated chiral dopant
US8691111B2 (en) Tetraoxybiphenyl ester chiral dopants for cholesteric liquid crystal displays
JP5334115B2 (en) Photoresponsive chiral compound
JP5286704B2 (en) Dichroic dye, and liquid crystal composition and liquid crystal element using the same
JPH08119963A (en) Dithienylethene-based compound and photochromic material comprising the same compound
JP2021102766A (en) Photoreactive liquid crystal composition, display device, optical device, method for manufacturing display device, and method for manufacturing optical device
JP4169692B2 (en) Anthraquinone compound, liquid crystal composition, cell and display device using the same
JP4139305B2 (en) Dichroic dye and composition thereof, liquid crystal composition containing dichroic dye, and liquid crystal display element
JPS6042225B2 (en) liquid crystal compound
TWI418549B (en) Tricyclic aromatics and liquid-crystalline medium
Kim et al. Photochromic glassy liquid crystals comprising mesogenic pendants to dithienylethene cores
JP2009544643A (en) Condensed naphthalene
JPH02228A (en) Optically active compound, liquid crystal composition and intermediate for synthesizing the same compound
JP6631182B2 (en) Novel azo dichroic dye, and liquid crystal composition and liquid crystal device containing the azo dichroic dye
JPH0662862B2 (en) Anthraquinone compound and liquid crystal composition containing the compound
JPH04360885A (en) Beznofuranoquinone-based compound
JP5029077B2 (en) Chiral agent, polymerizable liquid crystal composition, optical element and optical recording / reproducing apparatus
JP5071922B2 (en) Liquid crystal material capable of recording and erasing color image by temperature or light, and recording method or information recording apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130724

R150 Certificate of patent or registration of utility model

Ref document number: 5334115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees