JP2010028030A - Manufacturing method of printed wiring board - Google Patents

Manufacturing method of printed wiring board Download PDF

Info

Publication number
JP2010028030A
JP2010028030A JP2008190972A JP2008190972A JP2010028030A JP 2010028030 A JP2010028030 A JP 2010028030A JP 2008190972 A JP2008190972 A JP 2008190972A JP 2008190972 A JP2008190972 A JP 2008190972A JP 2010028030 A JP2010028030 A JP 2010028030A
Authority
JP
Japan
Prior art keywords
conductive
coating film
substrate
printed wiring
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008190972A
Other languages
Japanese (ja)
Inventor
Yohei Shoji
陽平 庄司
Hiroki Ono
博樹 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Edge Inc
Original Assignee
Toppan Forms Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Forms Co Ltd filed Critical Toppan Forms Co Ltd
Priority to JP2008190972A priority Critical patent/JP2010028030A/en
Publication of JP2010028030A publication Critical patent/JP2010028030A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a printed wiring board wherein a conductive portion is not broken easily and the conductive property of the conductive portion is excellent in forming the conductive portion having a predetermined shape on the board by using a polymer type conductive ink. <P>SOLUTION: The manufacturing method of a printed wiring board provides for a printed wiring board having a board and a conductive portion provided on its one side surface. The manufacturing method has a process A for forming a coated film as the conductive portion by coating the one surface with a polymer type conductive ink and a process B for impressing an electric field between the other surface of the board and the outermost surface of the coated film, and moving conductive microparticles included in the coated film to the outermost surface side of the coated film. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、プリント配線基板の製造方法に関し、さらに詳しくは、ポリマー型導電インクを用いて形成した導電部の導電性に優れたプリント配線基板の製造方法に関するものである。   The present invention relates to a method for manufacturing a printed wiring board, and more particularly to a method for manufacturing a printed wiring board excellent in conductivity of a conductive portion formed using a polymer-type conductive ink.

従来、導電微粒子を樹脂組成物(バインダー)に含有させてなる導電性ペースト(ポリマー型導電インク)を用いて、インクジェット法、スクリーン印刷法などの印刷法により、基板上に所定形状の回路(導電部)を形成して、プリント配線基板が製造されている。
このような導電性ペーストからなる導電部を備えたプリント配線基板としては、例えば、導電性ペーストにより基板上にアンテナ配線を形成した非接触型ICカードが開示されている(例えば、特許文献1、2参照)。この非接触型ICカードでは、導電性ペーストをインレットシート表面に印刷した後、インレットシートを加熱して導電性ペースト中の熱硬化性バインダー樹脂成分を硬化させ、アンテナ配線を形成している。
特開2003−242472号公報 特開2003−223626号公報
Conventionally, by using a conductive paste (polymer type conductive ink) in which conductive fine particles are contained in a resin composition (binder), a circuit having a predetermined shape (conductive) is formed on a substrate by a printing method such as an inkjet method or a screen printing method. The printed wiring board is manufactured.
As a printed wiring board provided with a conductive portion made of such a conductive paste, for example, a non-contact type IC card in which antenna wiring is formed on the board with a conductive paste is disclosed (for example, Patent Document 1, 2). In this non-contact type IC card, after the conductive paste is printed on the surface of the inlet sheet, the inlet sheet is heated to cure the thermosetting binder resin component in the conductive paste, thereby forming the antenna wiring.
JP 2003-242472 A JP 2003-223626 A

しかしながら、導電性ペーストからなる導電部は、基板に対する接着性は高いものの、導電微粒子に対して樹脂組成物が多く存在するために比較的抵抗値が高いという問題があった。また、プラスチック基板上に、導電ペーストを用いて導電部を形成した場合、基板が曲げられたときに導電部が破壊され、導電性が損なわれるという問題があった。   However, although the conductive part made of the conductive paste has high adhesion to the substrate, there is a problem that the resistance value is relatively high because of the large amount of the resin composition with respect to the conductive fine particles. Further, when the conductive portion is formed on the plastic substrate using the conductive paste, there is a problem that when the substrate is bent, the conductive portion is destroyed and the conductivity is impaired.

本発明は、上記事情に鑑みてなされたものであって、ポリマー型導電インクを用いて基板上に所定形状の導電部を形成した場合、その導電部が容易に破壊されることがなく、かつ、導電部の導電性に優れたプリント配線基板の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and when a conductive part having a predetermined shape is formed on a substrate using a polymer-type conductive ink, the conductive part is not easily destroyed, and An object of the present invention is to provide a method for manufacturing a printed wiring board having excellent conductivity of a conductive portion.

本発明のプリント配線基板の製造方法は、基板と、該基板の一方の面に設けられた導電部とを備えたプリント配線基板の製造方法であって、基板の一方の面に、ポリマー型導電インクを塗布して、導電部をなす塗膜を形成する工程Aと、前記基板の他方の面と前記塗膜の最表面との間に電界を掛けて、前記塗膜に含まれる導電微粒子を、前記塗膜の最表面側に移動させる工程Bと、を有することを特徴とする。   A method for manufacturing a printed wiring board according to the present invention is a method for manufacturing a printed wiring board comprising a substrate and a conductive portion provided on one surface of the substrate, wherein the polymer-type conductive material is provided on one surface of the substrate. Applying ink to form a coating film forming a conductive portion, and applying an electric field between the other surface of the substrate and the outermost surface of the coating film, the conductive fine particles contained in the coating film And a step B of moving to the outermost surface side of the coating film.

本発明のプリント配線基板の製造方法によれば、基板と、該基板の一方の面に設けられた導電部とを備えたプリント配線基板の製造方法であって、基板の一方の面に、ポリマー型導電インクを塗布して、導電部をなす塗膜を形成する工程Aと、前記基板の他方の面と前記塗膜の最表面との間に電界を掛けて、前記塗膜に含まれる導電微粒子を、前記塗膜の最表面側に移動させる工程Bと、を有するので、得られたプリント配線基板は、導電部の最表面側において、単位体積当たりの導電微粒子の含有率が高くなり、結果として、多数の導電微粒子が互いに密に接触し、多数の導電微粒子が導電部の長手方向に沿って1つの導電体を形成する。したがって、その導電部は導電性に優れるとともに、導電部はプリント配線基板を曲げても容易に破壊されることがない。   According to the method for manufacturing a printed wiring board of the present invention, there is provided a method for manufacturing a printed wiring board comprising a substrate and a conductive portion provided on one surface of the substrate, wherein the polymer is formed on one surface of the substrate. A conductive film contained in the coating film by applying an electric field between the other surface of the substrate and the outermost surface of the coating film. Step B of moving the fine particles to the outermost surface side of the coating film, the obtained printed wiring board has a higher content of conductive fine particles per unit volume on the outermost surface side of the conductive portion, As a result, a large number of conductive fine particles come into close contact with each other, and the large number of conductive fine particles form one conductor along the longitudinal direction of the conductive portion. Therefore, the conductive portion is excellent in conductivity, and the conductive portion is not easily broken even when the printed wiring board is bent.

本発明のプリント配線基板の製造方法の最良の形態について説明する。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
The best mode of the method for producing a printed wiring board of the present invention will be described.
This embodiment is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.

本発明のプリント配線基板の製造方法は、基板と、該基板の一方の面に設けられた導電部とを備えたプリント配線基板の製造方法であって、基板の一方の面に、ポリマー型導電インクを塗布して、導電部をなす塗膜を形成する工程Aと、前記基板の他方の面と前記塗膜の最表面との間に電界を掛けて、前記塗膜に含まれる導電微粒子を、前記塗膜の最表面側に移動させる工程Bと、を有する方法である。   A method for manufacturing a printed wiring board according to the present invention is a method for manufacturing a printed wiring board comprising a substrate and a conductive portion provided on one surface of the substrate, wherein the polymer-type conductive material is provided on one surface of the substrate. Applying ink to form a coating film forming a conductive portion, and applying an electric field between the other surface of the substrate and the outermost surface of the coating film, the conductive fine particles contained in the coating film And a step B of moving to the outermost surface side of the coating film.

以下、図1〜図4を参照して、本発明のプリント配線基板の製造方法の一実施形態を説明する。
まず、図1に示すように、印刷法により、基板1の一方の面1aにポリマー型導電インクを塗布して、所定の形状の導電部をなす未乾燥の塗膜2を形成する(工程A)。
この工程Aにおいて、未乾燥の塗膜2の形状は、所定の回路やアンテナなどからなる導電部の形状をなしている。
また、印刷法としては、インクジェット法、スクリーン印刷法などが用いられる。
Hereinafter, with reference to FIGS. 1-4, one Embodiment of the manufacturing method of the printed wiring board of this invention is described.
First, as shown in FIG. 1, a polymer-type conductive ink is applied to one surface 1a of the substrate 1 by a printing method to form an undried coating film 2 forming a conductive portion of a predetermined shape (step A). ).
In this step A, the shape of the undried coating film 2 is the shape of a conductive portion made of a predetermined circuit, antenna, or the like.
As a printing method, an ink jet method, a screen printing method, or the like is used.

基板1としては、少なくとも表層部には、ガラス繊維、アルミナ繊維などの無機繊維からなる織布、不織布、マット、紙などまたはこれらを組み合わせたもの、ポリエステル繊維、ポリアミド繊維などの有機繊維からなる織布、不織布、マット、紙などまたはこれらを組み合わせたものや、あるいはこれらに樹脂ワニスを含浸させて成形した被覆部材や、ポリアミド系樹脂基材、ポリエステル系樹脂基材、ポリオレフィン系樹脂基材、ポリイミド系樹脂基材、エチレン−ビニルアルコール共重合体基材、ポリビニルアルコール系樹脂基材、ポリ塩化ビニル系樹脂基材、ポリ塩化ビニリデン系樹脂基材、ポリスチレン系樹脂基材、ポリカーボネート系樹脂基材、アクリロニトリルブタジエンスチレン共重合系樹脂基材、ポリエーテルスルホン系樹脂基材、(ガラス)エポキシ樹脂基材などのプラスチック基材や、あるいはこれらにマット処理、コロナ放電処理、プラズマ処理、紫外線照射処理、電子線照射処理、フレームプラズマ処理、オゾン処理、または各種易接着処理などの表面処理を施したものなどの公知のものから選択して用いられる。   As the substrate 1, at least in the surface layer portion, a woven fabric made of inorganic fibers such as glass fibers or alumina fibers, a nonwoven fabric, a mat, paper, or a combination thereof, or a woven fabric made of organic fibers such as polyester fibers or polyamide fibers. Cloth, non-woven fabric, mat, paper, etc., or a combination thereof, or a covering member formed by impregnating them with a resin varnish, polyamide resin substrate, polyester resin substrate, polyolefin resin substrate, polyimide Resin base material, ethylene-vinyl alcohol copolymer base material, polyvinyl alcohol resin base material, polyvinyl chloride resin base material, polyvinylidene chloride resin base material, polystyrene resin base material, polycarbonate resin base material, Acrylonitrile butadiene styrene copolymer resin base material, polyethersulfone type Plastic base materials such as fat base materials, (glass) epoxy resin base materials, or these, mat processing, corona discharge processing, plasma processing, ultraviolet irradiation processing, electron beam irradiation processing, flame plasma processing, ozone processing, or various eases It selects from well-known things, such as what gave surface treatments, such as adhesion processing, and is used.

ポリマー型導電インクとしては、例えば、銀粉末、金粉末、白金粉末、アルミニウム粉末、パラジウム粉末、ロジウム粉末、カーボン粉末(カーボンブラック、カーボンナノチューブなど)などの導電微粒子が樹脂組成物に配合されたものが挙げられる。
樹脂組成物として熱硬化型樹脂を用いれば、ポリマー型導電インクは、200℃以下、例えば100〜150℃程度で導電部をなす塗膜を形成することができる熱硬化型となる。導電部をなす塗膜の電気の流れる経路は、塗膜をなす導電微粒子が互いに接触することによる形成され、この塗膜の抵抗値は10-5Ω・cmオーダーである。
また、本発明におけるポリマー型導電インクとしては、熱硬化型の他にも、光硬化型、浸透乾燥型、溶剤揮発型といった公知のものが用いられる。
Examples of polymer-type conductive inks are those in which conductive fine particles such as silver powder, gold powder, platinum powder, aluminum powder, palladium powder, rhodium powder, carbon powder (carbon black, carbon nanotube, etc.) are blended in the resin composition Is mentioned.
If a thermosetting resin is used as the resin composition, the polymer type conductive ink becomes a thermosetting type capable of forming a coating film forming a conductive part at 200 ° C. or less, for example, about 100 to 150 ° C. A path through which electricity of the coating film forming the conductive portion flows is formed by contact of the conductive fine particles forming the coating film with each other, and the resistance value of the coating film is on the order of 10 −5 Ω · cm.
Further, as the polymer type conductive ink in the present invention, known ones such as a photocuring type, a penetrating drying type, and a solvent volatilization type are used in addition to the thermosetting type.

光硬化型のポリマー型導電インクは、光硬化性樹脂を樹脂組成物に含むものであり、硬化時間が短いので、製造効率を向上させることができる。光硬化型のポリマー型導電インクとしては、例えば、熱可塑性樹脂のみ、あるいは、熱可塑性樹脂と架橋性樹脂(特にポリエステルとイソシアネートによる架橋系樹脂など)とのブレンド樹脂組成物に、導電微粒子が60質量%以上配合され、ポリエステル樹脂が10質量%以上配合されたもの、すなわち、溶剤揮発型かあるいは架橋/熱可塑併用型(ただし熱可塑型が50質量%以上である)のものや、熱可塑性樹脂のみ、あるいは熱可塑性樹脂と架橋性樹脂(特にポリエステルとイソシアネートによる架橋系樹脂など)とのブレンド樹脂組成物に、ポリエステル樹脂が10質量%以上配合されたもの、すなわち、架橋型かあるいは架橋/熱可塑併用型のものなどが好適に用いられる。   The photocurable polymer type conductive ink contains a photocurable resin in the resin composition and has a short curing time, so that the production efficiency can be improved. Examples of the photo-curing polymer type conductive ink include, for example, a thermoplastic resin alone, or a blend resin composition of a thermoplastic resin and a crosslinkable resin (particularly, a crosslinkable resin composed of polyester and isocyanate) and 60 fine conductive particles. More than 10% by mass and 10% by mass or more of a polyester resin, that is, a solvent volatile type or a crosslinked / thermoplastic combined type (however, the thermoplastic type is 50% by mass or more), thermoplastic A resin resin or a blend resin composition of a thermoplastic resin and a crosslinkable resin (especially a crosslinkable resin composed of polyester and isocyanate) is blended with 10% by mass or more of a polyester resin, that is, a crosslinkable type or a crosslinked / crosslinked resin. A thermoplastic combination type is preferably used.

次いで、図2に示すように、基板1の他方の面1bに陽電極21を当接するように配置するとともに、塗膜2の基板1と接している面とは反対の面(最表面)2aに陰電極22を近接するように配置した後、陽電極21と陰電極22に所定の電圧を印加して、基板1の他方の面1bと塗膜2の最表面2aとの間に、基板1の一方の面1aと塗膜2の最表面2aに対して垂直に、かつ、基板1の一方の面1aから塗膜2の最表面2aに向かう方向(図中の矢印方向)に電界を掛ける。これにより、図3に示すように、塗膜2を形成するポリマー型導電インクの樹脂組成物3中に含まれる導電微粒子4を、塗膜2の最表面2a側に移動させる(工程B)。   Next, as shown in FIG. 2, the positive electrode 21 is disposed in contact with the other surface 1 b of the substrate 1, and the surface (outermost surface) 2 a opposite to the surface in contact with the substrate 1 of the coating film 2. After the negative electrode 22 is arranged close to the substrate, a predetermined voltage is applied to the positive electrode 21 and the negative electrode 22, so that the substrate 1 is placed between the other surface 1 b of the substrate 1 and the outermost surface 2 a of the coating film 2. The electric field is applied in a direction perpendicular to the one surface 1a of 1 and the outermost surface 2a of the coating film 2 and from the one surface 1a of the substrate 1 toward the outermost surface 2a of the coating film 2 (arrow direction in the figure). Multiply. Thereby, as shown in FIG. 3, the conductive fine particles 4 contained in the resin composition 3 of the polymer type conductive ink forming the coating film 2 are moved to the outermost surface 2a side of the coating film 2 (step B).

陽電極21と陰電極22に印加する電圧の大きさは、ポリマー型導電インクにおける導電微粒子4の含有量などに応じて適宜調整されるが、塗膜2の最表面2a側に導電微粒子4が十分に移動する程度であることが好ましい。
また、陽電極21と陰電極22に電圧を印加する時間は、特に限定されないが、塗膜2の最表面2a側に導電微粒子4が十分に移動する程度であることが好ましい。
The magnitude of the voltage applied to the positive electrode 21 and the negative electrode 22 is appropriately adjusted according to the content of the conductive fine particles 4 in the polymer type conductive ink, but the conductive fine particles 4 are on the outermost surface 2 a side of the coating film 2. It is preferable that the movement is sufficient.
The time for applying the voltage to the positive electrode 21 and the negative electrode 22 is not particularly limited, but it is preferable that the conductive fine particles 4 are sufficiently moved to the outermost surface 2a side of the coating film 2.

この工程Bでは、エレクトロマイグレーションまたはイオンマイグレーションを利用して、塗膜2の最表面2a側に導電微粒子4を移動させている。
エレクトロマイグレーション(electromigration)とは、電界の影響により、金属成分が非金属媒体の上や中を横切って移動する現象である。この現象では、移動の前後で金属成分は金属状態であり、導電性を示す。その意味においては、金属の腐食(酸化やハロゲン化など)により染みが滲み出たように見える現象(腐食性生成物(corrosion−product)の発生)はエレクトロマイグレーションではないと言える。しかしながら、腐食性生成物はその発生状況がエレクトロマイグレーションと類似している(例えば、デンドライト状)ため、しばしば混同されることがある。2つのマイグレーションの大きな違いは、電界の有無にある。腐食性生成物は電界がなくても発生するが、エレクトロマイグレーションは電界がないと発生しない。
In this process B, the electroconductive fine particles 4 are moved to the outermost surface 2a side of the coating film 2 using electromigration or ion migration.
Electromigration is a phenomenon in which a metal component moves across or across a non-metallic medium due to the influence of an electric field. In this phenomenon, the metal component is in a metal state before and after movement, and exhibits conductivity. In that sense, it can be said that the phenomenon (the occurrence of a corrosive product) in which a stain appears to exude due to metal corrosion (oxidation, halogenation, etc.) is not electromigration. However, corrosive products are often confused because their occurrence is similar to electromigration (eg, dendritic). The major difference between the two migrations is the presence or absence of an electric field. Corrosive products occur without an electric field, but electromigration does not occur without an electric field.

イオンマイグレーションについて説明する。
ポリマー型導電インクが、導電微粒子として、例えば、銀(Ag)粒子を含む場合を例示する。
陽電極21と陰電極22の電位差と、周辺雰囲気から塗膜2の表面に吸着された水の存在とによって、下記の式(1)に示すように銀粒子の電離が生じるとともに、下記の式(2)に示すように水の電離が生じる。
Ag→Ag (1)
O→H+OH (2)
Ion migration will be described.
A case where the polymer type conductive ink includes, for example, silver (Ag) particles as the conductive fine particles will be exemplified.
The potential difference between the positive electrode 21 and the negative electrode 22 and the presence of water adsorbed on the surface of the coating film 2 from the surrounding atmosphere cause ionization of silver particles as shown in the following formula (1). Water ionization occurs as shown in (2).
Ag → Ag + (1)
H 2 O → H + + OH (2)

AgとOHとは、下記の式(3)に示すように陽電極21側でAgOHとなって析出する。
Ag+OH→AgOH (3)
さらに、AgOHは、下記の式(4)に示すように分解して、陽電極21側でAgOとなり、コロイド状に分散する。
2AgOH⇔AgO+HO (4)
Ag + and OH are precipitated as AgOH on the positive electrode 21 side as shown in the following formula (3).
Ag + + OH → AgOH (3)
Furthermore, AgOH decomposes as shown in the following formula (4) is dispersed in the positive electrode 21 side Ag 2 O, and the colloidal.
2AgOH⇔Ag 2 O + H 2 O (4)

この後、下記の式(5)に示すように水和反応が生じる。
AgO+HO⇔2AgOH⇔2Ag+2OH (5)
上記の式(5)に示す反応が進行すると、Agが陰電極22側に移動し、結果として、塗膜2の最表面2a側においてAgのデンドライト状の析出が進行する。
Thereafter, a hydration reaction occurs as shown in the following formula (5).
Ag 2 O + H 2 O⇔2AgOH⇔2Ag + + 2OH (5)
When the reaction shown in the above formula (5) proceeds, Ag + moves to the negative electrode 22 side, and as a result, Ag dendritic precipitation proceeds on the outermost surface 2a side of the coating film 2.

次いで、未乾燥の塗膜2を加熱、乾燥させて導電部5を形成する(工程C)。   Next, the undried coating film 2 is heated and dried to form the conductive portion 5 (step C).

以上の工程A〜Cにより、基板1と、基板1の一方の面1aに設けられた導電部5とを備えたプリント配線基板10が得られる。   The printed circuit board 10 provided with the board | substrate 1 and the electroconductive part 5 provided in the one surface 1a of the board | substrate 1 by the above process AC is obtained.

この実施形態のプリント配線基板の製造方法によれば、基板1の一方の面1aに、ポリマー型導電インクを塗布して、導電部をなす未乾燥の塗膜2を形成し、基板1の他方の面1bと塗膜2の最表面2aとの間に電界を掛けて、塗膜2に含まれる導電微粒子4を、塗膜2の最表面2a側に移動させた後、塗膜2を加熱、乾燥させて導電部5を形成したので、導電部5の基板1と接している面とは反対の面(最表面)5a側において、単位体積当たりの導電微粒子4の含有率が高くなり、結果として、多数の導電微粒子4が互いに密に接触し、多数の導電微粒子4が導電部5の長手方向に沿って1つの導電体を形成するようになる。したがって、導電部5は導電性に優れるとともに、導電部5はプリント配線基板10を曲げても容易に破壊されることがない。   According to the method for manufacturing a printed wiring board of this embodiment, polymer-type conductive ink is applied to one surface 1a of the substrate 1 to form an undried coating film 2 that forms a conductive portion, and the other side of the substrate 1 is formed. An electric field is applied between the surface 1b of the coating film 2 and the outermost surface 2a of the coating film 2 to move the conductive fine particles 4 contained in the coating film 2 to the outermost surface 2a side of the coating film 2, and then the coating film 2 is heated. Since the conductive portion 5 is formed by drying, the content of the conductive fine particles 4 per unit volume is increased on the surface (outermost surface) 5a side opposite to the surface in contact with the substrate 1 of the conductive portion 5, As a result, the large number of conductive fine particles 4 come into close contact with each other, and the large number of conductive fine particles 4 form one conductor along the longitudinal direction of the conductive portion 5. Therefore, the conductive portion 5 is excellent in conductivity, and the conductive portion 5 is not easily broken even when the printed wiring board 10 is bent.

なお、この実施形態では、塗膜2が未乾燥の状態にて、基板1の他方の面1bと塗膜2の最表面2aとの間に電界を掛けて、塗膜2の最表面2a側に導電微粒子4を移動させたが、本発明はこれに限定されない。本発明にあっては、基板上に塗布した未乾燥の塗膜を加熱、乾燥させて、導電部を形成した後、基板の他方の面と導電部の最表面との間に電界を掛けてもよい。   In this embodiment, an electric field is applied between the other surface 1b of the substrate 1 and the outermost surface 2a of the coating film 2 in the undried state, so that the outermost surface 2a side of the coating film 2 is present. However, the present invention is not limited to this. In the present invention, an undried coating film applied on a substrate is heated and dried to form a conductive portion, and then an electric field is applied between the other surface of the substrate and the outermost surface of the conductive portion. Also good.

本発明のプリント配線基板の製造方法の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the manufacturing method of the printed wiring board of this invention. 本発明のプリント配線基板の製造方法の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the manufacturing method of the printed wiring board of this invention. 本発明のプリント配線基板の製造方法の一実施形態を示す概略断面図であり、図2の破線Aで囲んだ領域を拡大した図である。It is a schematic sectional drawing which shows one Embodiment of the manufacturing method of the printed wiring board of this invention, and is the figure which expanded the area | region enclosed with the broken line A of FIG. 本発明のプリント配線基板の製造方法の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the manufacturing method of the printed wiring board of this invention.

符号の説明Explanation of symbols

1・・・基板、2・・・塗膜、3・・・樹脂組成物、4・・・導電微粒子、5・・・導電部、10・・・プリント配線基板、21・・・陽電極、22・・・陰電極。 DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 2 ... Coating film, 3 ... Resin composition, 4 ... Conductive fine particle, 5 ... Conductive part, 10 ... Printed wiring board, 21 ... Positive electrode, 22 ... negative electrode.

Claims (1)

基板と、該基板の一方の面に設けられた導電部とを備えたプリント配線基板の製造方法であって、
基板の一方の面に、ポリマー型導電インクを塗布して、導電部をなす塗膜を形成する工程Aと、
前記基板の他方の面と前記塗膜の最表面との間に電界を掛けて、前記塗膜に含まれる導電微粒子を、前記塗膜の最表面側に移動させる工程Bと、を有することを特徴とするプリント配線基板の製造方法。
A printed wiring board manufacturing method comprising a substrate and a conductive portion provided on one surface of the substrate,
Step A of applying a polymer type conductive ink on one surface of the substrate to form a coating film forming a conductive portion;
A step B in which an electric field is applied between the other surface of the substrate and the outermost surface of the coating film, and the conductive fine particles contained in the coating film are moved to the outermost surface side of the coating film. A printed wiring board manufacturing method characterized by the above.
JP2008190972A 2008-07-24 2008-07-24 Manufacturing method of printed wiring board Pending JP2010028030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008190972A JP2010028030A (en) 2008-07-24 2008-07-24 Manufacturing method of printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008190972A JP2010028030A (en) 2008-07-24 2008-07-24 Manufacturing method of printed wiring board

Publications (1)

Publication Number Publication Date
JP2010028030A true JP2010028030A (en) 2010-02-04

Family

ID=41733539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008190972A Pending JP2010028030A (en) 2008-07-24 2008-07-24 Manufacturing method of printed wiring board

Country Status (1)

Country Link
JP (1) JP2010028030A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05313183A (en) * 1992-05-12 1993-11-26 Citizen Watch Co Ltd Liquid crystal display device and method for repairing same
JP2006201421A (en) * 2005-01-20 2006-08-03 Seiko Epson Corp Optoelectronic device and its manufacturing method, and electronic apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05313183A (en) * 1992-05-12 1993-11-26 Citizen Watch Co Ltd Liquid crystal display device and method for repairing same
JP2006201421A (en) * 2005-01-20 2006-08-03 Seiko Epson Corp Optoelectronic device and its manufacturing method, and electronic apparatus

Similar Documents

Publication Publication Date Title
US9460828B2 (en) Graphene printed pattern circuit structure
TWI630849B (en) Conductive film and touch panel including the same
KR20140014236A (en) Method for manufacturing electrostatic capacity sensor sheet, and electrostatic capacity sensor sheet
US8895429B2 (en) Micro-channel structure with variable depths
US9754704B2 (en) Making thin-film multi-layer micro-wire structure
Li et al. Recyclable Liquid Metal‐Based Circuit on Paper
WO2009023584A2 (en) Device and method of forming electrical path with carbon nanotubes
CN107112073A (en) Flexible conductive film and its manufacture method
JP2005135982A (en) Circuit board and manufacturing method therefor
US9288901B2 (en) Thin-film multi-layer micro-wire structure
JP2010028030A (en) Manufacturing method of printed wiring board
US8921704B2 (en) Patterned conductive polymer with dielectric patch
JPWO2018123977A1 (en) Wiring board and method of manufacturing wiring board
Zhou et al. Sintering kinetics of inkjet-printed conductive silver lines on insulating plastic substrate
KR20160056861A (en) digitizer flexible printed circuits board using light sintering and method for manufacturing thereof
JP6658418B2 (en) Method of forming conductive pattern
JP2010028015A (en) Method for manufacturing component mounting substrate
Khan et al. Substrate treatment evaluation and their impact on printing results for wearable electronics
CN204291617U (en) Printed circuit board (PCB)
Tomaszewski et al. Packing density of inkjet printed paths
WO2018110198A1 (en) Method for forming transparent electroconductive film, and plating liquid for electroplating
JP2013206804A (en) Substrate with transparent conductive layer, manufacturing method therefor, and touch panel using the same
US9167700B2 (en) Micro-channel connection method
US20050260350A1 (en) Forming a conductor circuit on a substrate
TWM487591U (en) Printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110408

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110411

A977 Report on retrieval

Effective date: 20120426

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A02 Decision of refusal

Effective date: 20120918

Free format text: JAPANESE INTERMEDIATE CODE: A02