JP2010028983A - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP2010028983A
JP2010028983A JP2008188239A JP2008188239A JP2010028983A JP 2010028983 A JP2010028983 A JP 2010028983A JP 2008188239 A JP2008188239 A JP 2008188239A JP 2008188239 A JP2008188239 A JP 2008188239A JP 2010028983 A JP2010028983 A JP 2010028983A
Authority
JP
Japan
Prior art keywords
connection conductor
inter
electrode terminal
circuit
plate portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008188239A
Other languages
Japanese (ja)
Other versions
JP5320878B2 (en
Inventor
Kiwamu Suzuki
究 鈴木
Takeshi Kitani
剛士 木谷
Masahiko Hanazawa
昌彦 花澤
Masamitsu Takizawa
将光 滝沢
Hiroshi Shiroichi
洋 城市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2008188239A priority Critical patent/JP5320878B2/en
Publication of JP2010028983A publication Critical patent/JP2010028983A/en
Application granted granted Critical
Publication of JP5320878B2 publication Critical patent/JP5320878B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power converter in which a wiring inductance is reduced to eliminate a limit on the number of circuit elements to be connected in series, when connecting at least two circuit elements in series. <P>SOLUTION: In the power converter provided with a series circuit having at least two circuit elements S1 to S4 aligned and connected in series, the circuit elements S1 to S4 each form at least a first and second electrode terminals 5, 6 on one face side, and the series circuit connects the second electrode terminal, one of the two adjacent circuit elements, to the first electrode terminal, the other of the circuit elements, with inter-element connection conductors 11, 13. Of the circuit elements at the opposite ends having no adjacent circuit element, a first external connection conductor 12 is connected to the first electrode terminal having no connection partner, and a second external connection conductor 14 is connected to the second electrode terminal having no connection partner, and the inter-element connection conductors have inductance canceling sections 10a, 10b canceling inductance formed with regard to the adjacent other connection conductors. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、少なくとも2つの回路素子を整列配置して直列に接続した直列回路を有する電力変換装置に関し、特に、電力変換装置の電気部品の接続部の構造に関する。   The present invention relates to a power conversion device having a series circuit in which at least two circuit elements are arranged in series and connected in series, and more particularly, to a structure of a connection portion of electrical components of the power conversion device.

この種の電力変換装置としては、例えば図19及び図20に示すように、半導体スイッチング素子に例えばIGBT(Insulated Gete Bipolar Transistor)を適用した電力変換装置が知られている。
図19は、従来の電力変換装置の説明に供する一例の接続図、図20は、従来の電力変換装置の説明に供する他の例の接続図である。
As this type of power conversion device, for example, as shown in FIGS. 19 and 20, a power conversion device in which an IGBT (Insulated Get Bipolar Transistor) is applied to a semiconductor switching element is known.
FIG. 19 is an example connection diagram for explaining a conventional power converter, and FIG. 20 is another example connection diagram for explaining a conventional power converter.

この電力変換装置は、図19に示すように、並列に接続された直流電源Ed及び充放電用コンデンサC10と、この充放電用コンデンサC10に並列に接続された3相インバータINとを有する。この3相インバータINは、半導体スイッチング素子Q10と半導体スイッチング素子Q11とが直列に接続された第1のスイッチングアームSA1、半導体スイッチング素子Q12と半導体スイッチング素子Q13とが直列に接続された第2のスイッチングアームSA2及び半導体スイッチング素子Q14と半導体スイッチング素子Q15とが直列に接続された第3のスイッチングアームSA3とが正極ラインP及び負極ラインN間に並列に接続されている。さらに、半導体スイッチング素子Q10と半導体スイッチング素子Q11との中点にU相電圧を出力するU相交流端子AC1が設けられ、半導体スイッチング素子Q12と半導体スイッチング素子Q13との中点にV相電圧を出力するV相交流端子AC2が設けられ、半導体スイッチング素子Q14と半導体スイッチング素子Q15との中点にW相電圧を出力するW相交流端子AC3が設けられている。各半導体スイッチング素子Q11〜Q15には逆並列にダイオードD10〜D15が接続されている。   As shown in FIG. 19, the power conversion apparatus includes a DC power supply Ed and a charge / discharge capacitor C10 connected in parallel, and a three-phase inverter IN connected in parallel to the charge / discharge capacitor C10. The three-phase inverter IN includes a first switching arm SA1 in which the semiconductor switching element Q10 and the semiconductor switching element Q11 are connected in series, and a second switching in which the semiconductor switching element Q12 and the semiconductor switching element Q13 are connected in series. The arm SA2, the semiconductor switching element Q14, and the third switching arm SA3 in which the semiconductor switching element Q15 is connected in series are connected in parallel between the positive electrode line P and the negative electrode line N. Furthermore, a U-phase AC terminal AC1 for outputting a U-phase voltage is provided at the midpoint between the semiconductor switching element Q10 and the semiconductor switching element Q11, and a V-phase voltage is output at the midpoint between the semiconductor switching element Q12 and the semiconductor switching element Q13. A V-phase AC terminal AC3 for outputting a W-phase voltage is provided at the midpoint between the semiconductor switching element Q14 and the semiconductor switching element Q15. Diodes D10 to D15 are connected in antiparallel to the semiconductor switching elements Q11 to Q15.

そして、3相インバータINの1相分の動作を充放電用コンデンサC10とスイッチングアームSA1を例に説明すると、図20に示すように、充放電用コンデンサC10に充電されている正の電荷は、半導体スイッチング素子Q10がオン状態であると、充放電用コンデンサC10の正極側(高電位側)から配線導体100及び半導体スイッチング素子Q10を通り、半導体スイッチング素子Q10及びQ11間の配線導体101を通ってU相交流端子AC1に至る電流経路L10が形成される。   Then, the operation for one phase of the three-phase inverter IN will be described using the charge / discharge capacitor C10 and the switching arm SA1 as an example. As shown in FIG. 20, the positive charge charged in the charge / discharge capacitor C10 is: When the semiconductor switching element Q10 is in the on state, the positive electrode side (high potential side) of the charge / discharge capacitor C10 passes through the wiring conductor 100 and the semiconductor switching element Q10, and passes through the wiring conductor 101 between the semiconductor switching elements Q10 and Q11. A current path L10 leading to the U-phase AC terminal AC1 is formed.

この状態から半導体スイッチング素子Q10をターンオフさせると、電流経路L10を流れる電流が減少する。この時、電流変化に伴って発生する配線導体100のインダクタンスによる電圧は、充放電用コンデンサC10に対して半導体スイッチング素子Q10の方が高くなる向きに発生する。
一方、半導体スイッチング素子Q10がターンオフすると、充放電用コンデンサC10の負極側から配線導体102及び半導体スイッチング素子Q11を通り、配線導体101を通ってU相交流端子AC1に至る電流経路L11を流れる電流が増加する。このため、電流変化に伴って発生する配線導体102のインダクタンスによる電圧は半導体スイッチング素子Q11に対して充放電用コンデンサC10の方が高くなる向きに発生する。
When the semiconductor switching element Q10 is turned off from this state, the current flowing through the current path L10 decreases. At this time, the voltage due to the inductance of the wiring conductor 100 generated along with the current change is generated in the direction in which the semiconductor switching element Q10 is higher than the charge / discharge capacitor C10.
On the other hand, when the semiconductor switching element Q10 is turned off, the current flowing through the current path L11 from the negative electrode side of the charging / discharging capacitor C10 through the wiring conductor 102 and the semiconductor switching element Q11, through the wiring conductor 101 to the U-phase AC terminal AC1. To increase. For this reason, the voltage due to the inductance of the wiring conductor 102 generated in accordance with the current change is generated in the direction in which the charge / discharge capacitor C10 is higher than the semiconductor switching element Q11.

そして、スイッチング時の電流の変化に伴って電圧の跳ね上がりが発生すると、その電圧は直流電圧に加え合わされて半導体スイッチング素子Q10及びQ11に印加されてしまい、電圧の値が半導体スイッチング素子Q10及びQ11の電圧規格を超えると半導体スイッチング素子Q10及びQ11の破壊を引き起こしてしまう。
スイッチング時の電流の変化に伴う電圧の跳ね上がりを抑制する方法としては、充放電用コンデンサC10→配線導体100→半導体スイッチング素子Q10→配線導体101→半導体スイッチング素子Q11→配線導体102→充放電用コンデンサC10の電流経路上において、半導体スイッチング素子のターンオフ時に電流が増加する部分の配線と半導体スイッチング素子のターンオフ時に電流が減少する部分の配線とを一対として配置することでインダクタンス成分を相殺する方法がある。
When a voltage jump occurs with a change in current during switching, the voltage is added to the DC voltage and applied to the semiconductor switching elements Q10 and Q11, and the voltage value of the semiconductor switching elements Q10 and Q11 is increased. Exceeding the voltage standard causes the semiconductor switching elements Q10 and Q11 to be destroyed.
As a method for suppressing the jump of the voltage accompanying the change of current at the time of switching, the capacitor C10 for charging / discharging → the wiring conductor 100 → the semiconductor switching element Q10 → the wiring conductor 101 → the semiconductor switching element Q11 → the wiring conductor 102 → the capacitor for charging / discharging On the current path of C10, there is a method of canceling out the inductance component by arranging a pair of wiring that increases current when the semiconductor switching element is turned off and wiring that decreases current when the semiconductor switching element is turned off. .

このため、配線導体100及び102を一対にして配置することで、半導体スイッチング素子Q10のターンオフ時に発生する磁束を打ち消し合わせることができ、インダクタンス成分を相殺することが可能となり、スイッチング時の電流の変化に伴う電圧の跳ね上がりを抑制することができる。
一般的な電動機や変圧器等の電力機器では、効率を上昇させるために使用する電圧をできるだけ高くして発熱による損失の原因となる電流を減少させることが多い。これは、電力変換装置においても同様であるが、半導体スイッチング素子やコンデンサ等の電気部品は使用できる最大電圧が部品毎に決められており、その値を超えることはできない。そのため、半導体スイッチング素子やコンデンサ等の電気部品を、電気部品の決められた最大電圧を超える電圧で使用するために、複数の電気部品を直列に接続し1個あたりの電気部品にかかる電圧が決められた最大電圧を超えないようにする電力変換装置が知られている。
For this reason, by arranging the wiring conductors 100 and 102 as a pair, the magnetic flux generated when the semiconductor switching element Q10 is turned off can be canceled out, the inductance component can be canceled out, and the current change during switching It is possible to suppress the jumping of the voltage associated with.
In a general electric power device such as an electric motor or a transformer, the voltage used for increasing the efficiency is increased as much as possible to reduce the current causing the loss due to heat generation. The same applies to the power converter, but the maximum voltage that can be used for electrical components such as semiconductor switching elements and capacitors is determined for each component and cannot exceed that value. Therefore, in order to use electrical components such as semiconductor switching elements and capacitors at a voltage exceeding the maximum voltage determined by the electrical components, the voltage applied to each electrical component is determined by connecting multiple electrical components in series. There are known power converters that do not exceed the maximum voltage provided.

例えば特許文献1には、図21及び図22に示す構成が提案されている。
特許文献1に記載の電力変換装置においては、図21及び図22に示すように、配線導体103によってコンデンサC11〜C14の高電位側端子t11a、t12a、t13a、t14aを電力変換装置の正側に接続し、配線導体104によってコンデンサC15〜C18の低電位側端子t15b、t16b、t17b、t18bを電力変換装置の負側に接続し、配線導体105によってコンデンサC11〜C14の低電位側端子t11b、t12b、t13b、t14bとコンデンサC15〜C18の高電位側素子t15a、t16a、t17a、t18aを接続することで直列及び並列に接続したコンデンサ群が構成されている。
For example, Patent Document 1 proposes the configuration shown in FIGS. 21 and 22.
In the power converter described in Patent Document 1, as shown in FIGS. 21 and 22, the high potential side terminals t11a, t12a, t13a, and t14a of the capacitors C11 to C14 are connected to the positive side of the power converter by the wiring conductor 103. The low potential side terminals t15b, t16b, t17b, and t18b of the capacitors C15 to C18 are connected to the negative side of the power converter by the wiring conductor 104, and the low potential side terminals t11b and t12b of the capacitors C11 to C14 are connected by the wiring conductor 105. , T13b, t14b and high-potential side elements t15a, t16a, t17a, t18a of capacitors C15 to C18 are connected to form a capacitor group connected in series and in parallel.

このような構成とすることで、コンデンサを直列に接続する場合でも電極端子が接続される配線導体を平板状に向かい合わされて配置することで、電流変化の向きが異なることによる配線インダクタンスを低減させている。
特開2001−245480号公報
By adopting such a configuration, even when capacitors are connected in series, the wiring conductors to which the electrode terminals are connected are arranged facing each other in a flat plate shape, thereby reducing the wiring inductance due to the different direction of current change. ing.
JP 2001-245480 A

しかしながら、上記特許文献1に記載の従来例にあっては、電気部品であるコンデンサの直列数を2とし、並列数を4とした構成が示されているが、直列数を3以上に増やすことが難しく、並列数を更に増やすとコンデンサ側の配線導体の形状は複雑となり、半導体スイッチング素子側の配線導体との接続が困難となってしまうという未解決の課題がある。また、電気部品の電極端子に対して配線導体を固定するボルト等の必要不可欠な固定材の設置スペースについて考慮されていないので、実際の装置に適用した際に、配線導体同士の間隔を固定材の大きさより狭くすることが難しくなってしまい配線インダクタンスを十分に低減することができなくなってしまうとういう未解決の課題もある。さらに、他の電気部品の半導体素子については何ら考慮されていないために、半導体素子を直列に接続する場合に、適用することができなくなってしまうという未解決の課題もある。   However, in the conventional example described in Patent Document 1, a configuration is shown in which the number of series of capacitors as electrical components is 2 and the number of parallels is 4, but the number of series is increased to 3 or more. However, when the number of parallel connections is further increased, the shape of the wiring conductor on the capacitor side becomes complicated, and there is an unsolved problem that it becomes difficult to connect to the wiring conductor on the semiconductor switching element side. In addition, since the installation space for indispensable fixing materials such as bolts that fix the wiring conductor to the electrode terminals of the electrical parts is not considered, the spacing between the wiring conductors is fixed when applied to an actual device. There is also an unsolved problem that it becomes difficult to make the size smaller than the size of the wire and the wiring inductance cannot be sufficiently reduced. Furthermore, since no consideration is given to the semiconductor elements of other electrical components, there is an unsolved problem that the semiconductor elements cannot be applied when the semiconductor elements are connected in series.

そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、少なくとも2つの回路素子を整列配置して少なくとも直列に接続する際に、配線インダクタンスを十分に低減することができ、直列に接続可能な電気部品の個数の制限をなくすことができる半導体素子及びコンデンサの双方の電気部品を適用することができる電力変換装置を提供することを目的としている。   Therefore, the present invention has been made paying attention to the unsolved problems of the above conventional example, and sufficiently reduces the wiring inductance when arranging at least two circuit elements in an aligned manner and connecting them at least in series. It is an object of the present invention to provide a power conversion device that can apply both electrical components of a semiconductor element and a capacitor that can eliminate the limitation of the number of electrical components that can be connected in series.

上記目的を達成するために、請求項1に係る電力変換装置は、少なくとも2つの回路素子を整列配置して直列に接続した直列回路を備えた電力変換装置であって、前記回路素子のそれぞれは、同一面側に少なくとも第1及び第2の電極端子が形成され、前記直列回路は、隣接する2つの回路素子のうち一方の第2の電極端子と他方の第1の電極端子とを素子間接続導体で接続し、隣接する回路素子が存在しない両端の回路素子のうち、接続相手のない第1の電極端子に第1の外部接続導体を接続し、接続相手のない第2の電極端子に第2の外部接続導体を接続した構成を有し、前記素子間接続導体は、隣接する他の接続導体との間でインダクタンスを相殺するインダクタンス相殺部が形成されていることを特徴としている。   In order to achieve the above object, a power conversion device according to claim 1 is a power conversion device including a series circuit in which at least two circuit elements are arranged in series and connected in series, each of the circuit elements being , At least first and second electrode terminals are formed on the same surface side, and the series circuit connects one second electrode terminal and the other first electrode terminal among the two adjacent circuit elements between the elements. The first external connection conductor is connected to the first electrode terminal having no connection partner, and the second electrode terminal having no connection partner is connected to the first electrode terminal having no connection partner among the circuit elements at both ends where the adjacent circuit elements do not exist. The second external connection conductor is connected, and the inter-element connection conductor is formed with an inductance canceling portion that cancels the inductance with another adjacent connection conductor.

また、請求項2に係る電力変換装置は、複数の回路素子を整列配置して直列に接続した直列回路を有する電力変換装置であって、前記回路素子の夫々は、同一面側に少なくとも第1及び第2の電極端子が形成され、前記直列回路は、それぞれ複数の回路素子を直列に接続した第1の回路素子群及び第2の回路素子群を、外部出力端子を有する群間接続導体で接続した構成を有し、前記第1の回路素子群は、隣接する2つの回路素子のうち一方の第2の電極端子と他方の第1の電極端子とを素子間接続導体で接続し、隣接する回路素子が存在しない端部の回路素子のうち、接続相手のない第1の電極端子に第1の外部接続導体を接続した構成を有し、前記第2の回路素子群は、隣接する2つの回路素子のうち一方の第2の電極端子と他方の第1の電極端子とを素子間接続導体で接続し、隣接する回路素子が存在しない端部の回路素子のうち、接続相手のいない第2の電極端子に第2の外部接続導体を接続した構成を有し、前記群間接続導体及び素子間接続導体は、隣接する他の接続導体との間でインダクタンスを相殺するインダクタンス相殺部が形成されていることを特徴としている。   The power conversion device according to claim 2 is a power conversion device having a series circuit in which a plurality of circuit elements are arranged in series and connected in series, and each of the circuit elements is at least first on the same surface side. And the second electrode terminal is formed, and the series circuit includes a first circuit element group and a second circuit element group in which a plurality of circuit elements are connected in series, with an inter-group connection conductor having an external output terminal. The first circuit element group has a configuration in which one second electrode terminal and the other first electrode terminal of two adjacent circuit elements are connected by an inter-element connection conductor. Among the circuit elements at the end where no circuit element exists, the first external connection conductor is connected to the first electrode terminal with no connection partner, and the second circuit element group includes two adjacent circuit elements. Of the two circuit elements, one second electrode terminal and the other first electrode terminal The electrode terminal is connected with an inter-element connection conductor, and the second external connection conductor is connected to the second electrode terminal with no connection partner among the end circuit elements where no adjacent circuit element exists. The inter-group connecting conductor and the inter-element connecting conductor are characterized in that an inductance canceling portion that cancels the inductance between the adjacent connecting conductors is formed.

さらに、請求項3に係る電力変換装置は、請求項1又は2に係る発明において、前記回路素子は、能動素子及び受動部品の少なくとも一方で構成されていることを特徴としている。
さらにまた、請求項4に係る電力変換装置は、請求項1乃至3の何れか1項に係る発明において、前記素子間接続導体は、インダクタンス相殺部となる一対の対向側板部と、これら対向側板部の一端を連結する連結板部と、前記一対の対向側板部の他端からそれぞれ内方に突出して前記回路素子の電極端子に接続する取付フランジ部とを備えていることを特徴としている。
Furthermore, the power conversion device according to claim 3 is characterized in that, in the invention according to claim 1 or 2, the circuit element is configured by at least one of an active element and a passive component.
Furthermore, a power conversion device according to a fourth aspect is the invention according to any one of the first to third aspects, wherein the inter-element connection conductor includes a pair of opposing side plate portions serving as inductance canceling portions, and the opposing side plates. A connecting plate portion that connects one end of each of the portions, and a mounting flange portion that protrudes inward from the other end of the pair of opposing side plate portions and connects to the electrode terminal of the circuit element.

なおさらに、請求項5に係る電力変換装置は、請求項2に係る発明において、前記群間接続導体は、インダクタンス相殺部となる一対の対向側板部と、これら対向側板部の一端を連結する連結板部と、前記一対の対向側板部の他端からそれぞれ内方に突出して前記回路素子の電極端子に接続する取付フランジ部とを備えていることを特徴としている。
また、請求項6に係る電力変換装置は、請求項1乃至5の何れか1項に係る発明において、前記素子間接続導体は、前記回路素子の電極端子に対して固定部材によって着脱自在に固定されていることを特徴としている。
Still further, according to a fifth aspect of the present invention, in the power conversion device according to the second aspect, the inter-group connection conductor is a connection that connects a pair of opposing side plate portions serving as an inductance canceling portion and one end of these opposing side plate portions. A plate portion and an attachment flange portion that protrudes inward from the other ends of the pair of opposed side plate portions and connects to the electrode terminals of the circuit element are provided.
According to a sixth aspect of the present invention, in the power converter according to any one of the first to fifth aspects, the inter-element connection conductor is detachably fixed to the electrode terminal of the circuit element by a fixing member. It is characterized by being.

さらに、請求項7に係る電力変換装置は、請求項2乃至5の何れか1項に係る発明において、前記群間接続導体は、前記回路素子の電極端子に対して固定部材によって着脱自在に固定されていることを特徴としている。
さらにまた、請求項8に係る電力変換装置は、請求項1乃至7の何れか1項に係る発明において、前記第1の外部接続導体及び第2の外部接続導体は、所定間隔を保って並設されていることを特徴としている。
Furthermore, the power converter according to claim 7 is the invention according to any one of claims 2 to 5, wherein the inter-group connection conductor is detachably fixed to the electrode terminal of the circuit element by a fixing member. It is characterized by being.
Furthermore, the power converter according to claim 8 is the invention according to any one of claims 1 to 7, wherein the first external connection conductor and the second external connection conductor are arranged in parallel at a predetermined interval. It is characterized by being installed.

なおさらに、請求項9に係る電力変換装置は、請求項1乃至8の何れか1項に係る発明において、前記回路素子として半導体素子を適用した直列回路と、回路素子としてコンデンサを適用した直列回路とが並列に接続されていることを特徴としている。   Still further, according to a ninth aspect of the present invention, there is provided a power converter according to any one of the first to eighth aspects, wherein a series circuit in which a semiconductor element is applied as the circuit element and a series circuit in which a capacitor is applied as the circuit element. And are connected in parallel.

本発明によれば、少なくとも2つの回路素子を整列配置して少なくとも直列に接続する際に、隣接する回路素子間を接続する接続導体にインダクタンス相殺部を設けて、このインダクタンス相殺部において隣接する接続導体との間で電流の向きを異ならせることで配線インダクタンスを十分に低減することができると共に、整列配置して少なくとも直列に接続する回路素子の個数の制限をなくすことができるという効果が得られる。また、回路素子としては能動素子及び受動部品の少なくとも一方を適用することができる。   According to the present invention, when at least two circuit elements are aligned and connected at least in series, an inductance canceling portion is provided in a connection conductor connecting adjacent circuit elements, and the adjacent connection in the inductance canceling portion is provided. By making the current direction different from that of the conductor, it is possible to sufficiently reduce the wiring inductance, and it is possible to obtain an effect that it is possible to eliminate the restriction on the number of circuit elements that are aligned and connected at least in series. . Further, as the circuit element, at least one of an active element and a passive component can be applied.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の第1の実施形態の電力変換装置のスイッチングアームの構成を示す回路図、図2は、第1の実施形態の電力変換装置の機械的接続構造を示す平面図、図3は、第1の実施形態の図2のA−A線上の断面図、図4は、第1の実施形態を示す分解斜視図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a circuit diagram showing a configuration of a switching arm of a power conversion device according to a first embodiment of the present invention. FIG. 2 is a plan view showing a mechanical connection structure of the power conversion device according to the first embodiment. 3 is a cross-sectional view of the first embodiment taken along the line AA in FIG. 2, and FIG. 4 is an exploded perspective view showing the first embodiment.

図中、1は充放電用コンデンサCと並列に接続された電圧変換装置を構成する直列回路としての1相分のスイッチングアームであって、正極ラインP及び負極ラインN間に接続されている。このスイッチングアーム1は、図1に示すように、2つの半導体スイッチング素子Q1及びQ2を直列に接続した第1の回路素子群としての上アーム2と、同様に2つの半導体スイッチング素子Q3及びQ4を直列に接続した第2の回路素子群としての下アーム3とが直列に接続された構成を有する。そして、各半導体スイッチング素子Q1〜Q4にはそれぞれ逆並列にダイオードD1〜D4が接続されている。さらに、上アーム2と下アーム3との接続点から交流外部出力端子ACが導出されている。   In the figure, reference numeral 1 denotes a switching arm for one phase as a series circuit constituting a voltage converter connected in parallel with a charge / discharge capacitor C, and is connected between a positive electrode line P and a negative electrode line N. As shown in FIG. 1, the switching arm 1 includes an upper arm 2 as a first circuit element group in which two semiconductor switching elements Q1 and Q2 are connected in series, and two semiconductor switching elements Q3 and Q4. The lower arm 3 as a second circuit element group connected in series is connected in series. Then, diodes D1 to D4 are connected in antiparallel to the semiconductor switching elements Q1 to Q4, respectively. Further, an AC external output terminal AC is derived from a connection point between the upper arm 2 and the lower arm 3.

各半導体スイッチング素子Q1〜Q4は、例えばIGBT(Insulated Gate Bipolar Transistor)やパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)等を用いることができる。
そして、上アーム2及び下アーム3を構成する1組の半導体スイッチング素子とダイオードとの並列回路が回路素子としての半導体素子S1〜S4にそれぞれ内装されている。これら半導体素子S1〜S4のそれぞれは、図2〜図4に示すように、少なくとも上面が絶縁体で形成され、半導体スイッチング素子及びダイオードの並列回路を内装した直方体状の筐体4と、この筐体4の上面にその長手方向に所定間隔を保って配設された第1及び第2の電極端子5及び6を備えている。ここで、第1の電極端子5には、半導体スイッチング素子のコレクタ及びダイオードのカソードが接続され、第2の電極端子6には、半導体スイッチング素子のエミッタ及びダイオードのアノードが接続されている。そして、第1及び第2の電極端子5及び6にはそれぞれ上面中央部に雌ねじ部7が形成されている。
As each of the semiconductor switching elements Q1 to Q4, for example, an IGBT (Insulated Gate Bipolar Transistor), a power MOSFET (Metal Oxide Semiconductor Field Effect Transistor), or the like can be used.
A parallel circuit of a set of semiconductor switching elements and diodes that constitute the upper arm 2 and the lower arm 3 is provided in each of the semiconductor elements S1 to S4 as circuit elements. As shown in FIGS. 2 to 4, each of these semiconductor elements S <b> 1 to S <b> 4 has a rectangular parallelepiped casing 4 having at least an upper surface formed of an insulator and including a parallel circuit of a semiconductor switching element and a diode, and the casing. First and second electrode terminals 5 and 6 are provided on the upper surface of the body 4 at predetermined intervals in the longitudinal direction. Here, the collector of the semiconductor switching element and the cathode of the diode are connected to the first electrode terminal 5, and the emitter of the semiconductor switching element and the anode of the diode are connected to the second electrode terminal 6. The first and second electrode terminals 5 and 6 are each formed with a female screw portion 7 at the center of the upper surface.

そして、上アーム2と下アーム3とは、図2〜4に示すように、上アーム2の半導体素子S2の第2の電極端子6と下アーム3の半導体素子S3の第1の電極端子5との間を電気的に接続する導電性を有する群間接続導体10によって直列に接続されている。
この群間接続導体10は、図2〜4に示すように、インダクタンス相殺部となる所定間隔を保って対向する一対の対向側板部10a及び10bと、その一対の対向側板部10a及び10bの一端すなわち上端を連結する連結板部10cと、一対の対向側板部10a及び10bの他端すなわち下端からそれぞれ内方に連結板部10cと平行となるように突出形成された取付フランジ部10d及び10eとを備えている。ここで、取付フランジ部10d及び10eには、略中央位置に固定ねじ16の雄ねじ部16bを挿通する小径挿通孔10f及び10gが形成されている。なおさらに、連結板部10cには、取付フランジ部10d及び10eの小径挿通孔10f及び10gと同軸上に固定ねじ16の頭部16aを挿通する大径挿通孔10h及び10iが形成されている。
2 and 4, the upper arm 2 and the lower arm 3 are, as shown in FIGS. 2 to 4, the second electrode terminal 6 of the semiconductor element S2 of the upper arm 2 and the first electrode terminal 5 of the semiconductor element S3 of the lower arm 3. Are connected in series by inter-group connection conductors 10 having electrical conductivity for electrical connection between them.
As shown in FIGS. 2 to 4, the inter-group connection conductor 10 includes a pair of opposing side plate portions 10 a and 10 b that are opposed to each other with a predetermined interval as an inductance canceling portion, and one end of the pair of opposing side plate portions 10 a and 10 b. That is, the connecting plate portion 10c that connects the upper ends, and the mounting flange portions 10d and 10e that are formed so as to protrude inward from the other ends, that is, the lower ends of the pair of opposed side plate portions 10a and 10b, inwardly in parallel with the connecting plate portion 10c. It has. Here, the mounting flange portions 10d and 10e are formed with small diameter insertion holes 10f and 10g through which the male screw portion 16b of the fixing screw 16 is inserted at a substantially central position. Furthermore, large-diameter insertion holes 10h and 10i through which the head 16a of the fixing screw 16 is inserted coaxially with the small-diameter insertion holes 10f and 10g of the mounting flange portions 10d and 10e are formed in the connecting plate portion 10c.

そして、取付フランジ部10d及び10eは、半導体素子S2の第2の電極端子6及び半導体素子S3の第1の電極端子5に固定ねじ16によって固定される。この取付フランジ部10d及び10eの固定状態で、対向側板部10a及び10eが半導体素子S2及びS3の水平方向の中央位置に達しないように取付フランジ部10d及び10eの小径挿通孔10f及び10gの中心と対向側板部10a及び10bとの間の長さが設定されている。同様に、連結板部10cの水平方向の長さも取付フランジ部10d及び10eを半導体素子S2の第2の電極端子6及び半導体素子S3の第1の電極端子5に固定した状態で、隣接する半導体素子S2及びS3間に所定の放熱用隙間が生じるように設定されている。   The mounting flange portions 10d and 10e are fixed to the second electrode terminal 6 of the semiconductor element S2 and the first electrode terminal 5 of the semiconductor element S3 by a fixing screw 16. The center of the small-diameter insertion holes 10f and 10g of the mounting flange portions 10d and 10e so that the opposing side plate portions 10a and 10e do not reach the horizontal center position of the semiconductor elements S2 and S3 when the mounting flange portions 10d and 10e are fixed. And the opposite side plate portions 10a and 10b are set to a length. Similarly, the length of the connecting plate portion 10c in the horizontal direction is such that the adjacent flanges 10d and 10e are fixed to the second electrode terminal 6 of the semiconductor element S2 and the first electrode terminal 5 of the semiconductor element S3. A predetermined heat radiation gap is set between the elements S2 and S3.

さらに、群間接続導体10は、連結板部10cの長手方向の略中央位置から水平方向に前方に突出形成され交流外部出力端子ACとなる外部接続端子TACを備えている。
一方、上アーム2は、図2〜図4に示すように、所定間隔を保って隣接する半導体素子S1の第2の電極端子6と半導体素子S2の第1の電極端子5とが導電性を有する素子間接続導体11によって電気的に接続されている。また、隣接する半導体素子がなく接続相手のない半導体素子S1の第1の電極端子5と正極ラインPとが導電性を有する第1の外部接続導体12によって電気的に接続されている。
Further, the inter-group connection conductor 10 includes an external connection terminal TAC that protrudes forward in a horizontal direction from a substantially central position in the longitudinal direction of the connecting plate portion 10c and serves as an AC external output terminal AC.
On the other hand, as shown in FIGS. 2 to 4, the upper arm 2 has conductivity between the second electrode terminal 6 of the semiconductor element S1 and the first electrode terminal 5 of the semiconductor element S2 that are adjacent to each other with a predetermined interval. The inter-element connection conductor 11 is electrically connected. Further, the first electrode terminal 5 and the positive electrode line P of the semiconductor element S1 having no adjacent semiconductor element and no connection partner are electrically connected by the first external connection conductor 12 having conductivity.

素子間接続導体11は、図2〜4に示すように、連結板部10cに形成された外部接続端子TACが省略されていることを除いては、前述した群間接続導体10と同様の構成を有し、群間接続導体10との対応部分には同一符号を付し、その詳細説明はこれを省略する。
第1の外部接続導体12は、図2〜4に示すように、素子間接続導体11の対向側板部10aに所定間隔を保って対向するインダクタンス相殺部となる側板部12aと、その側板部12aの上端から素子間接続導体11の連結板部10cと同じ高さで左方に突出する外部接続端子TPとなる接続板部12bと、側板部12aの下端から接続板部12bと平行となるように左方に所定長さ突出形成され、半導体素子S1の第1の電極端子5に固定される取付フランジ部12cとを備えている。ここで、取付フランジ部12cには、接続板部12bと対向する部位の略中央位置に固定ねじ16の雄ねじ部16bを挿通する小径挿通孔12dが形成されている。さらに、接続板部12bには、取付フランジ部12cの小径挿通孔12dと同軸上に固定ねじ16の頭部16aを挿通する大径挿通孔12eが形成されている。そして、取付フランジ部12cの小径挿通孔12dの中心と側板部12aまでの長さが、取付フランジ部12cを半導体素子S1の第1の電極端子5に固定した状態で、側板部12aが素子間接続導体11の対向側板部10aと所定間隔を保って対向するように設定されている。また、第1の外部接続導体12の接続板部12bの自由端にはその前方側から左方に突出する幅狭の外部接続端子TPが一体に形成されている。
As shown in FIGS. 2 to 4, the inter-element connection conductor 11 has the same configuration as the inter-group connection conductor 10 except that the external connection terminal TAC formed in the connecting plate portion 10 c is omitted. And corresponding parts to the inter-group connection conductor 10 are denoted by the same reference numerals, and detailed description thereof is omitted.
As shown in FIGS. 2 to 4, the first external connection conductor 12 includes a side plate portion 12 a serving as an inductance canceling portion facing the opposing side plate portion 10 a of the inter-element connection conductor 11 at a predetermined interval, and the side plate portion 12 a. The connection plate portion 12b serving as the external connection terminal TP that protrudes to the left at the same height as the connection plate portion 10c of the inter-element connection conductor 11 from the upper end of the connection plate 12 is parallel to the connection plate portion 12b from the lower end of the side plate portion 12a. And a mounting flange portion 12c that protrudes to the left by a predetermined length and is fixed to the first electrode terminal 5 of the semiconductor element S1. Here, the attachment flange portion 12c is formed with a small-diameter insertion hole 12d through which the male screw portion 16b of the fixing screw 16 is inserted at a substantially central position of a portion facing the connection plate portion 12b. Further, the connection plate portion 12b is formed with a large-diameter insertion hole 12e through which the head portion 16a of the fixing screw 16 is inserted coaxially with the small-diameter insertion hole 12d of the mounting flange portion 12c. The length between the center of the small-diameter insertion hole 12d of the mounting flange portion 12c and the side plate portion 12a is fixed to the first electrode terminal 5 of the semiconductor element S1 with the length of the mounting flange portion 12c being between the elements. It is set so as to face the opposing side plate portion 10a of the connection conductor 11 with a predetermined interval. In addition, a narrow external connection terminal TP protruding leftward from the front side is integrally formed at the free end of the connection plate portion 12 b of the first external connection conductor 12.

下アーム3は、図2〜図4に示すように、隣接する半導体素子S3の第2の電極端子6と半導体素子S4の第1の電極端子5とが前述した素子間接続導体11と同様の構成を有する素子間接続導体13によって電気的に接続され、隣接する半導体素子がなく接続相手のいない半導体素子S4の第2の電極端子6と負極ラインNとが導電性を有する第2の外部接続導体14によって電気的に接続されている。   As shown in FIGS. 2 to 4, the lower arm 3 includes the second electrode terminal 6 of the adjacent semiconductor element S3 and the first electrode terminal 5 of the semiconductor element S4 that are similar to the inter-element connection conductor 11 described above. Second external connection in which the second electrode terminal 6 of the semiconductor element S4 and the negative electrode line N of the semiconductor element S4 which are electrically connected by the inter-element connection conductor 13 having the configuration and have no adjacent semiconductor element and no connection partner have conductivity. The conductors 14 are electrically connected.

第2の外部接続導体14は、図2〜4に示すように、素子間接続導体13の対向側板部10bに所定間隔を保って対向するインダクタンス相殺部となる側板部14aと、その側板部14aの上端に連設され素子間接続導体13の連結板部10c、群間接続導体10の連結板部10c、素子間接続導体11の連結板部10c上を所定間隔を保って通って第1の外部接続導体12に達して延長する接続板部14bと、側板部14aの下端から接続板部14bとは反対方向に所定長さ突出形成され半導体素子S4の第2の電極端子6に固定される取付フランジ部14cとを備えている。ここで、取付フランジ部14cには、略中央位置に固定ねじ16の雄ねじ部16bを挿通する小径挿通孔14dが形成されている。そして、取付フランジ部14cの小径挿通孔14dの中心と側板部14aまでの長さが、取付フランジ部14cを半導体素子S4の第2の電極端子6に固定した状態で、側板部14aが素子間接続導体13の対向側板部10aと所定間隔を保って対向するように設定されている。また、接続板部14bの自由端には第1の外部接続導体12の外部接続端子TPと平面から見て重ならない位置に外部接続端子TNが一体に突出形成されている。   As shown in FIGS. 2 to 4, the second external connection conductor 14 includes a side plate portion 14 a serving as an inductance canceling portion facing the opposing side plate portion 10 b of the inter-element connection conductor 13 at a predetermined interval, and the side plate portion 14 a. The connection plate portion 10c of the inter-element connection conductor 13, the connection plate portion 10c of the inter-group connection conductor 10, and the connection plate portion 10c of the inter-element connection conductor 11 are provided at predetermined intervals to be connected to the upper ends of the first and second elements. A connection plate portion 14b extending to reach the external connection conductor 12 and a predetermined length projecting from the lower end of the side plate portion 14a in the opposite direction to the connection plate portion 14b are fixed to the second electrode terminal 6 of the semiconductor element S4. And a mounting flange portion 14c. Here, the mounting flange portion 14c is formed with a small-diameter insertion hole 14d through which the male screw portion 16b of the fixing screw 16 is inserted at a substantially central position. The length between the center of the small-diameter insertion hole 14d of the mounting flange portion 14c and the side plate portion 14a is fixed to the second electrode terminal 6 of the semiconductor element S4 so that the side plate portion 14a is between the elements. It is set so as to face the opposing side plate portion 10a of the connection conductor 13 with a predetermined interval. In addition, an external connection terminal TN is integrally formed at the free end of the connection plate portion 14b so as not to overlap with the external connection terminal TP of the first external connection conductor 12 when viewed from the plane.

また、各接続導体10、11、12、13及び14は、絶縁部材15によって絶縁されている。
この絶縁部材15は、図2〜4に示すように、第1の外部接続導体12の接続板部12b、素子間接続導体11の連結板部10c、群間接続導体10の連結板部10c及び素子間接続導体13の連結板部10cの上面を覆う平板部15aと、この平板部15aの下面に所定間隔を保って平行に垂設された仕切り板部15b〜15eとを備えている。ここで、仕切り板部15bは、第1の外部接続導体12の側板部12aと素子間接続導体11の対向側板部10aとの間に挿通されている。また、仕切り板部15cは、素子間接続導体11の対向側板部10bと群間接続導体10の対向側板部10aとの間に挿通されている。さらに、仕切り板部15dは、群間接続導体10の対向側板部10bと素子間接続導体13の対向側板部10aとの間に挿通されている。さらにまた、仕切り板部15eは、素子間接続導体13の対向側板部10bと第2の外部接続導体14の側板部14aとの間に挿通されている。なおさらに、平板部15aの幅は前述した群間接続導体10の連結板部10c、素子間接続導体11及び13の連結板部10c、第1の外部接続導体12の接続板部12b及び第2の外部接続導体14の接続板部14bの幅より幅広に形成されている。
Each connection conductor 10, 11, 12, 13 and 14 is insulated by an insulating member 15.
2 to 4, the insulating member 15 includes a connection plate portion 12 b of the first external connection conductor 12, a connection plate portion 10 c of the inter-element connection conductor 11, a connection plate portion 10 c of the inter-group connection conductor 10, and A flat plate portion 15a that covers the upper surface of the connecting plate portion 10c of the inter-element connection conductor 13 and partition plate portions 15b to 15e that are suspended from the lower surface of the flat plate portion 15a in parallel with a predetermined distance. Here, the partition plate portion 15 b is inserted between the side plate portion 12 a of the first external connection conductor 12 and the opposing side plate portion 10 a of the inter-element connection conductor 11. Further, the partition plate portion 15 c is inserted between the opposing side plate portion 10 b of the inter-element connection conductor 11 and the opposing side plate portion 10 a of the inter-group connection conductor 10. Further, the partition plate portion 15 d is inserted between the opposing side plate portion 10 b of the inter-group connection conductor 10 and the opposing side plate portion 10 a of the inter-element connection conductor 13. Furthermore, the partition plate portion 15 e is inserted between the opposing side plate portion 10 b of the inter-element connection conductor 13 and the side plate portion 14 a of the second external connection conductor 14. Furthermore, the width of the flat plate portion 15a is the same as the connecting plate portion 10c of the inter-group connecting conductor 10, the connecting plate portion 10c of the inter-element connecting conductors 11 and 13, the connecting plate portion 12b of the first external connecting conductor 12, and the second. The outer connection conductor 14 is formed wider than the width of the connection plate portion 14b.

次に、上記第1の実施形態の動作を説明する。
スイッチングアーム1を組立てるには、先ず、図4に示すように、同一平面上に半導体素子S1、S2、S3及びS4をその順に所定間隔を保って、半導体素子S1〜S4の第1の電極端子5が左側、第2の電極端子6が右側となるように直線上に整列配置する。
次に、第1の外部接続導体12の接続板部12bを半導体素子S1の第2の電極端子6側とは反対側に向けた状態で、半導体素子S1の第1の電極端子5上に、第1の外部接続導体12の取付フランジ部12cを、小径挿通孔12dを雌ねじ部7に略一致させて載置する。
Next, the operation of the first embodiment will be described.
To assemble the switching arm 1, first, as shown in FIG. 4, the first electrode terminals of the semiconductor elements S <b> 1 to S <b> 4 are arranged on the same plane with the semiconductor elements S <b> 1, S <b> 2, S <b> 3 and S <b> 4 kept in that order. Arrange them on a straight line so that 5 is on the left side and the second electrode terminal 6 is on the right side.
Next, in a state where the connection plate portion 12b of the first external connection conductor 12 is directed to the side opposite to the second electrode terminal 6 side of the semiconductor element S1, on the first electrode terminal 5 of the semiconductor element S1, The mounting flange portion 12c of the first outer connecting conductor 12 is placed with the small diameter insertion hole 12d substantially aligned with the female screw portion 7.

そして、固定ねじ16を例えばマグネット付きドライバによって支持して、接続板部12bの上方から大径挿通孔12e内に挿入し、固定ねじ16の雄ねじ部16bを小径挿通孔12dを通じて半導体素子S1の第1の電極端子5の雌ねじ部7に螺合させて、第1の外部接続導体12を第1の電極端子5に電気的に接続する。
次に、第1の外部接続導体12の側板部12aに素子間接続導体11の対向側板部10aを所定間隔を保って対向させ、且つ半導体素子S1の第2の電極端子6の雌ねじ部7と素子間接続導体11の取付フランジ部10dと小径挿通孔10fとを略一致させる。この状態で、上述したと同様に、固定ねじ16をマグネット付きドライバによって支持して、素子間接続導体11の連結板部10cの上方から大径挿通孔10hに挿入し、雄ねじ部16bを小径挿通孔10fを通じて第2の電極端子6の雌ねじ部7に螺合させる。
Then, the fixing screw 16 is supported by, for example, a magnet driver, and is inserted into the large-diameter insertion hole 12e from above the connection plate portion 12b, and the male screw portion 16b of the fixing screw 16 is inserted through the small-diameter insertion hole 12d. The first external connection conductor 12 is electrically connected to the first electrode terminal 5 by screwing into the female screw portion 7 of the one electrode terminal 5.
Next, the opposing side plate portion 10a of the inter-element connection conductor 11 is opposed to the side plate portion 12a of the first external connection conductor 12 at a predetermined interval, and the internal thread portion 7 of the second electrode terminal 6 of the semiconductor element S1 is disposed. The mounting flange portion 10d of the inter-element connection conductor 11 and the small diameter insertion hole 10f are substantially matched. In this state, in the same manner as described above, the fixing screw 16 is supported by a driver with a magnet and inserted into the large-diameter insertion hole 10h from above the connecting plate portion 10c of the inter-element connection conductor 11, and the male screw portion 16b is inserted through the small-diameter insertion. The second electrode terminal 6 is screwed into the female screw portion 7 through the hole 10f.

同様に、素子間接続導体11の取付フランジ部10eを半導体素子S2の第1の電極端子5に固定ねじ16でねじ留めすることにより上アーム2の組付けを完了する。
以下、同様にして、半導体素子S2の第2の電極端子6及び半導体素子S3の第1の電極端子5に群間接続導体10をそれぞれ固定ねじ16でねじ留めし、次いで、半導体素子S3の第2の電極端子6及び半導体素子S4の第1の電極端子5に素子間接続導体13を固定ねじ16でねじ留めする。
Similarly, the mounting of the upper arm 2 is completed by screwing the mounting flange portion 10e of the inter-element connection conductor 11 to the first electrode terminal 5 of the semiconductor element S2 with the fixing screw 16.
Thereafter, similarly, the inter-group connection conductor 10 is screwed to the second electrode terminal 6 of the semiconductor element S2 and the first electrode terminal 5 of the semiconductor element S3 with the fixing screw 16, respectively, and then the second electrode terminal 6 of the semiconductor element S3 The inter-element connection conductor 13 is screwed with the fixing screw 16 to the second electrode terminal 6 and the first electrode terminal 5 of the semiconductor element S4.

その後、第1の外部接続導体12、素子間接続導体11、群間接続導体10及び素子間接続導体13を絶縁部材15で絶縁する。この絶縁部材15による絶縁は、第1の外部接続導体12及び素子間接続導体11間、素子間接続導体11及び群間接続導体10間、群間接続導体10及び素子間接続導体間に仕切り板部15b乃至15dを挿通し、且つ仕切り板部15eを素子間接続導体13の対向側板部10bに沿わせながら絶縁部材15の平板部15aの下面を第1の外部接続導体12の接続板部12b、素子間接続導体11、群間接続導体10及び素子間接続導体13の連結板部10cに接触することにより行なう。   Thereafter, the first external connection conductor 12, the inter-element connection conductor 11, the inter-group connection conductor 10 and the inter-element connection conductor 13 are insulated by the insulating member 15. Insulation by the insulating member 15 is performed between the first external connection conductor 12 and the inter-element connection conductor 11, between the inter-element connection conductor 11 and the inter-group connection conductor 10, and between the inter-group connection conductor 10 and the inter-element connection conductor. The bottom surface of the flat plate portion 15a of the insulating member 15 is connected to the connection plate portion 12b of the first external connection conductor 12 while the portions 15b to 15d are inserted and the partition plate portion 15e is along the opposite side plate portion 10b of the inter-element connection conductor 13. , By contacting the connecting plate portion 10c of the inter-element connection conductor 11, the inter-group connection conductor 10, and the inter-element connection conductor 13.

次に、第2の外部接続導体14の接続板部14bを上方に向けた状態で、絶縁部材15の仕切り板部15eの外側に第2の外部接続導体14の側板部14aの内側を接触させる。
そして、第2の外部接続導体14の取付フランジ部14cの小径挿通孔14dを半導体素子S4の第2の電極端子6の雌ねじ部7に略一致させて、前述したと同様に、固定ねじ6を雌ねじ部7に螺合させて固定する。
Next, the inside of the side plate portion 14a of the second external connection conductor 14 is brought into contact with the outside of the partition plate portion 15e of the insulating member 15 with the connection plate portion 14b of the second external connection conductor 14 facing upward. .
Then, the small-diameter insertion hole 14d of the mounting flange portion 14c of the second external connection conductor 14 is made to substantially coincide with the female screw portion 7 of the second electrode terminal 6 of the semiconductor element S4, and the fixing screw 6 is attached as described above. The internal thread portion 7 is screwed and fixed.

このようにして、スイッチングアーム1の組付けが完了する。この組付けが完了した時点で、平面から見ると図2に示すように、各外部接続端子TP及びTNが左端側の前後位置に突出し、外部接続端子TACが左右方向の略中央位置で前方に突出している。
このため、上記のように組立てたスイッチングアーム1を3列並列に配置し、各外部接続端子TP及びTNを正極ラインP及び負極ラインNに接続し、外部接続端子TACを3相負荷に接続することにより、3相インバータを構成することができる。
In this way, the assembly of the switching arm 1 is completed. When this assembly is completed, the external connection terminals TP and TN protrude to the front and rear positions on the left end side as shown in FIG. 2 when viewed from the top, and the external connection terminals TAC are moved forward at a substantially central position in the left-right direction. It protrudes.
For this reason, the switching arms 1 assembled as described above are arranged in parallel in three rows, the external connection terminals TP and TN are connected to the positive line P and the negative line N, and the external connection terminal TAC is connected to the three-phase load. Thus, a three-phase inverter can be configured.

以下、第1の実施形態のスイッチングアーム1に流れる電流の経路について説明する。
ここで、上アーム2の半導体素子S1及びS2の半導体スイッチング素子Q1及びQ2をオン状態としたときの図1の電流経路L1は、充放電用コンデンサCの正極側から電流が、図4に示すように、外部接続端子TP→接続板部12b→側板部12a→取付フランジ部12c→半導体素子S1の第1の電極端子5→半導体素子S1の第2の電極端子6→素子間接続導体11の取付フランジ部10d→素子間接続導体11の対向側板部10a→素子間接続導体11の連結板部10c→素子間接続導体11の対向側板部10b→素子間接続導体11の取付フランジ部10e→半導体素子S2の第1の電極端子5→半導体素子S2の第2の電極端子6→群間接続導体10の取付フランジ部10d→群間接続導体10の対向側板部10a→群間接続導体10の連結板部10c→外部接続端子TACの順に電流が流れる。
Hereinafter, the path of the current flowing through the switching arm 1 of the first embodiment will be described.
Here, when the semiconductor switching elements Q1 and Q2 of the semiconductor elements S1 and S2 of the upper arm 2 are turned on, the current path L1 of FIG. Thus, the external connection terminal TP → the connection plate portion 12b → the side plate portion 12a → the mounting flange portion 12c → the first electrode terminal 5 of the semiconductor element S1 → the second electrode terminal 6 of the semiconductor element S1 → the inter-element connection conductor 11 Mounting flange portion 10d → opposing side plate portion 10a of inter-element connection conductor 11 → connecting plate portion 10c of inter-element connection conductor 11 → opposed side plate portion 10b of inter-element connection conductor 11 → mounting flange portion 10e of inter-element connection conductor 11 → semiconductor The first electrode terminal 5 of the element S2 → the second electrode terminal 6 of the semiconductor element S2 → the mounting flange portion 10d of the inter-group connection conductor 10 → the opposed side plate portion 10a of the inter-group connection conductor 10 → the inter-group connection. Connecting plate portion 10c → current flows in the order of the external connection terminals TAC body 10.

そして、下アーム3の半導体素子S3及びS4の半導体スイッチング素子Q3及びQ4がオフ状態であってもダイオードD3及びD4を流れる図1の電流経路L2は、充放電用コンデンサCの負極側から電流が、図4に示すように、外部接続端子TN→接続板部14b→側板部14a→取付フランジ部14c→半導体素子S4の第2の電極端子6→半導体素子S4の第1の電極端子5→素子間接続導体13の取付フランジ部10e→素子間接続導体13の対向側板部10b→素子間接続導体13の連結板部10c→素子間接続導体13の対向側板部10a→素子間接続導体13の取付フランジ部10d→半導体素子S3の第2の電極端子6→半導体素子S3の第1の電極端子5→群間接続導体10の取付フランジ部10e→群間接続導体10の対向側板部10b→群間接続導体10の連結板部10c→外部接続端子TACの順に電流が流れることができる。   1 flows through the diodes D3 and D4 even when the semiconductor switching elements Q3 and Q4 of the semiconductor elements S3 and S4 of the lower arm 3 are in the OFF state, the current flows from the negative electrode side of the charging / discharging capacitor C. 4, external connection terminal TN → connection plate portion 14b → side plate portion 14a → mounting flange portion 14c → second electrode terminal 6 of semiconductor element S4 → first electrode terminal 5 of semiconductor element S4 → element Mounting flange portion 10e of inter-connection conductor 13 → opposite side plate portion 10b of inter-element connection conductor 13 → connecting plate portion 10c of inter-element connection conductor 13 → opposite side plate portion 10a of inter-element connection conductor 13 → attachment of inter-element connection conductor 13 Flange portion 10d → second electrode terminal 6 of semiconductor element S3 → first electrode terminal 5 of semiconductor element S3 → mounting flange portion 10e of inter-group connection conductor 10 → inter-group connection conductor 10 Current can flow in the order of the connecting plate portion 10c → the external connection terminals TAC of opposing side plate portions 10b → intergroup connection conductor 10.

今、上アーム2がオン状態で、図1に示すように、電流経路L1の電流が流れていたとする。そして、この状態で、上アーム2がターンオフすると、電流経路L1の電流が減少すると共に、ダイオードD3及びD4を通じて流れる電流経路L2の電流が増加する。
このため、上アーム2のターンオフ時には、半導体素子S1では、第1の電極端子5及び第2の電極端子6にそれぞれ接続されている第1の外部接続導体12の側板部12a及び素子間接続導体11の対向側板部10a間で逆方向の電流が流れ、同様に半導体素子S2では、第1の電極端子5及び第2の電極端子6にそれぞれ接続されている素子間接続導体11の対向側板部10b及び群間接続導体10の対向側板部10a間で逆方向の電流が流れる。同様に、半導体素子S4では、第2の電極端子6及び第1の電極端子5にそれぞれ接続されている第2の外部接続導体14の側板部14a及び素子間接続導体13の対向側板部10b間で逆方向の電流が流れ、半導体素子S3では、第2の電極端子6及び第1の電極端子5にそれぞれ接続されている素子間接続導体13の対向側板部10a及び群間接続導体10の対向側板部10b間で逆方向の電極が流れる。
Now, assume that the upper arm 2 is in the ON state and the current in the current path L1 flows as shown in FIG. In this state, when the upper arm 2 is turned off, the current in the current path L1 decreases and the current in the current path L2 flowing through the diodes D3 and D4 increases.
Therefore, when the upper arm 2 is turned off, in the semiconductor element S1, the side plate portion 12a of the first external connection conductor 12 and the inter-element connection conductor connected to the first electrode terminal 5 and the second electrode terminal 6, respectively. 11, opposite current flows between the opposing side plate portions 10a. Similarly, in the semiconductor element S2, the opposite side plate portions of the inter-element connection conductors 11 connected to the first electrode terminal 5 and the second electrode terminal 6 respectively. A current in the reverse direction flows between 10 b and the opposing side plate portion 10 a of the inter-group connection conductor 10. Similarly, in the semiconductor element S4, between the side plate portion 14a of the second external connection conductor 14 and the opposing side plate portion 10b of the inter-element connection conductor 13 connected to the second electrode terminal 6 and the first electrode terminal 5, respectively. In the semiconductor element S3, the opposing side plate portion 10a of the inter-element connection conductor 13 and the inter-group connection conductor 10 that are connected to the second electrode terminal 6 and the first electrode terminal 5 respectively are opposed to each other in the semiconductor element S3. Electrodes in the opposite direction flow between the side plate portions 10b.

このため、互いに近接対向している接続導体の板部間で逆方向の電流が流れることにより、通電によって発生する磁束の向きが逆方向となる。この結果、逆方向の磁束が互いに打ち消し合うことになり、インダクタンス成分を低減することができ、スイッチング時の電流の変化に伴う電圧の跳ね上がりを確実に抑制することができる。
しかも、半導体素子S1〜S4を群間接続導体10及び素子間接続導体11、13で接続するので、別途群間接続導体10又は素子間接続導体11、13を用意しさえすれば、直列に接続する半導体素子数の制限は全くないものである。この場合、接続する半導体素子数に応じて第2の外部接続導体14の長さを変更すればよい。
For this reason, when the current in the reverse direction flows between the plate portions of the connecting conductors that are close to each other, the direction of the magnetic flux generated by energization is in the reverse direction. As a result, the magnetic fluxes in the opposite directions cancel each other, the inductance component can be reduced, and the jumping of the voltage accompanying the change in current during switching can be reliably suppressed.
In addition, since the semiconductor elements S1 to S4 are connected by the inter-group connection conductor 10 and the inter-element connection conductors 11 and 13, they are connected in series as long as the inter-group connection conductor 10 or the inter-element connection conductors 11 and 13 are separately prepared. There is no limit on the number of semiconductor elements to be used. In this case, the length of the second external connection conductor 14 may be changed according to the number of semiconductor elements to be connected.

なお、上記実施形態において、スイッチングアーム1を構成する際に、半導体素子S1〜S4を載置可能な凹部を所定間隔で有する治具を用意し、この治具の凹部に半導体素子S1〜S4を装着した状態で、群間接続導体10、素子間接続導体11,13及び第1の外部接続導体12を固定し、この状態で絶縁部材15を装着した後に第2の外部接続導体14を装着することにより、接続作業を容易に行うことができる。   In the above embodiment, when the switching arm 1 is configured, a jig having recesses in which the semiconductor elements S1 to S4 can be placed is prepared at predetermined intervals, and the semiconductor elements S1 to S4 are placed in the recesses of the jig. In the mounted state, the inter-group connection conductor 10, the inter-element connection conductors 11, 13 and the first external connection conductor 12 are fixed, and the second external connection conductor 14 is mounted after mounting the insulating member 15 in this state. Thus, the connection work can be easily performed.

次に、本発明における第2の実施形態を図5〜図8について説明する。
ここで、図5は、第2の実施形態の電力変換装置を示す回路図、図6は、図5の機械的接続構造を示す平面図、図7は、図6のB−B線上の断面図、図8は、第2の実施形態を示す分解斜視図である。
この第2の実施形態では、半導体素子S1〜S4に代えて充放電用コンデンサC1及びC2を整列配置し直列に接続するようにしたものである。
Next, a second embodiment of the present invention will be described with reference to FIGS.
Here, FIG. 5 is a circuit diagram showing the power conversion device of the second embodiment, FIG. 6 is a plan view showing the mechanical connection structure of FIG. 5, and FIG. 7 is a cross-section on the line BB of FIG. FIG. 8 is an exploded perspective view showing the second embodiment.
In the second embodiment, instead of the semiconductor elements S1 to S4, charging / discharging capacitors C1 and C2 are aligned and connected in series.

すなわち、第2の実施形態では、図5〜図8に示すように、正極ラインP及び負極ラインN間に、2つの充放電用コンデンサC1及びC2を直列に接続した回路素子群としての直列回路20が形成されている。
ここで、各充放電用コンデンサC1及びC2のそれぞれは、図6〜図8に示すように、少なくとも上面が絶縁体で形成された円筒状のケース21と、このケース21の上面にその径方向に所定間隔を保って配設された第1及び第2の電極端子22及び23とを備えている。ここで、ケース21内の第1及び第2の電極端子22及び23の間には図示しない誘電体が介装されている。そして、第1及び第2の電極端子22及び23にはそれぞれ上面中央部に雌ねじ部24が形成されている。
That is, in the second embodiment, as shown in FIGS. 5 to 8, a series circuit as a circuit element group in which two charge / discharge capacitors C <b> 1 and C <b> 2 are connected in series between the positive electrode line P and the negative electrode line N. 20 is formed.
Here, each of the charging / discharging capacitors C1 and C2 includes, as shown in FIGS. 6 to 8, a cylindrical case 21 having at least an upper surface formed of an insulator, and a radial direction on the upper surface of the case 21. Are provided with first and second electrode terminals 22 and 23 arranged at a predetermined interval. Here, a dielectric (not shown) is interposed between the first and second electrode terminals 22 and 23 in the case 21. Each of the first and second electrode terminals 22 and 23 has a female screw portion 24 at the center of the upper surface.

直列回路20を構成する充放電用コンデンサC1及びC2は、図5〜図8に示すように、隣接する充放電用コンデンサC1の第2の電極端子23と充放電用コンデンサC2の第1の電極端子22とが前述した第1の実施形態における素子間接続導体11及び13と同一構成を有する素子間接続導体25によって電気的に接続され、隣接する充放電用コンデンサがなく接続相手のいない充放電用コンデンサC1の第1の電極端子22と正極ラインPとが前述した第1の実施形態における第1の外部接続導体12と同一構成を有する第1の外部接続導体26によって電気的に接続され、隣接する充放電用コンデンサがなく接続相手のいない充放電用コンデンサC2の第2の電極端子23と負極ラインNとが前述した第1の実施形態における第2の外部接続導体14と同一構成を有する第2の外部接続導体27によって電気的に接続されている。そして、それぞれの接続導体25、26及び27は、絶縁部材28によって絶縁されている。これら素子間接続導体25、第1の外部接続導体26及び第2の外部接続導体27は前述した第1の実施形態における素子間接続導体11,13、第1の外部接続導体12及び第2の外部接続導体14と同一構成を有するので、これらとの対応部分には同一符号を付し、その詳細説明はこれを省略する。   As shown in FIGS. 5 to 8, the charge / discharge capacitors C1 and C2 constituting the series circuit 20 include the second electrode terminal 23 of the adjacent charge / discharge capacitor C1 and the first electrode of the charge / discharge capacitor C2. Charge / discharge in which the terminal 22 is electrically connected by the inter-element connection conductor 25 having the same configuration as the inter-element connection conductors 11 and 13 in the first embodiment described above, and there is no adjacent charge / discharge capacitor and no connection partner The first electrode terminal 22 of the capacitor C1 and the positive electrode line P are electrically connected by the first external connection conductor 26 having the same configuration as the first external connection conductor 12 in the first embodiment described above, The second electrode terminal 23 and the negative electrode line N of the charging / discharging capacitor C2 having no adjacent charging / discharging capacitor and no connection partner are the second in the first embodiment described above. It is electrically connected by a second external connection conductor 27 having a part connecting conductor 14 having the same configuration. The respective connection conductors 25, 26 and 27 are insulated by an insulating member 28. The inter-element connection conductor 25, the first external connection conductor 26, and the second external connection conductor 27 are the inter-element connection conductors 11, 13, the first external connection conductor 12, and the second external connection conductor 27 in the first embodiment. Since it has the same configuration as that of the external connection conductor 14, the same reference numerals are given to the corresponding parts, and the detailed description thereof will be omitted.

絶縁部材28は、図6〜図8に示すように、第1の外部接続導体26の接続板部12bと素子間接続導体25の連結板部10c及び第2の外部接続導体27の接続板部14bを覆う平板部28aを備えている。さらに、平板部28aの下面に所定間隔を保って平行に垂設された仕切り板部28b及び28cを備えている。ここで、仕切り板部28cは、平板部28aの一端に連設されている。   As shown in FIGS. 6 to 8, the insulating member 28 includes a connection plate portion 12 b of the first external connection conductor 26, a connection plate portion 10 c of the inter-element connection conductor 25, and a connection plate portion of the second external connection conductor 27. The flat plate part 28a which covers 14b is provided. Furthermore, partition plates 28b and 28c are provided on the lower surface of the flat plate portion 28a so as to be suspended in parallel at a predetermined interval. Here, the partition plate portion 28c is connected to one end of the flat plate portion 28a.

そして、絶縁部材28は、仕切り板部28bを第1の外部接続導体26の側板部12aと素子間接続導体25の対向側板部10aとの間に介挿し、仕切り板部28cを素子間接続導体25の対向側板部10bと第2の外部接続導体27の側板部14aとの間に介挿し、平板部28aを第1の外部接続導体26の接続板部12b及び素子間接続導体25の連結板部10cと第2の外部接続導体27の接続板部14bとの間に介挿した関係で、第1の外部接続導体26、素子間接続導体25及び第2の外部接続導体27を絶縁している。   The insulating member 28 has the partition plate portion 28b interposed between the side plate portion 12a of the first external connection conductor 26 and the opposing side plate portion 10a of the inter-element connection conductor 25, and the partition plate portion 28c is inter-element connection conductor. 25, the opposing side plate portion 10b and the side plate portion 14a of the second external connection conductor 27 are inserted, and the flat plate portion 28a is connected to the connection plate portion 12b of the first external connection conductor 26 and the connection plate of the inter-element connection conductor 25. Insulating the first external connection conductor 26, the inter-element connection conductor 25, and the second external connection conductor 27 with a relationship interposed between the portion 10 c and the connection plate portion 14 b of the second external connection conductor 27. Yes.

次に、第2の実施形態による直列回路20に流れる電流の経路について説明する。
ここで、図5に示す充放電用コンデンサC1から正極ラインPへの電流経路L3に相当する電流は、図9に示すように、充放電用コンデンサC1の第1の電極端子22→取付フランジ部12c→側板部12a→接続板部12bの順に流れる。
そして、図5に示す充放電用コンデンサC2から負極ラインNへの電流経路L4に相当する電流は、図9に示すように、充放電用コンデンサC2の第2の電極端子23→取付フランジ部14c→側板部14a→接続板部14b→の順に電流が流れる。
Next, the path of the current flowing through the series circuit 20 according to the second embodiment will be described.
Here, the current corresponding to the current path L3 from the charge / discharge capacitor C1 to the positive line P shown in FIG. 5 is the first electrode terminal 22 → mounting flange portion of the charge / discharge capacitor C1, as shown in FIG. It flows in the order of 12c → side plate portion 12a → connecting plate portion 12b.
As shown in FIG. 9, the current corresponding to the current path L4 from the charging / discharging capacitor C2 to the negative electrode line N shown in FIG. 5 is the second electrode terminal 23 → the mounting flange portion 14c of the charging / discharging capacitor C2. → Current flows in the order of side plate portion 14a → connection plate portion 14b →.

また、電流経路L3又は電流経路L4で電流が流れるときに、充放電用コンデンサC1及びC2を接続する素子間接続導体25の部分では、図9に示すように、充放電用コンデンサC1の第2の電極端子22→素子間接続導体25の取付フランジ部10d→素子間接続導体11の対向側板部10a→素子間接続導体25の連結板部10c→素子間接続導体25の対向側板部10b→素子間接続導体25の取付フランジ部10e→充放電用コンデンサC2の第1の電極端子22の順に電流が流れる。   In addition, when current flows through the current path L3 or the current path L4, in the portion of the inter-element connection conductor 25 that connects the charge / discharge capacitors C1 and C2, as shown in FIG. Electrode terminal 22 → mounting flange portion 10d of inter-element connection conductor 25 → opposing side plate portion 10a of inter-element connection conductor 11 → connecting plate portion 10c of inter-element connection conductor 25 → opposed side plate portion 10b of inter-element connection conductor 25 → element A current flows in the order of the mounting flange portion 10e of the inter-connection conductor 25 and the first electrode terminal 22 of the charge / discharge capacitor C2.

したがって、電流経路L3(又はL4)で電流が流れるときには、第1の外部接続導体26の側板部12a及び素子間接続導体25の対向側板部10a間(又は第2の外部接続導体27の側板部14a及び素子間接続導体25の対向側板部10b間)で逆方向の電流が流れることになり、これら電流によって発生する磁束を互いに打ち消して、インダクタンス成分を低減することができ、スイッチング時の電流の変化に伴う電圧の跳ね上がりを確実に抑制することができる。   Therefore, when a current flows through the current path L3 (or L4), the side plate portion 12a of the first external connection conductor 26 and the opposite side plate portion 10a of the inter-element connection conductor 25 (or the side plate portion of the second external connection conductor 27). 14a and the opposite side plate portion 10b of the inter-element connection conductor 25), currents in opposite directions flow, and the magnetic fluxes generated by these currents cancel each other, reducing the inductance component. It is possible to reliably suppress the voltage jump accompanying the change.

しかも、充放電用コンデンサC2及びC1を素子間接続導体25で接続するので、別途素子間接続導体25を用意さえすれば、直列に接続する充放電用コンデンサ数の制限は全くないものである。この場合、接続する充放電用コンデンサ数に応じて第2の外部接続導体27の長さを変更すればよい。
次に、本発明における第3の実施形態を図10〜図13について説明する。
In addition, since the charge / discharge capacitors C2 and C1 are connected by the inter-element connection conductor 25, as long as the inter-element connection conductor 25 is prepared separately, the number of charge / discharge capacitors connected in series is not limited. In this case, the length of the second external connection conductor 27 may be changed according to the number of charge / discharge capacitors to be connected.
Next, a third embodiment of the present invention will be described with reference to FIGS.

ここで、図10は、第3の実施形態の電力変換装置の回路図、図11は、図10の機械的接続構造を示す平面図、図12は、図11のC−C線上の側面図、図13は、第3の実施形態を示す分解斜視図である。
この第3の実施形態では、半導体素子S1〜S4と充放電用コンデンサC1及びC2とを直列に整列配置しながら、半導体素子S1〜S4の直列回路と充放電用コンデンサC1及びC2の直列回路との並列回路を構成し、さらに両者間の接続中点間を接続するようにしたものである。
Here, FIG. 10 is a circuit diagram of the power conversion device of the third embodiment, FIG. 11 is a plan view showing the mechanical connection structure of FIG. 10, and FIG. 12 is a side view on the CC line of FIG. FIG. 13 is an exploded perspective view showing the third embodiment.
In the third embodiment, while the semiconductor elements S1 to S4 and the charge / discharge capacitors C1 and C2 are arranged in series, the series circuit of the semiconductor elements S1 to S4 and the series circuit of the charge / discharge capacitors C1 and C2 The parallel circuit is configured, and the connection midpoints between the two are further connected.

すなわち、第3の実施形態では、図10に示すように、前述した第1の実施形態の充放電用コンデンサとして前述した第2の実施形態の充放電用コンデンサC1及びC2を適用したものである。したがって、前述した第1の実施形態のスイッチングアーム1と並列に充放電用コンデンサC1及びC2の直列回路20が接続された回路構成とされている。
この図10に示す回路の機械的構成は、図11〜図12に示すように、前述した第1の実施形態と同様にスイッチングアーム1を構成する半導体素子S1〜S4がその順に群間接続導体10及び素子間接続導体11及び13によって電気的に接続されている。
That is, in the third embodiment, as shown in FIG. 10, the charge / discharge capacitors C1 and C2 of the second embodiment described above are applied as the charge / discharge capacitors of the first embodiment described above. . Therefore, the circuit configuration is such that the series circuit 20 of the charge / discharge capacitors C1 and C2 is connected in parallel with the switching arm 1 of the first embodiment described above.
The mechanical configuration of the circuit shown in FIG. 10 is such that, as shown in FIGS. 11 to 12, the semiconductor elements S <b> 1 to S <b> 4 constituting the switching arm 1 are arranged in that order in the same manner as in the first embodiment described above. 10 and inter-element connection conductors 11 and 13 are electrically connected.

一方、第2の従来例と同様に,充放電用コンデンサC1の第2の電極端子23及び充放電用コンデンサC2の第1の電極端子22が素子間接続導体25によって電気的に接続されている。
そして、スイッチングアーム1の半導体素子S1の第1の電極端子5と充放電用コンデンサC1の第1の電極端子22とが第1の外部接続導体31によって電気的に接続されていると共に、スイッチングアーム1の第4の半導体素子S4の第2の電極端子6と充放電用コンデンサC2の第2の電極端子23とが第2の外部接続導体32によって電気的に接続されている。
On the other hand, as in the second conventional example, the second electrode terminal 23 of the charging / discharging capacitor C1 and the first electrode terminal 22 of the charging / discharging capacitor C2 are electrically connected by the inter-element connection conductor 25. .
The first electrode terminal 5 of the semiconductor element S1 of the switching arm 1 and the first electrode terminal 22 of the charge / discharge capacitor C1 are electrically connected by the first external connection conductor 31 and the switching arm. The second electrode terminal 6 of the first fourth semiconductor element S4 and the second electrode terminal 23 of the charge / discharge capacitor C2 are electrically connected by the second external connection conductor 32.

ここで、第1の外部接続導体31は、外部接続端子TPが後端から後方に突出形成されていることを除いては前述した第1及び第2の実施形態における群間接続導体10と同様の構成を有し、群間接続導体10との対応部分には同一符号を付し、その詳細説明はこれを省略する。
また、第2の外部接続導体32は、前述した第1の実施形態の第2の外部接続導体14と同様に、側板部32a、接続板部32b及び取付フランジ部32cを有する。この第2の外部接続導体32は、接続板部32bの他端に連接された素子間接続導体25の対向側板部10aと所定間隔を保って対向する側板部32dを有するとともに、この側板部32dの下端に外方に突出して連接された取付フランジ部32eを有する。そして、取付フランジ部32c及び32eに固定ねじ16の雄ねじ部16bを挿通する小径孔部32f及び32gが形成されている。
Here, the first external connection conductor 31 is the same as the inter-group connection conductor 10 in the first and second embodiments described above except that the external connection terminal TP protrudes rearward from the rear end. The components corresponding to the inter-group connection conductor 10 are denoted by the same reference numerals, and detailed description thereof is omitted.
The second external connection conductor 32 includes a side plate portion 32a, a connection plate portion 32b, and a mounting flange portion 32c, similarly to the second external connection conductor 14 of the first embodiment described above. The second external connection conductor 32 has a side plate portion 32d facing the opposing side plate portion 10a of the inter-element connection conductor 25 connected to the other end of the connection plate portion 32b at a predetermined interval, and this side plate portion 32d. There is a mounting flange portion 32e that projects outwardly and is connected to the lower end of each. And the small diameter hole parts 32f and 32g which penetrate the external thread part 16b of the fixing screw 16 are formed in the attachment flange parts 32c and 32e.

そして、素子間接続導体25、第1の外部接続導体31、素子間接続導体11、群間接続導体10、素子間接続導体13及び第2の外部接続導体32が絶縁部材33で接続されている。
この絶縁部材33は、素子間接続導体25、第1の外部接続導体31、素子間接続導体11、群間接続導体10、素子間接続導体13及び第2の外部接続導体32を覆い、これらの幅より幅広に形成された平板部33aを有する。この平板部33aには、その両端の下面に、下方に突出する端板部33b及び33gが形成され、端板部33b及び33g間に所定間隔を保って下方に突出する仕切り板部33c〜33fが形成されている。
The inter-element connection conductor 25, the first external connection conductor 31, the inter-element connection conductor 11, the inter-group connection conductor 10, the inter-element connection conductor 13, and the second external connection conductor 32 are connected by the insulating member 33. .
The insulating member 33 covers the inter-element connection conductor 25, the first external connection conductor 31, the inter-element connection conductor 11, the inter-group connection conductor 10, the inter-element connection conductor 13, and the second external connection conductor 32. The flat plate portion 33a is formed wider than the width. The flat plate portion 33a has end plate portions 33b and 33g protruding downward on the lower surfaces of both ends thereof, and partition plate portions 33c to 33f protruding downward with a predetermined interval between the end plate portions 33b and 33g. Is formed.

そして、充放電用コンデンサC2及びC1と半導体素子S1〜S4とを素子間接続導体25、第1の外部接続導体31、素子間接続導体11、群間接続導体10及び素子間接続導体13で接続した状態で、絶縁部材33をその端板部33bを素子間接続導体25の対向側板部10aに接触させ、仕切り板部33c、33d、33e及び33fをそれぞれ素子間接続導体25及び第1の外部接続導体31間、第1の外部接続導体31及び素子間接続導体11間、素子間接続導体11及び群間接続導体10間及び群間接続導体10及び素子間接続導体13間に介挿させ、さらに端板部33gを素子間接続導体13の対向側板部10bに接触させ、且つ平板部33aを素子間接続導体25、第1の外部接続導体31、素子間接続導体11、群間接続導体10及び素子間接続導体13の上面に接触させて配置する。   The charge / discharge capacitors C2 and C1 and the semiconductor elements S1 to S4 are connected by the inter-element connection conductor 25, the first external connection conductor 31, the inter-element connection conductor 11, the inter-group connection conductor 10, and the inter-element connection conductor 13. In this state, the end plate portion 33b of the insulating member 33 is brought into contact with the opposite side plate portion 10a of the inter-element connection conductor 25, and the partition plate portions 33c, 33d, 33e, and 33f are respectively connected to the inter-element connection conductor 25 and the first external portion. Between the connection conductors 31, between the first external connection conductor 31 and the inter-element connection conductor 11, between the inter-element connection conductor 11 and the inter-group connection conductor 10, and between the inter-group connection conductor 10 and the inter-element connection conductor 13, Further, the end plate portion 33g is brought into contact with the opposite side plate portion 10b of the inter-element connection conductor 13, and the flat plate portion 33a is connected to the inter-element connection conductor 25, the first external connection conductor 31, the inter-element connection conductor 11, and the inter-group connection. Brought into contact with the upper surface of the body 10 and the inter-element connecting conductors 13 arranged.

この状態で、絶縁部材33の上面側に第2の外部接続導体32をその接続板部32bの下面を接触させて配置し、取付フランジ部32c及び32dを固定ねじ6で半導体素子S4の第2の電極端子6及び充放電用コンデンサC2の第2の電極端子23に固定することにより、充放電用コンデンサC1及びC2の直列回路20とスイッチングアーム1とを直列に整列配置しながら電気的に並列に接続することができる。   In this state, the second external connection conductor 32 is disposed on the upper surface side of the insulating member 33 so that the lower surface of the connection plate portion 32b is in contact with the mounting flange portions 32c and 32d with the fixing screw 6 and the second of the semiconductor element S4. Are fixed to the electrode terminal 6 and the second electrode terminal 23 of the charging / discharging capacitor C2, so that the series circuit 20 of the charging / discharging capacitors C1 and C2 and the switching arm 1 are electrically arranged in parallel while being arranged in series. Can be connected to.

この第3の実施形態によると、前述した第1の実施形態と第2の実施形態とを組合せた構成を有するので、スイッチングアーム1の上アーム2がオン状態であるときには、充放電用コンデンサC1の第1の電極端子22から第1の外部接続導体31→半導体素子S1→素子間接続導体11→半導体素子S2を通じ群間接続導体10の外部接続端子TACへの電流経路L5が形成される。   According to the third embodiment, since the first embodiment and the second embodiment described above are combined, when the upper arm 2 of the switching arm 1 is in the ON state, the charge / discharge capacitor C1 A current path L5 from the first electrode terminal 22 to the external connection terminal TAC of the inter-group connection conductor 10 is formed through the first external connection conductor 31 → the semiconductor element S1 → the inter-element connection conductor 11 → the semiconductor element S2.

この状態から上アーム2がターンオフすると、充放電用コンデンサC2から第2の外部接続導体32→半導体素子S4→素子間接続導体13→半導体素子S3を通じて群間接続導体10の外部接続端子TACへの電流経路L6が形成される。
さらに、充放電用コンデンサC1及びC2間では、電流経路L5又はL6が形成されるときに充放電用コンデンサC1から素子間接続導体25を通じて充放電用コンデンサC2に向かう電流経路L7が形成される。
When the upper arm 2 is turned off from this state, the charge / discharge capacitor C2 is connected to the external connection terminal TAC of the inter-group connection conductor 10 through the second external connection conductor 32 → the semiconductor element S4 → the inter-element connection conductor 13 → the semiconductor element S3. A current path L6 is formed.
Furthermore, between the charging / discharging capacitors C1 and C2, a current path L7 is formed from the charging / discharging capacitor C1 to the charging / discharging capacitor C2 through the inter-element connection conductor 25 when the current path L5 or L6 is formed.

そして、上アーム2のターンオフ時には、電流経路L5の電流が減少し、電流経路L6の電流が増加することになり、素子間接続導体25、第1の外部接続導体31、素子間接続導体11、群間接続導体10及び素子間接続導体13の互いに近接対向する対向側板部間で磁束を打ち消し合うことにより、インダクタンス成分を低減することができ、スイッチング時の電流の変化に伴う電圧の跳ね上がりを確実に抑制することができる。   When the upper arm 2 is turned off, the current in the current path L5 decreases and the current in the current path L6 increases, and the inter-element connection conductor 25, the first external connection conductor 31, the inter-element connection conductor 11, By canceling out the magnetic flux between the opposing side plate portions of the inter-group connection conductor 10 and the inter-element connection conductor 13 that are close to each other, the inductance component can be reduced, and the jump of the voltage accompanying the change of the current during switching can be ensured. Can be suppressed.

次に、本発明における第4の実施形態を図14〜図16について説明する。
ここで、図14は、第4の実施形態の電力変換装置の充放電用コンデンサの接続回路構成を示す回路図、図15は、図14の機械的接続構造を示す平面図、図16は、図15のD−D線上の断面図である。
この第4の実施形態では、充放電用コンデンサの並列回路を直列に接続したものである。
Next, a fourth embodiment of the present invention will be described with reference to FIGS.
Here, FIG. 14 is a circuit diagram showing a connection circuit configuration of a charging / discharging capacitor of the power converter of the fourth embodiment, FIG. 15 is a plan view showing the mechanical connection structure of FIG. 14, and FIG. It is sectional drawing on the DD line of FIG.
In the fourth embodiment, parallel circuits of charge / discharge capacitors are connected in series.

すなわち、第4の実施形態では、回路図で表すと図14に示すように、前述した第2の実施形態における充放電用コンデンサC1に相当する充放電用コンデンサC3及びC4の並列回路41と前述した第2の実施形態における充放電用コンデンサC2に相当する充放電用コンデンサC5及びC6の並列回路42とを直列に接続されて充放電部43が構成されている。そして、充放電用コンデンサC3及びC4の一端が正極ラインPに接続され、充放電用コンデンサC5及びC6の他端が負極ラインNに接続されている。   That is, in the fourth embodiment, as shown in a circuit diagram in FIG. 14, the parallel circuit 41 of the charge / discharge capacitors C3 and C4 corresponding to the charge / discharge capacitor C1 in the second embodiment described above and the above-described circuit are shown. The charge / discharge unit 43 is configured by connecting in parallel the parallel circuit 42 of the charge / discharge capacitors C5 and C6 corresponding to the charge / discharge capacitor C2 in the second embodiment. One end of the charging / discharging capacitors C3 and C4 is connected to the positive electrode line P, and the other end of the charging / discharging capacitors C5 and C6 is connected to the negative electrode line N.

この充放電部43の機械的接続構造を、図15及び図16に示す。ここで、充放電用コンデンサC3〜C6は前述した第2の実施形態と同様の構成を有し、図6及び図7との対応部分には同一符号を付し、その詳細説明はこれを省略する。
そして、図15に示すように、充放電用コンデンサC3及びC4を、同一平面上に、第1の電極端子22及び第2の電極端子23を上側とし且つ第1の電極端子22を左側、第2の電極端子23を右側として、前後方向に所定間隔を保って一列に整列させて配置する。
The mechanical connection structure of the charging / discharging unit 43 is shown in FIGS. Here, the charge / discharge capacitors C3 to C6 have the same configuration as that of the second embodiment described above, and the same reference numerals are given to the corresponding parts to those in FIGS. 6 and 7, and the detailed description thereof is omitted. To do.
Then, as shown in FIG. 15, the charge / discharge capacitors C3 and C4 are arranged on the same plane, with the first electrode terminal 22 and the second electrode terminal 23 on the upper side, and the first electrode terminal 22 on the left side, The two electrode terminals 23 are on the right side, and are arranged in a line at a predetermined interval in the front-rear direction.

また、上記と同一平面上に充放電用コンデンサC5及びC6を、同様に第1の電極端子22及び第2の電極端子23を上側とし且つ第1の電極端子22を左側、第2の電極端子23を右側として、前後方向に所定間隔を保ち且つ充放電用コンデンサC3及びC4と左右方向に所定間隔を保って整列させて配置する。
そして、充放電用コンデンサC3及びC4の第2の電極端子23と充放電用コンデンサC5及びC6の第1の電極端子22とが素子間接続導体44で電気的に接続されている。また、充放電用コンデンサC3及びC4の第1の電極端子22に第1の外部接続導体45が電気的に接続され、充放電用コンデンサC5及びC6の第2の電極端子23に第2の外部接続導体46が電気的に接続されている。
Further, the charge / discharge capacitors C5 and C6 are arranged on the same plane as described above, and similarly, the first electrode terminal 22 and the second electrode terminal 23 are on the upper side, the first electrode terminal 22 is on the left side, and the second electrode terminal is on the left side. With 23 as the right side, it is arranged with a predetermined interval in the front-rear direction and aligned with the charge / discharge capacitors C3 and C4 with a predetermined interval in the left-right direction.
The second electrode terminals 23 of the charge / discharge capacitors C3 and C4 and the first electrode terminals 22 of the charge / discharge capacitors C5 and C6 are electrically connected by an inter-element connection conductor 44. Further, the first external connection conductor 45 is electrically connected to the first electrode terminals 22 of the charge / discharge capacitors C3 and C4, and the second external connection to the second electrode terminals 23 of the charge / discharge capacitors C5 and C6. The connection conductor 46 is electrically connected.

ここで、素子間接続導体44は、断面形状は、前述した第1及び第2の実施形態における素子間接続導体11、13及び25と同一形状を有し、対向側板部44a及び44bと、連結板部44cと、取付フランジ部44d及び44eとを有し、前後方向の幅が前後の充放電用コンデンサC3,C5及びC4,C6を接続可能に幅広に形成されている。そして、取付フランジ部44d及び44eに充放電用コンデンサC3及びC4の第2の電極端子23と充放電用コンデンサC5及びC6の第1の電極端子22との雌ねじ24に対応する位置に固定ねじ16の雄ねじ部16bを挿通する小径孔部44fと44gとが形成されている。   Here, the cross-sectional shape of the inter-element connection conductor 44 has the same shape as the inter-element connection conductors 11, 13 and 25 in the first and second embodiments described above, and is connected to the opposing side plate portions 44a and 44b. It has a plate portion 44c and mounting flange portions 44d and 44e, and the width in the front-rear direction is wide enough to connect the front and rear charge / discharge capacitors C3, C5 and C4, C6. The fixing screws 16 are mounted on the mounting flange portions 44d and 44e at positions corresponding to the female screws 24 of the second electrode terminals 23 of the charge / discharge capacitors C3 and C4 and the first electrode terminals 22 of the charge / discharge capacitors C5 and C6. Small-diameter hole portions 44f and 44g are formed through which the male screw portion 16b is inserted.

また、第1の外部接続導体45も前述した第2の実施形態の第1の外部接続導体26と同様の断面形状に構成され、側板部45a、接続板部45b及び取付フランジ部45cを有する。また、前後方向の幅が素子間接続導体44の幅と略等しく幅に設定されている。さらに、接続板部45bの左端における前端側に外部接続端子TPが一体に形成されている。   The first external connection conductor 45 is also configured to have the same cross-sectional shape as the first external connection conductor 26 of the second embodiment described above, and includes a side plate portion 45a, a connection plate portion 45b, and a mounting flange portion 45c. Further, the width in the front-rear direction is set to be substantially equal to the width of the inter-element connection conductor 44. Further, an external connection terminal TP is integrally formed on the front end side at the left end of the connection plate portion 45b.

さらに、第2の外部接続導体46も前述した第2の実施形態の第2の外部接続導体27と同様の断面形状に構成され、側板部46a、接続板部46b及び取付フランジ部45cを有する。また、前後方向の幅が素子間接続導体44及び第1の外部接続導体45の幅と略等しく幅に設定されている。さらに、接続板部45bの左端における後端側に外部接続端子TNが一体に形成されている。   Further, the second external connection conductor 46 is also configured to have the same cross-sectional shape as the second external connection conductor 27 of the second embodiment described above, and includes a side plate portion 46a, a connection plate portion 46b, and a mounting flange portion 45c. The width in the front-rear direction is set to be approximately equal to the width of the inter-element connection conductor 44 and the first external connection conductor 45. Further, an external connection terminal TN is integrally formed on the rear end side at the left end of the connection plate portion 45b.

そして、素子間接続導体44、第1の外部接続導体45及び第2の外部接続導体46が絶縁部材47によって絶縁されている。
この絶縁部材47も、前述した第2の実施形態における絶縁部材28と同一断面形状に構成され、平板部47aと、仕切り板部47b及び47cとで構成されている。
そして、充放電用コンデンサC3〜C6に素子間接続導体44を固定ねじ16で固定すると共に、充放電用コンデンサC3及びC4に第1の外部接続導体45を固定ねじ16で接続する。そして、第1の外部接続導体45及び素子間接続導体44間に仕切り板部47bを介挿し、素子間接続導体44の対向側板部44bに仕切り板部47cを接触させながら平板部47aを第1の外部接続導体45の接続板部45b及び素子間接続導体44の連結板部44cに接触させる。その後、第2の外部接続導体46を、絶縁部材47の平板部47aの上面に接続板部46bを接触させ、仕切り板部47cに側板部46aを接触させて取付フランジ部46cを充放電用コンデンサC5及びC6の第2の電極端子23に固定ねじ16で固定するようにより充放電部43を構成することができる。
The inter-element connection conductor 44, the first external connection conductor 45, and the second external connection conductor 46 are insulated by the insulating member 47.
The insulating member 47 is also configured to have the same cross-sectional shape as the insulating member 28 in the second embodiment described above, and includes a flat plate portion 47a and partition plate portions 47b and 47c.
The inter-element connection conductor 44 is fixed to the charge / discharge capacitors C3 to C6 with the fixing screw 16, and the first external connection conductor 45 is connected to the charge / discharge capacitors C3 and C4 with the fixing screw 16. Then, the partition plate portion 47 b is inserted between the first external connection conductor 45 and the inter-element connection conductor 44, and the flat plate portion 47 a is connected to the opposing side plate portion 44 b of the inter-element connection conductor 44 while the partition plate portion 47 c is in contact therewith. The connection plate portion 45 b of the external connection conductor 45 and the connection plate portion 44 c of the inter-element connection conductor 44 are brought into contact with each other. After that, the second external connection conductor 46 is brought into contact with the upper surface of the flat plate portion 47a of the insulating member 47, the connection plate portion 46b is brought into contact with the partition plate portion 47c, and the mounting flange portion 46c is brought into contact with the charging / discharging capacitor. The charging / discharging part 43 can be comprised by fixing to the 2nd electrode terminal 23 of C5 and C6 with the fixing screw 16. FIG.

この第4の実施形態によると、前述した第2の実施形態における充放電用コンデンサC1及びC2がそれぞれ並列接続された充放電用コンデンサC3,C4及びC5,C6で構成されていることを除いては前述した第2の実施形態と同様に構成されているので、充放電用コンデンサC3及びC4から正極ラインPに流れる電流経路L3と、充放電用コンデンサC5及びC6から負極ラインNに流れる電流経路L4と、電流経路L3又はL4に電流が流れる際に、充放電用コンデンサC3及びC4から充放電用コンデンサC5及びC6に流れる電流経路が形成されることになる。   According to the fourth embodiment, except that the charge / discharge capacitors C1 and C2 in the second embodiment described above are composed of charge / discharge capacitors C3, C4 and C5, C6 connected in parallel, respectively. Is configured in the same manner as in the second embodiment described above, a current path L3 flowing from the charge / discharge capacitors C3 and C4 to the positive line P, and a current path flowing from the charge / discharge capacitors C5 and C6 to the negative line N When a current flows through L4 and the current path L3 or L4, a current path that flows from the charge / discharge capacitors C3 and C4 to the charge / discharge capacitors C5 and C6 is formed.

このため、第1の外部接続導体45の側板部45a及び素子間接続導体44の対向側板部44aとの間と素子間接続導体44の対向側板部44bと第2の外部接続導体45の側板部46aとの間でそれぞれ逆方向の電流が流れ、これによって生じる磁束が打ち消し合わされることにより、インダクタンス成分を低減することができ、スイッチング時の電流の変化に伴う電圧の跳ね上がりを確実に抑制することができる。   Therefore, between the side plate portion 45a of the first external connection conductor 45 and the opposed side plate portion 44a of the inter-element connection conductor 44, the opposed side plate portion 44b of the inter-element connection conductor 44, and the side plate portion of the second external connection conductor 45. Current flows in the opposite direction with respect to 46a, and the resulting magnetic flux cancels out, so that the inductance component can be reduced, and the jump of the voltage accompanying the change in current during switching is reliably suppressed. Can do.

なお、上記第1〜第4の実施形態において、同一平面上に半導体素子S1〜S4及び充放電用コンデンサC1〜C4を配置した場合について説明したが、回路素子の第1の電極端子及び第2の電極端子を配置した上面が同一平面上にあればよく、回路素子の高さは任意の高さを選定することができる。
また、図17に示すように、高さの異なる回路素子を直列に接続する場合には、接続する回路素子の高さに合わせて群間接続導体の対向側板部の高さを変更すればよい。すなわち、図17に示すように、半導体素子S5と充放電用コンデンサC7とを群間接続導体51で接続する場合に、充放電用コンデンサC7の高さが半導体素子S5より高い場合には、群間接続導体51の対向側板部51a及び51bのうち充放電用コンデンサC7に固定する対向側板部51aの高さを低くし、半導体素子S5に固定する対向側板部51bの高さを高くすることにより、高さの異なる回路素子を電気的に直列に接続するとこができる。ここで、群間接続導体51の連結板部51cは水平方向に延長させる場合に限らず、対向側板部51a及び51bの高さを等しくする場合には両者間を傾斜状態で連結するようにしてもよい。
In the first to fourth embodiments, the case where the semiconductor elements S1 to S4 and the charge / discharge capacitors C1 to C4 are arranged on the same plane has been described. However, the first electrode terminal and the second electrode of the circuit element are described. It is sufficient that the upper surface on which the electrode terminals are arranged is on the same plane, and the height of the circuit element can be selected arbitrarily.
Moreover, as shown in FIG. 17, when connecting circuit elements having different heights in series, the height of the opposing side plate portion of the inter-group connection conductor may be changed in accordance with the height of the circuit elements to be connected. . That is, as shown in FIG. 17, when the semiconductor element S5 and the charge / discharge capacitor C7 are connected by the inter-group connection conductor 51, when the height of the charge / discharge capacitor C7 is higher than the semiconductor element S5, the group By reducing the height of the opposing side plate portion 51a fixed to the charging / discharging capacitor C7 among the opposing side plate portions 51a and 51b of the inter-connection conductor 51, and increasing the height of the opposing side plate portion 51b fixed to the semiconductor element S5. It is possible to connect circuit elements having different heights electrically in series. Here, the connecting plate portion 51c of the inter-group connection conductor 51 is not limited to being extended in the horizontal direction, and when the opposite side plate portions 51a and 51b have the same height, they are connected in an inclined state. Also good.

さらに、上記第1〜第4の実施形態においては、第1の外部接続導体と第2の外部接続導体とが同一方向に延長されている場合について説明したが、これに限定されるものではなく、第2の外部接続導体を第1の外部接続導体と面対称形に構成して、第1の外部接続導体とは逆方向に延長させるようにしてもよい。
さらにまた、上記第1〜第4の実施形態においては、半導体素子S1〜S4の第1及び第2の電極端子5及び6と充放電用コンデンサC1〜C4の第1及び第2の電極端子22及び23を上方に向けて整列配置して接続する場合について説明したが、これに限定されるものではなく、図18に示すように、例えば一つおきの半導体素子S1及びS3の第1及び第2の電極端子5及び6を上方に向け、残りの半導体素子S2及びS4の第1及び第2の電極端子5及び6を下方に向けて配置してもよい。この場合には、群間接続導体10及び素子間接続導体11、13の連結板部10cをクランク状の連結板部10jに置換するようにすればよい。
Furthermore, in the first to fourth embodiments, the case where the first external connection conductor and the second external connection conductor are extended in the same direction has been described. However, the present invention is not limited to this. The second external connection conductor may be configured to be plane-symmetric with the first external connection conductor so as to extend in the opposite direction to the first external connection conductor.
Furthermore, in the first to fourth embodiments, the first and second electrode terminals 5 and 6 of the semiconductor elements S1 to S4 and the first and second electrode terminals 22 of the charge / discharge capacitors C1 to C4. However, the present invention is not limited to this. For example, as shown in FIG. 18, the first and second semiconductor elements S1 and S3 are alternately connected. The second electrode terminals 5 and 6 may be directed upward, and the first and second electrode terminals 5 and 6 of the remaining semiconductor elements S2 and S4 may be disposed downward. In this case, the connecting plate portion 10c of the inter-group connecting conductor 10 and the inter-element connecting conductors 11 and 13 may be replaced with a crank-shaped connecting plate portion 10j.

なおさらに、上記第1〜第4の実施形態においては、半導体素子S1〜S4及び充放電用コンデンサC1〜C4等の回路素子を、第1の電極端子5及び22を左側、第2の電極端子6及び23を右側として配置し、第1の外部接続導体12、26、31に外部接続端子TPを形成し、第2の外部接続導体14、34、43に外部接続端子TNを形成した場合について説明したが、これに限定されるものではなく、第1の電極端子5及び22を右側、第2の電極端子6及び23を左側として配置することもできる。この場合には、第1の外部接続導体12、33、42に外部接続端子TNを形成し、第2の外部接続導体14、34、43に外部接続端子TPを形成するようにしてもよい。   Still further, in the first to fourth embodiments, the circuit elements such as the semiconductor elements S1 to S4 and the charge / discharge capacitors C1 to C4, the first electrode terminals 5 and 22 on the left side, and the second electrode terminals. 6 and 23 are arranged on the right side, the external connection terminal TP is formed on the first external connection conductors 12, 26, 31 and the external connection terminal TN is formed on the second external connection conductors 14, 34, 43. Although it demonstrated, it is not limited to this, The 1st electrode terminals 5 and 22 can also be arrange | positioned as the right side and the 2nd electrode terminals 6 and 23 can also be arrange | positioned as the left side. In this case, the external connection terminal TN may be formed on the first external connection conductors 12, 33, 42, and the external connection terminal TP may be formed on the second external connection conductors 14, 34, 43.

また、上記第1〜第4の実施形態においては、接続導体10、11、12、13、14等を、絶縁部材15、28、33で絶縁する場合について説明したが、これに限定されるものではなく、絶縁部材15、28、33自体又はその一部を省略することもでき、さらには、各接続導体の電極端子の接続面を除く外表面に絶縁コーティングを施すようにしてもよい。   Moreover, in the said 1st-4th embodiment, although the case where the connection conductors 10, 11, 12, 13, 14, etc. were insulated with the insulation members 15, 28, 33 was demonstrated, it is limited to this. Instead, the insulating members 15, 28, 33 themselves or a part thereof can be omitted, and furthermore, an insulating coating may be applied to the outer surface excluding the connection surface of the electrode terminal of each connection conductor.

さらに、上記第1〜第4の実施形態において、接続導体を回路素子としての半導体素子S1〜S4又は充放電用コンデンサC1〜C6に固定ねじ16を使用して固定する場合について説明したが、これに限定されるものではなく、ろう付けや半田付け等の他の任意の固定手段を適用することができる。   Furthermore, in the first to fourth embodiments, the case where the connection conductor is fixed to the semiconductor elements S1 to S4 as the circuit elements or the charge / discharge capacitors C1 to C6 using the fixing screw 16 has been described. However, it is not limited to the above, and any other fixing means such as brazing or soldering can be applied.

第1の実施形態の電力変換装置のスイッチングアームの構成を示す回路図である。It is a circuit diagram which shows the structure of the switching arm of the power converter device of 1st Embodiment. 図1の機械的接続構造を示す平面図である。It is a top view which shows the mechanical connection structure of FIG. 図2のA−A線上の断面図である。It is sectional drawing on the AA line of FIG. 第1の実施形態の電力変換装置の分解斜視図である。It is a disassembled perspective view of the power converter device of 1st Embodiment. 第2の実施形態の電力変換装置を示す回路図である。It is a circuit diagram which shows the power converter device of 2nd Embodiment. 図5の機械的接続構造を示す平面図である。It is a top view which shows the mechanical connection structure of FIG. 図6のB−B線上の断面図である。It is sectional drawing on the BB line of FIG. 第2の実施形態の電力変換装置の分解斜視図である。It is a disassembled perspective view of the power converter device of 2nd Embodiment. 第2の実施形態の電流経路を示す説明図である。It is explanatory drawing which shows the current pathway of 2nd Embodiment. 第3の実施形態の電力変換装置を示す回路図である。It is a circuit diagram which shows the power converter device of 3rd Embodiment. 図10の機械的接続構造を示す平面図である。It is a top view which shows the mechanical connection structure of FIG. 図11のC−C線上の断面図である。It is sectional drawing on the CC line of FIG. 第3の実施形態の電力変換装置の分解斜視図である。It is a disassembled perspective view of the power converter device of 3rd Embodiment. 第4の実施形態の電力変換装置を示す回路図である。It is a circuit diagram which shows the power converter device of 4th Embodiment. 図14の機械的接続構造を示す平面図である。It is a top view which shows the mechanical connection structure of FIG. 図15のD−D線上の断面図である。It is sectional drawing on the DD line of FIG. 電力変換装置の変形例を示す断面図である。It is sectional drawing which shows the modification of a power converter device. 電力変換装置の他の変形例を示す断面図である。It is sectional drawing which shows the other modification of a power converter device. 従来例の電力変換装置を示す回路図である。It is a circuit diagram which shows the power converter device of a prior art example. 図19の1相分の回路図である。FIG. 20 is a circuit diagram for one phase of FIG. 19. 従来例の電力変換装置を示す回路図である。It is a circuit diagram which shows the power converter device of a prior art example. 図21の機械的接続構造を示す図である。It is a figure which shows the mechanical connection structure of FIG.

符号の説明Explanation of symbols

S1〜S5…半導体素子、C1〜C6…充放電用コンデンサ、L1〜L7…電流経路、1…スイッチングアーム、2…上アーム、3…下アーム、5…第1の電極端子、6…第2の電極端子、7…雌ねじ部、10…群間接続導体、10a,10b…対向側板部、10c…連結板部、10d,10e…取付フランジ部、11,13…素子間接続導体、12…第1の外部接続導体、12a…側板部、12b…接続板部、12c…取付フランジ部、14…第2の外部接続導体、14a…側板部、14b…接続板部、14c…取付フランジ部、15…絶縁部材、16…固定ねじ、20…直列回路、22…第1の電極端子、23…第2の電極端子、24…雌ねじ部、31…第1の外部接続導体、32…第2の外部接続導体、33…絶縁部材、41,42…並列回路、43…充放電部、44…素子間接続導体、45…第1の外部接続導体、46…第2の外部接続導体、47…絶縁部材   S1 to S5: Semiconductor elements, C1 to C6: Charging / discharging capacitors, L1 to L7: Current path, 1 ... Switching arm, 2 ... Upper arm, 3 ... Lower arm, 5 ... First electrode terminal, 6 ... Second 7 ... female screw part, 10 ... inter-group connection conductor, 10a, 10b ... opposite side plate part, 10c ... coupling plate part, 10d, 10e ... mounting flange part, 11, 13 ... inter-element connection conductor, 12 ... first 1 external connection conductor, 12a ... side plate, 12b ... connection plate, 12c ... mounting flange, 14 ... second external connection conductor, 14a ... side plate, 14b ... connection plate, 14c ... mounting flange, 15 DESCRIPTION OF SYMBOLS ... Insulating member, 16 ... Fixing screw, 20 ... Series circuit, 22 ... 1st electrode terminal, 23 ... 2nd electrode terminal, 24 ... Female thread part, 31 ... 1st external connection conductor, 32 ... 2nd exterior Connection conductor, 33 ... insulating member, 41, 42 ... Column circuit, 43 ... discharge unit, 44 ... inter-element connection conductors, 45 ... first outer connecting conductor, 46 ... second external connection conductor, 47 ... insulating member

Claims (9)

少なくとも2つの回路素子を整列配置して直列に接続した直列回路を備えた電力変換装置であって、
前記回路素子のそれぞれは、同一面側に少なくとも第1及び第2の電極端子が形成され、
前記直列回路は、隣接する2つの回路素子のうち一方の第2の電極端子と他方の第1の電極端子とを素子間接続導体で接続し、隣接する回路素子が存在しない両端の回路素子のうち、接続相手のない第1の電極端子に第1の外部接続導体を接続し、接続相手のない第2の電極端子に第2の外部接続導体を接続した構成を有し、
前記素子間接続導体は、隣接する他の接続導体との間でインダクタンスを相殺するインダクタンス相殺部が形成されていることを特徴とする電力変換装置。
A power conversion device including a series circuit in which at least two circuit elements are arranged in series and connected in series,
Each of the circuit elements has at least first and second electrode terminals formed on the same surface side,
In the series circuit, one second electrode terminal and the other first electrode terminal of two adjacent circuit elements are connected by an inter-element connection conductor, and circuit elements at both ends where no adjacent circuit element exists are connected. Among them, the first external connection conductor is connected to the first electrode terminal having no connection partner, and the second external connection conductor is connected to the second electrode terminal having no connection partner,
The power converter according to claim 1, wherein the inter-element connection conductor is formed with an inductance canceling unit that cancels the inductance between the adjacent connection conductors.
複数の回路素子を整列配置して直列に接続した直列回路を有する電力変換装置であって、
前記回路素子の夫々は、同一面側に少なくとも第1及び第2の電極端子が形成され、
前記直列回路は、それぞれ複数の回路素子を直列に接続した第1の回路素子群及び第2の回路素子群を、外部出力端子を有する群間接続導体で接続した構成を有し、
前記第1の回路素子群は、隣接する2つの回路素子のうち一方の第2の電極端子と他方の第1の電極端子とを素子間接続導体で接続し、隣接する回路素子が存在しない端部の回路素子のうち、接続相手のない第1の電極端子に第1の外部接続導体を接続した構成を有し、
前記第2の回路素子群は、隣接する2つの回路素子のうち一方の第2の電極端子と他方の第1の電極端子とを素子間接続導体で接続し、隣接する回路素子が存在しない端部の回路素子のうち、接続相手のいない第2の電極端子に第2の外部接続導体を接続した構成を有し、
前記群間接続導体及び素子間接続導体は、隣接する他の接続導体との間でインダクタンスを相殺するインダクタンス相殺部が形成されていることを特徴とする電力変換装置。
A power converter having a series circuit in which a plurality of circuit elements are arranged and connected in series,
Each of the circuit elements has at least first and second electrode terminals formed on the same surface side,
The series circuit has a configuration in which a first circuit element group and a second circuit element group each having a plurality of circuit elements connected in series are connected by an inter-group connection conductor having an external output terminal,
In the first circuit element group, one second electrode terminal and the other first electrode terminal of two adjacent circuit elements are connected by an inter-element connection conductor, and there is no adjacent circuit element. The first external connection conductor is connected to the first electrode terminal having no connection partner among the circuit elements of the portion,
In the second circuit element group, one of the adjacent two circuit elements is connected to the other first electrode terminal by the inter-element connection conductor, and the adjacent circuit element does not exist. The second external connection conductor is connected to the second electrode terminal with no connection partner among the circuit elements of the portion,
The inter-group connecting conductor and the inter-element connecting conductor are formed with an inductance canceling unit that cancels the inductance between the adjacent connecting conductors.
前記回路素子は、能動素子及び受動部品の少なくとも一方で構成されていることを特徴とする請求項1又2に記載の電力変換装置。   The power conversion device according to claim 1, wherein the circuit element is configured by at least one of an active element and a passive component. 前記素子間接続導体は、インダクタンス相殺部となる一対の対向側板部と、これら対向側板部の一端を連結する連結板部と、前記一対の対向側板部の他端からそれぞれ内方に突出して前記回路素子の電極端子に接続する取付フランジ部とを備えていることを特徴とする請求項1乃至3の何れか1項に記載の電力変換装置。   The inter-element connection conductors protrude inward from a pair of opposing side plate portions that serve as inductance canceling portions, a connecting plate portion that connects one ends of the opposing side plate portions, and the other ends of the pair of opposing side plate portions, respectively. The power converter according to any one of claims 1 to 3, further comprising a mounting flange portion connected to the electrode terminal of the circuit element. 前記群間接続導体は、インダクタンス相殺部となる一対の対向側板部と、これら対向側板部の一端を連結する連結板部と、前記一対の対向側板部の他端からそれぞれ内方に突出して前記回路素子の電極端子に接続する取付フランジ部とを備えていることを特徴とする請求項2に記載の電力変換装置。   The inter-group connection conductors protrude inward from a pair of opposing side plate portions serving as inductance canceling portions, a connecting plate portion that connects one ends of these opposing side plate portions, and the other ends of the pair of opposing side plate portions, respectively. The power converter according to claim 2, further comprising a mounting flange portion connected to the electrode terminal of the circuit element. 前記素子間接続導体は、前記回路素子の電極端子に対して固定部材によって着脱自在に固定されていることを特徴とする請求項1乃至5の何れか1項に記載の電力変換装置。   The power conversion device according to any one of claims 1 to 5, wherein the inter-element connection conductor is detachably fixed to an electrode terminal of the circuit element by a fixing member. 前記群間接続導体は、前記回路素子の電極端子に対して固定部材によって着脱自在に固定されていることを特徴とする請求項2乃至5の何れか1項に記載の電力変換装置。   6. The power conversion device according to claim 2, wherein the inter-group connection conductor is detachably fixed to an electrode terminal of the circuit element by a fixing member. 前記第1の外部接続導体及び第2の外部接続導体は、所定間隔を保って並設されていることを特徴とする請求項1乃至7の何れか1項に記載の電力変換装置。   The power converter according to any one of claims 1 to 7, wherein the first external connection conductor and the second external connection conductor are arranged in parallel at a predetermined interval. 前記回路素子として半導体素子を適用した直列回路と、回路素子としてコンデンサを適用した直列回路とが並列に接続されていることを特徴とする請求項1乃至8の何れか1項に記載の電力変換装置。   9. The power conversion according to claim 1, wherein a series circuit using a semiconductor element as the circuit element and a series circuit using a capacitor as the circuit element are connected in parallel. apparatus.
JP2008188239A 2008-07-22 2008-07-22 Power converter Expired - Fee Related JP5320878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008188239A JP5320878B2 (en) 2008-07-22 2008-07-22 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008188239A JP5320878B2 (en) 2008-07-22 2008-07-22 Power converter

Publications (2)

Publication Number Publication Date
JP2010028983A true JP2010028983A (en) 2010-02-04
JP5320878B2 JP5320878B2 (en) 2013-10-23

Family

ID=41734252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008188239A Expired - Fee Related JP5320878B2 (en) 2008-07-22 2008-07-22 Power converter

Country Status (1)

Country Link
JP (1) JP5320878B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103324A1 (en) * 2014-12-22 2016-06-30 三菱電機株式会社 Power converting apparatus and power semiconductor module
WO2020246341A1 (en) * 2019-06-03 2020-12-10 三菱重工サーマルシステムズ株式会社 Switching element unit and electric compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6596315B2 (en) * 2015-11-24 2019-10-23 株式会社日立製作所 Power converter and elevator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001031771A1 (en) * 1999-10-27 2001-05-03 Hitachi, Ltd. Electric power converter
JP2006280191A (en) * 1998-04-28 2006-10-12 Hitachi Ltd Main circuit structure for power converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280191A (en) * 1998-04-28 2006-10-12 Hitachi Ltd Main circuit structure for power converter
WO2001031771A1 (en) * 1999-10-27 2001-05-03 Hitachi, Ltd. Electric power converter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103324A1 (en) * 2014-12-22 2016-06-30 三菱電機株式会社 Power converting apparatus and power semiconductor module
CN107148737A (en) * 2014-12-22 2017-09-08 三菱电机株式会社 Power conversion device and power semiconductor module
US10411589B2 (en) 2014-12-22 2019-09-10 Mitsubishi Electric Corporation Power conversion apparatus and power semiconductor module
WO2020246341A1 (en) * 2019-06-03 2020-12-10 三菱重工サーマルシステムズ株式会社 Switching element unit and electric compressor
JP2020198713A (en) * 2019-06-03 2020-12-10 三菱重工サーマルシステムズ株式会社 Switching element unit and electric compressor

Also Published As

Publication number Publication date
JP5320878B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP6160780B2 (en) 3-level power converter
US9425707B2 (en) Inverter device capable of appropriately fixing a power module having a switching element and a smoothing capacitor in a limited region
US8902612B2 (en) Power conversion apparatus
CN108370652B (en) Bus bar device
JP4640213B2 (en) Power semiconductor device and inverter bridge module using the same
JP5263334B2 (en) Busbar module
JP6511981B2 (en) Capacitor module
JP2014090538A (en) Power conversion device
JP2008253055A (en) Power converter
JP4209421B2 (en) Main circuit structure of power converter
JP5320878B2 (en) Power converter
JP2019030043A (en) Power conversion device
JP2014168360A (en) Bus bar assembly for power conversion module connection
JP2004031590A (en) Semiconductor device
JP3896940B2 (en) Semiconductor device
JPH09274904A (en) Method for wiring battery array
JP2007068294A (en) Power converter
JP2007325387A (en) Power conversion device
JP2019103280A (en) Power conversion device
JPWO2019187700A1 (en) Semiconductor module
JP6179487B2 (en) Semiconductor module unit of 3-level power converter
JP5869207B2 (en) Circuit component mounting structure and its mounting board
EP3258589B1 (en) Circuit module and inverter device using same
JPH06327266A (en) Semiconductor power conversion device
JP2007244100A (en) Snubber module

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees