JP2010022366A - スフェロイド作製方法 - Google Patents

スフェロイド作製方法 Download PDF

Info

Publication number
JP2010022366A
JP2010022366A JP2009142819A JP2009142819A JP2010022366A JP 2010022366 A JP2010022366 A JP 2010022366A JP 2009142819 A JP2009142819 A JP 2009142819A JP 2009142819 A JP2009142819 A JP 2009142819A JP 2010022366 A JP2010022366 A JP 2010022366A
Authority
JP
Japan
Prior art keywords
cells
cell
spheroid
culture
culture substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009142819A
Other languages
English (en)
Other versions
JP2010022366A5 (ja
Inventor
Tetsuya Nakatsura
哲也 中面
Fujiko Ozawa
ふじ子 小澤
Ruriko Sakamoto
るり子 坂本
Satoru Tanaka
覚 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scivax Corp
Original Assignee
Scivax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scivax Corp filed Critical Scivax Corp
Priority to JP2009142819A priority Critical patent/JP2010022366A/ja
Publication of JP2010022366A publication Critical patent/JP2010022366A/ja
Publication of JP2010022366A5 publication Critical patent/JP2010022366A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

【課題】 二次元培養において増殖速度の異なる2種以上の細胞が存在する場合に、増殖速度の遅い細胞が駆逐されることなく、2種以上の細胞が共存して増殖することができる、スフェロイドの作製方法を提供すること。
【解決手段】 細胞接着面として機能する所定の凹凸構造を有する細胞培養基材上で2種以上の細胞を培養することにより、二次元培養用基材上では増殖速度が異なる2種以上の細胞が共存するスフェロイドを形成することが可能となる。この際、凹凸構造面は、所定の平面形状からなるセルを規則的に複数配列した凹凸構造である方が好ましい。
【選択図】 図1

Description

本発明は、細胞接着面として機能する所定の凹凸構造を有する細胞培養基材上で、2種以上の細胞からスフェロイドを作製する技術に関する。
今日、創薬や再生医学に関わる研究開発の発展に伴い、生体組織の機能をより正しく理解するための研究の動きが急速に高まっている。生体組織機能の理解には、その組織を構成する細胞の性質を理解することが重要である。細胞レベルでの研究の手段としては、株化されている細胞を用いる系と、組織から目的とする細胞を直接取り出して培養する初代培養系がある。
株化されている細胞を用いる系では、取り扱う細胞が均一な細胞から構成されている点や、細胞の維持や継代が比較的容易であるといった長所がある一方、生体内での細胞の機能が必ずしも全て発現しているとは限らないといった短所も同時に存在する。他方、初代培養系では、個体から取り出した細胞を用いていることから、細胞そのものの形質および機能や細胞集団の構成が、生体内の状態を比較的良く反映していると考えられ、生体内で起きている現象の解明に非常に大きな意義を持つ。
しかしながら、初代培養系では、従来、2種以上の細胞が混在する場合、二次元培養において当該細胞間で増殖速度の速い細胞は、増殖速度の遅い細胞よりも圧倒的に優勢になり、やがて増殖速度の遅い細胞を駆逐してしまう問題が生じていた。
そのため、初代培養系においては、線維芽細胞や血管内皮細胞といった二次元培養において増殖速度の速い細胞の混入・増殖をいかに抑えるかが、有用な研究結果を得る鍵となっている。例えば、混入した線維芽細胞の抑制方法として、培地中のアミノ酸を変更する方法、無血清・低カルシウム濃度を特徴とする培地を用いる方法、酵素に対する感受性の差を利用する方法、比重の違いを利用する方法、フィーダー細胞を用いる方法等が知られている(例えば、非特許文献1参照。)。しかしながら、これらの方法は、線維芽細胞等を十分に除去し得るものではなく、また、細胞へのダメージが大きいため、増殖させたい細胞の回収率が低くなるという問題を有する。
一方で、線維芽細胞や血管内皮細胞等は、組織の構造維持や栄養・酸素の供給に重要な役割を担っており、生体組織に近い環境を作り出すためには、これらの細胞を除去することは好ましくない。
そのため、かかる課題を解決し、二次元培養において増殖速度の異なる細胞が混在する場合に、一方の細胞が駆逐されることなく、2種以上の細胞が共存して増殖できるための技術が待望されていた。
(株)東京化学同人、「新生化学実験講座18 細胞培養技術」、p115−217、1990年
本発明の課題は、二次元培養において増殖速度の異なる2種以上の細胞が存在する場合に、増殖速度の遅い細胞が駆逐されることなく、2種以上の細胞が共存して増殖することができる、スフェロイドの作製方法を提供することである。
本発明者らは、上記課題解決のために鋭意検討を行った結果、二次元培養用基材上では増殖速度が異なる2種以上の細胞が、細胞接着面として機能する所定の凹凸構造面上では共存し、スフェロイドを形成することを見出して、本発明を完成させた。
本発明の要旨は以下の通りである。
1.細胞接着面として機能する所定の凹凸構造を有する細胞培養基材上で2種以上の細胞を培養することを特徴とするスフェロイド作製方法。
2.前記凹凸構造面が、所定の平面形状からなるセルを規則的に複数配列した凹凸構造であることを特徴とする1に記載のスフェロイド作製方法。
3.前記セル間の幅が、3μm以下であることを特徴とする1又は2に記載のスフェロイド作製方法。
4.前記凹凸構造面は、極性の調節がなされていることを特徴とする1乃至3いずれかに記載のスフェロイド作製方法。
5.前記細胞が、癌細胞と線維芽細胞である1乃至4記載のスフェロイド作製方法。
6.前記細胞が、脂肪細胞と線維芽細胞である1乃至4記載のスフェロイド作製方法。
7.前記細胞が、癌細胞と血管内皮細胞及び/又は血管平滑筋細胞である1乃至4記載のスフェロイド作製方法。
本発明により、二次元培養において増殖速度の異なる2種以上の細胞が存在する場合に、増殖速度の遅い細胞が増殖速度の速い細胞に駆逐されることなく共存し、かつ、スフェロイドを形成することにより、簡便かつ安価に生体内組織に近い環境を作出することが可能となる。
以下、発明を実施するための最良の形態により、本発明を詳説する。
本明細書では、2種以上の細胞に関し、二次元培養において相対的に増殖速度の遅い細胞を第1細胞、第1細胞よりも増殖速度の速い細胞を第2細胞と定義する。また、本発明におけるスフェロイドとは、三次元的に細胞同士が集合・凝集化した細胞の集合体を意味する。
1.本発明方法における細胞培養基材
本発明方法における細胞培養基材は、細胞接着面として機能する所定の凹凸構造面を有することを特徴とする。当該凹凸構造面は、培養する細胞の性質に応じて、線状(ラインアンドスペース)、ピラー状、ホール状等、種々の形状とすることができるが、好ましくは、所定の平面形状からなるセルを規則的に複数配列した構造の方が良い。例えば、図1に示すように、平面形状が多角形であるセルを複数連続した構造とすることができる。この時、等方的に均一な構造上で目的細胞を成長させることができるという点で、正三角形、正方形、正六角形等の正多角形や、円形のものがより好ましい。また、ピラー状やホール状の凹凸構造とセル状の凹凸構造とを組み合わせることも可能である(例えば図2参照)。
本発明方法における細胞培養基材のセル間の幅(図1、2の幅)は、細胞を単層状ではなく三次元的に成長させたり(スフェロイド培養)、分化させたりし、より生体内に近い状態で培養するという観点からは、3μm以下、2μm以下、1μm以下、700nm以下、500nm以下、250nm以下というように、小さくなるほど好ましい。この理由としては、セル間の幅が小さくなるほど、凹凸構造面に接着した細胞は、多くの仮足を成長させながらスフェロイドを形成させることができると考えられるためである。
また、セルの深さは、培養する細胞の性質に応じて、1nm以上、10nm以上、100nm以上、200nm以上、500nm以上、1μm以上、10μm以上、100μm以上等種々の大きさに形成される。また、この凹凸のアスペクト比としては、0.2以上、0.5以上、1以上、2以上等種々のものがある。
また、セルの最小内径(好ましくは最大内径)は、3μm以下であることが好ましく、2μm以下、1μm以下、700nm以下、500nm以下、250nm以下というように、小さくなるほど、上述同様の理由により好ましい。ここで、内径とは、セルに外接する2本の平行線間の距離を意味し、最小内径とは、セルに外接する二本の平行線間の距離のうち最も短いものを言い、最大内径とは、セルに外接する二本の平行線間の距離のうち最も長いものを言う。例えば、セルが正六角形の場合には、対向する平行な辺と辺との間の距離が最小内径となり、対向する頂点間の距離が最大内径となる。また、セルが長方形の場合には、短辺の長さが最小内径となり、対角線の長さが最大内径となる。
本発明方法における細胞培養基材の形状は、細胞を培養できるものであればどのように形成しても良いが、例えば、フィルム状や基板状(プレート状)に形成でき、シャーレ、ディッシュ、マルチウェルプレート、フラスコ、チェンバースライド等に用いることができる。また、凹凸構造は、基材上の少なくとも一部に形成されていればよい。
また、細胞培養基材の材質は、細胞に対し無毒性のものであればどのようなものでも良く、例えば、「ポリスチレン」、「ポリエチレン」、「ポリプロピレン」、「ポリイミド」、「ポリ乳酸やポリ乳酸−ポリグリコール酸共重合体、ポリカプロラクトン等の生分解性ポリマー」、「環状オレフィン共重合体(COC)や環状オレフィン重合体(COP)等の環状オレフィン系熱可塑性樹脂」、「アクリル樹脂」、「光硬化性樹脂や熱硬化性樹脂等のその他の樹脂」、「酸化アルミニウム等の金属」、「ガラス」、「石英ガラス」、「シリコン」等を用いることができる。また、シリコンやガラス等からなる基板本体の表面に、「樹脂」、「フォトレジスト」、「酸化アルミニウム等の金属」等の被覆層が形成されたものを用いることもできる。
細胞は、親水性表面に接着し易く、疎水性表面には接着し難いことが知られているため、本発明方法における細胞培養基材の凹凸構造は、極性の調節により親水性の制御がなされているものであってもよい。調節方法としては、下記に示す方法が挙げられるが、これらに限定されるものではない。
例えば、紫外線、電子線、ガンマ線、プラズマ等の照射による表面改質技術により、培養基材表面に例えば−Oや−OH基といった官能基を持たせ、極性を調節することができる。これにより、細胞が接着する凹凸構造面の極性を上げることができる。
また、極性を上げる物質または極性を下げる物質を用いることにより調節することもできる。極性を上げる物質としては、例えば、二酸化ケイ素(SiO)、ポリリジンの他、細胞外マトリックス成分等を用いることができ、細胞外マトリックスとしては、各種コラーゲン、プロテオグリカン、フィブロネクチン、ラミニン、エラスチン等が挙げられる。極性を下げる物質としては、フッ素、シリコン、ポリヘマ(poly2−hydroxyethylmethacrylate)、アガー等を用いることができる。これらの物質を基材材料として用いること、また、凹凸構造面上に被覆させることにより、極性の調節が可能となる。
なお、本発明方法における細胞培養基材の凹凸構造面上は、第1細胞、第2細胞の細胞種に応じて、平面形状、セル間の幅、培養基材の材質、極性等を適宜調節して行うのが良い。これにより、目的に応じたスフェロイドを取得することが可能となる。
細胞培養基材の製造方法は、凹凸構造を形成し得る方法であればいかなる方法でもよく、例えば、ナノインプリント技術、溶液キャスト法、エッチング、ブラスト、コロナ放電等を用いることができる。この時、より精密に形状等を制御できる点で、ナノインプリント技術による方法が好ましい。また、この場合、セル間の幅(図1、202の幅)は3μm以下に形成する方が好ましく、2μm以下、1μm以下、700nm以下、500nm以下、250nm以下に形成することが、より好ましい。
2.本発明方法における細胞
本発明方法における第1細胞は、2種以上の細胞を含む二次元培養において増殖速度の遅い細胞であればいかなる細胞であっても良いが、例えば、各種前駆細胞および幹細胞を含む、脂肪細胞、肝細胞、腎細胞、膵臓細胞、乳腺細胞、内皮細胞、上皮細胞、平滑筋細胞、筋芽細胞、心筋細胞、神経細胞、グリア細胞、樹状細胞、軟骨細胞、骨芽細胞、破骨細胞、骨細胞、線維芽細胞、各種血液系細胞、その他間葉系前駆細胞および幹細胞、ES細胞、各種癌細胞等が挙げられる。なお、第1細胞は単一の細胞に限らず、複数の細胞種の集合体であっても良い。
本発明方法における第2細胞は、2種以上の細胞を含む二次元培養において第1細胞よりも増殖速度の速い細胞であればいかなる細胞であっても良いが、例えば、線維芽細胞、血管内皮細胞、血管平滑筋細胞等が挙げられる。なお、第2細胞は単一の細胞に限らず、複数の細胞種の集合体であっても良い。
本発明方法における細胞としては、例えば、生体から摘出した組織片、細胞群を用いることができ、これらを必要に応じて酵素処理、密度勾配遠心処理、フィルター処理、磁気ビーズ、フローサイトメーター、その他なんらかの処理により分離精製したものであってもよい。なお、これらの細胞群は、同じ組織に由来し、分化段階の異なる細胞の集合体であってもよい。また、初代細胞に限らず、複数の細胞種(分化段階が異なるものも含む)が混在している株化細胞であってもよい。
3.本発明における培養方法
本発明における培養は、通常行われる操作と同様の培養手順により実施することができる。
培地としては、任意の細胞培養基本培地や分化培地、初代培養専用培地等を用いることができる。例えば、ダルベッコ改変イーグル培地(DMEM)、グラスゴーMEM(GMEM)、RPMI1640、ハムF12、MCDB培地等が挙げられるが、これらに限定されるものではない。さらに、これらの培地に血清や各種増殖因子、分化誘導因子を添加してもよい。
なお、本発明方法は、第1細胞及び第2細胞のスフェロイドを形成させることができると同時に、未分化や分化の初期または途中段階にある細胞の分化を誘導させることも可能である。これにより、分化を促進させるためのコストや手間を省くことができ、また、単層状の培養細胞と比して、より生体内組織に近い細胞培養物を取得することが可能となる。
このようにして本発明方法により得られたスフェロイドは、薬剤スクリーニング、食品機能性評価、薬品または食品の安全性評価、再生医療等に使用することができる。
以下、実施例により本発明を具体的に説明する。ただし、本発明は以下の記述に限定されるものではない。
本発明方法における培養基材としては、次の3種類を用いた。ここで、ピラー有りとは、図2のように、複数のセル4を規則的に連続して配列した領域を複数のピラー3が包囲する構造を指し、ピラー無しとは、セル4のみからなる構造であることを指す。
培養基材A:凹凸構造面の材質=環状オレフィン重合体(COP)、凹凸構造の平面形状=正方形、セル間の幅(線幅)=700nm、セルの最小内径=3μm、深さ=1μm、ピラー無し
培養基材B:凹凸構造面の材質=環状オレフィン重合体(COP)、凹凸構造の平面形状=正方形、セル間の幅(線幅)=700nm、セルの最小内径=3μm、深さ=1μm、ピラー有り
6週齢のマウスC57BLnu/nuに、1×10個の大腸癌細胞株SW620を接種した。2週間後に直径約1cmとなった移植癌を摘出し、0.01%コラゲナーゼで分散後、10%FBS/DMEM(日水製薬社製)に懸濁し、96ウェルプレートに播種し、37℃,5% CO条件下で培養した。96ウェルプレートとして、一般培養基材と培養基材Aを用いて比較検討した。
培養1週間後に、培養基材面上に接着した生細胞像を光学顕微鏡にて観察した。一般培養基材を用いた方法による結果を図3、培養基材Aを用いた本発明方法による結果を図4に示す。一般培養基材を用いた方法においては、線維芽細胞様の扁平な細胞が単層状に非常に良く増殖しているのに対し、本発明方法では、三次元的な構造の細胞培養物が形成されていることがわかる。
手術により摘出されたヒト肝臓がん組織を1mg/mLコラゲナーゼで分散後、10%FBS/DMEM(日水製薬社製)に懸濁し、96ウェルプレートに播種し、37℃,5% CO条件下で培養した。96ウェルプレートとして、培養基材Aを用いた。
培養14日目に、筋線維芽細胞のマーカーであるα平滑筋アクチン(α-SMA)の抗体による免疫染色、肝臓細胞のマーカーであるGlypican-3(GPC3)の抗体による免疫染色、及び、生細胞の核を染色するDAPI(4',6-diamidino-2-phenylindole)染色をし、観察した。抗α-SMA抗体及びDAPI染色における結果を図5、抗GPC3抗体及びDAPI染色における結果を図6に示す。Aは各抗体による免疫染色後の蛍光顕微鏡写真、BはDAPI染色後の蛍光顕微鏡写真である(それぞれ対物倍率40倍)。これにより、本発明方法によって線維芽細胞及び肝臓細胞が存在するスフェロイドを形成できることが示唆される。
手術により摘出されたヒト膵臓がん組織を手術用メスで細切後、10%FBS/DMEM(日水製薬社製)に懸濁し、一般培養基材である6cm径ディッシュに播種し、37℃,5% CO条件下で培養した。培養開始から10日後、組織片周囲に増殖した線維芽細胞を継代培養した。
がん組織から得られた線維芽細胞5×10個及び膵臓癌細胞株5×10個をそれぞれ細胞膜染色試薬であるPKH67及びPKH26で染色し、10%FBS/DMEM(日水製薬社製)に懸濁し、96ウェルプレートに播種し、37℃,5% CO条件下で培養した。96ウェルプレートとして、培養基材Dを用いた。培養開始から3日後、蛍光顕微鏡にて観察した。結果を図7に示す。Aは光学顕微鏡写真、BはPKH67で染色した線維芽細胞の蛍光顕微鏡写真、CはPKH26で染色した膵臓癌細胞株の蛍光顕微鏡写真、DはPKH67で染色した線維芽細胞及びPKH26で染色した膵臓癌細胞株の蛍光顕微鏡写真である(それぞれ対物倍率20倍)。この結果から、本発明方法によって線維芽細胞と癌細胞が混在するスフェロイドを形成できることがわかる。
ラット腸間膜由来初代前駆脂肪細胞を内臓脂肪分化培地(Primary cell社製)に懸濁し,1×10cells/wellで96ウェルプレートに播種し、37℃,5% CO条件下で培養した。96ウェルプレートとして、一般培養基材と培養基材Bを用いて比較検討した。
培養6日目に、脂肪細胞の最終分化に関与するC/EBPα(CCAAT/エンハンサー結合蛋白α)抗体による免疫染色、および、生細胞の核を染色するDAPI(4',6-diamidino-2-phenylindole)染色をし、観察した。一般培養基材を用いた方法による結果を図8、培養基材Bを用いた本発明方法による結果を図9に示す。Aは光学顕微鏡写真、BはC/EBPα抗体による免疫染色後の蛍光顕微鏡写真、CはDAPI染色後の蛍光顕微鏡写真である(それぞれ対物倍率20倍)。
一般培養基材を用いた方法では、C/EBPα染色像とDAPI染色像が一致せず、脂肪細胞以外に存在する種々の細胞が培養基材面に接着、増殖していることが示唆される。これに対し、本発明方法では、C/EBPα染色像とDAPI染色像がほぼ一致しており、脂肪細胞を含むスフェロイドが形成されたことがわかる。
ラット腸間膜由来初代前駆脂肪細胞を内臓脂肪分化培地(Primary cell社製)に懸濁し,1×10cells/wellで96ウェルプレートに播種し、37℃,5% CO条件下で培養した。96ウェルプレートとして、一般培養基材と培養基材Bを用いて比較検討した。
培養4日目に、オイルレッドOにより脂肪滴を染色し、光学顕微鏡にて観察した(対物倍率20倍)。一般培養基材を用いた方法による結果を図10、培養基材Bを用いた本発明方法による結果を図11に示す。一般培養基材を用いた方法においては、脂肪細胞および線維芽細胞様細胞が単層状に増殖しているのに対し、本発明方法では、脂肪滴を蓄積している細胞がスフェロイドを形成していることがわかる。
さらに、培養4日目および培養6日目のトリグリセライド産生量をトリグリセライド E-テストワコー(和光純薬社製)にて測定した。この結果を図12に示す。本発明方法により培養した細胞は、一般培養基材を用いた方法に比べて培養4日目に1.5倍、培養6日目に1.3倍に増加していた。また、同じく培養3日目および4日目のアディポネクチン分泌量をELISAにて測定した。この結果を図13に示す。本発明方法により培養した細胞は、一般培養基材を用いた方法に比べて培養3日目に2.0倍、培養4日目に2.5倍に増加していた。したがって、本発明方法は、前駆脂肪細胞の分化を促進させていることがわかる。
本発明は、二次元培養において増殖速度の異なる2種以上の細胞が存在する場合に、増殖速度の遅い細胞が増殖速度の速い細胞に駆逐されることなく、かつ共存してスフェロイドを形成することにより、簡便かつ安価に生体内組織に近い環境を作出することを可能とするため、再生医療、創薬のスクリーニング、細胞工学、組織工学などの医療・バイオテクノロジーに関わる広範な技術に使用できる。
本発明における培養基材の凹凸構造を示す説明図である。 本発明における培養基材の凹凸構造を示す説明図である。 一般培養基材上で培養した移植癌細胞の光学顕微鏡写真である。 本発明における培養基材上で培養した移植癌細胞の光学顕微鏡写真である。 本発明における培養基材上で培養した肝癌細胞の蛍光顕微鏡写真である。 本発明における培養基材上で培養した肝癌細胞の蛍光顕微鏡写真である。 本発明における培養基材上で培養した癌細胞の顕微鏡写真である。 一般培養基材上で培養したラット初代前駆脂肪細胞の顕微鏡写真である。 本発明における培養基材上で培養したラット初代前駆脂肪細胞の顕微鏡写真である。 一般培養基材上で培養したラット初代前駆脂肪細胞の光学顕微鏡写真である。 本発明における培養基材上で培養したラット初代前駆脂肪細胞の光学顕微鏡写真である。 ラット初代前駆脂肪細胞のトリグリセライド産生量である。 ラット初代前駆脂肪細胞のアディポネクチン分泌量である。
1 多角形
2 線
3 ピラー
4 セル

Claims (7)

  1. 細胞接着面として機能する所定の凹凸構造を有する細胞培養基材上で2種以上の細胞を培養することを特徴とするスフェロイド作製方法。
  2. 前記凹凸構造面が、所定の平面形状からなるセルを規則的に複数配列した凹凸構造であることを特徴とする請求項1に記載のスフェロイド作製方法。
  3. 前記セル間の幅が、3μm以下であることを特徴とする請求項1又は2に記載のスフェロイド作製方法。
  4. 前記凹凸構造面は、極性の調節がなされていることを特徴とする請求項1乃至3いずれかに記載のスフェロイド作製方法。
  5. 前記細胞が、癌細胞と線維芽細胞である請求項1乃至4記載のスフェロイド作製方法。
  6. 前記細胞が、脂肪細胞と線維芽細胞である請求項1乃至4記載のスフェロイド作製方法。
  7. 前記細胞が、癌細胞と血管内皮細胞及び/又は血管平滑筋細胞である請求項1乃至4記載のスフェロイド作製方法。
JP2009142819A 2008-06-16 2009-06-15 スフェロイド作製方法 Pending JP2010022366A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009142819A JP2010022366A (ja) 2008-06-16 2009-06-15 スフェロイド作製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008156479 2008-06-16
JP2009142819A JP2010022366A (ja) 2008-06-16 2009-06-15 スフェロイド作製方法

Publications (2)

Publication Number Publication Date
JP2010022366A true JP2010022366A (ja) 2010-02-04
JP2010022366A5 JP2010022366A5 (ja) 2012-07-26

Family

ID=41728803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009142819A Pending JP2010022366A (ja) 2008-06-16 2009-06-15 スフェロイド作製方法

Country Status (1)

Country Link
JP (1) JP2010022366A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072241A (ja) * 2009-09-30 2011-04-14 Hokkaido Univ 軟骨細胞再分化誘導用基材およびこれを用いた軟骨細胞の製造方法
WO2013042360A1 (ja) * 2011-09-20 2013-03-28 株式会社クラレ 接着性細胞の培養方法
JP2014030405A (ja) * 2012-08-06 2014-02-20 Jsr Corp 細胞凝集体の形成方法、細胞凝集体形成用基材の製造方法及び細胞凝集体形成用基材
JP2014210404A (ja) * 2013-04-19 2014-11-13 株式会社日本触媒 含フッ素ポリイミド構造体および含フッ素ポリイミド構造体の製造方法
JP2015108534A (ja) * 2013-12-04 2015-06-11 オリンパス株式会社 三次元画像撮像方法、三次元画像解析方法、及び三次元画像撮像システム
JPWO2020013345A1 (ja) * 2018-07-11 2021-10-07 学校法人松本歯科大学 親水性の違いを利用したスフェロイドの製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097120A1 (ja) * 2006-02-21 2007-08-30 Scivax Corporation 細胞培養構造体、細胞培養容器、スフェロイド付き構造体、スフェロイド付き容器およびこれらの製造方法
JP2008022743A (ja) * 2006-07-19 2008-02-07 Scivax Kk 新規スフェロイド及びスフェロイドの製造方法、薬剤スクリーニング、毒性評価、病体モデル動物の製造へのスフェロイドの使用、スフェロイド細胞培養キット、抗体のスフェロイド形成のための使用、レクチンのスフェロイド形成のための使用、細胞接着分子のスフェロイド形成のための使用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097120A1 (ja) * 2006-02-21 2007-08-30 Scivax Corporation 細胞培養構造体、細胞培養容器、スフェロイド付き構造体、スフェロイド付き容器およびこれらの製造方法
JP2008022743A (ja) * 2006-07-19 2008-02-07 Scivax Kk 新規スフェロイド及びスフェロイドの製造方法、薬剤スクリーニング、毒性評価、病体モデル動物の製造へのスフェロイドの使用、スフェロイド細胞培養キット、抗体のスフェロイド形成のための使用、レクチンのスフェロイド形成のための使用、細胞接着分子のスフェロイド形成のための使用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013063410; Int.J.Exp.Pathol.,Vol.79(1998)p.1-23 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072241A (ja) * 2009-09-30 2011-04-14 Hokkaido Univ 軟骨細胞再分化誘導用基材およびこれを用いた軟骨細胞の製造方法
WO2013042360A1 (ja) * 2011-09-20 2013-03-28 株式会社クラレ 接着性細胞の培養方法
US10655107B2 (en) 2011-09-20 2020-05-19 Corning Incorporated Adherent cell culture method
JP2014030405A (ja) * 2012-08-06 2014-02-20 Jsr Corp 細胞凝集体の形成方法、細胞凝集体形成用基材の製造方法及び細胞凝集体形成用基材
JP2014210404A (ja) * 2013-04-19 2014-11-13 株式会社日本触媒 含フッ素ポリイミド構造体および含フッ素ポリイミド構造体の製造方法
JP2015108534A (ja) * 2013-12-04 2015-06-11 オリンパス株式会社 三次元画像撮像方法、三次元画像解析方法、及び三次元画像撮像システム
JPWO2020013345A1 (ja) * 2018-07-11 2021-10-07 学校法人松本歯科大学 親水性の違いを利用したスフェロイドの製造方法
JP7398114B2 (ja) 2018-07-11 2023-12-14 学校法人松本歯科大学 親水性の違いを利用したスフェロイドの製造方法

Similar Documents

Publication Publication Date Title
Kim et al. Hydrogels with an embossed surface: an all-in-one platform for mass production and culture of human adipose-derived stem cell spheroids
Lee et al. Engineering spheroids potentiating cell-cell and cell-ECM interactions by self-assembly of stem cell microlayer
Li et al. Bridging the gap: from 2D cell culture to 3D microengineered extracellular matrices
Ouyang et al. Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation
Cao et al. Effects of cell–cell contact and oxygen tension on chondrogenic differentiation of stem cells
Lü et al. Differential regulation of morphology and stemness of mouse embryonic stem cells by substrate stiffness and topography
Lin et al. Recent progress in stem cell differentiation directed by material and mechanical cues
Wang et al. Modulation of osteogenic, adipogenic and myogenic differentiation of mesenchymal stem cells by submicron grooved topography
Wang et al. Modulation of human multipotent and pluripotent stem cells using surface nanotopographies and surface-immobilised bioactive signals: A review
Huang et al. The relationship between substrate topography and stem cell differentiation in the musculoskeletal system
JP5407345B2 (ja) 生体組織の作製方法
Li et al. Effects of nanoscale spatial arrangement of arginine–glycine–aspartate peptides on dedifferentiation of chondrocytes
JP5407343B2 (ja) 生体組織の作製方法
Wang et al. Stimulation of early osteochondral differentiation of human mesenchymal stem cells using binary colloidal crystals (BCCs)
JP2010022366A (ja) スフェロイド作製方法
Wang et al. Heterogeneity of mesenchymal and pluripotent stem cell populations grown on nanogrooves and nanopillars
JP5407344B2 (ja) 生体組織の作製方法
Zhao et al. Maintenance and modulation of stem cells stemness based on biomaterial designing via chemical and physical signals
Seo et al. Nanopillar surface topology promotes cardiomyocyte differentiation through cofilin-mediated cytoskeleton rearrangement
JP6690001B2 (ja) 細胞組織の製造方法、及び多孔フィルム
Hesari et al. A hybrid microfluidic system for regulation of neural differentiation in induced pluripotent stem cells
Jeon et al. Dual-crosslinked hydrogel microwell system for formation and culture of multicellular human adipose tissue-derived stem cell spheroids
TW201014914A (en) Materials and methods for cell growth
US20120107930A1 (en) Method for inducing differentiation of embryonic stem cells or artificial pluripotent stem cells
Yukawa et al. Embryonic body formation using the tapered soft stencil for cluster culture device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140314

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140708