JP2010020200A - Polygon mirror scanner motor - Google Patents

Polygon mirror scanner motor Download PDF

Info

Publication number
JP2010020200A
JP2010020200A JP2008182237A JP2008182237A JP2010020200A JP 2010020200 A JP2010020200 A JP 2010020200A JP 2008182237 A JP2008182237 A JP 2008182237A JP 2008182237 A JP2008182237 A JP 2008182237A JP 2010020200 A JP2010020200 A JP 2010020200A
Authority
JP
Japan
Prior art keywords
shaft
tip
polygon mirror
scanner motor
mirror scanner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008182237A
Other languages
Japanese (ja)
Other versions
JP5117948B2 (en
Inventor
Akimitsu Maetani
昭光 前谷
Koji Hiraguchi
浩司 平口
Yasutsugu Fukui
康嗣 福井
Masaki Sumi
正貴 角
Takayuki Abe
敬行 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008182237A priority Critical patent/JP5117948B2/en
Publication of JP2010020200A publication Critical patent/JP2010020200A/en
Application granted granted Critical
Publication of JP5117948B2 publication Critical patent/JP5117948B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/121Mechanical drive devices for polygonal mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1821Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce vibration and noise generated as the amount of eccentricity increases due to the shift of the end of a shaft with respect to the center of the shaft in a polygon mirror scanner motor used for laser scanning in a laser beam printer or a copy machine. <P>SOLUTION: The thrust-supported first shaft end part 1a of a shaft 1 on the side of a pivot bearing is machined in R-shape, and the second shaft end part 1b on the opposite side is kept in a circular conic shape formed in a blank machining process. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はレーザービームプリンタや複写機等で使用され、レーザースキャニングに利用される高速回転で動作するポリゴンミラースキャナモータに関するものである。   The present invention relates to a polygon mirror scanner motor which is used in a laser beam printer, a copying machine, etc. and which operates at high speed and is used for laser scanning.

従来、この種のポリゴンミラースキャナモータは、SUS材にてストレートに加工されたシャフト先端を軸受でスラスト支持するピボット軸受構造が一般的である。このピボット軸受においては、シャフト先端が軸受に固定されたスラスト板に点接触するように、先端がR形状に加工されている(例えば特許文献1参照)。   Conventionally, this type of polygon mirror scanner motor generally has a pivot bearing structure in which a shaft tip processed straight by a SUS material is thrust supported by a bearing. In this pivot bearing, the tip is processed into an R shape so that the tip of the shaft makes point contact with a thrust plate fixed to the bearing (see, for example, Patent Document 1).

図5は、前記特許文献1に記載された従来のピボット軸受構造を備えるポリゴンミラースキャナモータを示すものである。   FIG. 5 shows a polygon mirror scanner motor having the conventional pivot bearing structure described in Patent Document 1. In FIG.

図5に従来のポリゴンミラースキャナモータの構造を示す。図5において、シャフト51は基板59に固定された軸受58の内径孔に対して回転可能に支持されると共に、ロータボス55が締結されている。そしてロータボス55の上部にはポリゴンミラー52が固定されている。ポリゴンミラー52の側面には鏡面加工が施されている。そして、この鏡面加工されたミラー面は、光ビームの偏光走査を精度良く行うために、平面度が高精度に保たれている。   FIG. 5 shows the structure of a conventional polygon mirror scanner motor. In FIG. 5, the shaft 51 is rotatably supported with respect to the inner diameter hole of the bearing 58 fixed to the substrate 59, and the rotor boss 55 is fastened. A polygon mirror 52 is fixed on the rotor boss 55. The side surface of the polygon mirror 52 is mirror-finished. This mirror-finished mirror surface has a high degree of flatness in order to accurately perform polarization scanning of the light beam.

また、ロータボス55にはロータフレーム54が固定され、ロータフレーム54の内周にはロータマグネット53が固定されている。シャフト51のロータボス55が固定された側とは反対側の端部はR形状に加工されており、このR形状の先端部が軸受58の下端部側に固定されたスラストカバー60に保持されたスラスト板61により軸方向に支持されるピボット軸受を構成している。   A rotor frame 54 is fixed to the rotor boss 55, and a rotor magnet 53 is fixed to the inner periphery of the rotor frame 54. The end of the shaft 51 opposite to the side on which the rotor boss 55 is fixed is processed into an R shape, and the tip of the R shape is held by a thrust cover 60 fixed to the lower end side of the bearing 58. A pivot bearing is supported by the thrust plate 61 in the axial direction.

そして、基板59には前記ロータマグネット53と対向した位置にステータコイル57が巻装されたステータコア56が配置されている。このステータコイル57に電流を流して、ロータマグネット53とステータコア56との間で発生する吸引力と反発力によりポリゴンミラー52を回転させて光ビームを投射することにより偏光走査を行う。   A stator core 56 around which a stator coil 57 is wound is disposed on the substrate 59 at a position facing the rotor magnet 53. Polarization scanning is performed by causing a current to flow through the stator coil 57 and rotating the polygon mirror 52 by the attractive force and repulsive force generated between the rotor magnet 53 and the stator core 56 to project a light beam.

しかしながら、前記従来の構成では、スラスト方向に支持されるシャフト51の先端のR形状加工部の加工精度によって、シャフトの軸芯に対する、シャフト先端の偏芯量が増加し、振動、騒音を発生させる原因となるという課題を有している。   However, in the conventional configuration, the amount of eccentricity of the shaft tip relative to the shaft core increases due to the machining accuracy of the R-shaped machining portion at the tip of the shaft 51 supported in the thrust direction, and vibration and noise are generated. It has the problem of causing it.

図6は上記従来のピボット軸受構造を備えるポリゴンミラースキャナモータに使用されているシャフト51の側面図である。   FIG. 6 is a side view of a shaft 51 used in a polygon mirror scanner motor having the conventional pivot bearing structure.

図6において、シャフト51の軸方向両端には、ピボット軸受側のR形状に加工された第1のシャフト先端部51aと、反対側の平坦な形状の第2のシャフト先端部51bが形成されている。   In FIG. 6, a first shaft tip 51 a processed into an R shape on the pivot bearing side and a flat second shaft tip 51 b on the opposite side are formed at both axial ends of the shaft 51. Yes.

以下、図6に記載される上記従来のシャフト51の加工工程について図7で説明する。   Hereinafter, the process steps of the conventional shaft 51 described in FIG. 6 will be described with reference to FIG.

先ず、シャフト51の素材であるコイル状のシャフト材を切断して両端が平坦な形状のシャフトバー材50を得る。この工程をブランク加工と称する。次に、このシャフトバー材50を公知の先端研削加工機に供給する。(例えば特許文献2および特許文献3参照)
シャフトバー材50の一方の先端部を先端研削加工機の受面71に押し当ててシャフトバー材50を自転させながら、砥石72により第1のシャフト先端部50a側にR形状の研削加工を施す。
この後、シャフトの外径形状と寸法を目標値に仕上げるため、センタレス方式の研削加工機により研削加工を行う。この工程を仕上げ加工と称する。センタレス方式の研削加工機では、シャフト51の軸芯に対する第1のシャフト先端部51aのR形状部の中心の偏芯量は修正されない。従って、この偏芯量は先端研削加工時の加工精度に依存することとなる。
First, a coiled shaft material that is a material of the shaft 51 is cut to obtain a shaft bar material 50 having flat ends. This process is called blanking. Next, this shaft bar material 50 is supplied to a known tip grinding machine. (For example, see Patent Document 2 and Patent Document 3)
One end of the shaft bar member 50 is pressed against the receiving surface 71 of the tip grinding machine to rotate the shaft bar member 50, and the grindstone 72 performs R-shaped grinding on the first shaft tip 50 a side. .
Thereafter, in order to finish the outer diameter shape and dimensions of the shaft to a target value, grinding is performed by a centerless grinding machine. This process is called finishing. In the centerless grinding machine, the amount of eccentricity at the center of the R-shaped portion of the first shaft tip 51a relative to the axis of the shaft 51 is not corrected. Therefore, the amount of eccentricity depends on the processing accuracy during tip grinding.

先端研削加工機の受面71に押し当てるシャフトバー材50の第2のシャフト先端部50bは、コイル状のシャフト材を切断する際、シャフト材のタワミ、切断工具の取り付け精度等により軸芯に対して直交する平面形状に形成することが極めて困難である。従って、図7に示すように、シャフトバー材50の第2のシャフト先端部50bは軸芯からズレた位置で先端研削加工機の受面71に押し当てることとなる。このため、先端研削加工機に取り付けた砥石72によりR形状の研削加工を施す側の第1のシャフト先端部50aに、シャフトバー材50を自転させることによるブレが生じやすくなり、研削加工の精度を高めることが困難となるので、シャフト51の軸芯に対する第1のシャフト先端部51aのR形状部の中心の偏芯量が増大し易くなる。   The second shaft tip portion 50b of the shaft bar member 50 pressed against the receiving surface 71 of the tip grinding machine is used as a shaft core when cutting the coiled shaft material due to shaft shaft warpage, cutting tool attachment accuracy, and the like. It is extremely difficult to form a planar shape that is orthogonal to the surface. Therefore, as shown in FIG. 7, the second shaft tip 50b of the shaft bar member 50 is pressed against the receiving surface 71 of the tip grinding machine at a position displaced from the axis. For this reason, blurring due to rotation of the shaft bar material 50 is likely to occur on the first shaft tip 50a on the side where the R-shaped grinding is performed by the grindstone 72 attached to the tip grinding machine, and the accuracy of the grinding process Therefore, it is easy to increase the amount of eccentricity of the center of the R-shaped portion of the first shaft tip 51a with respect to the axis of the shaft 51.

図8は、上記従来のブランク加工、先端研削加工および仕上げ加工されたシャフト51の軸芯に対する第1のシャフト先端部51aのR形状部の中心の偏芯量の度数分布を示す。
特開2006−187970号公報 特公昭51−25949号公報 特開平2−24048号公報
FIG. 8 shows the frequency distribution of the eccentric amount at the center of the R-shaped portion of the first shaft tip 51a with respect to the shaft core of the shaft 51 subjected to the conventional blanking, tip grinding and finishing.
JP 2006-187970 A Japanese Patent Publication No. 51-25949 JP-A-2-24048

本発明は、上記従来の課題を解決するものであり、シャフトの軸芯に対する、シャフト先端のR形状部の中心の偏芯量が増加することにより発生する振動、騒音を抑制し、低振動、低騒音なポリゴンミラースキャナモータを提供することを目的とする。   The present invention solves the above-mentioned conventional problems, suppresses vibrations and noises generated by increasing the amount of eccentricity of the center of the R-shaped portion at the tip of the shaft relative to the shaft core, and reduces low vibration, An object is to provide a low-noise polygon mirror scanner motor.

上記従来の課題を解決するために、本発明のポリゴンミラースキャナモータは、スラスト支持されるシャフト先端の反対側端面が円錐形状であるようにしたものである。   In order to solve the above-described conventional problems, the polygon mirror scanner motor of the present invention is such that the opposite end surface of the shaft tip that is thrust-supported has a conical shape.

本発明のポリゴンミラースキャナモータによれば、シャフトの軸芯に対する、シャフト先端のR形状部の中心の偏芯量が増加することにより発生する振動、騒音を低減させることができるという有利な効果が得られる。   According to the polygon mirror scanner motor of the present invention, there is an advantageous effect that it is possible to reduce vibrations and noises generated by increasing the amount of eccentricity of the center of the R-shaped portion at the tip of the shaft with respect to the shaft core. can get.

以下本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、本発明の実施の形態におけるポリゴンミラースキャナモータのブランク加工後のシャフトブランク加工材2の側面図である。   FIG. 1 is a side view of a shaft blank workpiece 2 after blank machining of a polygon mirror scanner motor according to an embodiment of the present invention.

図1において、シャフトブランク加工材2の第1のシャフト先端部2aと、第2のシャフト先端部2bは同じ円錐形状に形成されている。   In FIG. 1, the first shaft tip 2a and the second shaft tip 2b of the shaft blank processed material 2 are formed in the same conical shape.

以下、図1に記載されるシャフトブランク加工材2の加工工程について説明する。   Hereinafter, the process of the shaft blank processed material 2 shown in FIG. 1 will be described.

シャフトブランク加工材2の素材であるコイル状のシャフト材を切断して両端が平坦な形状のシャフトバー材を得る。次に、このシャフトバー材を切削加工機へ供給し、シャフトバー材の外径をチャックして中心出しを行い、切削加工機へ取り付けたバイトにより、第1のシャフト先端部2a及び第2のシャフト先端部2bを同じ円錐形状に切削加工を施す。この工程をブランク加工と称する。この後、従来の技術と同様に、このブランク加工を施したシャフトブランク加工材2を公知の先端研削加工機に供給する。
シャフトブランク加工材2の一方の先端部を先端研削加工機の受面に押し当ててシャフトブランク加工材2を自転させながら、砥石により第1のシャフト先端部2a側にR形状の研削加工を施す。
この後、シャフトの外径形状と寸法を目標値に仕上げるため、センタレス方式の研削加工機により研削加工を行う。この工程を仕上げ加工と称する。
The coiled shaft material which is the material of the shaft blank processed material 2 is cut to obtain a shaft bar material having flat shapes at both ends. Next, this shaft bar material is supplied to the cutting machine, the outer diameter of the shaft bar material is chucked and centered, and the first shaft tip 2a and the second shaft are cut by a tool attached to the cutting machine. The shaft tip 2b is cut into the same conical shape. This process is called blanking. Thereafter, as in the prior art, the shaft blank processed material 2 subjected to the blank processing is supplied to a known tip grinding machine.
While the shaft blank processed material 2 is rotated by pressing one end portion of the shaft blank processed material 2 against the receiving surface of the tip grinding machine, an R-shaped grinding process is performed on the first shaft distal end portion 2a side by a grindstone. .
Thereafter, in order to finish the outer diameter shape and dimensions of the shaft to a target value, grinding is performed by a centerless grinding machine. This process is called finishing.

図2は、本発明の実施の形態におけるポリゴンミラースキャナモータの仕上げ加工後のシャフト1の側面図である。   FIG. 2 is a side view of the shaft 1 after finishing the polygon mirror scanner motor according to the embodiment of the present invention.

図2において、シャフト1のスラスト支持されるピボット軸受側の第1のシャフト先端部1aはR形状に加工され、反対側の第2のシャフト先端部1bは、ブランク加工工程で形成された円錐形状のまま維持されている。   In FIG. 2, the first shaft tip 1a on the pivot bearing side on which the shaft 1 is thrust-supported is processed into an R shape, and the second shaft tip 1b on the opposite side is formed in a conical shape formed in a blanking process. Is maintained.

図3は、本発明の実施の形態におけるポリゴンミラースキャナモータのシャフトのピボット軸受側の先端研削加工工程の要部を示す。   FIG. 3 shows the main part of the tip grinding process on the pivot bearing side of the shaft of the polygon mirror scanner motor in the embodiment of the present invention.

図1に示すブランク加工を施したシャフトブランク加工材2は、図3aのように先端研削加工機のキャリア10に形成された保持部11に挿入される。この保持部11は、V字溝形状に精度良く形成され、図3bのようにシャフトブランク加工材2の外周を回転自在に保持する。そして、シャフトブランク加工材2の円錐形状に形成された第2のシャフト先端部2bを、先端研削加工機の保持部11のV字溝の一端側に、V字溝と直交する様に配置された受面12に押し当てる。一方、シャフトブランク加工材2の第1のシャフト先端部2aには、所定の曲面形状に形成された砥石13を接触させ、キャリア10の保持部11のV字溝にシャフトブランク加工材2の外周を接触させた状態で自転させながら研削加工を施す。   The shaft blank processed material 2 subjected to the blank processing shown in FIG. 1 is inserted into the holding portion 11 formed on the carrier 10 of the tip grinding machine as shown in FIG. 3a. This holding part 11 is accurately formed in a V-shaped groove shape, and rotatably holds the outer periphery of the shaft blank processed material 2 as shown in FIG. 3b. And the 2nd shaft front-end | tip part 2b formed in the conical shape of the shaft blank processed material 2 is arrange | positioned so that it may orthogonally cross a V-shaped groove | channel on the one end side of the V-shaped groove of the holding | maintenance part 11 of a front-end grinding machine. Press against the receiving surface 12. On the other hand, a grindstone 13 formed in a predetermined curved surface is brought into contact with the first shaft tip 2 a of the shaft blank workpiece 2, and the outer periphery of the shaft blank workpiece 2 is in a V-shaped groove of the holding portion 11 of the carrier 10. Grinding is carried out while rotating in a state of contact.

本発明の実施の形態においては、先端研削加工機の受面12に押し当てる、第2のシャフト先端部2bが円錐形状に形成されているので、先端研削加工機の受面12との接触が点接触となり、しかも、接触点がシャフトブランク加工材2の軸芯とほぼ一致するので、シャフトブランク加工材2を自転させる際に被加工側の第1のシャフト先端部2aにブレが生じにくい。   In the embodiment of the present invention, the second shaft tip portion 2b that is pressed against the receiving surface 12 of the tip grinding machine is formed in a conical shape, so that contact with the receiving surface 12 of the tip grinding machine is not caused. In addition, since the contact point substantially coincides with the shaft core of the shaft blank processed material 2, when the shaft blank processed material 2 is rotated, the first shaft tip portion 2 a on the processing side is less likely to be blurred.

従って、研削加工の精度を高めることが可能となり、シャフトブランク加工材2の軸芯に対する第1のシャフト先端部2aのR形状部の中心の偏芯量を低減できる。ひいては、センタレス方式の研削加工機による仕上げ加工後のシャフト1の軸芯に対する第1のシャフト先端部1aのR形状部の中心の偏芯量を低減できる。また、先端研削加工によりR形状部を形成する第1のシャフト先端部2aが、予め円錐形状に形成されているため、先端研削加工の加工時間が大幅に低減されるとともに、加工時に砥石に働く研削抵抗力も小さくなるため砥石の磨耗が少なくなり、砥石の交換間隔を長くできるので生産性が向上する。
加えて、ブランク加工を施したシャフトの両先端に同じ円錐形状部を形成するので、次工程の先端研削加工工程にシャフトブランク加工材の方向をそろえる必要が無いため作業性
が向上する。
Therefore, it becomes possible to improve the precision of grinding, and the amount of eccentricity of the center of the R-shaped portion of the first shaft tip portion 2a with respect to the shaft core of the shaft blank workpiece 2 can be reduced. As a result, the amount of eccentricity of the center of the R-shaped portion of the first shaft tip portion 1a with respect to the shaft center of the shaft 1 after finishing by the centerless grinding machine can be reduced. In addition, since the first shaft tip portion 2a that forms the R-shaped portion by tip grinding is formed in a conical shape in advance, the machining time for tip grinding is greatly reduced, and the grinding stone works during machining. Since the grinding resistance is also reduced, the wear of the grindstone is reduced and the exchange interval of the grindstone can be increased, so that productivity is improved.
In addition, since the same conical portion is formed at both ends of the shaft subjected to the blank processing, workability is improved because it is not necessary to align the direction of the shaft blank processed material in the next tip grinding process.

図4は、本発明の実施の形態におけるポリゴンミラースキャナモータの研削仕上げ加工されたシャフト1の軸芯に対する第1のシャフト先端部1aのR形状部の中心の偏芯量の度数分布を示す。   FIG. 4 shows a frequency distribution of the eccentricity amount of the center of the R-shaped portion of the first shaft tip portion 1a with respect to the shaft core of the shaft 1 subjected to the grinding finish processing of the polygon mirror scanner motor in the embodiment of the present invention.

図4において、横軸に偏芯量、縦軸に頻度をとると、上記の本願発明による研削仕上げ加工にすることで、図2に記載される第1のシャフト先端部1aにおける偏芯量は平均2μm低減すると共にバラツキも低減していることが伺える。   In FIG. 4, when the amount of eccentricity is taken on the horizontal axis and the frequency is taken on the vertical axis, the amount of eccentricity at the first shaft tip 1a shown in FIG. It can be seen that the average is reduced by 2 μm and the variation is also reduced.

一般的に偏芯量が良化すると、回転体はスラスト支持される第1のシャフト先端部1aを支点とし、真円軌道を描くため、回転体から発する機械的な振動、騒音は低減する。   In general, when the amount of eccentricity is improved, the rotating body has a first shaft tip 1a that is thrust-supported as a fulcrum and draws a perfect circular path, so that mechanical vibration and noise generated from the rotating body are reduced.

上記実施の形態より、シャフトの軸芯に対する、シャフト先端のズレによる偏芯量が増加することにより発生する振動、騒音を低減させることができる。   From the above embodiment, it is possible to reduce vibrations and noises generated by increasing the amount of eccentricity due to the deviation of the shaft tip with respect to the shaft core.

本発明にかかる、ポリゴンミラースキャナモータはシャフトの軸芯に対する、シャフト先端のズレによる偏芯量が増加することにより発生する振動、騒音を低減させることが可能になるのでレーザービームプリンタや複写機等の用途に有用である。   The polygon mirror scanner motor according to the present invention can reduce vibration and noise caused by an increase in the amount of eccentricity caused by the deviation of the shaft tip with respect to the shaft center, so that a laser beam printer, a copying machine, etc. It is useful for applications.

本発明の実施の形態におけるポリゴンミラースキャナモータのブランク加工後のシャフト側面図Side view of shaft after blanking of polygon mirror scanner motor in an embodiment of the present invention 本発明の実施の形態におけるポリゴンミラースキャナモータの仕上げ加工後のシャフト側面図Side view of shaft after finishing of polygon mirror scanner motor in the embodiment of the present invention (a)本発明の実施の形態におけるポリゴンミラースキャナモータのシャフト先端研削加工工程の要部の側面図、(b)本発明の実施の形態におけるポリゴンミラースキャナモータのシャフト先端研削加工工程の要部の断面図(A) Side view of the main part of the shaft tip grinding process of the polygon mirror scanner motor in the embodiment of the present invention, (b) Main part of the shaft tip grinding process of the polygon mirror scanner motor in the embodiment of the present invention. Cross section of 本発明の実施の形態におけるポリゴンミラースキャナモータの仕上げ加工されたシャフトの軸芯に対する第1のシャフト先端部1aのR形状部中心の偏芯量度数分布を示すグラフThe graph which shows eccentric amount frequency distribution of the R-shaped part center of the 1st shaft front-end | tip part 1a with respect to the shaft center of the finishing shaft of the polygon mirror scanner motor in embodiment of this invention 従来のポリゴンミラースキャナモータの断面図Sectional view of a conventional polygon mirror scanner motor 従来ブランク加工後のシャフト側面図Side view of shaft after conventional blanking 従来のポリゴンミラースキャナモータのシャフト先端研削加工工程の要部の側面図Side view of main part of shaft grinding process of conventional polygon mirror scanner motor 従来の仕上げ加工されたシャフトの軸芯に対する第1のシャフト先端部51aのR形状部中心の偏芯量度数分布を示すグラフThe graph which shows the eccentricity frequency distribution of the R-shaped part center of the 1st shaft front-end | tip part 51a with respect to the axial center of the shaft of the conventional finishing process

符号の説明Explanation of symbols

1、51 シャフト
2 シャフトブランク加工材
1a、2a、50a、51a 第1のシャフト先端部
1b、2b、50b、51b 第2のシャフト先端部
10 キャリア
11 保持部
12、71 受面
13、72 砥石
50 シャフトバー材
52 ポリゴンミラー
53 ロータマグネット
54 ロータフレーム
55 ロータボス
56 ステータコア
57 ステータコイル
58 軸受
59 基板
60 スラストカバー
61 スラスト板
DESCRIPTION OF SYMBOLS 1,51 Shaft 2 Shaft blank processed material 1a, 2a, 50a, 51a 1st shaft front-end | tip part 1b, 2b, 50b, 51b 2nd shaft front-end | tip part 10 Carrier 11 Holding part 12, 71 Receiving surface 13, 72 Grinding stone 50 Shaft bar material 52 Polygon mirror 53 Rotor magnet 54 Rotor frame 55 Rotor boss 56 Stator core 57 Stator coil 58 Bearing 59 Substrate 60 Thrust cover 61 Thrust plate

Claims (3)

シャフト先端をピボット軸受でスラスト方向に支持する構成を備え、前記シャフトのピボット軸受側の先端はR形状に形成され、他方の先端は円錐形状に形成されたことを特徴とするポリゴンミラースキャナモータ。 A polygon mirror scanner motor comprising a structure in which a shaft tip is supported in a thrust direction by a pivot bearing, wherein the tip of the shaft on the pivot bearing side is formed in an R shape and the other tip is formed in a cone shape. 両側の先端に同じ円錐形状を形成したシャフト材料の外周と一方の先端の円錐形状部を回転自在に支持した状態で、シャフト材料を自転しながら他方の先端を研削加工によりR形状に形成してなる請求項1に記載のポリゴンミラースキャナモータ。 In the state where the outer periphery of the shaft material having the same conical shape formed on both ends and the conical portion of one end are rotatably supported, the other end is formed into an R shape by grinding while rotating the shaft material. The polygon mirror scanner motor according to claim 1. R形状に加工されたスラスト支持されるシャフト先端の中心と、反対側のシャフト先端に形成された円錐形状の中心とが、シャフトの軸芯と同軸上に形成された請求項1もしくは請求項2のいずれか1項に記載のポリゴンミラースキャナモータ。 3. The center of the shaft tip that is thrust-supported in the R shape and the center of the conical shape formed at the opposite shaft tip are formed coaxially with the shaft core. The polygon mirror scanner motor according to any one of the above.
JP2008182237A 2008-07-14 2008-07-14 Manufacturing method of polygon mirror scanner motor Active JP5117948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008182237A JP5117948B2 (en) 2008-07-14 2008-07-14 Manufacturing method of polygon mirror scanner motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008182237A JP5117948B2 (en) 2008-07-14 2008-07-14 Manufacturing method of polygon mirror scanner motor

Publications (2)

Publication Number Publication Date
JP2010020200A true JP2010020200A (en) 2010-01-28
JP5117948B2 JP5117948B2 (en) 2013-01-16

Family

ID=41705143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008182237A Active JP5117948B2 (en) 2008-07-14 2008-07-14 Manufacturing method of polygon mirror scanner motor

Country Status (1)

Country Link
JP (1) JP5117948B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2963470A1 (en) * 2014-06-30 2016-01-06 Shinano Kenshi Kabushiki Kaisha Optical scanner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331916A (en) * 1993-05-26 1994-12-02 Brother Ind Ltd Optical scanner
JP2006187970A (en) * 2005-01-07 2006-07-20 Matsushita Electric Ind Co Ltd Polygon scanner motor
JP2008131828A (en) * 2006-11-24 2008-06-05 Victor Co Of Japan Ltd Motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331916A (en) * 1993-05-26 1994-12-02 Brother Ind Ltd Optical scanner
JP2006187970A (en) * 2005-01-07 2006-07-20 Matsushita Electric Ind Co Ltd Polygon scanner motor
JP2008131828A (en) * 2006-11-24 2008-06-05 Victor Co Of Japan Ltd Motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2963470A1 (en) * 2014-06-30 2016-01-06 Shinano Kenshi Kabushiki Kaisha Optical scanner
JP2016012035A (en) * 2014-06-30 2016-01-21 シナノケンシ株式会社 Optical scanner
US9563056B2 (en) 2014-06-30 2017-02-07 Shinano Kenshi Kabushiki Kaisha Optical scanner

Also Published As

Publication number Publication date
JP5117948B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JPH09144749A (en) Dynamic pressure gas bearing device and optical deflection scanning device
JP5377659B2 (en) Method and apparatus for machining a shaft
JP2009086409A (en) Polygon mirror scanner motor
JP5117948B2 (en) Manufacturing method of polygon mirror scanner motor
JP4986812B2 (en) Spacer manufacturing method for spindle device
JP2009014101A (en) Bearing device and machine tool having the same
JP2746830B2 (en) Dynamic pressure air bearing device and method of manufacturing groove for generating dynamic pressure
JP2010234482A (en) Method for assembling inner diameter grinding tool
JP5076583B2 (en) Chamfering device, chamfering method and sintered magnet
JP5592294B2 (en) Grinding method of work inner surface
JP4504734B2 (en) Center pressing device and method for winding machine
JP2005102412A (en) Manufacturing method for rotary electric machine and rotary electric machine
JP5439217B2 (en) Ring-shaped holder for double-head grinding machine and double-head grinding machine
JP2005214310A (en) Hydrostatic air bearing spindle
JP2007304624A (en) Polygon mirror machining method, polygon scanner, and optical scanner
JP4928194B2 (en) Drive motor and rotary polygon mirror drive device including the same
JP4182169B2 (en) Method of attaching spindle body to rotor and processing device
KR100414907B1 (en) High Speed Spindle System Used Hybrid Air Bearing
JP4789591B2 (en) Polygon mirror scanner motor
JP2007300733A (en) Rotary electric machine and manufacturing method for rotary electric machine
JP3736241B2 (en) Thrust surface machining apparatus and machining method for crankshaft positioning of cylinder block
JP2008076605A (en) Polygon mirror and method for manufacturing the polygon mirror
JP2007325327A (en) Motor
JP5273979B2 (en) Processing equipment
JP2006207647A (en) Dynamic pressure gas-lubricated bearing and rotary driving device using it

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121018

R150 Certificate of patent or registration of utility model

Ref document number: 5117948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250