JP2007238510A - Optically active compound, optical recording material, optical film and information recording medium - Google Patents

Optically active compound, optical recording material, optical film and information recording medium Download PDF

Info

Publication number
JP2007238510A
JP2007238510A JP2006063732A JP2006063732A JP2007238510A JP 2007238510 A JP2007238510 A JP 2007238510A JP 2006063732 A JP2006063732 A JP 2006063732A JP 2006063732 A JP2006063732 A JP 2006063732A JP 2007238510 A JP2007238510 A JP 2007238510A
Authority
JP
Japan
Prior art keywords
compound
optically active
optical
active compound
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006063732A
Other languages
Japanese (ja)
Inventor
Masuki Kawamoto
益揮 川本
Tatsuo Wada
達夫 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2006063732A priority Critical patent/JP2007238510A/en
Priority to PCT/JP2007/054590 priority patent/WO2007102590A1/en
Publication of JP2007238510A publication Critical patent/JP2007238510A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D273/00Heterocyclic compounds containing rings having nitrogen and oxygen atoms as the only ring hetero atoms, not provided for by groups C07D261/00 - C07D271/00
    • C07D273/08Heterocyclic compounds containing rings having nitrogen and oxygen atoms as the only ring hetero atoms, not provided for by groups C07D261/00 - C07D271/00 having two nitrogen atoms and more than one oxygen atom
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/2467Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes azo-dyes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/72Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705
    • G03C1/73Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705 containing organic compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2532Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising metals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2534Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polycarbonates [PC]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2536Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polystyrene [PS]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optically active compound highly sensitive and responsible in high speed. <P>SOLUTION: The optically active compound is expressed by general formula (I), wherein X<SB>1</SB>, X<SB>2</SB>, X<SB>3</SB>and X<SB>4</SB>express each independently -NH<SB>2</SB>, -N(CH<SB>3</SB>)<SB>2</SB>, -H, -C<SB>p</SB>F2<SB>p+1</SB>, -SC<SB>q</SB>F<SB>2q+1</SB>, -C<SB>r</SB>H<SB>2r+1</SB>, -OC<SB>s</SB>F<SB>2s+1</SB>, -F, -I, -Br, -Cl, -COOH, -COOC<SB>t</SB>F<SB>2t+1</SB>, -CONH<SB>2</SB>, -COCH<SB>3</SB>, -CHO, -NO<SB>2</SB>or -CN (wherein p, q, r, s and t express each independently 1-10 integer) and a and b express each independently 1-6 integer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光記録用材料として有用な新規光学活性化合物ならびに前記化合物を含む光学フィルムおよび情報記録媒体に関する。   The present invention relates to a novel optically active compound useful as an optical recording material, and an optical film and an information recording medium containing the compound.

従来より、外場(電気・熱・磁場・圧力・光等)に応答する有機機能材料が多数報告されている。特に光は電子と比較して情報の高速処理・多重処理・並列処理の点で優れているため、有機材料を用いた光情報処理技術(光記録材料・光スイッチング・光センサー・光コンピュータ等)への応用が盛んに検討されている。   Many organic functional materials that respond to external fields (electricity, heat, magnetic field, pressure, light, etc.) have been reported. In particular, light is superior to electrons in terms of high-speed processing, multiple processing, and parallel processing of information, so optical information processing technology using organic materials (optical recording materials, optical switching, optical sensors, optical computers, etc.) Application to is actively studied.

光学活性(キラリティー)は、生体内における二重らせん・タンパク質のアルファへリックスに代表される有機分子に特有の機能である。近年、光を用いて材料のキラリティーを制御する研究が行われている。特に、フォトクロミック分子を含む有機材料は、光を反応のトリガーとして用いることでキラリティーの変化を可逆的に制御することができる(非特許文献1参照)。   Optical activity (chirality) is a function peculiar to an organic molecule represented by an alpha helix of a double helix / protein in vivo. In recent years, research on controlling the chirality of materials using light has been conducted. In particular, an organic material including a photochromic molecule can reversibly control a change in chirality by using light as a reaction trigger (see Non-Patent Document 1).

大きなキラリティー変化を誘起するためには如何にしてフォトクロミック分子の構造変化を利用するかが重要である。代表的なフォトクロミック分子であるアゾベンゼンは、光または熱によって可逆的に異性化する。シス体の分子長はトランス体に比べおよそ40%短いため、アゾベンゼンの分子構造変化を有効に利用することができれば、大きなキラリティー変化を誘起する材料を構築できる可能性が高い。例えば、非特許文献2〜4には、アゾベンゼンを含む光応答材料が提案されている。しかし、これら光応答材料のキラリティーの変化量および応答速度は、実用上十分なものではなかった。
Feringa, B. L. ら,Chem. Rev. 2000, 100, 1789. Gottarelli, G. ら,Chem. Commun. 2003, 598. Rosini, C.; Feringa, B. L. ら,Chem. Eur. J. 2004, 10, 61. Spada, G. P. ら,Chem. Eur. J. 2004, 10, 5632.
In order to induce a large chirality change, it is important how to utilize the structural change of the photochromic molecule. A typical photochromic molecule, azobenzene, is reversibly isomerized by light or heat. Since the molecular length of the cis isomer is about 40% shorter than that of the trans isomer, it is highly possible that a material that induces a large chirality change can be constructed if the molecular structure change of azobenzene can be used effectively. For example, Non-Patent Documents 2 to 4 propose photoresponsive materials containing azobenzene. However, the amount of change in the chirality and the response speed of these photoresponsive materials have not been practically sufficient.
Feringa, BL et al., Chem. Rev. 2000, 100, 1789. Gottarelli, G. et al., Chem. Commun. 2003, 598. Rosini, C .; Feringa, BL et al., Chem. Eur. J. 2004, 10, 61. Spada, GP et al., Chem. Eur. J. 2004, 10, 5632.

かかる状況下、本発明は、高感度かつ高速応答可能な光学活性化合物を提供することを目的とする。   Under such circumstances, an object of the present invention is to provide an optically active compound that can respond with high sensitivity and high speed.

本発明者らは、上記目的を達成するために鋭意検討を重ねた。従来の光応答材料は、光応答部位とキラル部位との結合距離が離れているため、高速かつ大きなキラル応答を示すことができないと考えられる。そこで、本発明者らは、アゾベンゼンとキラル分子を環状に結合させ結合距離を縮小することにより、光照射によるアゾベンゼン骨格の大きな分子構造変化をキラル分子に高速に伝達できることを見出した。本発明は、以上の知見に基づき完成された。
即ち、上記目的を達成する手段は、以下の通りである。
[1] 下記一般式(I)で表される光学活性化合物。

Figure 2007238510
[X1、X2、X3およびX4は、それぞれ独立に、−NH2、−N(CH32、−H、−Cp2p+1、−SCq2q+1、−Cr2r+1、−OCs2s+1、−F、−I、−Br、−Cl、−COOH、−COOCt2t+1、−CONH2、COCH3、−CHO、−NO2、または−CN(但し、p、q、r、sおよびtは、それぞれ独立に1〜10の範囲の整数である)を示し、aおよびbは、それぞれ独立に1〜6の範囲の整数である。]
[2] 前記一般式(I)において、aおよびbは、それぞれ独立に1〜3の範囲の整数である、[1]に記載の光学活性化合物。
[3] [1]または[2]に記載の化合物からなる光記録用材料。
[4] [1]または[2]に記載の化合物を含む光学フィルム。
[5] 基板上に光記録層を有する情報記録媒体であって、前記光記録層は、[1]または[2]に記載の化合物を含むことを特徴とする情報記録媒体。 The inventors of the present invention have made extensive studies in order to achieve the above object. It is considered that conventional photoresponsive materials cannot exhibit high speed and large chiral response because the bond distance between the photoresponsive site and the chiral site is separated. Thus, the present inventors have found that a large molecular structure change of the azobenzene skeleton caused by light irradiation can be transmitted to the chiral molecule at high speed by binding the azobenzene and the chiral molecule in a cyclic manner and reducing the bond distance. The present invention has been completed based on the above findings.
That is, the means for achieving the above object is as follows.
[1] An optically active compound represented by the following general formula (I).
Figure 2007238510
[X 1 , X 2 , X 3 and X 4 are each independently —NH 2 , —N (CH 3 ) 2 , —H, —C p F 2p + 1 , —SC q H 2q + 1 , − C r H 2r + 1, -OC s H 2s + 1, -F, -I, -Br, -Cl, -COOH, -COOC t H 2t + 1, -CONH 2, COCH 3, -CHO, -NO 2 or -CN (wherein p, q, r, s and t are each independently an integer in the range of 1 to 10), and a and b are each independently an integer in the range of 1 to 6 It is. ]
[2] The optically active compound according to [1], wherein in the general formula (I), a and b are each independently an integer in the range of 1 to 3.
[3] An optical recording material comprising the compound according to [1] or [2].
[4] An optical film comprising the compound according to [1] or [2].
[5] An information recording medium having an optical recording layer on a substrate, wherein the optical recording layer contains the compound according to [1] or [2].

本発明によれば、光に対して高感度かつ高速に応答するとともに加工性に優れた新規光学活性化合物を提供することができる。   According to the present invention, it is possible to provide a novel optically active compound that responds to light with high sensitivity and high speed and has excellent processability.

以下、本発明について更に詳細に説明する。

本発明の光学活性化合物は、下記一般式(I)で表される。
Hereinafter, the present invention will be described in more detail.

The optically active compound of the present invention is represented by the following general formula (I).

Figure 2007238510
Figure 2007238510

アゾベンゼンは、光照射等により可逆的に異性化し大きく構造が変化する。本発明の光学活性化合物は、上記アゾベンゼン骨格とキラル部位であるビナフチル骨格が環状に結合しているため、従来の光応答材料と比べて光応答部位とキラル部位との結合距離が縮小されている。そのため、本発明の光学活性化合物では、光照射によるアゾベンゼン骨格の大きな構造変化をキラル部位(ビナフチル骨格)に高速に伝達し、2つのナフタレン環を結合する単結合を回転させることにより、ビナフチル部位のキラリティーを高速かつ高感度に変化させることができる。   Azobenzene is reversibly isomerized by light irradiation or the like, and its structure is greatly changed. In the optically active compound of the present invention, since the azobenzene skeleton and the binaphthyl skeleton, which is a chiral site, are bonded in a cyclic manner, the bond distance between the photoresponsive site and the chiral site is reduced as compared with conventional photoresponsive materials. . Therefore, in the optically active compound of the present invention, a large structural change of the azobenzene skeleton due to light irradiation is transmitted to the chiral site (binaphthyl skeleton) at high speed, and the single bond that connects the two naphthalene rings is rotated, so that Chirality can be changed at high speed and high sensitivity.

前記一般式(I)において、X1、X2、X3およびX4は、それぞれ独立に、−NH2、−N(CH32、−H、−Cp2p+1、−SCq2q+1、−Cr2r+1、−OCs2s+1、−F、−I、−Br、−Cl、−COOH、−COOCt2t+1、−CONH2、COCH3、−CHO、−NO2、または−CNを示す。ここで、p、q、r、sおよびtは、それぞれ独立に1〜10の範囲の整数である。溶解性と膜形成の観点からは、p、q、r、sおよびtは、それぞれ独立に1〜6の範囲であることが好ましい。 In the general formula (I), X 1 , X 2 , X 3 and X 4 are each independently —NH 2 , —N (CH 3 ) 2 , —H, —C p F 2p + 1 , —SC. q H 2q + 1, -C r H 2r + 1, -OC s H 2s + 1, -F, -I, -Br, -Cl, -COOH, -COOC t H 2t + 1, -CONH 2, COCH 3 , —CHO, —NO 2 , or —CN. Here, p, q, r, s, and t are each independently an integer in the range of 1-10. From the viewpoint of solubility and film formation, it is preferable that p, q, r, s, and t are independently in the range of 1 to 6.

上記各置換基の中で、一般式(I)で表される化合物の溶解性を高めて薄膜形成を容易にするという観点から、X1およびX2として好ましい基としては、−Cp2p+1、−SCq2q+1、−Cr2r+1、−OCs2s+1、−Brおよび−COOCt2t+1を挙げることができる。また、X1およびX2は、同一であっても異なっていてもよい。 Among the above substituents, from the viewpoint of enhancing the solubility of the compound represented by the general formula (I) and facilitating thin film formation, preferred groups as X 1 and X 2 include —C p F 2p +1, -SC q H 2q + 1 , -C r H 2r + 1, -OC s H 2s + 1, can be mentioned -Br and -COOC t H 2t + 1. X 1 and X 2 may be the same or different.

一般式(I)において、アゾベンゼン骨格のシス−トランス応答(シス体からトランス体への異性化)を促進するためには、X3およびX4は、一方が電子供与基であり他方が電子吸引基であることが好ましい。上記の点から好ましいX3とX4の組み合わせとしては、X3およびX4のいずれか一方が、電子供与基である−NH2、−N(CH32、−OCs2s+1、−SCq2q+1であり、他方が、電子供与基である−CN、−NO2、−COOCt2t+1、−COOH、−Cp2p+1である組み合わせを挙げることができる。なお、一方が電子供与基であり他方が電子吸引基である組み合わせであれば、X3およびX4のどちらへ電子供与基または電子吸引基を導入しても構わない。 In general formula (I), in order to promote the cis-trans response of the azobenzene skeleton (isomerization from the cis form to the trans form), one of X 3 and X 4 is an electron donating group and the other is an electron withdrawing group. It is preferably a group. As a preferable combination of X 3 and X 4 from the above points, either one of X 3 and X 4 is an electron donating group —NH 2 , —N (CH 3 ) 2 , —OC s H 2s + 1. , —SC q H 2q + 1 , and the other is an electron donating group —CN, —NO 2 , —COOC t H 2t + 1 , —COOH, —C p F 2p + 1 Can do. As long as one is an electron donating group and the other is an electron withdrawing group, an electron donating group or an electron withdrawing group may be introduced into either X 3 or X 4 .

前記一般式(I)において、aおよびbは、それぞれ独立に1〜6、好ましくは1〜3の範囲の整数である。aおよびbが6を超えると、アゾベンゼン骨格とキラル部位との距離が長くなり、アゾベンゼン骨格の構造変化をキラル部位に高速に伝達することが困難となる。一般式(I)において、aとbとは同一であっても異なっていてもよいが、合成の容易性の観点からは、両者が同一であることが好ましい。   In the general formula (I), a and b are each independently an integer in the range of 1 to 6, preferably 1 to 3. When a and b exceed 6, the distance between the azobenzene skeleton and the chiral moiety becomes long, and it becomes difficult to transfer the structural change of the azobenzene skeleton to the chiral moiety at high speed. In general formula (I), a and b may be the same or different, but from the viewpoint of ease of synthesis, they are preferably the same.

本発明の光学活性化合物には、以下に示すように、ビナフチル部位の捻れ構造が異なるS体とR体がある。本発明の光学活性化合物は、S体であってもR体であっても光等に対して高速かつ高感度に応答し得る。

Figure 2007238510
As shown below, the optically active compound of the present invention includes an S-form and an R-form in which the twist structure of the binaphthyl moiety is different. The optically active compound of the present invention can respond to light or the like at high speed and with high sensitivity regardless of whether it is an S form or an R form.
Figure 2007238510

本発明の光学活性化合物は、公知の方法で合成することができる。合成方法としては、例えば、以下の方法を例示できる。但し、本発明の光学活性化合物の合成方法は、下記方法に限定されるものではない。
例えば、一般式(I)において、a=bの場合、まず、2,2’−ジヒドロキシアゾベンゼン:

Figure 2007238510
を、適当な溶媒(例えばジメチルホルムアミド、アセトニトリル)中で、炭酸セシウムおよびジベンゾ−18−クラウン−6の存在下、
Figure 2007238510
[式中、AおよびA’は、それぞれ独立にハロゲン原子等の反応性基を示し、aは前述と同義である。]
と反応させることにより、下記アゾベンゼン誘導体を得る。
Figure 2007238510
[式中、A、A’およびaは、前述と同義である。] The optically active compound of the present invention can be synthesized by a known method. Examples of the synthesis method include the following methods. However, the method for synthesizing the optically active compound of the present invention is not limited to the following method.
For example, in the general formula (I), when a = b, first, 2,2′-dihydroxyazobenzene:
Figure 2007238510
In the presence of cesium carbonate and dibenzo-18-crown-6 in a suitable solvent (eg dimethylformamide, acetonitrile),
Figure 2007238510
[Wherein, A and A ′ each independently represent a reactive group such as a halogen atom, and a has the same meaning as described above. ]
To give the following azobenzene derivative.
Figure 2007238510
[Wherein, A, A ′ and a are as defined above. ]

次いで、得られたアゾベンゼン誘導体を、適当な溶媒(例えばジメチルホルムアミド、アセトニトリル)中で、炭酸セシウムおよびジベンゾ−18−クラウン−6の存在下、2,2’−ジヒドロキシ−1,1’−ビナフチル:

Figure 2007238510
と反応させることにより、一般式(I)で表される本発明の光学活性化合物を得ることができる。上記反応の詳細については、例えば、Michell, D. K.; Sauvage, J. -P. Angew. Chem. Int. Ed. Engl. 1988, 27, 930. Lee, J. C.; Yuk, J. Y.; Cho, S. H. Synth. Commun. 1995, 25, 1367.を参照することができる。 The resulting azobenzene derivative is then subjected to 2,2′-dihydroxy-1,1′-binaphthyl in a suitable solvent (eg, dimethylformamide, acetonitrile) in the presence of cesium carbonate and dibenzo-18-crown-6:
Figure 2007238510
The optically active compound of the present invention represented by the general formula (I) can be obtained by reacting with. For details of the above reaction, see, for example, Michell, DK; Sauvage, J. -P. Angew. Chem. Int. Ed. Engl. 1988, 27, 930. Lee, JC; Yuk, JY; Cho, SH Synth. 1995, 25, 1367.

上記反応において、反応溶液中の2,2’−ジヒドロキシ−1,1’−ビナフチルとアゾベンゼン誘導体の濃度および混合比は、適宜設定することができる。2,2’−ジヒドロキシ−1,1’−ビナフチルとアゾベンゼン誘導体の混合比(モル比)は、例えば1:1程度とすることができる。また、反応は、例えば20℃(室温)〜100℃で行うことができ、反応時間は、例えば24〜72時間とすることができる。目的物である一般式(I)で表される化合物は、シリカゲルカラムクロマトグラフィー等の公知の方法で精製することができる。目的物が得られたことは、NMR、質量分析、元素分析等で確認することができる。   In the above reaction, the concentration and mixing ratio of 2,2'-dihydroxy-1,1'-binaphthyl and the azobenzene derivative in the reaction solution can be appropriately set. The mixing ratio (molar ratio) of 2,2'-dihydroxy-1,1'-binaphthyl and the azobenzene derivative can be, for example, about 1: 1. Moreover, reaction can be performed at 20 degreeC (room temperature) -100 degreeC, for example, and reaction time can be made into 24-72 hours, for example. The compound represented by the general formula (I), which is the target product, can be purified by a known method such as silica gel column chromatography. It can be confirmed by NMR, mass spectrometry, elemental analysis, etc. that the desired product has been obtained.

上記反応に使用する原料化合物は、公知の方法で入手することができ、また市販品としても入手可能である。なお、原料のビナフチルとしてS体またはR体のいずれかを選択することにより、ビナフチル部位に所望の捻れ構造を有する目的物を得ることができる。   The raw material compounds used in the above reaction can be obtained by known methods, and are also commercially available. In addition, the target object which has a desired twist structure in a binaphthyl part can be obtained by selecting either S body or R body as a raw material binaphthyl.

本発明の光学活性化合物の具体例を以下に示す。但し、本発明は下記具体例に限定されるものではない。なお、以下に示す具体例において、ビナフチル部位はR体であってもよく、S体であってもよい。

Figure 2007238510
Specific examples of the optically active compound of the present invention are shown below. However, the present invention is not limited to the following specific examples. In the specific examples shown below, the binaphthyl moiety may be R-form or S-form.
Figure 2007238510

[光記録用材料]
本発明は、更に、本発明の光学活性化合物からなる光記録用材料に関する。
先に説明したように、本発明の光学活性化合物は、アゾベンゼン部位を含む。アゾベンゼンは、シス体とトランス体があり、熱的に安定なものはトランス体である。棒状のトランス体は屈曲したシス体と比べて分子長が約40%長いため、シス体からトランス体への異性化およびトランス体からシス体への異性化により分子長が大きく変化する。本発明の光学活性化合物においては、このように異性化により分子長が大きく変化するアゾベンゼン骨格が、ビナフチル骨格と比較的近距離で環状に結合されているため、アゾベンゼン骨格の構造変化により、2つのナフタレン環を結合する単結合を回転させ、ビナフチル部位のキラリティーを高速かつ高感度にスイッチすることができる。
[Optical recording materials]
The present invention further relates to an optical recording material comprising the optically active compound of the present invention.
As explained above, the optically active compound of the present invention contains an azobenzene moiety. Azobenzene has a cis isomer and a trans isomer, and a thermally stable one is a trans isomer. Since the rod-like trans isomer has a molecular length of about 40% longer than that of the bent cis isomer, the molecular length largely changes due to isomerization from the cis isomer to the trans isomer and from the trans isomer to the cis isomer. In the optically active compound of the present invention, the azobenzene skeleton whose molecular length greatly changes by isomerization is cyclically bonded to the binaphthyl skeleton at a relatively short distance. By rotating the single bond that binds the naphthalene ring, the chirality of the binaphthyl moiety can be switched at high speed and with high sensitivity.

アゾベンゼン部位がトランス体である本発明の光学活性化合物に対し、紫外光等の光(例えば波長300〜400nm)を照射すると、シス体への異性化を起こすことができ、その後、トランス−シス異性化に用いた光よりも長波長の光(例えば波長400〜550nm)を照射するか、または加熱することにより、再びトランス体に変化させることができる。加熱温度は、例えば20〜100℃程度とすることができ、加熱温度が高いほど高速でシス−トランス異性化を起こすことができる。また、照射する光としては、例えば高圧水銀灯の輝線である 313nm、 365nm、407nm、436nm;YAG レーザーの第 2 および第 3 高調波である 355 nm、532 nm;またはアルゴンイオンレーザーの 458nm、488nm、514nmなどを用いることができる。更に光強度については、0.1〜100 mW/cm2 程度が好ましい。 When the optically active compound of the present invention in which the azobenzene moiety is a trans isomer is irradiated with light such as ultraviolet light (for example, a wavelength of 300 to 400 nm), isomerization into a cis isomer can occur, and then trans-cis isomerization occurs. By irradiating light (for example, wavelength 400-550 nm) longer than the light used for the conversion, or by heating, it can be changed to a transformer body again. The heating temperature can be, for example, about 20 to 100 ° C., and the higher the heating temperature, the faster the cis-trans isomerization can occur. In addition, the irradiation light includes, for example, 313 nm, 365 nm, 407 nm, 436 nm which are bright lines of a high pressure mercury lamp; 355 nm, 532 nm which is the second and third harmonics of YAG laser; or 458 nm, 488 nm of argon ion laser. 514 nm or the like can be used. Further, the light intensity is preferably about 0.1 to 100 mW / cm 2 .

このように、本発明の光学活性化合物は、光照射等によりアゾベンゼン部位の異性化を可逆的に起こすことにより、ビナフチル部位のキラリティーを可逆的に変化させる(以下、「キラルスイッチング」ともいう)ことができる。このキラリティーの変化は、円二色性(CD)スペクトル変化として現れる。本発明の光学活性化合物は、この光照射によるスペクトル変化を利用して光書き換え可能な光記録用材料として用いることができる。更に、本発明の光学活性化合物には、S体とR体があり、S体とR体は互いに反対のキラリティーを有するため、得られるCDスペクトルは左右対称になる。よって、S体とR体を併せて利用することにより記録のバリエーションを増やすことができ、更に複数種の化合物を組み合わせて使用することにより、記録のバリエーションをより一層増やすことができる。また、本発明の化合物は、後述するように、加工が容易であるという利点も有する。   Thus, the optically active compound of the present invention reversibly changes the chirality of the binaphthyl moiety by reversibly causing isomerization of the azobenzene moiety by light irradiation or the like (hereinafter also referred to as “chiral switching”). be able to. This change in chirality appears as a circular dichroism (CD) spectral change. The optically active compound of the present invention can be used as an optical recording material that can be optically rewritten using the spectral change caused by this light irradiation. Furthermore, the optically active compound of the present invention includes S-form and R-form, and the S-form and R-form have opposite chirality, so that the obtained CD spectrum is symmetrical. Therefore, the recording variation can be increased by using the S form and the R form together, and the recording variation can be further increased by using a combination of plural kinds of compounds. Moreover, the compound of this invention also has the advantage that a process is easy so that it may mention later.

[光学フィルム、情報記録媒体]
本発明は、更に、本発明の化合物を含む光学フィルムに関する。
本発明の光学フィルムは、例えば、本発明の化合物を、テトラヒドロフラン、ジクロロメタン、クロロホルム等の適当な溶媒に溶解して調製した塗布液を、基板上に塗布、乾燥することにより作製することができる。前記基板としては、石英、ガラス、ポリメタクリル酸メチル、ポリスチレン、ポリビニルアルコール、ポリカーボネート、ポリイミド等の公知の基板を用いることができる。塗布方法としては、公知の方法を用いることができるが、中でも、スピンコート法を用いると、本発明の化合物を高分子等へ分散させることなく、均一な薄膜を容易に形成することができる。こうして形成された光学フィルムは、本発明の化合物を含み、好ましくは本発明の化合物からなるものである。但し、前記光学フィルムには、本発明の化合物以外にも、公知の添加剤を添加することもできる。
[Optical film, information recording medium]
The present invention further relates to an optical film comprising the compound of the present invention.
The optical film of the present invention can be produced, for example, by coating a coating solution prepared by dissolving the compound of the present invention in a suitable solvent such as tetrahydrofuran, dichloromethane, chloroform, and the like on a substrate and drying. As the substrate, known substrates such as quartz, glass, polymethyl methacrylate, polystyrene, polyvinyl alcohol, polycarbonate, and polyimide can be used. As a coating method, a known method can be used. Above all, when a spin coating method is used, a uniform thin film can be easily formed without dispersing the compound of the present invention in a polymer or the like. The optical film thus formed contains the compound of the present invention, and preferably consists of the compound of the present invention. However, a known additive can be added to the optical film in addition to the compound of the present invention.

本発明は、更に、基板上に光記録層を有する情報記録媒体に関する。前記光記録層は、本発明の化合物を含むものである。前記光記録層の詳細は、先に本発明の光学フィルムについて述べた通りである、また、前記基板については前述の通りである。なお、前記光記録層の上に、例えば保護層等の更なる層を設けることも可能である。前記光学フィルムおよび光記録媒体の厚さは、用途に応じて適宜決定すればよく、例えば10nm〜10μmとすることができる。   The present invention further relates to an information recording medium having an optical recording layer on a substrate. The optical recording layer contains the compound of the present invention. The details of the optical recording layer are as described above for the optical film of the present invention, and the substrate is as described above. Note that a further layer such as a protective layer may be provided on the optical recording layer. The thickness of the optical film and the optical recording medium may be appropriately determined according to the application, and may be, for example, 10 nm to 10 μm.

本発明の光学フィルムおよび情報記録媒体に対し、光照射を行うことにより、光学フィルムまたは光記録層に含まれる化合物中のアゾベンゼン部位をトランス体からシス体へ変化させることができ、再度光照射等を行うことにより、シス体からトランス体へ変化させることができる。本発明では、この可逆的な異性化によってビナフチル部位のキラリティーを可逆的に変化させることにより、情報の記録、書き換えを容易に行うことができる。また、本発明の光学フィルムは、光照射によってビナフチル部位の捻れ構造を変化させることができるため、この性質を利用してカラーフィルター、偏光マスク等として使用することもできる。   By irradiating the optical film and information recording medium of the present invention with light, the azobenzene moiety in the compound contained in the optical film or optical recording layer can be changed from the trans isomer to the cis isomer, and light irradiation or the like again. Can be changed from a cis form to a trans form. In the present invention, information can be easily recorded and rewritten by reversibly changing the chirality of the binaphthyl moiety by this reversible isomerization. In addition, since the optical film of the present invention can change the twisted structure of the binaphthyl site by light irradiation, it can be used as a color filter, a polarizing mask or the like by utilizing this property.

以下に、本発明を実施例に基づき更に説明する。但し、本発明は実施例に示す態様に限定されるものではない。
[例1]
R体の合成
(1)アゾベンゼン誘導体の合成

Figure 2007238510
Below, the present invention will be further explained based on examples. However, this invention is not limited to the aspect shown in the Example.
[Example 1]
Synthesis of R-form (1) Synthesis of azobenzene derivative
Figure 2007238510

脱水ジメチルホルムアミド(50ml)中に、2,2’−ジヒドロキシアゾベンゼン(0.50g,2.3mmol)、炭酸セシウム(2.25g、6.9mmol)、ジベンゾ−18−クラウン−6(0.25g、0.69mmol)を加えた。窒素雰囲気下で20分撹拌した後、1,3−ジブロモブタン(4.64g,23mmol)を加え、室温で72時間撹拌した。反応終了を薄層クロマトグラフィーを用いて確認した。反応物を塩化メチレンで抽出した後、抽出物を硫酸マグネシウムで乾燥し、溶媒を留去した。精製にカラムクロマトグラフィー(展開溶媒:トルエン:アセトン=99:1)を用い、上記化合物1を得た(0.73g,収率:69%)。   In dehydrated dimethylformamide (50 ml), 2,2′-dihydroxyazobenzene (0.50 g, 2.3 mmol), cesium carbonate (2.25 g, 6.9 mmol), dibenzo-18-crown-6 (0.25 g, 0.69 mmol) was added. After stirring for 20 minutes under a nitrogen atmosphere, 1,3-dibromobutane (4.64 g, 23 mmol) was added, and the mixture was stirred at room temperature for 72 hours. The completion of the reaction was confirmed using thin layer chromatography. After the reaction product was extracted with methylene chloride, the extract was dried over magnesium sulfate and the solvent was distilled off. Column chromatography (developing solvent: toluene: acetone = 99: 1) was used for purification to obtain the above compound 1 (0.73 g, yield: 69%).

1H-NMR (400 MHz, CDCl3): δ(ppm) 2.39-2.45 (m, 4H, Ph-OCH2CH 2CH2Br), 3.69 (t, 4H, Ph-OCH2CH2CH 2 Br), 4.34 (t, 4H, Ph-OCH 2 CH2CH2Br), 7.02-7.08 (m, 2H, aromatic rings), 7.11 (d, 4H, aromatic rings), 7.39-7.43 (m, 2H aromatic rings), 7.63 (d, 2H, aromatic rings). 1 H-NMR (400 MHz, CDCl 3 ): δ (ppm) 2.39-2.45 (m, 4H, Ph-OCH 2 C H 2 CH 2 Br), 3.69 (t, 4H, Ph-OCH 2 CH 2 C H 2 Br), 4.34 (t, 4H, Ph-OC H 2 CH 2 CH 2 Br), 7.02-7.08 (m, 2H, aromatic rings), 7.11 (d, 4H, aromatic rings), 7.39-7.43 (m, 2H aromatic rings), 7.63 (d, 2H, aromatic rings).

(2)R体の合成

Figure 2007238510
(2) Synthesis of R-isomer
Figure 2007238510

脱水ジメチルホルムアミド(300ml)中に、(R)−2,2’−ジヒドロキシ−1,1’−ビナフチル(0.63g,2.2mmol)、炭酸セシウム(3.6g,11mmol)、ジベンゾ−18−クラウン−6(0.4g、1.1mmol)を加えた。窒素雰囲気下で20分間撹拌した後、化合物1(1.0g、2.2mmol)を加え、室温で72時間撹拌した。反応終了を薄層クロマトグラフィーを用いて確認した。反応物を塩化メチレンで抽出した後、抽出物を硫酸マグネシウムで乾燥し、溶媒を留去した。精製にカラムクロマトグラフィー(展開溶媒:トルエン:アセトン=98:2)を用い、上記化合物(R)を得た(0.30g,収率:24%)。   In dehydrated dimethylformamide (300 ml), (R) -2,2′-dihydroxy-1,1′-binaphthyl (0.63 g, 2.2 mmol), cesium carbonate (3.6 g, 11 mmol), dibenzo-18- Crown-6 (0.4 g, 1.1 mmol) was added. After stirring for 20 minutes under a nitrogen atmosphere, Compound 1 (1.0 g, 2.2 mmol) was added and stirred at room temperature for 72 hours. The completion of the reaction was confirmed using thin layer chromatography. After the reaction product was extracted with methylene chloride, the extract was dried over magnesium sulfate and the solvent was distilled off. Using column chromatography (developing solvent: toluene: acetone = 98: 2) for purification, the above compound (R) was obtained (0.30 g, yield: 24%).

1H-NMR (400 MHz, CDCl3): δ(ppm) 1.77-1.94 (m, 4H, Ph-OCH2CH 2CH2O-binaphthyl), 3.48-4.21 (m, 8H, Ph-OCH 2 CH2CH2O-binaphthyl and Ph-OCH2CH2CH 2 O-binaphthyl), 6.75 (d, 2H, aromatic rings), 7.01-7.23 (m, 8H, aromatic rings), 7.30-7.34 (m, 4H, aromatic rings), 7.56 (d, 2H, aromatic rings). Anal. Calc. for C38H32N2O4: C, 78.60; H, 5.55; N, 4.82. Found: C, 78.52; H, 5.55; N, 4.80. EI-MS: m/z = 580 [M+]. 1 H-NMR (400 MHz, CDCl 3 ): δ (ppm) 1.77-1.94 (m, 4H, Ph-OCH 2 C H 2 CH 2 O-binaphthyl), 3.48-4.21 (m, 8H, Ph-OC H 2 CH 2 CH 2 O-binaphthyl and Ph-OCH 2 CH 2 C H 2 O-binaphthyl), 6.75 (d, 2H, aromatic rings), 7.01-7.23 (m, 8H, aromatic rings), 7.30-7.34 (m , 4H, aromatic rings), 7.56 (d, 2H, aromatic rings). Anal.Calc. For C 38 H 32 N 2 O 4 : C, 78.60; H, 5.55; N, 4.82. Found: C, 78.52; H , 5.55; N, 4.80. EI-MS: m / z = 580 [M + ].

[例2]
S体の合成

Figure 2007238510
[Example 2]
S-body synthesis
Figure 2007238510

(R)−2,2’−ジヒドロキシ−1,1’−ビナフチルに代えて(S)−2,2’−ジヒドロキシ−1,1’−ビナフチルを使用した以外は例1と同様の操作を行い、上記化合物(S)を得た(収率:24%)。Anal. Calc. for C38H32N2O4: C, 78.60; H, 5.55; N, 4.82. Found: C, 78.52; H, 5.54; N, 4.80. EI-MS: m/z = 580 [M+]. The same operation as in Example 1 was performed except that (S) -2,2′-dihydroxy-1,1′-binaphthyl was used instead of (R) -2,2′-dihydroxy-1,1′-binaphthyl. The compound (S) was obtained (yield: 24%). Anal.Calc. For C 38 H 32 N 2 O 4 : C, 78.60; H, 5.55; N, 4.82. Found: C, 78.52; H, 5.54; N, 4.80.EI-MS: m / z = 580 [ M + ].

トランス−シス異性化による吸収スペクトル変化
図1に、1,4−ジオキサン中(濃度:1.4 × 10-5 M)における化合物(R)の吸収スペクトル変化を示す。波長215nm−350nmは、キラル部位であるビナフチル部位に由来するピークであり、波長350nm−600nmは、アゾベンゼン部位に由来する吸収である。化合物(R)へ高圧水銀灯の輝線である365nm(光強度:6mW/cm2)の光を20秒間照射したところ、365nm付近の吸収が減少し、440nm付近の吸収が増加した。365nm、440nm付近の吸収は、それぞれアゾベンゼンのπ−π*、n−π*遷移に帰属できることから、化合物(R)は光によってトランス体からシス体へと変化することがわかった。
Changes in absorption spectrum due to trans-cis isomerization FIG. 1 shows changes in the absorption spectrum of compound (R) in 1,4-dioxane (concentration: 1.4 × 10 −5 M). A wavelength of 215 nm to 350 nm is a peak derived from a binaphthyl moiety which is a chiral moiety, and a wavelength of 350 nm to 600 nm is an absorption derived from an azobenzene moiety. When the compound (R) was irradiated with light at 365 nm (light intensity: 6 mW / cm 2 ), which is the emission line of a high-pressure mercury lamp, for 20 seconds, the absorption near 365 nm decreased and the absorption near 440 nm increased. Since absorption at around 365 nm and 440 nm can be attributed to the π-π * and n-π * transitions of azobenzene, it was found that the compound (R) changes from a trans isomer to a cis isomer by light.

トランス−シス異性化によるCDスペクトル変化
図2に、1,4−ジオキサン中(濃度:1.4 × 10-5 M)での化合物(R)(点線)、化合物(S)(実線)の円二色性(CD)スペクトル変化を示す。化合物(R)、化合物(S)は、互いに反対のキラリティーを有するため、得られたCDスペクトルは左右対称となった。各サンプルに365nm(光強度:6mW/cm2)の光を20秒間照射したところ、440nm付近(アゾベンゼン部位由来)、240nm付近(ビナフチル部位由来)のスペクトルが変化し、Δεの変化量はそれぞれ±15、±45であった。特に、440nmのΔεは、光照射前後でおよそ3倍変化することがわかった。光照射後においてビナフチル、アゾベンゼン部位に由来するΔεの値はともに増加または減少した。このことから、化合物(R)、化合物(S)が環状構造であるため、アゾベンゼンの異性化反応に伴う分子構造変化がビナフチル部位へ効果的に伝達されたと考えることができる。これにより、アゾベンゼン部位の異性化による大きな分子構造変化により、ビナフチル部位のキラリティーが変化することが示された。
Change in CD spectrum due to trans-cis isomerization FIG. 2 shows two circular colors of compound (R) (dotted line) and compound (S) (solid line) in 1,4-dioxane (concentration: 1.4 × 10 −5 M). Sex (CD) spectral change is shown. Since the compound (R) and the compound (S) have opposite chiralities, the obtained CD spectrum was symmetrical. When each sample was irradiated with light of 365 nm (light intensity: 6 mW / cm 2 ) for 20 seconds, the spectrum around 440 nm (derived from the azobenzene moiety) and around 240 nm (derived from the binaphthyl moiety) changed, and the amount of change in Δε was ± 15 and ± 45. In particular, it was found that Δε at 440 nm changes approximately three times before and after light irradiation. Both values of Δε derived from binaphthyl and azobenzene sites increased or decreased after light irradiation. From this, it can be considered that since the compound (R) and the compound (S) have a cyclic structure, the molecular structure change accompanying the isomerization reaction of azobenzene was effectively transmitted to the binaphthyl site. This indicates that the chirality of the binaphthyl moiety is changed by a large molecular structure change caused by isomerization of the azobenzene moiety.

光照射によるキラルスイッチング
図3に、1,4−ジオキサン中(濃度:1.4 × 10-5 M)での光照射に伴う化合物(R)、(S)のキラルスイッチング挙動を示す。化合物(R)、(S)の1,4−ジオキサン溶液へ、高圧水銀灯の365nm(光強度:6mW/cm2)、436nm(光強度:14mW/cm2)の輝線を交互に20秒間照射し、これを10回繰り返した。その結果、図3に示すように、(R)、(S)のΔεは可逆的に変化した。またその変化量は、複数回繰り返しても一定であったことから、これらの化合物はキラリティーを光で制御できる材料であることがわかった。また、光による応答時間を、例えば非特許文献2に記載の材料と比較すると、化合物(R)、(S)は、およそ 60 倍の高速応答を示す材料であることが明らかとなった。
FIG. 3 shows chiral switching behavior of the compounds (R) and (S) accompanying light irradiation in 1,4-dioxane (concentration: 1.4 × 10 −5 M). Compound (R), 1,4-dioxane (S), the high-pressure mercury lamp 365 nm (intensity: 6mW / cm 2), 436nm ( light intensity: 14mW / cm 2) alternately irradiated for 20 seconds emission lines This was repeated 10 times. As a result, as shown in FIG. 3, Δε of (R) and (S) changed reversibly. Moreover, since the amount of change was constant even when it was repeated a plurality of times, it was found that these compounds are materials whose chirality can be controlled by light. Further, when the response time by light is compared with, for example, the material described in Non-Patent Document 2, it has been clarified that the compounds (R) and (S) are materials that exhibit a high-speed response approximately 60 times.

[例3]
情報記録媒体の作製
(1)熱物性の評価
化合物(R)の熱物性を評価するために、示差走査熱量測定を行った。結果を図4に示す。10℃/分で200℃まで昇温したところ、187℃に融点に由来する鋭いピークが現れた。室温以下まで降温した後、再び昇温すると融点のピークが消失し、86℃にブロードなピークが生じた。また、一度融点以上に加熱したサンプルは、昇温・降温を繰り返しても同様なプロファイルとなることがわかった。
[Example 3]
Preparation of information recording medium (1) Evaluation of thermophysical properties In order to evaluate the thermophysical properties of compound (R), differential scanning calorimetry was performed. The results are shown in FIG. When the temperature was raised to 200 ° C. at 10 ° C./min, a sharp peak derived from the melting point appeared at 187 ° C. When the temperature was lowered to room temperature or lower and the temperature was raised again, the melting point peak disappeared and a broad peak was generated at 86 ° C. Further, it was found that the sample once heated to the melting point or higher has the same profile even when the temperature is raised and lowered repeatedly.

(2)X線回折パターン
図5に、化合物(R)の室温でのX線回折パターンを示す。図5(A)に示すように、加熱処理前のサンプルは、複数の鋭い回折ピークを生じたことから、結晶状態であることがわかった。このサンプルを220℃で5分間加熱し、室温まで冷却した。図5(B)に示すように、加熱処理後のX線回折パターンは鋭い回折ピークが消失し、ブロードなピークが現れた。
図4および5の結果より、化合物(R)は86℃にガラス転移点を有する分子性アモルファス材料であることがわかった。分子性アモルファス材料は、スピンコート法により容易にフィルム化することができる。
(2) X-ray diffraction pattern FIG. 5 shows an X-ray diffraction pattern of the compound (R) at room temperature. As shown in FIG. 5A, the sample before the heat treatment produced a plurality of sharp diffraction peaks, and thus was found to be in a crystalline state. The sample was heated at 220 ° C. for 5 minutes and cooled to room temperature. As shown in FIG. 5B, the sharp diffraction peak disappeared and the broad peak appeared in the X-ray diffraction pattern after the heat treatment.
From the results of FIGS. 4 and 5, it was found that the compound (R) is a molecular amorphous material having a glass transition point at 86 ° C. A molecular amorphous material can be easily formed into a film by a spin coating method.

(3)光記録層(光学フィルム)の作製
化合物(R)のクロロホルム溶液(1質量%)を調製し、石英基板上への薄膜形成を試みた。石英基板へ溶液を滴下し、1000回転/分で30秒間回転させたところ、厚さおよそ100nmのフィルムが得られた。このフィルムを偏光顕微鏡で観察したところ、ステージを回転させても暗視野のままであった。以上の結果より、得られた薄膜はアモルファスフィルムであることがわかった。同様に、化合物(S)からなる光記録層も作製した。
(3) Production of optical recording layer (optical film) A chloroform solution (1% by mass) of compound (R) was prepared, and a thin film was formed on a quartz substrate. When the solution was dropped onto the quartz substrate and rotated at 1000 rpm for 30 seconds, a film with a thickness of approximately 100 nm was obtained. When this film was observed with a polarizing microscope, it remained in the dark field even when the stage was rotated. From the above results, it was found that the obtained thin film was an amorphous film. Similarly, an optical recording layer made of the compound (S) was also produced.

光記録層の吸収スペクトル変化
図6に、上記で得られた化合物(R)からなる光記録層の吸収スペクトルを示す。スペクトル形状は、図1に示す溶液のものとほぼ同じであった。365nm(光強度:6mW/cm2)の輝線を60秒間照射すると、アゾベンゼンのπ−π*遷移に由来するピークが減少し、n−π*遷移のピークが増加した。この結果より、化合物(R)は、固体中(フィルム中)においても光によってトランス体からシス体へと変化することがわかった。
Absorption spectrum change of optical recording layer FIG. 6 shows an absorption spectrum of the optical recording layer comprising the compound (R) obtained above. The spectral shape was almost the same as that of the solution shown in FIG. When an emission line of 365 nm (light intensity: 6 mW / cm 2 ) was irradiated for 60 seconds, the peak derived from the π-π * transition of azobenzene decreased and the peak of the n-π * transition increased. From this result, it was found that the compound (R) changed from a trans form to a cis form by light even in a solid (in a film).

光記録層のCDスペクトル変化
図7に、上記で得た光記録層中での化合物(R)(点線)、(S)(実線)のCDスペクトルを示す。得られたスペクトルは、238nmにビナフチル部位に由来する大きな旋光角(±900mdeg/μm)、440nmにアゾベンゼン部位に由来する旋光角(±25mdeg/μm)を示した。
上記各フィルムに、高圧水銀灯の365nm(光強度:6mW/cm2)、436nm(光強度:14mW/cm2)の輝線を交互に60秒間照射し、これを10回繰り返したところ、図8に示すように、溶液の場合と同様に化合物(R)、(S)のCDスペクトルが変化した。440nm、245nmにおける旋光角の変化量はそれぞれ80、100mdeg/μmであった。
以上の結果より、化合物(R)、(S)は、固体中においてキラルスイッチングを示すことが明らかとなった。このように固体中においてキラルスイッチングを示す材料は、今まで報告がなく、本発明の化合物が最初の例である。
FIG. 7 shows CD spectra of the compounds (R) (dotted line) and (S) (solid line) in the optical recording layer obtained above. The obtained spectrum showed a large optical rotation angle (± 900 mdeg / μm) derived from the binaphthyl moiety at 238 nm and an optical rotation angle (± 25 mdeg / μm) derived from the azobenzene moiety at 440 nm.
Above the film, 365 nm of a high pressure mercury lamp (light intensity: 6mW / cm 2), 436nm ( light intensity: 14mW / cm 2) where the alternating irradiated 60 seconds bright line, this was repeated 10 times, FIG. 8 As shown, the CD spectra of compounds (R) and (S) changed as in the case of the solution. The amount of change in the optical rotation angle at 440 nm and 245 nm was 80 and 100 mdeg / μm, respectively.
From the above results, it was clarified that the compounds (R) and (S) exhibit chiral switching in a solid. Thus far, there has been no report on a material exhibiting chiral switching in a solid, and the compound of the present invention is the first example.

以上説明したように、本発明の光学活性化合物は、分子のキラリティーを光照射等によって高速かつ高感度にスイッチすることができる。更に、本発明の光学活性化合物は、固体中でもキラルスイッチングを示すことができる。
このように、本発明の光学活性化合物は、固体中でもキラルスイッチング能を有し、しかも易加工性を有するため、書き換え型記録素子等の光情報処理デバイスへの応用が可能である。更に、分子の構造変化によりキラルスイッチングを起こす本発明の化合物の作動原理を応用することにより、光によって駆動する分子機械・分子素子等を構築することができる。
As described above, the optically active compound of the present invention can switch the chirality of molecules at high speed and with high sensitivity by light irradiation or the like. Furthermore, the optically active compound of the present invention can exhibit chiral switching even in a solid state.
As described above, the optically active compound of the present invention has a chiral switching ability even in a solid state and has easy processability, and therefore can be applied to an optical information processing device such as a rewritable recording element. Furthermore, by applying the principle of operation of the compound of the present invention that causes chiral switching by molecular structural change, it is possible to construct molecular machines and molecular devices driven by light.

1,4−ジオキサン中における化合物(R)の吸収スペクトル変化を示す。The absorption spectrum change of the compound (R) in 1, 4- dioxane is shown. 1,4−ジオキサン中での化合物(R)および化合物(S)の円二色性(CD)スペクトル変化を示す。The circular dichroism (CD) spectrum change of the compound (R) and the compound (S) in 1,4-dioxane is shown. 1,4−ジオキサン中での光照射に伴う化合物(R)および化合物(S)のキラルスイッチング挙動を示す。The chiral switching behavior of compound (R) and compound (S) accompanying light irradiation in 1,4-dioxane is shown. 化合物(R)の示差走査熱量測定結果を示す。The differential scanning calorimetry result of a compound (R) is shown. 化合物(R)の室温でのX線回折パターンを示す。2 shows an X-ray diffraction pattern of compound (R) at room temperature. 化合物(R)からなる光記録層の吸収スペクトルを示す。The absorption spectrum of the optical recording layer which consists of a compound (R) is shown. 光記録層中での化合物(R)および化合物(S)のCDスペクトルを示す。2 shows CD spectra of Compound (R) and Compound (S) in the optical recording layer. 光記録層中での化合物(R)および化合物(S)の円二色性(CD)スペクトル変化を示す。The circular dichroism (CD) spectrum change of the compound (R) and the compound (S) in the optical recording layer is shown.

Claims (5)

下記一般式(I)で表される光学活性化合物。
Figure 2007238510
[X1、X2、X3およびX4は、それぞれ独立に、−NH2、−N(CH32、−H、−Cp2p+1、−SCq2q+1、−Cr2r+1、−OCs2s+1、−F、−I、−Br、−Cl、−COOH、−COOCt2t+1、−CONH2、COCH3、−CHO、−NO2、または−CN(但し、p、q、r、sおよびtは、それぞれ独立に1〜10の範囲の整数である)を示し、aおよびbは、それぞれ独立に1〜6の範囲の整数である。]
An optically active compound represented by the following general formula (I).
Figure 2007238510
[X 1 , X 2 , X 3 and X 4 are each independently —NH 2 , —N (CH 3 ) 2 , —H, —C p F 2p + 1 , —SC q H 2q + 1 , − C r H 2r + 1, -OC s H 2s + 1, -F, -I, -Br, -Cl, -COOH, -COOC t H 2t + 1, -CONH 2, COCH 3, -CHO, -NO 2 or -CN (wherein p, q, r, s and t are each independently an integer in the range of 1 to 10), and a and b are each independently an integer in the range of 1 to 6 It is. ]
前記一般式(I)において、aおよびbは、それぞれ独立に1〜3の範囲の整数である、請求項1に記載の光学活性化合物。 In the said general formula (I), a and b are the optically active compounds of Claim 1 which are respectively independently the integers of the range of 1-3. 請求項1または2に記載の化合物からなる光記録用材料。 An optical recording material comprising the compound according to claim 1. 請求項1または2に記載の化合物を含む光学フィルム。 An optical film comprising the compound according to claim 1. 基板上に光記録層を有する情報記録媒体であって、前記光記録層は、請求項1または2に記載の化合物を含むことを特徴とする情報記録媒体。 An information recording medium having an optical recording layer on a substrate, wherein the optical recording layer contains the compound according to claim 1.
JP2006063732A 2006-03-09 2006-03-09 Optically active compound, optical recording material, optical film and information recording medium Pending JP2007238510A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006063732A JP2007238510A (en) 2006-03-09 2006-03-09 Optically active compound, optical recording material, optical film and information recording medium
PCT/JP2007/054590 WO2007102590A1 (en) 2006-03-09 2007-03-08 Optically active compound, optical recording material, optical film, and information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006063732A JP2007238510A (en) 2006-03-09 2006-03-09 Optically active compound, optical recording material, optical film and information recording medium

Publications (1)

Publication Number Publication Date
JP2007238510A true JP2007238510A (en) 2007-09-20

Family

ID=38475009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006063732A Pending JP2007238510A (en) 2006-03-09 2006-03-09 Optically active compound, optical recording material, optical film and information recording medium

Country Status (2)

Country Link
JP (1) JP2007238510A (en)
WO (1) WO2007102590A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010030997A (en) * 2008-06-25 2010-02-12 National Institute Of Advanced Industrial & Technology Optically responsive chiral compound
JP2011173840A (en) * 2010-02-25 2011-09-08 Institute Of Physical & Chemical Research Optically active compound and utilization thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212629A (en) * 1986-03-14 1987-09-18 Hamamatsu Photonics Kk Optical modulator
WO1998011077A1 (en) * 1996-09-12 1998-03-19 Chisso Corporation Materials for chirooptical devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010030997A (en) * 2008-06-25 2010-02-12 National Institute Of Advanced Industrial & Technology Optically responsive chiral compound
JP2011173840A (en) * 2010-02-25 2011-09-08 Institute Of Physical & Chemical Research Optically active compound and utilization thereof

Also Published As

Publication number Publication date
WO2007102590A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
Kamikawa et al. Self‐assembly of folic acid derivatives: induction of supramolecular chirality by hierarchical chiral structures
Chen et al. C 2-Symmetric Dibenzosuberane-Based Helicenes as Potential Chirochromic Optical Switches
Brotin et al. Novel synthetic approach for optical resolution of cryptophanol‐A: a direct access to chiral cryptophanes and their chiroptical properties
Shen et al. Click-together azobenzene dendrons: Synthesis and characterization
Wu et al. Solid-state photochromism and acidochromism multifunctional materials constructed by tetraphenylethene and spiropyran
JP2005517769A (en) Polymer-bonded donor-acceptor-donor compounds and their use in three-dimensional optical memory
Holzwarth et al. New 2, 2′‐Substituted 4, 4′‐Dimethoxy‐6, 6′‐dimethyl [1, 1′‐biphenyls], Inducing a Strong Helical Twisting Power in Liquid Crystals
KR101140037B1 (en) Photo-responsive Liquid Crystal Composition
Upadhyay et al. Effect of the Position of the Cyano Group on Molecular Recognition, Supramolecular Superhelix Architecture, and Spontaneous Resolution of Aza [7] helicenes
CN109694345B (en) Multiple controllable light reaction based on single molecule and its application in information storage and reading
JP2004002847A (en) Photochromic fluorescent polymer and method for producing the same
JP2007238510A (en) Optically active compound, optical recording material, optical film and information recording medium
JP5083980B2 (en) Anthracene derivative and dimer thereof, optical information recording body and optical information recording method using the same
Zhang et al. Mesomorphism, polymerization, and chirality induction in α‐cyanostilbene‐functionalized diacetylene‐assembled films: Photo‐triggered Z/E isomerization
JP2008222885A (en) Fluorescent film
Hassan et al. Light-driven molecular switching of atropisomeric polymers containing Azo-binaphthyl groups in their side chains
JP2012045864A (en) Optical information recording medium using liquid crystal polymer, optical information recording method, and method for manufacturing optical information recording medium
JP2006063045A (en) Diacetylenediamide compound
JP5669124B2 (en) Optically active compound and use thereof
Holzwarth et al. New 2, 2'‐Substituted 6, 6'‐Dimethylbiphenyl Derivatives Inducing Strong Helical Twisting Power in Liquid Crystals
JP5376565B2 (en) Photoresponsive liquid crystal material
CN110938017A (en) Organic molecular material with long afterglow effect based on benzene ring unit and preparation method thereof
Sekiguchi et al. Preparation of a cyclic polyphenylene array for a chiral-type carbon nanotube segment
JP2006312606A (en) Mew azobenzene derivative compound, material for optical recording, information recording medium, method for improving photosensitivity, method for improving photoresponsiveness and method for controlling aggregation
Mallireddigari et al. Sequential reduction and dehydration of phenacyl-(E)-styryl sulfones to unsymmetrical (E, E)-bis (styryl) sulfones