JP4928194B2 - Drive motor and rotary polygon mirror drive device including the same - Google Patents

Drive motor and rotary polygon mirror drive device including the same Download PDF

Info

Publication number
JP4928194B2
JP4928194B2 JP2006228961A JP2006228961A JP4928194B2 JP 4928194 B2 JP4928194 B2 JP 4928194B2 JP 2006228961 A JP2006228961 A JP 2006228961A JP 2006228961 A JP2006228961 A JP 2006228961A JP 4928194 B2 JP4928194 B2 JP 4928194B2
Authority
JP
Japan
Prior art keywords
shaft
rotating shaft
drive motor
center
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006228961A
Other languages
Japanese (ja)
Other versions
JP2008051242A (en
Inventor
哲也 永瀬
浩志 中畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006228961A priority Critical patent/JP4928194B2/en
Publication of JP2008051242A publication Critical patent/JP2008051242A/en
Application granted granted Critical
Publication of JP4928194B2 publication Critical patent/JP4928194B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、駆動モータに関し、例えば電子写真画像形成プロセスを用いたプリンター、複写機、FAX等に使用される偏向ミラー駆動モータに関する。 The present invention relates to a drive motor , for example, a deflection mirror drive motor used for a printer, a copier, a FAX, or the like using an electrophotographic image forming process.

従来のオイル動圧軸受装置として、図7、図8に示すように軸が嵌合するスリーブの内周面に、軸方向に間隔をおいて2ヵ所の軸受面A、Bを設けている。2ヵ所の軸受面にはヘリングボーン状の動圧発生用の溝が設けられ、軸とスリーブとの隙間には潤滑用のオイルが充填されている。   As a conventional oil dynamic pressure bearing device, as shown in FIGS. 7 and 8, two bearing surfaces A and B are provided on the inner peripheral surface of the sleeve to which the shaft is fitted with a space in the axial direction. Herringbone-like grooves for generating dynamic pressure are provided at two bearing surfaces, and the gap between the shaft and the sleeve is filled with lubricating oil.

軸が回転すると、動圧発生用の溝と軸との間に圧力が発生して流体動圧潤滑がなされる。また2ヵ所の軸受面の間と、スリーブ開口部の近くには軸受面の隙間よりも大きな隙間のリセス部(オイルたまり部)C、D、Eがそれぞれ設けられている。   When the shaft rotates, a pressure is generated between the dynamic pressure generating groove and the shaft, and fluid dynamic pressure lubrication is performed. Recess portions (oil pool portions) C, D, and E having gaps larger than the gaps between the bearing surfaces are provided between the two bearing surfaces and in the vicinity of the sleeve opening.

上記したオイル動圧軸受装置に関するものでは、オイル動圧軸受装置の軸のスラスト方向の支持を、軸の下部に設けた球状凸部先端部をスラスト板でピボット受けすることで、高速回転時も損失が殆ど無く軸のスラスト支持を実現している。(例えば特許文献1及び2参照。)
なお、図1はこのようなオイル動圧軸受装置を適用したブラシレスモータを示している。
特開平6−180433号公報 特開2001−59522号公報
In the above-mentioned oil dynamic pressure bearing device, the thrust direction of the shaft of the oil dynamic pressure bearing device is supported in the thrust direction by pivotally receiving the tip of the spherical convex portion provided at the lower portion of the shaft, even at high speed rotation. The shaft thrust support is realized with almost no loss. (For example, refer to Patent Documents 1 and 2.)
FIG. 1 shows a brushless motor to which such an oil dynamic pressure bearing device is applied.
JP-A-6-180433 JP 2001-59522 A

しかしながら、従来のオイル動圧軸受においては、特に回転の始動時や停止時等の軸とスリーブに十分な動圧が発生していない状態では、軸とスリーブが機械接触してしまう。このため、その磨耗による形状の劣化や、磨耗により生じるスラッジがオイルと化学反応することでオイルを変質させ、安定した動圧形成を損ない、オイル動圧軸受の寿命低下となる問題点があった。この軸とスリーブの摩耗は、軸の回転中心と軸の球状凸部先端とのズレにより球状凸部先端を中心に軸が振れ回りし、軸受の下側動圧発生部で軸の外周がスリーブ内面を強く擦ることにより発生する。この軸の振れ回りは、軸の回転数が大きくなると軸受の動圧発生部に形成される動圧で矯正され軸とスリーブの接触は生じなくなるが、起動時と停止時には必ず繰り返し発生している。また、近年、ブラシレスモータの立上げ時間を短縮化し、ブラシレスモータを用いるプリンター等の出力開始時間を短縮化するニーズが高まっており、始動時のブラシレスモータの角加速度を大きくする傾向がある。このため、始動時の上記軸とスリーブの摺擦が強くなる傾向がある。   However, in a conventional oil dynamic pressure bearing, the shaft and the sleeve are in mechanical contact, particularly when sufficient dynamic pressure is not generated between the shaft and the sleeve at the time of starting and stopping the rotation. For this reason, there is a problem that the shape is deteriorated due to the wear, and the sludge generated by the wear chemically reacts with the oil to alter the oil, impairing the formation of a stable dynamic pressure and reducing the life of the oil dynamic pressure bearing. . The wear of the shaft and the sleeve is caused by the deviation of the rotation center of the shaft and the tip of the spherical convex portion of the shaft, the shaft swings around the tip of the spherical convex portion, and the outer periphery of the shaft is the sleeve at the lower dynamic pressure generating portion of the bearing. It is generated by rubbing the inner surface strongly. This shaft runout is corrected by the dynamic pressure formed in the bearing dynamic pressure generating portion when the shaft rotation speed is increased, and contact between the shaft and the sleeve does not occur, but it always occurs repeatedly at the time of starting and stopping. . In recent years, there has been an increasing need to shorten the startup time of a brushless motor and shorten the output start time of a printer or the like using the brushless motor, and there is a tendency to increase the angular acceleration of the brushless motor at the start. For this reason, the friction between the shaft and the sleeve at the start tends to be strong.

そこで、この軸の振れ回りを防止するために軸の回転中心と軸の球状凸部先端とのズレ△sと、回転軸とスリーブとの間隔△dの関係を、△s<△dとなるように回転軸を加工する必要がある。   Therefore, in order to prevent the shaft from swinging, the relationship between the shift Δs between the rotation center of the shaft and the tip of the spherical convex portion of the shaft and the distance Δd between the rotation shaft and the sleeve is Δs <Δd. Thus, it is necessary to machine the rotating shaft.

このとき、軸の球状部先端位置をヘッダー加工等の塑性加工で仕上げる場合、型合せの精度により、△s<△dを確保することは困難である。また、鋳造や射出成形等の成形加工で得られる軸は、硬度や耐摩耗性能等を満足することが困難な為、流体動圧軸受の長寿命化には適さない。   At this time, when finishing the position of the tip of the spherical portion of the shaft by plastic processing such as header processing, it is difficult to ensure Δs <Δd due to the accuracy of mold matching. In addition, since a shaft obtained by molding such as casting or injection molding is difficult to satisfy hardness, wear resistance, etc., it is not suitable for extending the life of a fluid dynamic pressure bearing.

そこで、本発明は、動圧軸受装置の回転軸に関して、回転軸先端の加工を成形加工することで生じる回転軸の硬度低下による耐摩耗性能低下等や、塑性加工することで生じる加工精度のバラツキを防止して、回転軸の回転開始時の軸の触れ回りによる軸受部材との摺擦を抑制することにある。   Accordingly, the present invention relates to the rotational shaft of the hydrodynamic bearing device, such as a decrease in wear resistance performance due to a decrease in the hardness of the rotational shaft caused by molding the distal end of the rotational shaft, and variations in processing accuracy caused by plastic processing. This is to prevent the friction with the bearing member due to the shaft touching when the rotation shaft starts to rotate.

前記課題を解決するための、本発明の駆動モータは、回転軸と、前記回転軸のスラスト方向において前記回転軸が当接する当接部と、前記回転軸のラジアル方向において前記回転軸を受ける軸受部と、前記スラスト方向の回転中心を軸として前記回転軸を回転させる駆動手段と、を備える駆動モータにおいて、前記回転軸は、前記スラスト方向における端面に凸面を有し、前記凸面の先端部が前記当接部に当接することによって前記先端部を含む軸を前記回転中心として回転し、前記ラジアル方向における前記軸受部の中心と前記回転軸の中心とを一致させたときの前記軸受部と前記回転軸との間隙が、前記ラジアル方向における前記回転軸の中心と前記回転中心との位置差よりも大きいことを特徴とする。 In order to solve the above problems, a drive motor of the present invention includes a rotating shaft, a contact portion with which the rotating shaft contacts in a thrust direction of the rotating shaft, and a bearing that receives the rotating shaft in a radial direction of the rotating shaft. And a driving means for rotating the rotating shaft about the center of rotation in the thrust direction, the rotating shaft has a convex surface on the end surface in the thrust direction, and the tip of the convex surface is The bearing portion is rotated when the shaft including the tip portion is rotated about the rotation center by contacting the contact portion, and the center of the bearing portion and the center of the rotation shaft in the radial direction are aligned with each other. A gap with the rotation axis is larger than a positional difference between the center of the rotation axis and the rotation center in the radial direction.

駆動モータに関して、回転軸の硬度低下による耐摩耗性能低下等や、加工精度のバラツキを防止して、回転軸の回転開始時の軸の触れ回りによる軸受部材との摺擦を抑制することができる。 With respect to the drive motor, it is possible to prevent wear resistance performance degradation due to a decrease in the hardness of the rotating shaft and variations in processing accuracy, and to suppress sliding with the bearing member due to the shaft touching at the start of rotation of the rotating shaft. .

(実施例)
本発明の実施例を図面を参照して説明する。図1は、本発明の実施例のオイル動圧軸受装置を適用したブラシレスモータの断面図である。図2はオイル動圧軸受装置を示す軸及びスリーブの概略断面図で、図3はオイル動圧軸受装置の下視概略断面図で、図7及び図8は従来のオイル動圧軸受装置の断面図及びその説明図である。
(Example)
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a brushless motor to which an oil dynamic pressure bearing device according to an embodiment of the present invention is applied. 2 is a schematic cross-sectional view of a shaft and a sleeve showing the oil dynamic pressure bearing device, FIG. 3 is a schematic bottom cross-sectional view of the oil dynamic pressure bearing device, and FIGS. 7 and 8 are cross sections of the conventional oil dynamic pressure bearing device. It is a figure and its explanatory drawing.

図1に示すように、回転軸2は永久磁石6が固定されたヨーク5と取付け部材4とで一体化されロータ部を構成する。真鍮等の金属材質からなるスリーブ1には、ステータコア7が固定された回路基板8が一体化されステータ部を構成する。ステンレス等の金属材質からなる軸2と軸受部材としてのスリーブ1は相互に回転可能に嵌合されている。   As shown in FIG. 1, the rotating shaft 2 is integrated with a yoke 5 to which a permanent magnet 6 is fixed and a mounting member 4 to constitute a rotor portion. A circuit board 8 to which a stator core 7 is fixed is integrated with a sleeve 1 made of a metal material such as brass to constitute a stator portion. A shaft 2 made of a metal material such as stainless steel and a sleeve 1 as a bearing member are fitted in a rotatable manner.

ステータコア7は多極のポールシュウ(駆動コイルを巻回す部位)を有し、各ポールシュウには駆動コイル9が巻回されている。多極に磁化された永久磁石6の回転位置により順次通電が切り替えられ、永久磁石6とステータコア7との間に回転力を発生する。   The stator core 7 has a multi-pole pole shoe (portion around which a drive coil is wound), and a drive coil 9 is wound around each pole shoe. The energization is sequentially switched depending on the rotational position of the permanent magnet 6 magnetized in multiple poles, and a rotational force is generated between the permanent magnet 6 and the stator core 7.

駆動コイル9が巻回されたステータコア7は駆動回路を構成する回路部品とともに回路基板8に固定されている。さらに回路基板8はスリーブ1と一体化されている。ロータ部とステータ部がそれぞれ形成された後、モータとしての組立が行われる。   The stator core 7 around which the drive coil 9 is wound is fixed to the circuit board 8 together with circuit components constituting the drive circuit. Further, the circuit board 8 is integrated with the sleeve 1. After the rotor part and the stator part are formed, assembly as a motor is performed.

まずスリーブ1の内面にオイル注入装置により規定の量のオイルが注油された後、スリーブ1の内径に回転可能に嵌合されるように回転軸2が挿入されてモータが完成する。   First, after a predetermined amount of oil is injected into the inner surface of the sleeve 1 by an oil injection device, the rotary shaft 2 is inserted so as to be rotatably fitted to the inner diameter of the sleeve 1 to complete the motor.

次に、図8を参照して、図1のブラシレスモータに適用されたオイル動圧軸受装置について説明する。図8に示すように、軸受部である貫通孔を有する円筒形状をしたスリーブ1は、その内面に軸方向に間隔をおいて2箇所の軸受面(嵌合部)A、Bと、軸受面A、Bの内径寸歩よりも大きな内径寸歩を有するオイル溜り部C、D、Eが設けられている。   Next, an oil dynamic pressure bearing device applied to the brushless motor of FIG. 1 will be described with reference to FIG. As shown in FIG. 8, a cylindrical sleeve 1 having a through-hole as a bearing portion has two bearing surfaces (fitting portions) A and B spaced axially on the inner surface, and a bearing surface. Oil reservoirs C, D, and E having inner diameter steps larger than the inner diameter steps of A and B are provided.

前記軸受面A、Bの表面にはヘリングボーン状の深さ寸法が数ミクロンの溝がそれぞれ複数本加工され、軸が回転すると、溝の屈曲位置A−1及びB−1で圧力が最大となるように動圧が発生する。さらにスリーブ1の下端部の開口部を塞ぐための円板21が固定されている。   On the surfaces of the bearing surfaces A and B, a plurality of herringbone-like grooves each having a depth of several microns are machined, and when the shaft rotates, the pressure is maximum at the groove bending positions A-1 and B-1. Dynamic pressure is generated. Further, a disk 21 for closing the opening at the lower end of the sleeve 1 is fixed.

次に本実施例に関する、軸受部としての動圧軸受装置のスラスト受け部(支持部)について説明する。動圧軸受装置のスラスト受け部は図8に示すように前記円板21の上面に軸2を受けるためのナイロン等の摺動性に優れた材質からなるスラスト板3が配置されている。本実施例ではスリーブ1及びスラスト受け部により動圧軸受装置の回転軸を軸受する軸受部を構成している。図7にしめすように、軸2の下端部に設けられた球状凸部(凸面)2−1とスラスト板3がスリーブ1の中心線ほぼ延長上の近傍で常時点接触している。また、スラスト板3の上面及び球状2−1部は前記オイルで浸され、前記点接触部も潤滑されている。   Next, a thrust receiving portion (supporting portion) of the hydrodynamic bearing device as the bearing portion according to the present embodiment will be described. As shown in FIG. 8, the thrust receiving portion of the hydrodynamic bearing device is provided with a thrust plate 3 made of a material having excellent slidability such as nylon for receiving the shaft 2 on the upper surface of the disc 21. In this embodiment, the sleeve 1 and the thrust receiving portion constitute a bearing portion for bearing the rotary shaft of the hydrodynamic bearing device. As shown in FIG. 7, the spherical convex portion (convex surface) 2-1 provided at the lower end portion of the shaft 2 and the thrust plate 3 are always in point contact with each other in the vicinity of the extension of the center line of the sleeve 1. The upper surface of the thrust plate 3 and the spherical 2-1 part are immersed in the oil, and the point contact part is also lubricated.

軸2の球状凸部2−1の加工は、切削や研削など除去加工により行っている。ここで、図4は加工機における加工概略図、図5は加工機の軸の保持手段概略図である。図4及び図5において、加工前の軸12をチャック部15のツメ部14で、図5の矢印方向に回転するチャック部15の回転中心11と同軸となるように、3方向から均等に保持する。軸2の先端部の加工はツメ部14とともに軸2を回転させながら、軸を矢印P側に送るのと同時に切削工具13を矢印Q方向に出入りさせることで、精度の良い軸の球状部先端の加工を実現する。ここで、軸2に対し、加工後に流体動圧軸受のスリーブと嵌合する領域を保持して球状先端部の加工を行うことで、球状先端部の位置ズレを低減することができる。さらに、動圧を発生する図8の軸受面A、Bに対向する範囲を加圧保持すると後述する球状先端部の位置ズレの精度を向上させることが出来る。また、前記保持により軸受面A、Bに対向する範囲に微細な傷が生じる不具合を避けるため、軸受けA,Bに対向する範囲の近傍を加圧保持しても、有効である。尚、軸12を位置決め保持し、上記のような加工を行う加工装置としては、例えばNC(Numerical Control)旋盤加工装置等が良い。   The processing of the spherical convex portion 2-1 of the shaft 2 is performed by removal processing such as cutting and grinding. Here, FIG. 4 is a schematic diagram of processing in the processing machine, and FIG. 5 is a schematic diagram of means for holding the shaft of the processing machine. 4 and 5, the shaft 12 before processing is equally held from three directions so that it is coaxial with the rotation center 11 of the chuck portion 15 that rotates in the arrow direction of FIG. 5 by the claw portion 14 of the chuck portion 15. To do. The tip of the shaft 2 is processed by rotating the shaft 2 together with the claw 14 and simultaneously feeding the shaft to the arrow P side, and simultaneously moving the cutting tool 13 in and out in the direction of the arrow Q. Realize machining. Here, with respect to the shaft 2, the spherical tip portion is processed by holding the region that fits the sleeve of the fluid dynamic pressure bearing after processing, thereby reducing the positional deviation of the spherical tip portion. Furthermore, if the range facing the bearing surfaces A and B in FIG. 8 where dynamic pressure is generated is maintained under pressure, the accuracy of the positional deviation of the spherical tip portion described later can be improved. Further, in order to avoid a problem in which fine scratches are generated in the range facing the bearing surfaces A and B by the holding, it is effective to press and hold the vicinity of the range facing the bearings A and B. As a processing apparatus for positioning and holding the shaft 12 and performing the above-described processing, for example, an NC (Numerical Control) lathe processing apparatus or the like is preferable.

次に図2及び図3において軸2の球状部先端2−2の構成について説明する。軸2を軸受する軸受面である前記へリングボーン状溝の屈曲位置A−1及びB−1に対向する動圧発生部としてのA−2及びB−2位置の軸2の中心を結んだ中心線2−3に対する球状部先端2−2のズレ量を△sとする。また、動圧発生部における軸2とスリーブ2間距離の最小隙間を△dとする。即ち、軸2の中心線とスリーブ1の中心線を同軸に設けたときの、動圧発生部(嵌合部)における軸2の外面とスリーブ1の内面との最小距離を△dとする。(△dは、スリーブ1もしくは軸2に溝が設けられている場合も同様に、軸2の中心線とスリーブ1の中心線を同軸に設けたときの、動圧発生部(嵌合部)におけるスリーブ1の表面と軸2の表面の最小値となる。)このとき、本実施例のオイル動圧軸受装置は△s<△dの関係式を満足するように、軸2の中心線2−3に対する球状部2−1の先端2−2のズレ量を設定している。   Next, the configuration of the spherical portion tip 2-2 of the shaft 2 will be described with reference to FIGS. The center of the shaft 2 at the positions A-2 and B-2 as the dynamic pressure generating portions facing the bending positions A-1 and B-1 of the herringbone groove which is a bearing surface for bearing the shaft 2 is connected. Let Δs be the amount of deviation of the spherical portion tip 2-2 from the center line 2-3. Further, the minimum gap of the distance between the shaft 2 and the sleeve 2 in the dynamic pressure generating portion is represented by Δd. That is, Δd is the minimum distance between the outer surface of the shaft 2 and the inner surface of the sleeve 1 in the dynamic pressure generating portion (fitting portion) when the center line of the shaft 2 and the center line of the sleeve 1 are provided coaxially. (Δd is also a dynamic pressure generating portion (fitting portion) when the center line of the shaft 2 and the center line of the sleeve 1 are provided coaxially in the case where the sleeve 1 or the shaft 2 has a groove. The minimum value of the surface of the sleeve 1 and the surface of the shaft 2 at this time.) At this time, the center line 2 of the shaft 2 is set so that the oil dynamic pressure bearing device of this embodiment satisfies the relational expression Δs <Δd. The amount of deviation of the tip 2-2 of the spherical portion 2-1 with respect to -3 is set.

これにより、軸2は図1のブラシレスモータ10の始動及び停止時に軸2の中心に対する球状部先端2−2のズレにより生じる軸2の振れ回りが生じても、軸2とスリーブ1が強く摺擦されることは殆ど無い。即ち、図3のように、動圧軸受下部の動圧発生部において軸2の外周2−4とスリーブ1−5の内面には隙間△gがほぼ確保される。尚、ブラシレスモータ10を始動及び停止する際、オイル動圧軸受の動圧発生部に十分な動圧が発生するまでは軸2とスリーブ1は軽く接触する。しかし、本件が課題とする軸2の中心線に対する球状部先端2−2のズレによる接触に比べ強く擦られるものではなく、オイル動圧軸受寿命への影響は軽微である。   As a result, the shaft 2 and the sleeve 1 are slid strongly even if the shaft 2 swings due to the deviation of the tip 2-2 of the spherical portion with respect to the center of the shaft 2 when the brushless motor 10 of FIG. 1 is started and stopped. There is almost no rubbing. That is, as shown in FIG. 3, a gap Δg is almost ensured between the outer periphery 2-4 of the shaft 2 and the inner surface of the sleeve 1-5 in the dynamic pressure generating portion at the lower part of the dynamic pressure bearing. When the brushless motor 10 is started and stopped, the shaft 2 and the sleeve 1 are in light contact until a sufficient dynamic pressure is generated in the dynamic pressure generating portion of the oil dynamic pressure bearing. However, it is not rubbed more strongly than the contact due to the deviation of the spherical tip 2-2 with respect to the center line of the shaft 2 which is the subject of this case, and the influence on the life of the oil dynamic pressure bearing is negligible.

ところで、上記した軸2の球状部先端2−2の加工においては、図6に加工精度の分布を示すように、球状部2−1の先端2−2のズレ量△sは概ね(本実施例においては99.7%超の範囲)動圧発生部の最小隙間△dよりも小さくできる。また、僅かに△s≧△dとなるものについては、例えば投影機等の検査により先端2−2のズレ量△sを選別することによりブラシレスモータ10のオイル動圧軸受には△s<△dとなる軸のみ用いることができる。   By the way, in the above-described machining of the spherical portion tip 2-2 of the shaft 2, as shown in FIG. 6, the amount of deviation Δs of the tip 2-2 of the spherical portion 2-1 is approximately (this embodiment). In the example, the range is over 99.7%) and can be smaller than the minimum clearance Δd of the dynamic pressure generating portion. Further, for those that slightly satisfy Δs ≧ Δd, for example, the amount of deviation Δs of the tip 2-2 is selected by inspection of a projector or the like, so that Δs <Δ for the oil dynamic pressure bearing of the brushless motor 10. Only the axis d can be used.

また、軸の球状部先端位置をヘッダー加工等の塑性加工で仕上げる場合、型合せの精度により、△s<△dを確保することは困難である。また、鋳造や射出成形等の成形加工で得られる軸は、硬度や耐摩耗性能等を満足することが困難な為、流体動圧軸受の長寿命化には適さない。   Further, when finishing the position of the tip of the spherical portion of the shaft by plastic processing such as header processing, it is difficult to ensure Δs <Δd due to the accuracy of mold matching. In addition, since a shaft obtained by molding such as casting or injection molding is difficult to satisfy hardness, wear resistance, etc., it is not suitable for extending the life of a fluid dynamic pressure bearing.

以上説明した実施例は、オイル動圧軸受についてのみ説明したが、本件はこれに限るものではなく、スラスト方向にピボット受部を持ったものなら、例えば流体動圧媒体として空気を用いた空気動圧軸受装置についても良い。   In the embodiment described above, only the oil dynamic pressure bearing has been described. However, the present invention is not limited to this, and if the pivot receiving portion is provided in the thrust direction, for example, the air dynamics using air as the fluid dynamic pressure medium is used. A pressure bearing device may also be used.

また、スリーブ側にヘリングボーン状溝を設けたものについて説明したが、本件はこれに限るものではない。軸にヘリングボーンを設けたものでもよく、或いは十分な動圧を形成できるものなら、スリーブ及び軸ともヘリングボーン状溝が形成されていない流体動圧軸受についてでもよい。   Moreover, although what provided the herringbone-shaped groove | channel on the sleeve side was demonstrated, this case is not restricted to this. The shaft may be provided with a herring bone, or may be a fluid dynamic pressure bearing in which no herring bone groove is formed on the sleeve and the shaft as long as sufficient dynamic pressure can be formed.

また、ヘリングボーン状溝の屈曲位置の軸中心を用いて軸の中心線を定義したものについて説明したが、本件はこれに限るものではなく、例えばヘリングボーン状溝の有無に関らず、軸とスリーブが最も近接する範囲から軸の中心線を定義しても良い。   In addition, although the axis center line is defined by using the axis center of the bending position of the herringbone groove, the present invention is not limited to this. For example, regardless of the presence or absence of the herringbone groove, the axis The center line of the shaft may be defined from the range where the sleeve and the sleeve are closest to each other.

また、スリーブの内周面及び軸の外周面は円筒状であるものについて説明したが、例えば断面が真円に対し凸部を持ったスリーブ又は軸に対しては、夫々スリーブについては内接円、軸については外接円からスリーブと軸の隙間と軸の中心線を定義を行うと良い。   Also, the inner peripheral surface of the sleeve and the outer peripheral surface of the shaft have been described as being cylindrical. For example, for a sleeve or a shaft whose cross section has a convex portion with respect to a perfect circle, the sleeve is inscribed in a circle. For the shaft, it is better to define the clearance between the sleeve and the shaft and the center line of the shaft from the circumscribed circle.

本実施例で説明したオイル動圧軸受装置は、プリンター等の画像形成装置に用いられる回転多面鏡駆動装置としても適用できることは言うまでもない。この場合、プリンター等の出力開始時間の短縮化、始動時のブラシレスモータの角加速度を大きくできるメリットがある。   It goes without saying that the oil dynamic pressure bearing device described in this embodiment can also be applied as a rotary polygon mirror driving device used in an image forming apparatus such as a printer. In this case, there are advantages that the output start time of the printer or the like can be shortened and the angular acceleration of the brushless motor at the start can be increased.

本発明の実施例のオイル動圧軸受装置を適用したブラシレスモータの断面図Sectional drawing of the brushless motor which applied the oil dynamic pressure bearing apparatus of the Example of this invention 本発明の実施例のオイル動圧軸受装置を示す軸及びスリーブの概略断面図Schematic sectional view of a shaft and a sleeve showing an oil dynamic pressure bearing device of an embodiment of the present invention 本発明の実施例のオイル動圧軸受装置の下視概略断面図A schematic cross-sectional view of an oil dynamic pressure bearing device according to an embodiment of the present invention. 本発明の実施例の軸加工概略図Shaft machining schematic diagram of an embodiment of the present invention 本発明の実施例の軸加工時の軸保持手段概略図Schematic diagram of shaft holding means during shaft machining according to an embodiment of the present invention 本実施例の軸加工による加工精度分布Machining accuracy distribution by shaft machining in this example 従来のオイル動圧軸受装置の断面図Sectional view of a conventional oil dynamic bearing device 従来のオイル動圧軸受装置の断面図Sectional view of a conventional oil dynamic bearing device

符号の説明Explanation of symbols

1 スリーブ
1−3 スリーブ円中心
1−5 スリーブ内面
2 軸
2−1 球状部
2−2 球状部先端
2−3 軸の中心線
2−4 始動時の軸の外周
2−5 定常回転中の軸の外周
3 スラスト受け
4 取付け部材
5 ヨーク
6 永久磁石
7 ステータコア
8 回路基板
9 駆動コイル
10 ブラシレスモータ
11 チャック部のセンター
12 加工前の軸
13 切削工具
14 ツメ部
15 チャック部
A、B 軸受面
C、D、E オイル溜り部
A−1、B−1 へリングボーン状溝の屈曲位置
A−2、B−2 軸のへリングボーン状溝の屈曲位置対向位置
△d 軸の外周半径とスリーブ内周半径の差
△g 始動時の軸の外周とスリーブ内周の最小隙間
△s 軸の中心線に対する球状凸部の中心のズレ
DESCRIPTION OF SYMBOLS 1 Sleeve 1-3 Center of sleeve circle 1-5 Sleeve inner surface 2 Axis 2-1 Spherical part 2-2 Spherical part tip 2-3 Axis centerline 2-4 Axis of axis at start-up 2-5 Axis during steady rotation 3 Thrust receiver 4 Mounting member 5 Yoke 6 Permanent magnet 7 Stator core 8 Circuit board 9 Drive coil 10 Brushless motor 11 Center of chuck part 12 Shaft before processing 13 Cutting tool 14 Claw part 15 Chuck part A, B Bearing surface C, D, E Oil reservoir A-1, B-1 Bending position of herringbone groove A-2, B-2 Bending position of herringbone groove on the axis △ d Shaft outer radius and sleeve inner circumference Difference in radius △ g Minimum clearance between the outer circumference of the shaft and the inner circumference of the sleeve at the start

Claims (7)

回転軸と、前記回転軸のスラスト方向において前記回転軸が当接する当接部と、前記回転軸のラジアル方向において前記回転軸を受ける軸受部と、前記スラスト方向の回転中心を軸として前記回転軸を回転させる駆動手段と、を備える駆動モータにおいて、A rotating shaft, an abutting portion with which the rotating shaft contacts in the thrust direction of the rotating shaft, a bearing portion that receives the rotating shaft in the radial direction of the rotating shaft, and the rotating shaft about the rotation center in the thrust direction A drive motor comprising:
前記回転軸は、前記スラスト方向における端面に凸面を有し、前記凸面の先端部が前記当接部に当接することによって前記先端部を含む軸を前記回転中心として回転し、The rotation shaft has a convex surface on the end surface in the thrust direction, and the tip portion of the convex surface rotates around the shaft including the tip portion by contacting the contact portion,
前記ラジアル方向における前記軸受部の中心と前記回転軸の中心とを一致させたときの前記軸受部と前記回転軸との間隙が、前記ラジアル方向における前記回転軸の中心と前記回転中心との位置差よりも大きいことを特徴とする駆動モータ。The gap between the bearing portion and the rotating shaft when the center of the bearing portion and the center of the rotating shaft in the radial direction coincide with each other is a position between the center of the rotating shaft and the rotating center in the radial direction. A drive motor characterized by being larger than the difference.
前記軸受部は、前記スラスト方向の異なる位置に前記回転軸が対向する第1の領域と前記回転軸が対向する前記第1の領域よりも大きい直径の第2の領域とを備え、The bearing portion includes a first region facing the rotating shaft at a different position in the thrust direction and a second region having a larger diameter than the first region facing the rotating shaft,
前記ラジアル方向における前記軸受部の前記第1の領域の中心と前記回転軸の中心とを一致させたときの前記軸受部の第1の領域と前記回転軸との間隙が、前記ラジアル方向における前記回転軸の中心と前記回転中心との位置差よりも大きいことを特徴とする請求項1に記載の駆動モータ。The gap between the first region of the bearing portion and the rotating shaft when the center of the first region of the bearing portion and the center of the rotating shaft in the radial direction coincide with each other is the gap in the radial direction. The drive motor according to claim 1, wherein the drive motor is larger than a positional difference between the center of the rotation shaft and the rotation center.
前記前記凸面は、球状の曲面であることを特徴とする請求項1または2に記載の駆動モータ。The drive motor according to claim 1, wherein the convex surface is a spherical curved surface. 前記回転軸の前記凸面及び前記凸面の先端部は、回転する前記回転軸に工具を当てて除去加工されることによって形成されていることを特徴とする請求項2に記載の駆動モータ。3. The drive motor according to claim 2, wherein the convex surface of the rotating shaft and a tip end portion of the convex surface are formed by applying a tool to the rotating rotating shaft and removing it. 前記回転軸は、前記第1の領域に対向する位置が保持されて回転した状態で前記除去加工されることを特徴とする請求項4に記載の駆動モータ。5. The drive motor according to claim 4, wherein the rotary shaft is subjected to the removal processing in a state where the rotary shaft is rotated while being held at a position facing the first region. 前記軸受部は、前記第1の領域にヘリングボーン状の動圧発生溝が設けられた流体動圧軸受であり、前記回転軸と前記軸受部の前記第1の領域との間隙、及び前記回転軸と前記第2の領域と前記の間隙にはオイルが充填されることを特徴とする請求項2に記載の駆動モータ。The bearing portion is a fluid dynamic pressure bearing in which a herringbone-like dynamic pressure generating groove is provided in the first region, a gap between the rotating shaft and the first region of the bearing portion, and the rotation The drive motor according to claim 2, wherein the shaft, the second region, and the gap are filled with oil. 請求項1乃至6いずれか1項に記載の駆動モータと、The drive motor according to any one of claims 1 to 6,
前記駆動モータのロータ部に取り付けられる回転多面鏡と、を備える回転多面鏡駆動装置。A rotary polygon mirror drive device comprising: a rotary polygon mirror attached to a rotor portion of the drive motor.
JP2006228961A 2006-08-25 2006-08-25 Drive motor and rotary polygon mirror drive device including the same Expired - Fee Related JP4928194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006228961A JP4928194B2 (en) 2006-08-25 2006-08-25 Drive motor and rotary polygon mirror drive device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006228961A JP4928194B2 (en) 2006-08-25 2006-08-25 Drive motor and rotary polygon mirror drive device including the same

Publications (2)

Publication Number Publication Date
JP2008051242A JP2008051242A (en) 2008-03-06
JP4928194B2 true JP4928194B2 (en) 2012-05-09

Family

ID=39235494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006228961A Expired - Fee Related JP4928194B2 (en) 2006-08-25 2006-08-25 Drive motor and rotary polygon mirror drive device including the same

Country Status (1)

Country Link
JP (1) JP4928194B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0826895B2 (en) * 1987-09-30 1996-03-21 日本精工株式会社 Method for manufacturing hydrodynamic bearing
JPH0698522A (en) * 1992-09-14 1994-04-08 Sony Corp Stepping motor
JP3299685B2 (en) * 1997-04-16 2002-07-08 日立粉末冶金株式会社 Magnetic fluid bearing device
JP2002070843A (en) * 2000-08-29 2002-03-08 Daido Steel Co Ltd Bearing mechanism, driving motor with bearing mechanism and hard disc drive mechanism with driving motor and polygon miller driving mechanism
JP4467751B2 (en) * 2000-09-27 2010-05-26 キヤノン株式会社 Hydrodynamic bearing device and deflection scanning device

Also Published As

Publication number Publication date
JP2008051242A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
KR20060074806A (en) Spindle motor
JP2002266861A (en) Fluid dynamic pressure bearing device
KR101152223B1 (en) Dynamic pressure bearing device
US7995306B2 (en) Shaft, hydrodynamic bearing device, spindle motor, and recording and reproducing apparatus
JPH07332353A (en) Dynamic pressurizing bearing
JP4928194B2 (en) Drive motor and rotary polygon mirror drive device including the same
JP3630810B2 (en) Hydrodynamic air bearing and polygon scanner using the same
US20070292059A1 (en) Fluid Dynamic Bearing Apparatus
US10837486B2 (en) Shaft member for fluid bearing device, manufacturing method therefor, and fluid bearing device
JPH0727131A (en) Manufacture of dynamic pressure air bearing device and dynamic pressure generating groove thereof
WO2015029677A1 (en) Shaft member for fluid dynamic bearing device and manufacturing method for shaft member
JP4504391B2 (en) Manufacturing method of hydrodynamic bearing device
JP4326299B2 (en) motor
JP2008032081A (en) Fluid bearing device
JP2006057800A (en) Dynamic-pressure bearing sleeve and its machining method
JPH11215766A (en) Motor and motor-loaded desk device
KR100376998B1 (en) Hydrostatic bearing motor
US20100102661A1 (en) Rotating shaft for ultra slim spindle motor
JPH11271654A (en) Polygon scanner
KR101055496B1 (en) Spindle motor
JPH06284631A (en) Motor
JP2010020200A (en) Polygon mirror scanner motor
JPH06137321A (en) Bearing device
JP2008089155A (en) Dynamic pressure bearing device and deflection scanning device
JPH1113748A (en) Thrust dynamic pressure bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090819

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4928194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees