JP2010025438A - Countercurrent plate fin type heat exchanger and air cycle refrigeration system for container - Google Patents

Countercurrent plate fin type heat exchanger and air cycle refrigeration system for container Download PDF

Info

Publication number
JP2010025438A
JP2010025438A JP2008187098A JP2008187098A JP2010025438A JP 2010025438 A JP2010025438 A JP 2010025438A JP 2008187098 A JP2008187098 A JP 2008187098A JP 2008187098 A JP2008187098 A JP 2008187098A JP 2010025438 A JP2010025438 A JP 2010025438A
Authority
JP
Japan
Prior art keywords
fluid flow
flow path
heat exchanger
temperature fluid
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008187098A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yamada
裕之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008187098A priority Critical patent/JP2010025438A/en
Publication of JP2010025438A publication Critical patent/JP2010025438A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a countercurrent plate fin type heat exchanger improving heat exchange efficiency while minimizing increase in pressure loss. <P>SOLUTION: In the countercurrent plate fin type heat exchanger, plates 22 and corrugated plate-shaped heat transfer fins 23 are alternately laminated at a plurality of stages, and fluid flow passages 1c, 1e where gas is made to flow are constituted between the plates 22, 22 at each layer. The fluid flow passage at each layer is alternately divided into a high-temperature fluid flow passage 1e where high-temperature fluid is made to flow and a low-temperature fluid flow passage 1c where low-temperature fluid is made to flow, and the flowing directions of the high-temperature fluid flow passage 1e and the low-temperature fluid flow passage 1c oppose to each other. The shapes of the heat transfer fins 23 are set to be different between the high-temperature fluid flow passage 1e and the low-temperature fluid flow passage 1c. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、向流型プレートフィン式熱交換器およびこれを用いたコンテナ用空気サイクル冷凍システムに関する。   The present invention relates to a countercurrent plate fin heat exchanger and an air cycle refrigeration system for containers using the same.

空気サイクル冷凍冷却システムは、冷媒として空気を用いるため、フロンやアンモニアガス等を用いる場合に比べてエネルギー効率が不足するが、環境保護の面では好ましい。また、冷凍倉庫等のように、冷媒空気を直接吹き込むことができる施設では、庫内ファンの省略等によってトータルコストを引き下げられる可能性があり、このような用途で空気サイクル冷凍冷却システムが提案されている(例えば特許文献1)。
また、−30℃〜−60℃のディープ・コール領域では、空気冷却の理論効率は、フロンやアンモニアガスと同等以上になることが知られている。ただし、上記空気冷却の理論効率を得ることは、最適に設計された周辺装置があって、初めて成り立つとも述べられている。周辺装置は、圧縮機や膨張タービン等である。
Since the air cycle refrigeration cooling system uses air as a refrigerant, energy efficiency is insufficient as compared with the case of using chlorofluorocarbon or ammonia gas, but it is preferable in terms of environmental protection. In addition, in facilities where refrigerant air can be directly blown into, such as a refrigerated warehouse, the total cost may be reduced by omitting the internal fan, etc., and an air cycle refrigeration cooling system has been proposed for such applications. (For example, Patent Document 1).
Further, it is known that the theoretical efficiency of air cooling is equal to or higher than that of Freon or ammonia gas in a deep coal region of -30 ° C to -60 ° C. However, it is stated that obtaining the above-described theoretical efficiency of air cooling can only be achieved with optimally designed peripheral devices. The peripheral device is a compressor, an expansion turbine, or the like.

圧縮機、膨張タービンとしては、コンプレッサ翼車および膨張タービン翼車を共通の主軸に取り付けたタービンユニットが用いられている。空気サイクル冷凍システムには冷凍庫から圧縮機に流入する戻り空気と膨張タービン入口前の空気を熱交換する熱回収熱交換器と、圧縮機で高温になった空気を外部冷却媒体との熱交換で冷却する放熱用熱交換器とを備える。空気サイクル冷凍システムをコンテナ用に用いる場合には、冷凍能力に大きく寄与する熱交換器の温度効率を向上させることと同時に小型化も求められる。
特許第2623202号公報
As the compressor and the expansion turbine, a turbine unit in which a compressor impeller and an expansion turbine impeller are attached to a common main shaft is used. The air cycle refrigeration system includes a heat recovery heat exchanger that exchanges heat between the return air flowing into the compressor from the freezer and the air before the expansion turbine inlet, and heat exchange between the air that has become hot in the compressor and an external cooling medium. A heat dissipation heat exchanger for cooling. When an air cycle refrigeration system is used for containers, it is required to reduce the size as well as improve the temperature efficiency of the heat exchanger that greatly contributes to the refrigeration capacity.
Japanese Patent No. 2623202

空気サイクル冷凍システムには、熱回収用熱交換器と放熱用熱交換器が備えられる。熱回収用熱交換器は、冷凍庫から圧縮機に流入する戻り空気と膨張タービン入口前の空気を熱交換するもので、空気対空気の熱交換器である。放熱用熱交換器は、圧縮機で高温になった空気を外部冷却媒体との熱交換で冷却するもので、大型冷凍倉庫の場合には冷却媒体としてチラー冷却水が用いられる場合が多いが、コンテナ用冷凍機は、チラーを持たないため空気を用いざるを得ない。   The air cycle refrigeration system includes a heat recovery heat exchanger and a heat dissipation heat exchanger. The heat recovery heat exchanger exchanges heat between the return air flowing into the compressor from the freezer and the air before the inlet of the expansion turbine, and is an air-to-air heat exchanger. A heat exchanger for heat dissipation cools air that has become hot at the compressor by heat exchange with an external cooling medium, and in the case of a large refrigerated warehouse, chiller cooling water is often used as the cooling medium, Since the container refrigerator has no chiller, air must be used.

空気対空気の熱交換が高効率で行なえ、かつ低損失を実現できる熱交換器としては、図5に示す構造の向流型プレートフィン式熱交換器がある。向流型プレートフィン式熱交換器は、同図のように、プレート32と伝熱フィン33を複数段に積層して多段の流体流路31を構成し、これら多段の流体流路31に高温流体と低温流体を交互に流すことで熱交換するものである。プレート32および伝熱フィン33の材料には、熱伝導率が良く軽量でロウ付け構造が容易にできることから、アルミ材が用いられることが多い。この向流型プレートフィン式熱交換器において熱交換量を大きくするためには、フィン面積の増加、およびプレート32と伝熱フィン33の段数の増加が有効である。一方、コンテナ用途に利用する場合には、冷凍ユニットの配置スペースが制限されるため、上記した熱交換量増大の対策を講じると、プレート32と伝熱フィン33からなる流体流路31の断面積が小さくなり、圧力損失が大きくなるといった欠点がある。なお、空気サイクル冷凍システムでは、熱回収用熱交換器の熱交換効率向上と、圧縮機から膨張機までの経路の圧力損失の低減とが冷凍能力に大きく寄与する。   As a heat exchanger capable of performing air-to-air heat exchange with high efficiency and realizing low loss, there is a countercurrent plate fin heat exchanger having a structure shown in FIG. As shown in the figure, the counterflow type plate fin type heat exchanger forms a multistage fluid flow path 31 by laminating plates 32 and heat transfer fins 33 in a plurality of stages, and the multistage fluid flow path 31 has a high temperature. Heat exchange is performed by flowing fluid and low-temperature fluid alternately. As the material of the plate 32 and the heat transfer fins 33, an aluminum material is often used because it has a good thermal conductivity and is lightweight and can be easily brazed. In order to increase the amount of heat exchange in this counterflow plate fin heat exchanger, it is effective to increase the fin area and the number of stages of the plate 32 and the heat transfer fins 33. On the other hand, when the container is used for a container, the arrangement space of the refrigeration unit is limited. Therefore, when the above-described measures for increasing the heat exchange amount are taken, the cross-sectional area of the fluid channel 31 including the plate 32 and the heat transfer fins 33 is taken. Has a drawback that the pressure loss is reduced and the pressure loss is increased. In the air cycle refrigeration system, improvement in heat exchange efficiency of the heat recovery heat exchanger and reduction in pressure loss in the path from the compressor to the expander greatly contribute to the refrigeration capacity.

この発明の目的は、圧力損失の増加を最小に抑えながら熱交換効率の向上が図れる向流型プレートフィン式熱交換器を提供することである。
この発明の他の目的は、熱交換効率の向上により、冷凍能力の向上を図ることができるコンテナ用空気サイクル冷凍システムを提供することである。
An object of the present invention is to provide a countercurrent plate fin heat exchanger capable of improving heat exchange efficiency while minimizing an increase in pressure loss.
Another object of the present invention is to provide a container air cycle refrigeration system capable of improving refrigeration capacity by improving heat exchange efficiency.

この発明の向流型プレートフィン式熱交換器は、プレ−トと波板状の伝熱フィンとが交互に複数段に積層されて、各層のプレート間に気体の流れる流体流路が構成され、前記各層の流体流路は、高温流体が流れる高温流体流路と、低温流体が流れる低温流体流路とに交互に分けられ、かつ高温流体流路と低温流体流路の流れ方向が互いに向かい合う向流型プレートフィン式熱交換器において、前記高温流体流路と低温流体流路とで、前記伝熱フィンの形状が互いに異なるものとしている。
伝熱フィンの形状を異ならせることにより、例えば、前記高温流体流路と低温流体流路のうち、流入する気体の圧力が高い側の流体流路の伝熱面積を低い側の流体流路の伝熱面積よりも広くすると、圧力損失の増加を最小に抑えながら熱交換効率の向上が図れる。
In the countercurrent plate fin heat exchanger of the present invention, a plate and corrugated heat transfer fins are alternately stacked in a plurality of stages to constitute a fluid flow path through which gas flows between the plates of each layer. The fluid flow paths of each layer are alternately divided into a high temperature fluid flow path through which a high temperature fluid flows and a low temperature fluid flow path through which a low temperature fluid flows, and the flow directions of the high temperature fluid flow path and the low temperature fluid flow path face each other. In the counterflow plate fin heat exchanger, the heat transfer fins have different shapes in the high-temperature fluid channel and the low-temperature fluid channel.
By making the shape of the heat transfer fins different, for example, the heat transfer area of the fluid flow channel on the higher pressure side of the gas flowing in the high temperature fluid flow channel and the low temperature fluid flow channel is reduced. If the area is larger than the heat transfer area, the heat exchange efficiency can be improved while minimizing the increase in pressure loss.

この発明において、流入する気体の圧力が高い側の流体流路の伝熱フィンの波配列ピッチを、流入する気体の圧力が低い側の流体流路の伝熱フィンの波配列ピッチよりも狭くしても良い。
流入する気体の圧力が高い側の流体流路の伝熱フィンの波配列ピッチを狭くすると、その流体流路の伝熱面積が広くなるので、これにより圧力損失の増加を最小に抑えながら熱交換効率の向上が図れる。
In this invention, the wave arrangement pitch of the heat transfer fins of the fluid flow path on the side of the fluid flow path where the pressure of the inflowing gas is high is made narrower than the wave arrangement pitch of the heat transfer fins of the flow path of the fluid flow path where the pressure of the inflowing gas is low. May be.
If the wave arrangement pitch of the heat transfer fins in the fluid flow path on the side of the high-flowing gas flow is narrowed, the heat transfer area of the fluid flow path is widened, so that heat exchange is performed while minimizing the increase in pressure loss. Efficiency can be improved.

この発明において、流入する気体の圧力が高い側の流体流路の伝導熱フィンの断面積を、流入する気体の圧力が低い側の流体流路の伝熱フィンの断面積よりも小さくしても良い。
流入する気体の圧力が高い側の流体流路の伝熱フィンの断面積を小さくすると、熱交換器のダクト21の面積を変更せずに、プレートと伝熱フィンの積層段数を増加させることができるので、圧力損失の増加を最小に抑えながら、熱交換効率を向上させることができる。
In this invention, even if the cross-sectional area of the conduction heat fin of the fluid flow path on the side where the pressure of the inflowing gas is high is made smaller than the cross-sectional area of the heat transfer fin of the fluid flow path on the side where the pressure of the inflowing gas is low good.
Reducing the cross-sectional area of the heat transfer fin of the fluid flow path on the side where the pressure of the inflowing gas is high may increase the number of layers of the plate and heat transfer fin without changing the area of the duct 21 of the heat exchanger. Therefore, heat exchange efficiency can be improved while minimizing an increase in pressure loss.

この発明において、流入する気体の圧力が高い側の流体流路の伝熱フィンの波山高さを、流入する気体の圧力が低い側の流体流路の伝熱フィンの波山高さよりも低くしても良い。
流入する気体の圧力が高い側の流体流路の伝熱フィンの波山高さを低くすると、熱交換器のダクト21の面積を変更せずに、プレートと伝熱フィンの積層段数を増加させることができるので、これにより圧力損失の増加を最小に抑えながら熱交換効率の向上が図れる。
In this invention, the ridge height of the heat transfer fin of the fluid flow path on the side where the pressure of the inflowing gas is high is made lower than the height of the ridge height of the heat transfer fin of the fluid flow path on the side where the pressure of the inflowing gas is low. Also good.
If the height of the heat transfer fin in the fluid flow path on the side where the pressure of the inflowing gas is high is reduced, the number of stacked layers of plates and heat transfer fins can be increased without changing the area of the duct 21 of the heat exchanger. Thus, the heat exchange efficiency can be improved while minimizing the increase in pressure loss.

この発明において、前記プレートおよび伝熱フィンをアルミ合金製としても良い。
プレートや伝熱フィンがアルミ合金製であると、熱伝導率が良く、軽量で、ロウ付けにより熱交換器を容易に構成できる。
In the present invention, the plate and the heat transfer fin may be made of an aluminum alloy.
When the plate and the heat transfer fin are made of an aluminum alloy, the heat conductivity is good, the weight is light, and the heat exchanger can be easily configured by brazing.

この発明のコンテナ用空気サイクル冷凍システムは、上記したいずれかの発明の向流型プレートフィン式熱交換器を用いたものである。
このように、コンテナ用空気サイクル冷凍システムの熱交換器として、上記したいずれかの発明の向流型プレートフィン式熱交換器を用いた場合、熱交換器の熱交換効率の向上により冷凍能力を向上させることができる。
The container air cycle refrigeration system of the present invention uses the counter-current plate fin heat exchanger of any one of the above-described inventions.
Thus, when the countercurrent plate fin heat exchanger of any of the inventions described above is used as a heat exchanger for an air cycle refrigeration system for containers, the refrigeration capacity is improved by improving the heat exchange efficiency of the heat exchanger. Can be improved.

この発明の向流型プレートフィン式熱交換器は、プレ−トと波板状の伝熱フィンとが交互に複数段に積層されて、各層のプレート間に気体の流れる流体流路が構成され、前記各層の流体流路は、高温流体が流れる高温流体流路と、低温流体が流れる低温流体流路とに交互に分けられ、かつ高温流体流路と低温流体流路の流れ方向が互いに向かい合う向流型プレートフィン式熱交換器において、前記高温流体流路と低温流体流路とで、前記伝熱フィンの形状が互いに異なるものとしたため、圧力損失の増加を最小に抑えながら熱交換効率の向上を図ることができる。
この発明のコンテナ用空気サイクル冷凍システムは、上記発明の向流型プレートフィン上記熱交換器を用いたため、冷凍能力を向上させることができる。
In the countercurrent plate fin heat exchanger of the present invention, a plate and corrugated heat transfer fins are alternately stacked in a plurality of stages to constitute a fluid flow path through which gas flows between the plates of each layer. The fluid flow paths of each layer are alternately divided into a high temperature fluid flow path through which a high temperature fluid flows and a low temperature fluid flow path through which a low temperature fluid flows, and the flow directions of the high temperature fluid flow path and the low temperature fluid flow path face each other. In the counterflow plate fin heat exchanger, the heat transfer fins have different shapes in the high-temperature fluid flow path and the low-temperature fluid flow path, so that heat exchange efficiency can be improved while minimizing an increase in pressure loss. Improvements can be made.
The container air cycle refrigeration system of the present invention uses the countercurrent plate fin of the above invention and the heat exchanger, so that the refrigeration capacity can be improved.

この発明の一実施形態を図1および図2と共に説明する。図1は、この実施形態の向流型プレートフィン式熱交換器を用いたコンテナ用空気サイクル冷凍システムの全体の系統図を示す。このコンテナ用空気サイクル冷凍システムは、コンテナ用冷凍庫の被冷却部の空気を直接に冷媒として冷却する装置であり、コンテナの一部にシステム全体が格納されている。先ず、空気サイクル冷凍システムの全体構成について説明し、次に向流型プレートフィン式熱交換器の構成について説明する。   An embodiment of the present invention will be described with reference to FIGS. FIG. 1: shows the whole system diagram of the air cycle refrigeration system for containers using the counterflow type plate fin type heat exchanger of this embodiment. This container air cycle refrigeration system is a device that directly cools the air in a cooled part of a container freezer as a refrigerant, and the entire system is stored in a part of the container. First, the overall configuration of the air cycle refrigeration system will be described, and then the configuration of the countercurrent plate fin heat exchanger will be described.

図1に示すように、この空気サイクル冷凍システムは、被冷却部12にそれぞれ開口した空気の庫内吸い込み口1aから庫内噴出口1bに至る冷媒経路1を有している。この冷媒経路1に、空気サイクル冷凍用タービンユニット5の空気圧縮機6、放熱用熱交換器2、熱回収用熱交換器3,および前記タービンユニット5の空気膨張機7が順に設けられている。   As shown in FIG. 1, this air cycle refrigeration system has a refrigerant path 1 extending from an in-compartment air inlet 1 a to an in-compartment outlet 1 b, which is opened in each cooled portion 12. An air compressor 6 of the turbine unit 5 for air cycle refrigeration, a heat exchanger 2 for heat dissipation, a heat exchanger 3 for heat recovery, and an air expander 7 for the turbine unit 5 are sequentially provided in the refrigerant path 1. .

タービンユニット5の空気圧縮機6は、被冷却部12からの戻り空気であって前記熱回収用熱交換器3を経て流入する空気を圧縮する。放熱用熱交換器2は、前記空気圧縮機6で圧縮されて高圧・高温となった空気が流入する高温流体流路1dと、外部冷媒である冷却空気が流入する低温流体流路8との間で熱交換を行なって、空気圧縮機6により圧縮された空気を1次冷却する。熱回収用熱交換器3は、前記放熱用熱交換器2と空気膨張機7の間の高圧・高温となった空気が流入する高温流体流路1eと、被冷却部12と空気圧縮機6の間の冷却空気が流入する低温流体流路1cとの間で熱交換を行なって、空気膨張機7に入る前の圧縮空気を2次冷却する。タービンユニット5の空気膨張機7は、前記熱回収用熱交換器3で2次冷却された圧縮空気を断滅膨張させることで、さらに冷却して被冷却部12に供給する。   The air compressor 6 of the turbine unit 5 compresses the return air from the cooled portion 12 and flowing in through the heat recovery heat exchanger 3. The heat-dissipating heat exchanger 2 includes a high-temperature fluid channel 1d into which air that has been compressed by the air compressor 6 to high pressure and high temperature flows, and a low-temperature fluid channel 8 into which cooling air that is an external refrigerant flows. Heat exchange is performed between them, and the air compressed by the air compressor 6 is primarily cooled. The heat recovery heat exchanger 3 includes a high-temperature fluid passage 1e through which high-pressure and high-temperature air flows between the heat-dissipation heat exchanger 2 and the air expander 7, a cooled portion 12, and an air compressor 6 Heat exchange is performed with the low-temperature fluid flow path 1c into which the cooling air flows between, and the compressed air before entering the air expander 7 is secondarily cooled. The air expander 7 of the turbine unit 5 further cools and supplies the compressed air secondarily cooled by the heat recovery heat exchanger 3 to the cooled portion 12 by crushing and expanding.

このコンテナ用空気サイクル冷凍システムは、被冷却部12を0℃〜−60℃程度に保つシステムであり、被冷却部12から冷媒経路1の庫内吸い込み口1aに圧力0.1Mpaで0℃〜−60℃程度の空気が流入する。なお、以下に示す温度および圧力の数値は、一応の目安となる一例である。庫内吸い込み口1aに流入した空気は、熱回収用熱交換器3での熱交換により冷媒経路1中の後段の空気冷却に使用され、30℃まで昇温する。この昇温した空気は圧力0.1Mpaのままタービンユニット5の空気圧縮機6に流入して、ここで圧力0.18Mpaに圧縮させられ、その圧縮により110℃まで昇温する。この圧縮空気は、放熱用熱交換器2により40℃に1次冷却される。   This container air cycle refrigeration system is a system that keeps the cooled part 12 at about 0 ° C. to −60 ° C., from the cooled part 12 to the suction port 1a in the refrigerant path 1 at a pressure of 0.1 MPa and at 0 ° C. Air of about -60 ° C flows in. Note that the numerical values of temperature and pressure shown below are examples that serve as a rough standard. The air that has flowed into the internal suction port 1a is used for air cooling in the subsequent stage in the refrigerant path 1 by heat exchange in the heat recovery heat exchanger 3, and the temperature is raised to 30 ° C. The heated air flows into the air compressor 6 of the turbine unit 5 with the pressure of 0.1 Mpa, where it is compressed to a pressure of 0.18 Mpa, and the temperature is raised to 110 ° C. by the compression. The compressed air is primarily cooled to 40 ° C. by the heat dissipation heat exchanger 2.

放熱用熱交換器2で1次冷却された40℃の圧縮空気は、熱回収用熱交換器3でさらに−20℃まで2次冷却される。圧力は空気圧縮機6から排出されたときの0.18Mpaに維持される。
熱回収用熱交換器3で−20℃まで冷却された空気は、タービンユニット5の空気膨張機7により断熱膨張され、−50℃まで冷却されて庫内噴出口1bから被冷却部12に排出される。この空気サイクル冷凍システムは、このような冷凍サイクルを行う。
The 40 ° C. compressed air that has been primarily cooled by the heat dissipating heat exchanger 2 is further cooled to −20 ° C. by the heat recovery heat exchanger 3. The pressure is maintained at 0.18 Mpa when discharged from the air compressor 6.
The air cooled to −20 ° C. in the heat recovery heat exchanger 3 is adiabatically expanded by the air expander 7 of the turbine unit 5, cooled to −50 ° C., and discharged to the cooled portion 12 from the in-compartment outlet 1 b. Is done. This air cycle refrigeration system performs such a refrigeration cycle.

タービンユニット5では、軸受により回転自在に支持された主軸13の両端に、空気圧縮機6のコンプレッサ翼車および空気膨張機7のタービン翼車がそれぞれ取付けられている。主軸11には動力部14が同軸に設けられ、この動力部14による駆動力と空気膨張機7のタービン翼車で発生した動力により、空気圧縮機6のコンプレッサ翼車が駆動される。   In the turbine unit 5, a compressor impeller of the air compressor 6 and a turbine impeller of the air expander 7 are respectively attached to both ends of the main shaft 13 that is rotatably supported by bearings. A power unit 14 is coaxially provided on the main shaft 11, and the compressor impeller of the air compressor 6 is driven by the driving force generated by the power unit 14 and the power generated by the turbine impeller of the air expander 7.

図2(A),(B)は、前記熱回収用熱交換器3の断面図および側面図を示す。この熱回収用熱交換器3は向流型プレートフィン式熱交換器からなる。すなわち、この熱回収用熱交換器3は、例えば断面方形としたダクト21内に、プレート22と波板状の伝熱フィン23とが交互に複数段積層されて、各プレート22間に流体流路1c,1eが構成される。各層の流体流路は、前記空気圧縮機6から放熱用熱交換器2を経てきた高圧・高温の空気が流入する高温流体流路1eと、被冷却部10から庫内吸い込み口1aを経てきた低温の空気(大気圧)が流入する低温流体流路1cとに交互に分けられ、かつ高温流体流路1eと低温流体流路1cの流れ方向が互いに向かい合うようにされている。高温流体流路1eと低温流体流路1cとは、伝熱フィン23の形状が互いに異ならせてある。   2A and 2B show a cross-sectional view and a side view of the heat recovery heat exchanger 3. This heat recovery heat exchanger 3 is composed of a counter-flow plate fin heat exchanger. That is, the heat recovery heat exchanger 3 includes, for example, a plurality of stages of plates 22 and corrugated heat transfer fins 23 stacked in a duct 21 having a square cross section, and a fluid flow between the plates 22. Paths 1c and 1e are configured. The fluid flow path of each layer has passed from the air compressor 6 through the heat-dissipating heat exchanger 2 and the high-temperature fluid flow path 1e into which high-pressure and high-temperature air flows, and the cooled portion 10 through the internal suction port 1a. The low-temperature fluid flow path 1c into which low-temperature air (atmospheric pressure) flows is alternately divided, and the flow directions of the high-temperature fluid flow path 1e and the low-temperature fluid flow path 1c are made to face each other. The high-temperature fluid channel 1e and the low-temperature fluid channel 1c are different from each other in the shape of the heat transfer fins 23.

熱回収用熱交換器3を構成するプレート22や伝熱フィン23はアルミ合金製とされている。プレート22や伝熱フィン23がアルミ合金製であると、熱伝導率が良く、軽量で、ロウ付けにより熱回収熱交換器3を容易に構成できる。   The plates 22 and heat transfer fins 23 constituting the heat recovery heat exchanger 3 are made of an aluminum alloy. When the plate 22 and the heat transfer fins 23 are made of an aluminum alloy, the heat recovery heat exchanger 3 can be easily configured by brazing with good heat conductivity and light weight.

このような構成の熱交換器において、空気圧縮機6で圧縮された高圧空気が流入する高温流体流路1eでの圧力損失ΔPは、次式(1)で計算できる。
ΔP=λ・L/d・ρu2 /2 ……(1)
ただし、
λ:抵抗係数
L:流路長さ
d:流路相当直径
ρ:流体密度
u:流体の流速
In the heat exchanger having such a configuration, the pressure loss ΔP in the high-temperature fluid flow path 1e into which the high-pressure air compressed by the air compressor 6 flows can be calculated by the following equation (1).
ΔP = λ · L / d · ρu 2/2 ...... (1)
However,
λ: Resistance coefficient L: Channel length d: Channel equivalent diameter ρ: Fluid density u: Fluid flow velocity

熱回収用熱交換器3の場合、高温流体流路1eに流入する気体(空気)と低温流体流路1cに流入する気体(空気)の水当量が等しい、つまり質量流量が一定である。この場合、流入する気体(空気)の圧力が2倍になると密度ρが2倍になるが、気体(空気)の体積は1/2になり流速uも1/2になる。このことから、(1)式により、質量流量が一定の条件においては、流入する気体(空気)の圧力が2倍になると、圧力損失は1/2となることがわかる。
そこで、この熱回収用熱交換器3では、上記したように高温流体流路1eと低温流体流路1cとの間で伝熱フィン23の形状を互いに異ならせることで、高温・高圧の空気が流入する高温流体流路1eでの伝熱面積を、流入空気の圧力が低い(大気圧)低温流体流路1cでの伝熱面積よりも広くし、これにより圧力損失の増加を最小に抑えながら熱交換効率の向上を図っている。つまり、流体流路の伝熱面積を広くすることは圧力損失を増大させることにはなるが、上記した(1)式の関係から、高温流体流路1eでは伝熱面積を広くしても、それに伴う圧力損失の増大を小さく抑えることができる。
In the case of the heat recovery heat exchanger 3, the water equivalent of the gas (air) flowing into the high temperature fluid channel 1e and the gas (air) flowing into the low temperature fluid channel 1c are equal, that is, the mass flow rate is constant. In this case, when the pressure of the inflowing gas (air) is doubled, the density ρ is doubled, but the volume of the gas (air) is halved and the flow velocity u is also halved. From this, it can be seen from the equation (1) that the pressure loss becomes 1/2 when the pressure of the inflowing gas (air) is doubled under the condition where the mass flow rate is constant.
Therefore, in the heat exchanger 3 for heat recovery, as described above, the shape of the heat transfer fins 23 is made different between the high-temperature fluid channel 1e and the low-temperature fluid channel 1c, so that high-temperature and high-pressure air is generated. The heat transfer area in the inflowing high-temperature fluid channel 1e is made wider than the heat transfer area in the low-temperature fluid channel 1c where the pressure of the inflowing air is low (atmospheric pressure), thereby minimizing the increase in pressure loss. The heat exchange efficiency is improved. That is, widening the heat transfer area of the fluid flow path increases pressure loss, but from the relationship of the above formula (1), even if the heat transfer area is widened in the high temperature fluid flow path 1e, The accompanying increase in pressure loss can be kept small.

この実施形態では、高温流体流路1eの伝熱面積を広くするために、図2(A)の一部Aを拡大して示す図2(C)のように、高温流体流路1eの伝熱フィン23の波配列ピッチを、低温流体流路1cの伝熱フィン23の波配列ピッチよりも狭くしている。具体的には、各伝熱フィン23は断面形状か矩形が波形に形成されて、各波部の平板状の波山頂点部分23aおよび波谷底面部分23bが両側にプレート22にそれぞれ接触し、波側面部分が、各流路1c,1eを複数の平行な流路部分に区分する仕切り板部23cとされている。この仕切り板部23cの配列ピッチにつき、高温流体流路1eの配列ピッチを低温流体流路1cの配列ピッチより狭くしている。   In this embodiment, in order to widen the heat transfer area of the high-temperature fluid flow path 1e, as shown in FIG. 2 (C) showing a part A of FIG. The wave arrangement pitch of the heat fins 23 is made narrower than the wave arrangement pitch of the heat transfer fins 23 of the low-temperature fluid flow path 1c. Specifically, each heat transfer fin 23 has a cross-sectional shape or a rectangular shape, and a wave-like flat peak portion 23a and a wave bottom surface portion 23b of each wave portion are in contact with the plate 22 on both sides, respectively. The portion is a partition plate portion 23c that divides each flow channel 1c, 1e into a plurality of parallel flow channel portions. Regarding the arrangement pitch of the partition plate portions 23c, the arrangement pitch of the high-temperature fluid flow paths 1e is made narrower than the arrangement pitch of the low-temperature fluid flow paths 1c.

この構成の向流型プレートフィン式熱交換器からなる熱回収用熱交換器3によると、流入する空気の圧力が高い側の高温流体流路1eの伝熱面積を、流入する空気の圧力が低い側の低温流体流路1cの伝熱面積よりも広くしているので、圧力損失の増加を最小に抑えながら、熱交換効率を向上させることができる。   According to the heat recovery heat exchanger 3 composed of the countercurrent plate fin heat exchanger having this configuration, the heat transfer area of the high-temperature fluid flow path 1e on the side where the pressure of the inflowing air is high, Since it is made wider than the heat transfer area of the low-temperature low-temperature fluid flow path 1c, it is possible to improve the heat exchange efficiency while minimizing an increase in pressure loss.

また、このような熱交換効率の向上を図った熱回収用熱交換器3を用いた図1のコンテナ用空気サイクル冷凍システムでは、冷凍能力を向上させることができる。とくに、この熱回収用熱交換器3では、高温流体流路1eの伝熱面積を広くすることで、熱交換効率を向上させているので、熱交換効率向上のために熱交換器の容積が大きくならず、コンテナへの設置が容易となる。   Moreover, in the container air cycle refrigeration system of FIG. 1 using the heat recovery heat exchanger 3 that improves the heat exchange efficiency, the refrigeration capacity can be improved. In particular, in this heat recovery heat exchanger 3, since the heat transfer efficiency is improved by widening the heat transfer area of the high-temperature fluid channel 1e, the volume of the heat exchanger is increased to improve the heat exchange efficiency. It does not increase in size and is easy to install in a container.

高温流体流路1eの伝熱フィン23の波配列ピッチを、低温流体流路1cの伝熱フィン23の波配列ピッチよりも狭くすることで、高温流体流路1eの伝熱面積を広くしたこの実施形態の場合、圧力損失は伝熱フィン23の波配列ピッチを低温流体流路1cと同ピッチとした場合より10〜40%増加するが、熱交換効率は2〜5%向上する。また、この場合、低コストで高温流体経路1eの伝熱面積を広くすることができる。
また、この実施形態の熱回収用熱交換器3を用いたコンテナ用空気サイクル冷凍システムでは、冷凍能力を300〜400W程度向上させることができる。
By making the wave arrangement pitch of the heat transfer fins 23 of the high-temperature fluid flow path 1e narrower than the wave arrangement pitch of the heat transfer fins 23 of the low-temperature fluid flow path 1c, the heat transfer area of the high-temperature fluid flow path 1e is widened. In the case of the embodiment, the pressure loss is increased by 10 to 40% compared to the case where the wave arrangement pitch of the heat transfer fins 23 is the same as that of the low temperature fluid flow path 1c, but the heat exchange efficiency is improved by 2 to 5%. In this case, the heat transfer area of the high-temperature fluid path 1e can be widened at low cost.
Moreover, in the container air cycle refrigeration system using the heat recovery heat exchanger 3 of this embodiment, the refrigeration capacity can be improved by about 300 to 400 W.

なお、この実施形態では説明を省略したが、放熱用熱交換器2についても、熱回収用熱交換器3と同様の構成とした向流型プレートフィン式熱交換器を用いて、圧力損失の低減と熱交換効率の向上を図っても良い。   In addition, although description was abbreviate | omitted in this embodiment, also about the heat exchanger 2 for heat dissipation, a counterflow type plate fin type heat exchanger made into the same structure as the heat exchanger 3 for heat recovery is used, and pressure loss is reduced. Reduction and improvement in heat exchange efficiency may be achieved.

また、熱交換器のダクト21の面積を変更せずに、プレートと伝熱フィンの積層段数を増加させるために、高温流体流路1eの伝熱フィン23の断面積を、低温流体流路1cの伝熱フィン23の断面積よりも小さくしても良い。この場合も、圧力損失の増加を最小に抑えながら、熱交換効率を向上させることができる。   Further, in order to increase the number of layers of the plate and the heat transfer fins without changing the area of the duct 21 of the heat exchanger, the cross-sectional area of the heat transfer fins 23 of the high-temperature fluid channel 1e is changed to the low-temperature fluid channel 1c. The cross-sectional area of the heat transfer fins 23 may be smaller. Also in this case, the heat exchange efficiency can be improved while minimizing the increase in pressure loss.

図3は、この発明の他の実施形態を示す。この実施形態は、図1のコンテナ用空気サククル冷凍システムに用いられる向流型プレートフィン式熱交換器からなる熱回収用熱交換器3において、熱交換器のダクト21の面積を変更せずに、プレートと伝熱フィンの積層段数を増加させるために、図3(C)のように、高温流体流路1eの伝熱フィン23の波山高さを、低温流体流路1cの伝熱フィン23の波山高さよりも低くしている。その他の構成は、図2の実施形態の場合と同様である。   FIG. 3 shows another embodiment of the present invention. This embodiment is a heat recovery heat exchanger 3 composed of a countercurrent plate fin heat exchanger used in the container air cycle refrigeration system of FIG. 1 without changing the area of the duct 21 of the heat exchanger. In order to increase the number of stacked layers of the plate and the heat transfer fins, as shown in FIG. 3C, the height of the heat transfer fins 23 of the high temperature fluid channel 1e is set to the height of the heat transfer fins 23 of the low temperature fluid channel 1c. It is lower than the height of Namiyama. Other configurations are the same as those in the embodiment of FIG.

この実施形態の場合では、プレートと伝熱フィンの積層段数を増加させることができるので、圧力損失の増加を最小に抑えながら、熱交換効率を向上させることができる。   In the case of this embodiment, the number of stacked stages of the plate and the heat transfer fin can be increased, so that the heat exchange efficiency can be improved while minimizing the increase in pressure loss.

高温流体流路1eの伝熱フィン23の波山高さを、低温流体流路1cの伝熱フィン23の波山高さよりも低くすることで、プレートと伝熱フィンの積層段数を増加させたこの実施形態の場合、圧力損失は伝熱フィン23の波山高さを低温流体流路1cと同じとした場合より10〜40%増加するが、熱交換効率は2〜5%向上する。
また、この実施形態の熱回収用熱交換器3を用いたコンテナ用空気サイクル冷凍システムでは、冷凍能力を300〜400W程度向上させることができる。
In this implementation, the height of the heat transfer fins 23 in the high-temperature fluid flow path 1e is made lower than the height of the heat transfer fins 23 in the low-temperature fluid flow path 1c, thereby increasing the number of stacked layers of the plate and the heat transfer fins. In the case of the embodiment, the pressure loss is increased by 10 to 40% compared to the case where the wave height of the heat transfer fins 23 is the same as that of the low temperature fluid flow path 1c, but the heat exchange efficiency is improved by 2 to 5%.
Moreover, in the container air cycle refrigeration system using the heat recovery heat exchanger 3 of this embodiment, the refrigeration capacity can be improved by about 300 to 400 W.

図4は、上記した各実施形態の熱回収用熱交換器3が用いられるコンテナ用空気サイクル冷凍システムの他の系統図を示す。このコンテナ用空気サイクル冷凍システムは、図1の空気サイクル冷凍システムにおいて、冷媒経路1におけるタービンユニット5の空気圧縮機5の前段に、予圧縮用の第2の空気圧縮機9と、第2の放熱用熱交換器10とが、これらの順に設けられている。第2の空気圧縮機9はブロア等からなり、動力部9aにより駆動される。第2の熱交換器10は、前記第2の空気圧縮機9で圧縮されて高圧・高温(0.14Mpa,70℃)となった空気が流入する高温流体流路1fと、外部冷媒である冷却空気が流入する低温流体流路11との間で熱交換を行なって、第2の空気圧縮機9により圧縮された空気を冷却(0.14Mpa,40℃)する。その他の構成は、図1の空気サイクル冷凍システムの場合と同様である。   FIG. 4 shows another system diagram of the container air cycle refrigeration system in which the heat recovery heat exchanger 3 of each embodiment described above is used. This container air cycle refrigeration system is the same as the air cycle refrigeration system of FIG. 1 except that the second air compressor 9 for precompression and the second air compressor 9 in the stage preceding the air compressor 5 of the turbine unit 5 in the refrigerant path 1 The heat exchanger 10 for heat dissipation is provided in this order. The 2nd air compressor 9 consists of blowers etc., and is driven by the motive power part 9a. The second heat exchanger 10 is an external refrigerant and a high-temperature fluid flow path 1f into which air that has been compressed by the second air compressor 9 to a high pressure / high temperature (0.14 Mpa, 70 ° C.) flows. Heat exchange is performed with the low-temperature fluid flow path 11 into which the cooling air flows, and the air compressed by the second air compressor 9 is cooled (0.14 Mpa, 40 ° C.). Other configurations are the same as those of the air cycle refrigeration system of FIG.

なお、以上の各実施形態では、上記した構成の向流型プレートフィン式熱交換器をコンテナ用空気サイクル冷凍システムの熱回収用熱交換器3に適用した場合について説明したが、この向流型プレートフィン式熱交換器を他の冷凍システムの熱交換器として用いても、冷凍能力向上に寄与することができる。   In each of the above embodiments, the case where the countercurrent plate fin heat exchanger having the above-described configuration is applied to the heat recovery heat exchanger 3 of the container air cycle refrigeration system has been described. Even if the plate fin heat exchanger is used as a heat exchanger of another refrigeration system, it can contribute to the improvement of the refrigeration capacity.

この発明の一実施形態にかかる向流型プレートフィン式熱交換器が用いられるコンテナ用空気サイクル冷凍システムの系統図である。1 is a system diagram of a container air cycle refrigeration system in which a counterflow plate fin heat exchanger according to an embodiment of the present invention is used. (A)は同空気サイクル冷凍システムの熱回収用熱交換器の断面図、(B)は同側面図、(C)は(A)におけるA部の拡大断面図である。(A) is sectional drawing of the heat exchanger for heat recovery of the air cycle refrigeration system, (B) is the side view, (C) is an expanded sectional view of the A section in (A). (A)は熱回収用熱交換器の他の構成例の断面図、(B)は同側面図、(C)は(A)におけるB部の拡大断面図である。(A) is sectional drawing of the other structural example of the heat exchanger for heat recovery, (B) is the same side view, (C) is an expanded sectional view of the B section in (A). コンテナ用空気サイクル冷凍システムの他の例の系統図である。It is a systematic diagram of the other example of the air cycle refrigeration system for containers. (A)は従来例の断面図、(B)は同側面図である。(A) is sectional drawing of a prior art example, (B) is the side view.

符号の説明Explanation of symbols

1c…低温流体流路
1e…高温流体流路
2…放熱用熱交換器
3…熱回収用熱交換器
6…空気圧縮機
7…空気膨張機
12…被冷却部
22…プレート
23…伝熱フィン
DESCRIPTION OF SYMBOLS 1c ... Low temperature fluid flow path 1e ... High temperature fluid flow path 2 ... Heat exchanger 3 for heat dissipation ... Heat exchanger 6 for heat recovery ... Air compressor 7 ... Air expander 12 ... Cooled part 22 ... Plate 23 ... Heat transfer fin

Claims (7)

プレ−トと波板状の伝熱フィンとが交互に複数段に積層されて、各層のプレート間に気体の流れる流体流路が構成され、前記各層の流体流路は、高温流体が流れる高温流体流路と、低温流体が流れる低温流体流路とに交互に分けられ、かつ高温流体流路と低温流体流路の流れ方向が互いに向かい合う向流型プレートフィン式熱交換器において、
前記高温流体流路と低温流体流路とで、前記伝熱フィンの形状が互いに異なる向流型プレートフィン式熱交換器。
Plates and corrugated heat transfer fins are alternately stacked in a plurality of stages to form a fluid flow path through which a gas flows between the plates of each layer. In the counterflow type plate fin heat exchanger that is alternately divided into a fluid flow path and a low-temperature fluid flow path through which a low-temperature fluid flows, and in which the flow directions of the high-temperature fluid flow path and the low-temperature fluid flow path face each other,
A counter-flow plate fin heat exchanger in which the shape of the heat transfer fin is different between the high-temperature fluid channel and the low-temperature fluid channel.
請求項1において、前記高温流体流路と低温流体流路のうち、流入する気体の圧力が高い側の流体流路の伝熱面積を低い側の流体流路の伝熱面積よりも広くした向流型プレートフィン式熱交換器。   2. The direction according to claim 1, wherein the heat transfer area of the high-temperature fluid flow path and the low-temperature fluid flow path on the side where the pressure of the inflowing gas is high is wider than the heat transfer area of the low-side fluid flow path. Flow type plate fin type heat exchanger. 請求項1または請求項2において、流入する気体の圧力が高い側の流体流路の伝熱フィンの波配列ピッチを、流入する気体の圧力が低い側の流体流路の伝熱フィンの波配列ピッチよりも狭くした向流型プレートフィン式熱交換器。   3. The wave arrangement pitch of the heat transfer fins of the fluid flow path on the side where the pressure of the inflowing gas is low, and the wave arrangement pitch of the heat transfer fins on the side of the fluid flow path, where the pressure of the inflowing gas is low. Counterflow plate fin heat exchanger narrower than the pitch. 請求項1ないし請求項3のいずれか1項において、流入する気体の圧力が高い側の流体流路の伝熱フィンの断面積を、流入する気体の圧力が低い側の流体流路の伝熱フィンの断面積よりも小さくした向流型プレートフィン式熱交換器。   4. The heat transfer in the fluid flow path on the side where the pressure of the inflowing gas is lower than the cross-sectional area of the heat transfer fin of the fluid flow path on the side where the pressure of the inflowing gas is higher. Counter-flow plate fin heat exchanger that is smaller than the fin cross-sectional area. 請求項1ないし請求項4のいずれか1項において、流入する気体の圧力が高い側の流体流路の伝熱フィンの波山高さを、流入する気体の圧力が低い側の流体流路の伝熱フィンの波山高さよりも低くした向流型プレートフィン式熱交換器。   5. The wave height of the heat transfer fin of the fluid flow path on the side where the pressure of the inflowing gas is high is set to the height of the flow path of the fluid flow path on the side where the pressure of the inflowing gas is low. Counterflow type plate fin type heat exchanger lower than the wave fin height of the heat fin. 請求項1ないし請求項5のいずれか1項において、前記プレートおよび伝熱フィンをアルミ合金製とした向流型プレートフィン式熱交換器。   6. The countercurrent plate fin heat exchanger according to claim 1, wherein the plate and the heat transfer fin are made of an aluminum alloy. 請求項1ないし請求項6のいずれか1項に記載の向流型プレートフィン式熱交換器を用いたコンテナ用空気サイクル冷凍システム。
An air cycle refrigeration system for containers using the countercurrent plate fin heat exchanger according to any one of claims 1 to 6.
JP2008187098A 2008-07-18 2008-07-18 Countercurrent plate fin type heat exchanger and air cycle refrigeration system for container Pending JP2010025438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008187098A JP2010025438A (en) 2008-07-18 2008-07-18 Countercurrent plate fin type heat exchanger and air cycle refrigeration system for container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008187098A JP2010025438A (en) 2008-07-18 2008-07-18 Countercurrent plate fin type heat exchanger and air cycle refrigeration system for container

Publications (1)

Publication Number Publication Date
JP2010025438A true JP2010025438A (en) 2010-02-04

Family

ID=41731451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008187098A Pending JP2010025438A (en) 2008-07-18 2008-07-18 Countercurrent plate fin type heat exchanger and air cycle refrigeration system for container

Country Status (1)

Country Link
JP (1) JP2010025438A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103673363A (en) * 2012-09-07 2014-03-26 财团法人工业技术研究院 Heat exchange circulation system
CN104296566A (en) * 2013-07-16 2015-01-21 无锡协丰节能技术有限公司 Plate-fin heat exchanger
WO2018067025A1 (en) 2016-10-04 2018-04-12 Deta Engineering Llc Moisture separator and air cycle refrigeration system containing such moisture separator
WO2018067026A1 (en) 2016-10-04 2018-04-12 Deta Engineering Llc Plate heat exchanger and design of seal unit therefor
CZ308332B6 (en) * 2018-12-19 2020-05-20 Mirai Intex Sagl Air cooling machine
WO2021123484A1 (en) * 2019-12-18 2021-06-24 Universitat Politècnica De València Method and equipment for refrigeration

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103673363A (en) * 2012-09-07 2014-03-26 财团法人工业技术研究院 Heat exchange circulation system
CN104296566A (en) * 2013-07-16 2015-01-21 无锡协丰节能技术有限公司 Plate-fin heat exchanger
WO2018067025A1 (en) 2016-10-04 2018-04-12 Deta Engineering Llc Moisture separator and air cycle refrigeration system containing such moisture separator
WO2018067026A1 (en) 2016-10-04 2018-04-12 Deta Engineering Llc Plate heat exchanger and design of seal unit therefor
CZ308332B6 (en) * 2018-12-19 2020-05-20 Mirai Intex Sagl Air cooling machine
EP3670909A1 (en) 2018-12-19 2020-06-24 Mirai Intex Sagl Air cooling machine
WO2021123484A1 (en) * 2019-12-18 2021-06-24 Universitat Politècnica De València Method and equipment for refrigeration

Similar Documents

Publication Publication Date Title
CN101233380B (en) Heat exchanger, and air conditioner and air property converter that use the same
KR101120223B1 (en) Refrigeration cycle device
JP2010025438A (en) Countercurrent plate fin type heat exchanger and air cycle refrigeration system for container
JP5958819B2 (en) Heat pump system and cooling system using the same
EP2868999A2 (en) Refrigeration cycle of refrigerator
US10571163B2 (en) Thermoelectric heat pump type air conditioner
CN101268430A (en) Venturi for heat transfer
CN1265463A (en) Heat-exchanger
US20160265814A1 (en) Water Cooled Microchannel Condenser
JP4041036B2 (en) Supercritical cooling system
JP2011158250A (en) Heat exchanger and refrigerator-freezer mounted with the heat exchanger
CN106802022A (en) A kind of carbon dioxide thermoelectricity subcooler
WO2022255159A1 (en) Battery cooling unit and battery cooling system
JP2007078317A (en) Heat exchanger for cooling equipment, and cooling equipment
CN110145953A (en) A kind of separate type micro-channel capillary siphon heat exchanger
JP2017036900A (en) Radiator and super-critical pressure refrigerating-cycle using the radiator
JP2003314927A5 (en)
JP5315957B2 (en) Refrigeration equipment
CN106839488A (en) Thermoelectricity subcooler expanding machine joint auxiliary supercooling CO2Transcritical cooling system
KR101461057B1 (en) Apparatus for cooling and heating with one circulating loop using thermoelectric element
JP2006207835A (en) Refrigerating system, compressing and heat-radiating apparatus and heat radiator
JP4762266B2 (en) Heat exchanger and refrigerator-freezer equipped with this heat exchanger
CN102778087A (en) Transcritical CO2 heat pump air heating system and air cooling device
KR101936398B1 (en) High efficiency heat exchanger
CN202719813U (en) Transcritical CO2 heat pump air heating system and air cooler