JP2010020014A - Method of delivering semiconductor manufacturing composite solution, manufacturing method, pipe line and manufacturing apparatus therefor - Google Patents

Method of delivering semiconductor manufacturing composite solution, manufacturing method, pipe line and manufacturing apparatus therefor Download PDF

Info

Publication number
JP2010020014A
JP2010020014A JP2008179453A JP2008179453A JP2010020014A JP 2010020014 A JP2010020014 A JP 2010020014A JP 2008179453 A JP2008179453 A JP 2008179453A JP 2008179453 A JP2008179453 A JP 2008179453A JP 2010020014 A JP2010020014 A JP 2010020014A
Authority
JP
Japan
Prior art keywords
composition solution
manufacturing
solution
semiconductor
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008179453A
Other languages
Japanese (ja)
Other versions
JP5239567B2 (en
Inventor
Tetsunori Sugawara
哲徳 菅原
Yoshio Maeda
芳雄 前田
Ai Yamazaki
愛 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2008179453A priority Critical patent/JP5239567B2/en
Publication of JP2010020014A publication Critical patent/JP2010020014A/en
Application granted granted Critical
Publication of JP5239567B2 publication Critical patent/JP5239567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of delivering a semiconductor manufacturing composite solution, a manufacturing method, a pipe line and a manufacturing apparatus, thoroughly restraining the mixing-in of a foreign matter that can cause a defect in a manufacturing process, and remarkably reducing a content of the foreign matter. <P>SOLUTION: The solution is delivered using the pipe line the inner surface of which satisfies the following relational expression: Ra<X between the value (Ra:μm) of arithmetic mean roughness showing the surface smoothness and the size (X:μm) of the foreign matter in the delivered semiconductor manufacturing composite solution. Alternatively, the solution is delivered using the pipe line the inner surface of which satisfies the following relational expression: Rz<3X between the value (Rz:μm) of a ten-point height of irregularities showing the surface smoothness and the size (X:μm) of the foreign matter in the semiconductor manufacturing composite solution. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体製造用組成物溶液の送液方法、製造方法、それに用いられる配管、製造装置に関する。具体的には、IC等の半導体製造工程、液晶、サーマルヘッド等の回路基板の製造、その他のフォトリソグラフィー工程に使用されるフォトレジスト用重合体溶液、フォトレジスト組成物溶液、または液浸用組成物溶液等の製造方法等に関するものである。   The present invention relates to a method for feeding a composition solution for semiconductor production, a production method, piping used in the method, and a production apparatus. Specifically, a polymer solution for photoresist, a photoresist composition solution, or an immersion composition used in semiconductor manufacturing processes such as ICs, circuit boards such as liquid crystals and thermal heads, and other photolithography processes. The present invention relates to a method for producing a physical solution or the like.

近年、電子材料やディスプレイ材料等の高機能化が急速に進むなかで、これらを製造する上で使用される組成物が重要視されてきている。集積回路素子の製造に代表される微細加工の分野では、より高い集積度を得るために、より微細な加工が可能なリソグラフィー技術が必要とされている。例えば、0.10μm以下のレベルでの微細加工を可能とするために、より波長の短い放射線の利用及び液浸露光が検討されている。そして、この用途に適した樹脂組成物が数多く提案され、使用されている。例えば、レジスト形成用の感放射線性樹脂組成物を含むレジスト組成物、多層レジストにおける上層膜を形成するための樹脂組成物を含む液浸用組成物が使用されている。   In recent years, as functions of electronic materials, display materials, and the like have been rapidly advanced, compositions used for producing these have been regarded as important. In the field of microfabrication represented by the manufacture of integrated circuit elements, lithography technology capable of finer processing is required to obtain a higher degree of integration. For example, in order to enable fine processing at a level of 0.10 μm or less, use of radiation having a shorter wavelength and immersion exposure are being studied. Many resin compositions suitable for this application have been proposed and used. For example, a resist composition containing a radiation-sensitive resin composition for resist formation and an immersion composition containing a resin composition for forming an upper layer film in a multilayer resist are used.

このような微細化方法において、更に高解像度のパターンニングが要求されるようになり、レジストパターンのディフェクトを無視することができなくなってきており、その改善が試みられている。このディフェクト要因のひとつには、レジスト樹脂を含有する溶液中に、樹脂の重合の際に副生するオリゴマーや低分子量のポリマー、また生産設備の配管やバルブ等から混入するゴミ、微粒子等といった固形状の異物が存在することが挙げられる。尚、「ディフェクト」とは、現像後のレジストパターンを上部から観察した際に検知される不具合全般のことをいう。   In such a miniaturization method, patterning with higher resolution has been required, and it has become impossible to ignore the defect of the resist pattern. One of the causes of this defect is the presence of solids such as oligomers and low molecular weight polymers by-produced during polymerization of the resin in the resist resin-containing solution, and dust and fine particles mixed in from piping and valves of production facilities. It is mentioned that the foreign material of a shape exists. Note that “defect” refers to all defects detected when the resist pattern after development is observed from above.

これらディフェクト要因になり得る異物の内、樹脂の重合の際に副生するオリゴマーや低分子量のポリマーの低減法として、該樹脂溶液を貧溶媒を用いて精製する沈殿精製法(特許文献1)や、沈殿工程および/又は洗浄ろ過工程による精製方法(特許文献2)が提案されている。また、配管やバルブ等から混入するゴミ、微粒子等といった固形状の異物の低減法としては、フィルターが設置された閉鎖系内でレジスト組成物を循環させることにより、レジスト組成物中の微粒子の量を低減する方法(特許文献3)が提案されている。   Among these foreign substances that can cause defects, as a method for reducing oligomers by-produced during resin polymerization and low molecular weight polymers, a precipitation purification method (Patent Document 1) for purifying the resin solution using a poor solvent, A purification method using a precipitation step and / or a washing filtration step (Patent Document 2) has been proposed. Also, as a method of reducing solid foreign matters such as dust and fine particles mixed in from pipes and valves, the amount of fine particles in the resist composition is circulated by circulating the resist composition in a closed system where a filter is installed. Has been proposed (Patent Document 3).

特許第3810428号公報Japanese Patent No. 3810428 特開2005−13297号公報JP 2005-13297 A 特開2002−62667号公報Japanese Patent Laid-Open No. 2002-62667

しかしながら、急速に微細化が進行している半導体素子の製造分野等においては、前述のような方法を用いた場合であっても、前記ディフェクト発生の抑制効果が十分であるとはいえず、不純物異物含有量の低いフォトレジスト組成物などを得るという点において未だ課題を残すものであった。特に配管やバルブ等の生産設備から混入するゴミ、微粒子等といった固形状の異物においては、充分な低減が達成されていなかった。   However, in the field of manufacturing semiconductor devices where miniaturization is rapidly progressing, even if the above-described method is used, it cannot be said that the effect of suppressing the occurrence of defects is sufficient. Problems still remain in terms of obtaining a photoresist composition having a low foreign matter content. In particular, solid foreign matters such as dust and fine particles mixed from production equipment such as piping and valves have not been sufficiently reduced.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、生産性が高く、製造過程においてディフェクト要因となり得る異物の混入を十分に抑制することができ、異物含有量が極力低減された半導体製造用組成物溶液の送液方法、製造方法、配管、及び製造装置を提供するものである。   The present invention has been made in view of such problems of the prior art, has high productivity, can sufficiently suppress the entry of foreign substances that can be a cause of defects in the manufacturing process, and has a foreign substance content as much as possible. A liquid feeding method, a manufacturing method, piping, and a manufacturing apparatus for a reduced semiconductor manufacturing composition solution are provided.

本発明者らは、前記のような従来技術の課題を解決するために鋭意検討した結果、これらレジストパターンのディフェクト要因となり得る異物の多くが配管の内部から混入することを確認した。これは製造前に配管内部に異物が残留しており、製造時の組成物溶液が配管を送液することによってこれら異物が製品に混入することを見出した。   As a result of intensive investigations to solve the problems of the prior art as described above, the present inventors have confirmed that many foreign substances that can cause defects in these resist patterns are mixed from the inside of the pipe. It has been found that foreign matters remain in the pipe before the production, and these foreign matters are mixed into the product when the composition solution at the time of production sends the pipe.

配管内に異物が残留する原因としては、配管製造時、配管組み立て時、および設置時に配管内に異物が混入し、装置立ち上げ時の通常の洗浄方法では充分に洗浄できず製品溶液を送液した際に異物が混入すること、および/または前生産の組成物等が配管内に残留し、本生産前の洗浄で充分に洗浄できず、残留した組成物が製品溶液を送液した際に異物として混入する場合があることを確認した。   The cause of foreign matter remaining in the piping is that foreign matter is mixed in the piping during pipe manufacturing, pipe assembly, and installation, and the product solution cannot be sufficiently cleaned by the normal cleaning method when the equipment is started up. When foreign matter is mixed in and / or the pre-produced composition remains in the pipe and cannot be sufficiently washed by the pre-production washing, and the remaining composition feeds the product solution. It was confirmed that it may be mixed as a foreign object.

これら配管内部の残留異物の製品への混入を未然に防ぐためには、洗浄液を増やすこと、および洗浄回数、もしくは洗浄時間を増やすことが考えられるが、多大な労力を要するにも関わらず、超微細加工に要求されるレベルを達成するのに充分な異物低減の効果は認められないことが判明した。   In order to prevent these foreign matters from entering the piping, it is possible to increase the number of cleaning liquids and increase the number of cleaning times or cleaning time. It was found that the effect of reducing foreign matter sufficient to achieve the level required for the above was not observed.

そこで本発明者らは、更に鋭意検討した結果、配管内面の表面平滑性の指標である算術平均粗さ(Ra)の値、または十点平均粗さ(Rz)の値と、異物サイズとの値に相関があることを見出し、本発明を完成するに至った。具体的には、異物サイズよりも配管内面の表面平滑性の指標である算術平均粗さ(Ra)の値を小さくすること、または異物サイズの3倍より十点平均粗さ(Rz)の値を小さくすることによって、異物が目的とする規格を下回ることを見出した。すなわち、本発明によれば、以下の半導体製造用組成物溶液の送液方法、製造方法、配管、及び製造装置が提供される。   Accordingly, as a result of further intensive studies, the present inventors have determined that the arithmetic average roughness (Ra) or ten-point average roughness (Rz), which is an index of the surface smoothness of the pipe inner surface, and the foreign matter size The present inventors have found that there is a correlation between the values and completed the present invention. Specifically, the arithmetic average roughness (Ra), which is an index of the surface smoothness of the inner surface of the pipe, is made smaller than the foreign matter size, or the ten-point average roughness (Rz) is given by three times the foreign matter size. It was found that the foreign matter is less than the target standard by reducing. That is, according to the present invention, there are provided the following method for feeding a composition solution for semiconductor production, a production method, piping, and a production apparatus.

[1] 表面平滑度を示す算術平均粗さの値(Ra;μm)が、送液される半導体製造用組成物溶液中の異物サイズ(X;μm)との間に以下の関係式
Ra<X
が成立するような内面の配管を用いて送液する半導体製造用組成物溶液の送液方法。
[1] The following relational expression Ra <between the arithmetic mean roughness value (Ra; μm) indicating the surface smoothness and the foreign substance size (X; μm) in the composition solution for semiconductor production to be fed. X
A method for feeding a composition solution for semiconductor production, which uses a pipe on the inner surface that satisfies the above.

[2] 表面平滑度を示す十点平均粗さの値(Rz;μm)が、半導体製造用組成物溶液中の異物サイズ(X;μm)との間に以下の関係式
Rz<3X
が成立するような内面の配管を用いて送液する半導体製造用組成物溶液の送液方法。
[2] The following relational expression Rz <3X between the ten-point average roughness value (Rz; μm) indicating the surface smoothness and the foreign material size (X; μm) in the composition for semiconductor production
A method for feeding a composition solution for semiconductor production, which uses a pipe on the inner surface that satisfies the above.

[3] 前記配管の内面がステンレス鋼の電解研磨処理、グラスライニング処理、ポリテトラフルオロエチレンによるライニング処理のいずれかが施されている前記[1]または[2]に記載の半導体製造用組成物溶液の送液方法。 [3] The composition for manufacturing a semiconductor according to [1] or [2], wherein an inner surface of the pipe is subjected to any of electrolytic polishing treatment of stainless steel, glass lining treatment, and lining treatment with polytetrafluoroethylene. Solution delivery method.

[4] 前記[1]〜[3]のいずれかに記載の半導体製造用組成物溶液の送液方法を用いて製造する半導体製造用組成物溶液の製造方法。 [4] A method for producing a composition solution for semiconductor production, which is produced using the method for feeding a composition solution for semiconductor production according to any one of [1] to [3].

[5] 前記[1]〜[3]のいずれかに記載の半導体製造用組成物溶液の送液方法に用いられる配管。 [5] A pipe used in the method for feeding a semiconductor solution composition according to any one of [1] to [3].

[6] 半導体製造用組成物溶液を送液する配管の内面の算術平均粗さRa値が0.5μm以下であり、且つ前記半導体製造用組成物溶液中の異物サイズがX(μm)のとき十点平均粗さRz値が3X(μm)よりも小さく1.5μm以下である半導体製造用組成物溶液の製造装置。 [6] When the arithmetic mean roughness Ra value of the inner surface of the pipe for sending the semiconductor solution composition solution is 0.5 μm or less and the foreign matter size in the semiconductor solution composition is X (μm) An apparatus for producing a composition solution for semiconductor production, wherein the ten-point average roughness Rz value is smaller than 3X (μm) and 1.5 μm or less.

本発明の送液方法、製造方法は、製造過程においてレジストパターンのディフェクト要因となり得る異物の混入を十分に抑制することができ、不純物含有量が極力低減された半導体製造用組成物溶液を得ることができる。   The liquid feeding method and the manufacturing method of the present invention can sufficiently suppress the mixing of foreign substances that can cause a defect in a resist pattern in the manufacturing process, and obtain a composition solution for semiconductor manufacturing in which the impurity content is reduced as much as possible. Can do.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

本発明の半導体製造用組成物溶液の送液方法は、表面平滑度を示す算術平均粗さの値(Ra;μm)が、送液される半導体製造用組成物溶液中の異物サイズ(X;μm)との間に以下の関係式
(0.1X<)Ra<X
が成立するような内面の配管を用いて送液する方法である。Raは、Xより小さいことが必要であるが、実用上0.1Xよりも大きくとも十分である。
In the method for feeding a composition solution for semiconductor production according to the present invention, the arithmetic average roughness value (Ra; μm) indicating the surface smoothness is a foreign matter size (X; μm) and the following relational expression (0.1X <) Ra <X
In this method, the liquid is fed by using the piping on the inner surface that satisfies the above. Ra needs to be smaller than X, but practically larger than 0.1X is sufficient.

本明細書における配管内面の表面平滑度を示す算術平均粗さの値(Ra;μm)は、粗さ曲線からその平均線の方向に基準長さLμmの範囲において、平均線から測定曲線までの偏差の絶対値を合計し、平均した値で規定された表面粗さの指標であり、JIS B0601:1994で規定されたものである。本発明における基準長さL(μm)は10000から100000μmである。   In the present specification, the arithmetic average roughness value (Ra; μm) indicating the surface smoothness of the inner surface of the pipe is from the average line to the measurement curve in the range of the reference length L μm in the direction of the average line from the roughness curve. It is an index of surface roughness defined by an average value obtained by summing absolute values of deviations, and is defined by JIS B0601: 1994. The reference length L (μm) in the present invention is 10,000 to 100,000 μm.

或いは、本発明の半導体製造用組成物溶液の送液方法は、表面平滑度を示す十点平均粗さの値(Rz;μm)が、半導体製造用組成物溶液中の異物サイズ(X;μm)との間に以下の関係式
(0.1X<)Rz<3X
が成立するような内面の配管を用いて送液する方法である。Rzは、3Xより小さいことが必要であるが、実用上0.1Xよりも大きくとも十分である。
Alternatively, in the method for feeding a composition solution for semiconductor production of the present invention, the value of ten-point average roughness (Rz; μm) indicating the surface smoothness is a foreign matter size (X; μm) in the composition solution for semiconductor production. ) And the following relational expression (0.1X <) Rz <3X
In this method, the liquid is fed by using the piping on the inner surface that satisfies the above. Rz needs to be smaller than 3X, but practically larger than 0.1X is sufficient.

本明細書における配管内面の表面平滑度を示す十点平均粗さの値(Rz;μm)は、粗さ曲線からその平均線の方向に基準長さLμmの範囲において、平均線から最も高い山頂から5番目までの山頂の高さ(Yp)の絶対値と最も低い谷底から5番目までの谷底の深さ(Yv)の絶対値の平均値との和で規定された表面粗さの指標であり、JIS B0601:1994で規定されたものである。本発明における基準長さL(μm)は10000から100000μmである。   The ten-point average roughness value (Rz; μm) indicating the surface smoothness of the inner surface of the pipe in this specification is the highest peak from the average line in the range of the reference length L μm in the direction of the average line from the roughness curve. Is an index of surface roughness defined by the sum of the absolute value of the height (Yp) of the top from the bottom to the fifth and the average of the absolute values of the depth (Yv) of the bottom from the bottom to the fifth. Yes, as defined in JIS B0601: 1994. The reference length L (μm) in the present invention is 10,000 to 100,000 μm.

また、本発明の半導体製造用組成物溶液の製造装置は、半導体製造用組成物溶液を送液する配管の内面の算術平均粗さRa値が0.5μm以下であり、且つ半導体製造用組成物溶液中の異物サイズがX(μm)のとき十点平均粗さRz値が3X(μm)よりも小さく1.5μm以下であるように構成してもよい。   Moreover, the apparatus for producing a composition solution for semiconductor production according to the present invention has an arithmetic average roughness Ra value of 0.5 μm or less on the inner surface of a pipe for feeding the composition solution for semiconductor production, and the composition for semiconductor production. When the foreign matter size in the solution is X (μm), the ten-point average roughness Rz value may be smaller than 3X (μm) and 1.5 μm or less.

本明細書における異物の異物サイズとは、(散乱光検出型の)パーティクルカウンターを用いて測定することにより評価された値である。異物サイズは、たとえば、液中パーティクルカウンターのリオン(株)製自動微粒子測定装置(Ks−41型)などを用いることが出来る。   The foreign substance size of the foreign substance in this specification is a value evaluated by measuring using a particle counter (scattered light detection type). The foreign particle size may be, for example, an automatic particle measuring device (Ks-41 type) manufactured by Rion Co., Ltd., a liquid particle counter.

図1に本発明の配管の一実施形態の断面図を示す。配管1は、表面平滑度を示す算術平均粗さの値(Ra;μm)が、送液される半導体製造用組成物溶液中の異物サイズ(X;μm)との間に以下の関係式
(0.1X<)Ra<X
が成立するような内面を有する。
FIG. 1 shows a cross-sectional view of an embodiment of the piping of the present invention. The pipe 1 has the following relational expression between the value of the arithmetic mean roughness (Ra; μm) indicating the surface smoothness and the foreign substance size (X; μm) in the composition solution for semiconductor production to be fed ( 0.1X <) Ra <X
Has an inner surface such that

或いは、配管1は、表面平滑度を示す十点平均粗さの値(Rz;μm)が、半導体製造用組成物溶液中の異物サイズ(X;μm)との間に以下の関係式
(0.1X<)Rz<3X
が成立するような内面を有する。
Alternatively, the piping 1 has the following relational expression (0) between the value of the ten-point average roughness (Rz; μm) indicating the surface smoothness and the foreign substance size (X; μm) in the composition solution for semiconductor production. .1X <) Rz <3X
Has an inner surface such that

図1の配管1は、ライニング処理が施された実施形態であり、金属配管2の内面を、ガラスや樹脂等の非金属材料からなるライニング3で被覆した非金属ライニング配管である。ライニングの材料となる非金属材料しては、ガラス、ポリテトラフルオロエチレン(登録商標:テフロン)等を挙げることができる。つまり、配管1は、グラスライニング処理、ポリテトラフルオロエチレンによるライニング処理等が施されている。なお、本明細書において、「ライニング」というときは、ライニング(膜厚1mm以上)の他、コーティング(膜厚1mm未満)も含むものとする。金属配管の材料は、特に限定されない。   A pipe 1 in FIG. 1 is an embodiment in which a lining treatment is performed, and is a non-metallic lining pipe in which an inner surface of a metal pipe 2 is covered with a lining 3 made of a non-metallic material such as glass or resin. Examples of the non-metallic material used as the lining material include glass and polytetrafluoroethylene (registered trademark: Teflon). That is, the pipe 1 is subjected to a glass lining process, a lining process using polytetrafluoroethylene, and the like. In this specification, the term “lining” includes coating (less than 1 mm of film thickness) in addition to lining (film thickness of 1 mm or more). The material for the metal pipe is not particularly limited.

或いは、配管1は、内面にステンレス鋼の電解研磨処理が施されていてもよい。これらの処理を施すことにより、製品への金属異物の混入を抑えることができる。   Alternatively, the pipe 1 may be subjected to an electrolytic polishing treatment of stainless steel on the inner surface. By performing these treatments, it is possible to suppress the mixing of metallic foreign matters into the product.

フォトレジスト用樹脂含有溶液、液浸用組成物溶液等の半導体製造用組成物溶液に混入する異物の多くは、配管内面に残留していた固形物や前バッチ組成物が主な原因である。これら異物は配管表面の凹凸に入り込んでいたものであり、通常の洗浄工程では異物を完全に除去することは出来ない。このために配管内の表面平滑性を高くすることによって、表面の凹凸に入り込むことをなくすこと、また、たとえ配管表面に異物が付着していても容易に洗浄することが出来るために効果的である。   Most of the foreign matters mixed in the composition solution for semiconductor production such as the resin-containing solution for photoresist and the composition solution for immersion are mainly caused by the solid matter and the pre-batch composition remaining on the inner surface of the pipe. These foreign matters have entered the irregularities on the pipe surface, and the foreign matters cannot be completely removed by a normal cleaning process. For this reason, by increasing the surface smoothness in the piping, it is effective to eliminate the intrusion of the surface, and even if foreign matter adheres to the piping surface, it can be washed easily. is there.

一般的に微細加工を達成する上では、異物は、サイズが0.1〜0.5μmの範囲で規定され、更にこの範囲での異物数は100個/mlを超えると、ディフェクトの発生数が許容できなくなる。そこで、異物サイズおよびその量は厳しく管理されており、0.15μmから0.5μmの範囲の異物を100個/ml以下にすることが、超微細加工を達成する上で必須となっている。言い換えると、高性能な半導体材料を製造する上で、半導体用組成物溶液に混入される異物の低減管理が必須となっており、例えば、サイズが0.15μm以上の異物が100個/ml以下、かつサイズが1μm以上の異物が10個/ml以下、かつサイズが2μm以上の異物が5個/ml以下というスペックが要求されるようになってきている。   In general, in order to achieve microfabrication, the size of foreign matters is defined within a range of 0.1 to 0.5 μm, and if the number of foreign matters within this range exceeds 100 / ml, the number of occurrences of defects is increased. It becomes unacceptable. Therefore, the size and the amount of foreign matter are strictly controlled, and it is essential to achieve 100 / ml or less of foreign matter in the range of 0.15 μm to 0.5 μm in order to achieve ultrafine processing. In other words, in manufacturing a high-performance semiconductor material, it is essential to reduce and manage foreign matter mixed in the semiconductor composition solution. For example, foreign matter having a size of 0.15 μm or more is 100 pieces / ml or less. In addition, specifications are required that foreign matter having a size of 1 μm or more is 10 pieces / ml or less and foreign matter having a size of 2 μm or more is 5 pieces / ml or less.

そこで、要求されるスペックの異物サイズに対し、上記式を満たすような算術平均粗さ、十点平均粗さの内面を有する配管にて半導体製造用組成物を送液することにより、半導体製造用組成物に混入される異物を低減し、求められるスペックを満たすことが可能となる。つまり、本発明の製造方法によって、異物サイズ(X;μm)が0.15〜0.5μmの範囲である異物の異物数を100個/ml以下とした半導体製造用組成物溶液を製造することができる。なお、算術平均粗さのRaの値によって、配管内面の基本的な表面平滑性を評価することが可能であり、十点平均粗さのRzの値によって、配管内面の局所的なキズや凹みなどの状況を確認することが出来るために、RaとRzの両方の値を異物管理に適用することが更に好ましい。   Therefore, by supplying the composition for semiconductor production through a pipe having an inner surface with an arithmetic average roughness and a ten-point average roughness satisfying the above formula for the required foreign material size, the semiconductor production composition is used. It is possible to reduce foreign matters mixed in the composition and satisfy the required specifications. That is, by the production method of the present invention, a composition solution for semiconductor production in which the number of foreign matters having a foreign matter size (X; μm) in the range of 0.15 to 0.5 μm is 100 / ml or less is produced. Can do. The basic surface smoothness of the inner surface of the pipe can be evaluated by the value of the arithmetic average roughness Ra, and local flaws or dents on the inner surface of the pipe can be evaluated by the Rz value of the ten-point average roughness. It is more preferable to apply both Ra and Rz values to foreign matter management.

そこで、半導体製造用組成物溶液を送液する配管1の内面の算術平均粗さRa値が0.5μm以下であり、且つ半導体製造用組成物溶液中の異物サイズがX(μm)のとき十点平均粗さRz値が3X(μm)よりも小さく1.5μm以下であるように構成してもよい。   Therefore, when the arithmetic mean roughness Ra value of the inner surface of the pipe 1 for feeding the semiconductor manufacturing composition solution is 0.5 μm or less and the foreign matter size in the semiconductor manufacturing composition solution is X (μm), it is sufficient. You may comprise so that a point average roughness Rz value may be smaller than 3X (micrometer) and 1.5 micrometers or less.

本発明の半導体製造用組成物の製造方法における半導体製造用組成物としては、フォトレジスト用樹脂含有溶液、液浸用組成物溶液、上層膜形成組成物等が挙げられる。   Examples of the semiconductor manufacturing composition in the method for manufacturing a semiconductor manufacturing composition of the present invention include a photoresist resin-containing solution, an immersion composition solution, and an upper layer film-forming composition.

フォトレジスト用樹脂含有溶液は、少なくともフォトレジスト用樹脂及び溶剤を含むものであり、酸発生剤や酸拡散制御剤等の他の添加剤を更に含有していてもよい。具体的には、例えば、g線、i線等の紫外線、KrFエキシマレーザー、ArFエキシマレーザー、Fエキシマレーザー、EUV等の(超)遠紫外線、電子線等の各種放射線による微細加工に適したレジストを形成可能なポジ型或いはネガ型のレジスト組成物や、多層レジストにおける液浸用組成物を含む上層膜や下層膜(反射防止膜等)を形成するための樹脂組成物等のフォトリソグラフィーに使用される樹脂組成物、これらの組成物に用いられるフォトレジスト用樹脂を含有する樹脂溶液等が挙げられる。 The photoresist resin-containing solution contains at least a photoresist resin and a solvent, and may further contain other additives such as an acid generator and an acid diffusion controller. Specifically, for example, it is suitable for microfabrication by ultraviolet rays such as g-line and i-line, KrF excimer laser, ArF excimer laser, F 2 excimer laser, EUV, etc. For photolithography such as a positive or negative resist composition capable of forming a resist, and a resin composition for forming an upper layer film or a lower layer film (antireflection film, etc.) containing an immersion composition in a multilayer resist. Examples of the resin composition used include a resin solution containing a photoresist resin used in these compositions.

前記フォトレジスト用樹脂としては、例えば、アクリレート系樹脂、メタクリレート系樹脂、ヒドロキシスチレン系樹脂、ノボラック系樹脂等が挙げられる。尚、このようなレジスト用樹脂は、例えば、エチレン性不飽和結合を有する重合性化合物(単量体)等の所定の重合性化合物を溶剤の存在下で重合させることにより得ることができる。   Examples of the photoresist resin include acrylate resins, methacrylate resins, hydroxystyrene resins, novolac resins, and the like. Such a resist resin can be obtained, for example, by polymerizing a predetermined polymerizable compound such as a polymerizable compound (monomer) having an ethylenically unsaturated bond in the presence of a solvent.

また、前記溶剤としては、例えば、アセトン、メチルエチルケトン、メチルアミルケトン、シクロヘキサノン等のケトン類;テトラヒドロフラン、ジオキサン、グライム、プロピレングリコールモノメチルエーテル等のエーテル類;酢酸エチル、乳酸エチル等のエステル類;プロピレングリコールメチルエーテルアセテート等のエーテルエステル類、γ−ブチロラクトン等のラクトン類等が挙げられる。これらの溶媒は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。   Examples of the solvent include ketones such as acetone, methyl ethyl ketone, methyl amyl ketone, and cyclohexanone; ethers such as tetrahydrofuran, dioxane, glyme, and propylene glycol monomethyl ether; esters such as ethyl acetate and ethyl lactate; propylene glycol Examples include ether esters such as methyl ether acetate, and lactones such as γ-butyrolactone. These solvents may be used alone or in combination of two or more.

液浸用組成物溶液は、液浸露光工程に用いる波長193nmの屈折率が水の屈折率以上である液浸露光用液体は、波長193nmにおける屈折率が、水の屈折率(1.44)以上の屈折率を有するものであるが、本発明の製造方法による液浸用組成物溶液としては、脂環式炭化水素化合物、脂環式炭化水素化合物が挙げられる。さらに、脂環式炭化水素化合物としては、trans−デカヒドロナフタレン、脂環式炭化水素化合物としては、exo−テトラジシクロペンタジエンが挙げられる。   The immersion composition liquid used in the immersion exposure process has a refractive index at a wavelength of 193 nm that is equal to or higher than the refractive index of water, and the refractive index at a wavelength of 193 nm has a refractive index of water (1.44). Although it has the above refractive index, an alicyclic hydrocarbon compound and an alicyclic hydrocarbon compound are mentioned as an immersion composition solution by the manufacturing method of this invention. Furthermore, examples of the alicyclic hydrocarbon compound include trans-decahydronaphthalene, and examples of the alicyclic hydrocarbon compound include exo-tetradicyclopentadiene.

上層膜形成組成物は、フォトレジスト膜の表面上に上層膜を形成するために用いられるものであるが、例えば、酸解離性基修飾アルカリ可溶性樹脂と、感放射線性酸発生剤とを必須成分として含有する感放射線性の樹脂組成物等を挙げることができる。   The upper layer film-forming composition is used to form an upper layer film on the surface of a photoresist film. For example, an acid dissociable group-modified alkali-soluble resin and a radiation-sensitive acid generator are essential components. And a radiation-sensitive resin composition contained therein.

更に本発明の半導体製造用組成物の製造方法においては、最終製品を得る前にろ過することが更に好ましい。ろ過に用いるフィルターは、上記レジスト組成物等をろ過することができる限り、その設置する個数及び性質には特に限定はない。上記フィルターの個数は通常は1個であるが、2個以上でもよい。上記フィルターの材質として好ましくは、ポリエチレン(PE)、高密度ポリエチレン(HDPE)、超高分子量ポリエチレン(UPE)、ポリプロピレン(PP)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ナイロン(NYLON)、及びPEとNYLONの複合膜である。上記の材質のフィルターは、上記レジスト組成物が上記フィルターに接触しても、フィルター成分の溶出を抑制することができるので好ましい。上記フィルターの孔径は、通常0.005μm〜1μm、好ましくは0.005μm〜0.1μmである。上記フィルターの孔径が上記範囲であると、要求される異物捕集能力を発揮すると共に、圧力損失が少なく、レジスト組成物等の生産性を高めることができるので好ましい。尚、上記フィルターの「孔径」とは、標準粒子(PSL)の除去率によって決定された平均孔径をいう。但し、30nm未満についてはバブルポイント等により推定した値である。   Furthermore, in the manufacturing method of the composition for semiconductor manufacture of this invention, it is still more preferable to filter before obtaining a final product. The number and properties of the filters used for filtration are not particularly limited as long as the resist composition and the like can be filtered. The number of the filters is usually one, but may be two or more. Preferably, the filter material is polyethylene (PE), high density polyethylene (HDPE), ultra high molecular weight polyethylene (UPE), polypropylene (PP), polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether. A polymer (PFA), nylon (NYLON), and a composite film of PE and NYLON. The filter made of the above material is preferable because the elution of the filter component can be suppressed even when the resist composition contacts the filter. The pore size of the filter is usually 0.005 μm to 1 μm, preferably 0.005 μm to 0.1 μm. It is preferable for the pore size of the filter to be in the above-mentioned range since the required foreign matter collecting ability is exhibited, pressure loss is small, and productivity of the resist composition and the like can be increased. The “pore size” of the filter refers to the average pore size determined by the removal rate of standard particles (PSL). However, the value less than 30 nm is a value estimated by a bubble point or the like.

図2に、本発明の配管1を用いた半導体製造用組成物溶液の製造装置の一実施形態を示す。製造装置30は、調整タンク10と、下流に、例えば前述のHDPEフィルターを有するろ過ユニット20とを備える。調整タンク10は、上部バルブ15a、薬液供給ノズル11を備え、調整タンク10内に薬液を供給できる。また、薬液を攪拌する攪拌装置12、薬液を排出するタンク下部バルブ15bを備える。   In FIG. 2, one Embodiment of the manufacturing apparatus of the composition solution for semiconductor manufacture using the piping 1 of this invention is shown. The manufacturing apparatus 30 includes the adjustment tank 10 and a filtration unit 20 having, for example, the above-described HDPE filter on the downstream side. The adjustment tank 10 includes an upper valve 15 a and a chemical solution supply nozzle 11, and can supply a chemical solution into the adjustment tank 10. In addition, a stirring device 12 for stirring the chemical solution and a tank lower valve 15b for discharging the chemical solution are provided.

調整タンク10と、ろ過ユニット20は、本発明の配管1によって接続され、その間に送液ポンプ13を備えており、調整タンク10からろ過ユニット20へ送液可能となっている。   The adjustment tank 10 and the filtration unit 20 are connected by the pipe 1 of the present invention, and a liquid feed pump 13 is provided between them, so that the liquid can be fed from the adjustment tank 10 to the filtration unit 20.

ろ過ユニット20の下流には、バルブ15cが備えられており、更に充填設備として、バルブ15d、充填ノズル14とを備える。また、循環ライン28を備えて、薬液を調整タンク10へ戻すことが可能となっている。   A valve 15c is provided downstream of the filtration unit 20, and a valve 15d and a filling nozzle 14 are further provided as filling equipment. In addition, a circulation line 28 is provided so that the chemical solution can be returned to the adjustment tank 10.

配管1の内面は、例えば、ポリテトラフルオロエチレンによるライニング処理が施工されており、その表面は、前述の算術平均粗さRa、十点平均粗さRzの少なくとも一方の条件を満たすように形成されている。   For example, the inner surface of the pipe 1 is subjected to a lining treatment with polytetrafluoroethylene, and the surface is formed so as to satisfy at least one of the arithmetic average roughness Ra and the ten-point average roughness Rz. ing.

まず、調製装置のタンク下部バルブ15bを閉にした後に、上部バルブ15aを開にして、薬液供給ノズル11から、例えば、液浸用組成物を投入し、バルブ15aを閉にした後に、攪拌装置12にて容物の濃度が均一になるまで攪拌する。   First, after the tank lower valve 15b of the preparation device is closed, the upper valve 15a is opened, for example, an immersion composition is introduced from the chemical solution supply nozzle 11, and the valve 15a is closed. Stir at 12 until the concentration of the contents is uniform.

その後、タンク下部バルブ15bを開にして、送液ポンプ13によって、循環ライン28によって循環させ、循環ろ過を行うことにより、液浸用組成物溶液を製造することができる。循環後、バルブ15cおよびバルブ15dを開にして、液浸用組成物溶液を送液し、組成物溶液を充填瓶24に重量計23にて重量を測りつつ充填し、製品としての液浸用組成物溶液を得ることができる。   Thereafter, the tank lower valve 15b is opened, and the solution is circulated by the circulation line 28 by the liquid feed pump 13 and is subjected to circulation filtration, whereby an immersion composition solution can be produced. After the circulation, the valve 15c and the valve 15d are opened, the immersion composition solution is fed, and the composition solution is filled into the filling bottle 24 while measuring the weight with the weigh scale 23, for immersion as a product. A composition solution can be obtained.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

(実施例1)
まず、図2に示すような装置を組み立てた。実施例に用いた配管内面はテフロンライニング処理(ポリテトラフルオロエチレンによるライニング処理)が施工されており、配管内面のRa値は0.03μm、Rz値は0.19μmである配管1を用いた。なお、非接触膜厚計(菱光社製、NH−3)を用いて3次元測定を実施し、JIS規格(B 0601:1994)に準じて表面粗さを求めた。基準の長さは、20000μmとした。
Example 1
First, an apparatus as shown in FIG. 2 was assembled. The pipe inner surface used in the examples was subjected to Teflon lining treatment (lining treatment with polytetrafluoroethylene), and pipe 1 having an Ra value of 0.03 μm and an Rz value of 0.19 μm was used. In addition, the three-dimensional measurement was implemented using the non-contact film thickness meter (the Ryoko company make, NH-3), and the surface roughness was calculated | required according to JIS specification (B0601: 1994). The reference length was 20000 μm.

まず、調製装置のタンク下部バルブ15bを閉にした後に、上部バルブ15aを開にして、薬液供給ノズル11から液浸用組成物(2−メチル−アクリル酸4,4,4−トリフルオロ−3−ヒドロキシ−1−メチル−3−トリフルオロメチル−ブチルとビニルスルホン酸の共重合体、Mw10000を20%を含む4−メチル−2−ペンタノール)を30kg仕込んだ後に、更に4−メチル−2−ペンタノールを30kg投入し、バルブ15aを閉にした後に、攪拌装置12にて3時間内容物の濃度が均一になるまで攪拌した。   First, after closing the tank lower valve 15b of the preparation device, the upper valve 15a is opened, and the liquid immersion composition (2-methyl-acrylic acid 4,4,4-trifluoro-3 -Hydroxy-1-methyl-3-trifluoromethyl-butyl and vinyl sulfonic acid copolymer, 4-methyl-2-pentanol containing 20% of Mw 10000) was charged in 30 kg, and 4-methyl-2 was further added. -After charging 30 kg of pentanol and closing the valve 15a, the mixture was stirred with the stirring device 12 for 3 hours until the concentration of the contents became uniform.

その後、タンク下部バルブ15bを開にして、送液ポンプ13によって、4時間かけて循環ろ過を行った。用いたフィルターは、HDPE膜(孔径;0.01μm、濾布面積:0.24m)を用いた。循環後、バルブ15cおよびバルブ15dを開にして、組成物溶液を充填瓶に充填し、液浸用組成物溶液を得た。 Thereafter, the tank lower valve 15b was opened, and circulation filtration was performed by the liquid feed pump 13 over 4 hours. The filter used was an HDPE membrane (pore size: 0.01 μm, filter cloth area: 0.24 m 2 ). After the circulation, the valve 15c and the valve 15d were opened, and the composition solution was filled in the filling bottle to obtain an immersion composition solution.

(実施例2〜14、比較例1〜6)
以下の表に示す配管内面の表面粗さを有する配管を用いた以外は、実施例1と同様にして液浸用組成物溶液を得た。
(Examples 2-14, Comparative Examples 1-6)
An immersion composition solution was obtained in the same manner as in Example 1 except that a pipe having the surface roughness of the pipe inner surface shown in the following table was used.

(実施例15〜23、比較例7〜10)
同様にして、2−メチル−2−アダマンチルメタクリレートとノルボルナンラクトンメタクリレートとを共重合して得られた共重合体(Mw:13,000)にプロピレングリコールモノメチルエーテルアセテートを加えて、原溶液(固形分含量:8質量%)を調製し、フォトレジスト用樹脂含有組成物溶液を得た。
(Examples 15 to 23, Comparative Examples 7 to 10)
Similarly, propylene glycol monomethyl ether acetate was added to a copolymer (Mw: 13,000) obtained by copolymerizing 2-methyl-2-adamantyl methacrylate and norbornane lactone methacrylate to obtain a raw solution (solid content). Content: 8% by mass) to obtain a resin-containing composition solution for photoresist.

(異物評価方法)
異物サイズおよびその数は、微粒子測定から評価した。評価機器にはリオン(株)製自動微粒子測定装置(Ks−41型)を用いた。
(Foreign substance evaluation method)
The foreign substance size and the number thereof were evaluated from the fine particle measurement. As an evaluation device, an automatic fine particle measuring device (Ks-41 type) manufactured by Rion Co., Ltd. was used.

Figure 2010020014
Figure 2010020014

Figure 2010020014
Figure 2010020014

表1〜2において、Ra<X、Rz<3Xを満たすものを○、満たさないものを×とした。また、100個/ml以下にすべき異物サイズX(μm)に対し(要求されるスペックが、X(μm)以上の異物が100個/ml以下であることを意味する)、X(μm)以上の異物数を100(個/ml)以下とできた組成物溶液を判定が○、100(個/ml)を超えたものを判定が×と評価した。異物サイズXに対し、Ra<X、またはRz<3Xを満たすものについては、X(μm)以上の異物の1ml中の異物数が100個以下となり、良好な結果が得られた。また、例えば、実施例10や実施例14は、Ra値が0.5μm以下であり、十点平均粗さRz値が3X(μm)よりも小さく1.5μm以下であり、異物数を100(個/ml)以下とできた。   In Tables 1 and 2, those satisfying Ra <X and Rz <3X were evaluated as “◯”, and those not satisfying as “×”. In addition, for a foreign matter size X (μm) to be 100 pieces / ml or less (required specifications mean that foreign matter having a size of X (μm) or more is 100 pieces / ml or less), X (μm) The composition solution in which the number of foreign substances was 100 (pieces / ml) or less was evaluated as “good”, and the composition solution exceeding 100 (pieces / ml) was evaluated as “poor”. For those satisfying Ra <X or Rz <3X with respect to the foreign matter size X, the number of foreign matters in 1 ml of X (μm) or more was 100 or less, and good results were obtained. For example, in Example 10 and Example 14, the Ra value is 0.5 μm or less, the ten-point average roughness Rz value is less than 3 × (μm) and 1.5 μm or less, and the number of foreign matters is 100 ( Pieces / ml) or less.

本発明の半導体製造用組成物溶液の送液方法、製造方法は、金属異物等の異物や金属成分等の不純物の混入に対して厳格なサブクォーターミクロンレベルの微細加工等の用途に用いられるフォトレジスト用樹脂含有溶液、液浸用組成物溶液、上層膜形成組成物等の製造に好適に用いられる。   The liquid feeding method and manufacturing method of the composition solution for semiconductor production according to the present invention are used for applications such as strict sub-quarter micron level microfabrication with respect to contamination such as foreign matters such as metallic foreign matters and impurities such as metallic components. It is suitably used for the production of a resist resin-containing solution, a liquid immersion composition solution, an upper layer film-forming composition, and the like.

本発明の配管の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of piping of this invention. 半導体製造用組成物溶液の製造装置を示す模式図である。It is a schematic diagram which shows the manufacturing apparatus of the composition solution for semiconductor manufacture.

符号の説明Explanation of symbols

1:配管、2:金属配管、3:ライニング、10:調整タンク、11:薬液供給ノズル、12:攪拌装置、13:送液ポンプ、14:充填ノズル、15a,15b,15c,15d:バルブ、20:ろ過ユニット、23:重量計、24:充填瓶、28:循環ライン、30:製造装置。 1: piping, 2: metal piping, 3: lining, 10: adjustment tank, 11: chemical supply nozzle, 12: stirring device, 13: liquid feed pump, 14: filling nozzle, 15a, 15b, 15c, 15d: valve, 20: Filtration unit, 23: Weigh scale, 24: Filling bottle, 28: Circulation line, 30: Production equipment.

Claims (6)

表面平滑度を示す算術平均粗さの値(Ra;μm)が、送液される半導体製造用組成物溶液中の異物サイズ(X;μm)との間に以下の関係式
Ra<X
が成立するような内面の配管を用いて送液する半導体製造用組成物溶液の送液方法。
The following relational expression Ra <X between the value of the arithmetic mean roughness (Ra; μm) indicating the surface smoothness and the foreign substance size (X; μm) in the composition solution for semiconductor production to be fed
A method for feeding a composition solution for semiconductor production, which uses a pipe on the inner surface that satisfies the above.
表面平滑度を示す十点平均粗さの値(Rz;μm)が、半導体製造用組成物溶液中の異物サイズ(X;μm)との間に以下の関係式
Rz<3X
が成立するような内面の配管を用いて送液する半導体製造用組成物溶液の送液方法。
The following relational expression Rz <3X between the 10-point average roughness value (Rz; μm) indicating the surface smoothness and the foreign material size (X; μm) in the composition solution for semiconductor production
A method for feeding a composition solution for semiconductor production, which uses a pipe on the inner surface that satisfies the above.
前記配管の内面がステンレス鋼の電解研磨処理、グラスライニング処理、ポリテトラフルオロエチレンによるライニング処理のいずれかが施されている請求項1または2に記載の半導体製造用組成物溶液の送液方法。   The method for feeding a composition solution for semiconductor production according to claim 1 or 2, wherein an inner surface of the pipe is subjected to any of electrolytic polishing treatment of stainless steel, glass lining treatment, and lining treatment with polytetrafluoroethylene. 請求項1〜3のいずれか1項に記載の半導体製造用組成物溶液の送液方法を用いて製造する半導体製造用組成物溶液の製造方法。   The manufacturing method of the composition solution for semiconductor manufacture manufactured using the liquid feeding method of the composition solution for semiconductor manufacture of any one of Claims 1-3. 請求項1〜3のいずれか1項に記載の半導体製造用組成物溶液の送液方法に用いられる配管。   The piping used for the liquid feeding method of the composition solution for semiconductor manufacture of any one of Claims 1-3. 半導体製造用組成物溶液を送液する配管の内面の算術平均粗さRa値が0.5μm以下であり、且つ前記半導体製造用組成物溶液中の異物サイズがX(μm)のとき十点平均粗さRz値が3X(μm)よりも小さく1.5μm以下である半導体製造用組成物溶液の製造装置。   Ten point average when the arithmetic mean roughness Ra value of the inner surface of the pipe for feeding the semiconductor manufacturing composition solution is 0.5 μm or less and the foreign matter size in the semiconductor manufacturing composition solution is X (μm) An apparatus for producing a composition solution for semiconductor production, having a roughness Rz value smaller than 3X (μm) and 1.5 μm or less.
JP2008179453A 2008-07-09 2008-07-09 Apparatus for producing composition solution for semiconductor production Active JP5239567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008179453A JP5239567B2 (en) 2008-07-09 2008-07-09 Apparatus for producing composition solution for semiconductor production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008179453A JP5239567B2 (en) 2008-07-09 2008-07-09 Apparatus for producing composition solution for semiconductor production

Publications (2)

Publication Number Publication Date
JP2010020014A true JP2010020014A (en) 2010-01-28
JP5239567B2 JP5239567B2 (en) 2013-07-17

Family

ID=41704996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008179453A Active JP5239567B2 (en) 2008-07-09 2008-07-09 Apparatus for producing composition solution for semiconductor production

Country Status (1)

Country Link
JP (1) JP5239567B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147440A1 (en) * 2015-03-18 2016-09-22 株式会社東芝 Nozzle and liquid supply device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237380A (en) * 1985-08-08 1987-02-18 Nissho Stainless Kk Method for polishing inside surface of metallic pipe
JPH0788844A (en) * 1993-09-24 1995-04-04 Mitsubishi Gas Chem Co Inc Method for transport and storage of polycarbonate resin
JPH10427A (en) * 1996-06-13 1998-01-06 Matsumoto Giken Kk Treatment method of inner surface of metal pipe
WO2000048237A1 (en) * 1999-02-12 2000-08-17 Nikon Corporation Exposure method and apparatus
JP2003065481A (en) * 2001-05-11 2003-03-05 Therma Corp Inc System and method for using bent pipe in high-purity fluid handling systems
JP2004019698A (en) * 2002-06-13 2004-01-22 Nec Kansai Ltd Piping with mechanism for preventing attachment of foreign matter
JP2005268426A (en) * 2004-03-17 2005-09-29 Tadahiro Omi Apparatus and method for manufacturing electronic device such as display device, and electronic device such as display device
JP2007103895A (en) * 2005-09-06 2007-04-19 Tokyo Ohka Kogyo Co Ltd Resist liquid feeder and reforming kit for obtaining the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237380A (en) * 1985-08-08 1987-02-18 Nissho Stainless Kk Method for polishing inside surface of metallic pipe
JPH0788844A (en) * 1993-09-24 1995-04-04 Mitsubishi Gas Chem Co Inc Method for transport and storage of polycarbonate resin
JPH10427A (en) * 1996-06-13 1998-01-06 Matsumoto Giken Kk Treatment method of inner surface of metal pipe
WO2000048237A1 (en) * 1999-02-12 2000-08-17 Nikon Corporation Exposure method and apparatus
JP2003065481A (en) * 2001-05-11 2003-03-05 Therma Corp Inc System and method for using bent pipe in high-purity fluid handling systems
JP2004019698A (en) * 2002-06-13 2004-01-22 Nec Kansai Ltd Piping with mechanism for preventing attachment of foreign matter
JP2005268426A (en) * 2004-03-17 2005-09-29 Tadahiro Omi Apparatus and method for manufacturing electronic device such as display device, and electronic device such as display device
JP2007103895A (en) * 2005-09-06 2007-04-19 Tokyo Ohka Kogyo Co Ltd Resist liquid feeder and reforming kit for obtaining the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147440A1 (en) * 2015-03-18 2016-09-22 株式会社東芝 Nozzle and liquid supply device
JP2016178109A (en) * 2015-03-18 2016-10-06 株式会社東芝 Nozzle and liquid supply device

Also Published As

Publication number Publication date
JP5239567B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
KR102031040B1 (en) Process for purifying developer, purified developer, and process for forming resist pattern
JP7453435B2 (en) Chemical liquid, kit, pattern forming method, chemical liquid manufacturing method, and chemical liquid container
JP5929124B2 (en) Method for producing polymer or polymer solution for semiconductor lithography
TW202028893A (en) Chemical liquid, chemical liquid accommodation body, resist pattern-forming method, method for manufacturing semiconductor chip
KR102500938B1 (en) Chemical solution, manufacturing method of chemical solution
JP5239567B2 (en) Apparatus for producing composition solution for semiconductor production
JP2024100845A (en) Chemical solution, method for producing chemical solution, and method for analyzing test solution
US20210373439A1 (en) Chemical liquid, resist pattern forming method, semiconductor chip manufacturing method, chemical liquid storage body, and chemical liquid manufacturing method
JP5262590B2 (en) Method and apparatus for producing resin composition solution
JP5136202B2 (en) Method for producing resin-containing solution for resist
JPWO2014021043A1 (en) Processing device and processing method for developer
JP5217627B2 (en) Method for producing resin-containing solution for resist
JP5365139B2 (en) Method and apparatus for producing resin composition solution
JP5761550B2 (en) Method for evaluating a copolymer for lithography
JP2009276487A (en) Method for producing resist resin-containing solution, resist resin-containing solution, and filtering apparatus
JP6580308B2 (en) Method for producing polymer for semiconductor lithography
JP2010169871A (en) Method for producing resin composition solution, and tank
JP5428800B2 (en) Lithographic composition filling apparatus and lithographic composition filling method
JP2013103977A (en) Method for producing polymer or polymer solution, polymer, polymer solution
KR20230128393A (en) Liquid chemical and production method for liquid chemical
JP2009251532A (en) Method of manufacturing resist composition or composition for upper-layer film formation for liquid immersion
TW202006480A (en) Chemical solution, chemical solution accommodating body
JP6623562B2 (en) Method for producing lithographic material, method for producing lithographic composition, and method for producing substrate on which pattern is formed
JP2007012974A (en) Method of forming resist film
JP6256540B2 (en) Lithographic polymer or lithographic polymer solution manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5239567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250