JP5217627B2 - Method for producing resin-containing solution for resist - Google Patents

Method for producing resin-containing solution for resist Download PDF

Info

Publication number
JP5217627B2
JP5217627B2 JP2008134761A JP2008134761A JP5217627B2 JP 5217627 B2 JP5217627 B2 JP 5217627B2 JP 2008134761 A JP2008134761 A JP 2008134761A JP 2008134761 A JP2008134761 A JP 2008134761A JP 5217627 B2 JP5217627 B2 JP 5217627B2
Authority
JP
Japan
Prior art keywords
filter medium
resist
resin
medium layer
containing solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008134761A
Other languages
Japanese (ja)
Other versions
JP2009282331A (en
Inventor
泰三 金山
哲徳 菅原
愛 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2008134761A priority Critical patent/JP5217627B2/en
Publication of JP2009282331A publication Critical patent/JP2009282331A/en
Application granted granted Critical
Publication of JP5217627B2 publication Critical patent/JP5217627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)
  • Filtering Materials (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Description

本発明は、レジスト用樹脂含有溶液の製造方法に関する。更に詳しくは、本発明は、ディフェクト要因となる異物が低減されたレジスト用樹脂含有溶液の製造方法に関する。   The present invention relates to a method for producing a resin-containing solution for resist. More specifically, the present invention relates to a method for producing a resin-containing solution for resist in which foreign substances that cause defects are reduced.

半導体素子や液晶表示素子の製造において、リソグラフィ技術の進歩により、急速に微細化が進行している。微細化するための方法としては、例えば、露光光の短波長化や、液浸露光法の利用が挙げられる。ところが、このような微細化方法において、従来のレジスト材料を使用した場合、形成されるレジストパターン表面に欠陥(ディフェクト)が生じやすいという問題がある。尚、「ディフェクト」とは、現像後のレジストパターンを上部から観察した際に検知される不具合全般のことをいう。
そして、近年では、更に高解像度のパターンニングが要求されるようになり、ディフェクトを無視することができなくなってきており、その改善が試みられている。このディフェクト要因には、レジスト樹脂を含有する溶液中に、樹脂の重合の際に副生するオリゴマーや低分子量のポリマー、目的とする重量平均分子量よりも高分子量のポリマー、精製工程等の際に装置、配管及びバルブ等から混入するゴミ、微粒子等といった固形状の異物が存在することが挙げられる。
このようなディフェクト要因を除去するための方法としては、レジスト樹脂を含有する溶液をミクロン単位の孔径を有するフィルターに通液させて濾過を行いながら容器に充填し製品化するという、1回通過方式の濾過方法が知られている。しかしながら、1回通過方式の濾過ではフィルターから充填までの部分の微粒子がレジスト材料に混入してしまうため、濾過初期時の濾過分は利用することができず、十分に端きりをする必要性があり、生産性に問題がある。
In the manufacture of semiconductor elements and liquid crystal display elements, miniaturization is progressing rapidly due to advances in lithography technology. Examples of the method for miniaturization include shortening the wavelength of exposure light and using an immersion exposure method. However, in such a miniaturization method, when a conventional resist material is used, there is a problem that defects (defects) are likely to occur on the surface of the resist pattern to be formed. Note that “defect” refers to all defects detected when the resist pattern after development is observed from above.
In recent years, patterning with higher resolution has been required, and it has become impossible to ignore defects, and attempts have been made to improve it. This defect factor includes a solution containing a resist resin, an oligomer or a low molecular weight polymer by-produced during the polymerization of the resin, a polymer having a higher molecular weight than the intended weight average molecular weight, a purification process, and the like. The presence of solid foreign matters such as dust and fine particles mixed from devices, piping, valves, and the like.
As a method for removing such a defect factor, a solution containing a resist resin is passed through a filter having a pore size of a micron unit, filled in a container while being filtered, and commercialized. The filtration method is known. However, in the single-pass filtration, the fine particles in the part from the filter to the filling are mixed in the resist material, so the filtered portion at the initial stage of filtration cannot be used, and it is necessary to cut off sufficiently. There is a problem with productivity.

また、ディフェクト要因を除去する方法としては、フィルターが設置された閉鎖系内において循環させ、レジスト組成物中の微粒子の量を低減する方法(特許文献1参照)、レジスト用粗樹脂を活性炭及びシリカゲルと接触させる方法(特許文献2参照)、ポリアミド系合成繊維製の膜を使用する方法(特許文献3参照)等が提案されている。   In addition, as a method for removing the defect factor, a method of reducing the amount of fine particles in the resist composition by circulating in a closed system in which a filter is installed (see Patent Document 1), and using a resist crude resin as activated carbon and silica gel. And a method of using a membrane made of a polyamide-based synthetic fiber (see Patent Document 3) and the like have been proposed.

特開2002−62667号公報Japanese Patent Laid-Open No. 2002-62667 特開2006−126818号公報JP 2006-126818 A 特開2005−189789号公報JP 2005-189789 A

しかしながら、急速に微細化が進行している半導体素子や液晶表示素子の製造分野等においては、前述のような方法を用いた場合であっても、前記ディフェクト発生の抑制効果が十分であるとはいえないのが現状である。   However, in the field of manufacturing semiconductor devices and liquid crystal display devices that are rapidly miniaturized, the effect of suppressing the occurrence of defects is sufficient even when the above-described method is used. The current situation is not to say.

本発明は、前記実情に鑑みてなされたものであり、レジスト樹脂溶液中に含まれる樹脂の重合の際に副生するオリゴマーや低分子量のポリマー、目的とする重量平均分子量よりも高分子量のポリマー、及びその他のディフェクト要因となり得る異物を効果的に除去できディフェクトの発生を抑制できるレジスト用樹脂含有溶液の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and oligomers and low molecular weight polymers by-produced during the polymerization of the resin contained in the resist resin solution, and polymers having a higher molecular weight than the intended weight average molecular weight. Another object of the present invention is to provide a method for producing a resin-containing solution for resists that can effectively remove foreign substances that can cause other defects and suppress the occurrence of defects.

本発明は、以下のとおりである。
[1]レジスト用樹脂含有溶液を、親水性の濾材層に通液させた後、疎水性の濾材層に通液させる濾過工程を備えており、且つ前記親水性の濾材層と前記疎水性の濾材層との間隔が1000mm未満であることを特徴とするレジスト用樹脂含有溶液の製造方法。
[2]前記親水性の濾材層が、シリカゲル、ヒドロキシアパタイト、ゼオライト、ガラス、イオン交換樹脂膜、ポリアミド系合成繊維及びウレタンのうちから選ばれる少なくとも一種により構成されている前記[1]に記載のレジスト用樹脂含有溶液の製造方法。
[3]前記疎水性の濾材層が、活性炭、テフロン(登録商標)、ポリエチレン及びポリプロピレンのうちから選ばれる少なくとも一種により構成されている前記[1]又は[2]に記載のレジスト用樹脂含有溶液の製造方法。
[4]前記親水性の濾材層と前記疎水性の濾材層との間隔が0〜200mmである前記[1]乃至[3]のいずれかに記載のレジスト用樹脂含有溶液の製造方法。
The present invention is as follows.
[1] A filtration step of allowing the resist resin-containing solution to pass through the hydrophilic filter medium layer and then passing through the hydrophobic filter medium layer, and including the hydrophilic filter medium layer and the hydrophobic filter medium layer. A method for producing a resin-containing solution for a resist, wherein the distance from the filter medium layer is less than 1000 mm.
[2] The hydrophilic filter medium layer according to [1], wherein the hydrophilic filter medium layer is composed of at least one selected from silica gel, hydroxyapatite, zeolite, glass, ion exchange resin membrane, polyamide synthetic fiber, and urethane. A method for producing a resin-containing solution for resist.
[3] The resist resin-containing solution according to [1] or [2], wherein the hydrophobic filter medium layer is composed of at least one selected from activated carbon, Teflon (registered trademark), polyethylene, and polypropylene. Manufacturing method.
[4] The method for producing a resin-containing solution for a resist according to any one of [1] to [3], wherein an interval between the hydrophilic filter medium layer and the hydrophobic filter medium layer is 0 to 200 mm.

本発明のレジスト用樹脂含有溶液の製造方法によれば、親水性の濾材層に通液させた後、疎水性の濾材層に通液させる特定の濾過工程を備えているため、濾過前のレジスト用樹脂含有溶液に含まれるディフェクト要因である異物、特に目的とする重量平均分子量よりも高分子量のポリマーを効果的に捕集することができる。更には、ディフェクト要因の少ないレジスト用樹脂含有溶液を容易に得ることができる。   According to the method for producing a resin-containing solution for a resist of the present invention, since a specific filtration step of passing through a hydrophilic filter medium layer and then passing through a hydrophobic filter medium layer is provided, the resist before filtration It is possible to effectively collect foreign substances that are defect factors contained in the resin-containing solution, particularly polymers having a higher molecular weight than the intended weight average molecular weight. Furthermore, it is possible to easily obtain a resist resin-containing solution with few defect factors.

以下、本発明の実施の最良の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described below, but the present invention is not limited to the following embodiment, and is based on the ordinary knowledge of those skilled in the art without departing from the gist of the present invention. It should be understood that modifications and improvements as appropriate to the following embodiments also fall within the scope of the present invention.

本発明のレジスト用樹脂含有溶液の製造方法は、レジスト用樹脂含有溶液を、親水性の濾材層に通液させた後、疎水性の濾材層に通液させる濾過工程を備えており、且つ前記親水性の濾材層と前記疎水性の濾材層との間隔が1000mm未満であることを特徴とする。 The method for producing a resist resin-containing solution of the present invention comprises a filtration step of allowing a resist resin-containing solution to pass through a hydrophilic filter medium layer and then passing through a hydrophobic filter medium layer, and The distance between the hydrophilic filter medium layer and the hydrophobic filter medium layer is less than 1000 mm .

本発明のレジスト用樹脂含有溶液の製造方法におけるレジスト用樹脂含有溶液(濾過前のレジスト用樹脂含有溶液)は、少なくともレジスト用樹脂及び溶剤を含むものであり、酸発生剤や酸拡散制御剤等の他の添加剤を更に含有していてもよい。具体的には、例えば、g線、i線等の紫外線、KrFエキシマレーザー、ArFエキシマレーザー、Fエキシマレーザー、EUV等の(超)遠紫外線、電子線等の各種放射線による微細加工に適したレジストを形成可能なポジ型或いはネガ型のレジスト組成物や、多層レジストにおける上層膜や下層膜(反射防止膜等)を形成するための樹脂組成物等のフォトリソグラフィーに使用される樹脂組成物、これらの組成物に用いられるレジスト用樹脂を得るための粗レジスト用樹脂を含有する樹脂溶液等が挙げられる。 The resist resin-containing solution (resist resin-containing solution before filtration) in the method for producing a resist resin-containing solution of the present invention contains at least a resist resin and a solvent, such as an acid generator and an acid diffusion controller. Other additives may be further contained. Specifically, for example, it is suitable for microfabrication by various types of radiation such as ultraviolet rays such as g-line and i-line, KrF excimer laser, ArF excimer laser, F 2 excimer laser, EUV, etc. Resin composition used for photolithography such as a positive or negative resist composition capable of forming a resist, a resin composition for forming an upper layer film or a lower layer film (antireflection film, etc.) in a multilayer resist, Examples thereof include a resin solution containing a crude resist resin for obtaining a resist resin used in these compositions.

前記レジスト用樹脂としては、例えば、アクリレート系樹脂、メタクリレート系樹脂、ヒドロキシスチレン系樹脂、ノボラック系樹脂等が挙げられる。尚、このようなレジスト用樹脂は、例えば、エチレン性不飽和結合を有する重合性化合物(単量体)等の所定の重合性化合物を溶剤の存在下で重合させることにより得ることができる。   Examples of the resist resin include acrylate resins, methacrylate resins, hydroxystyrene resins, and novolak resins. Such a resist resin can be obtained, for example, by polymerizing a predetermined polymerizable compound such as a polymerizable compound (monomer) having an ethylenically unsaturated bond in the presence of a solvent.

また、前記溶剤としては、例えば、アセトン、メチルエチルケトン、メチルアミルケトン、シクロヘキサノン等のケトン類;テトラヒドロフラン、ジオキサン、グライム、プロピレングリコールモノメチルエーテル等のエーテル類;酢酸エチル、乳酸エチル等のエステル類;プロピレングリコールメチルエーテルアセテート等のエーテルエステル類、γ−ブチロラクトン等のラクトン類等が挙げられる。これらの溶媒は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。   Examples of the solvent include ketones such as acetone, methyl ethyl ketone, methyl amyl ketone, and cyclohexanone; ethers such as tetrahydrofuran, dioxane, glyme, and propylene glycol monomethyl ether; esters such as ethyl acetate and ethyl lactate; propylene glycol Examples include ether esters such as methyl ether acetate, and lactones such as γ-butyrolactone. These solvents may be used alone or in combination of two or more.

本発明の濾過工程において用いられる前記親水性の濾材層(以下、「親水性濾材層」ともいう。)は、シリカゲル、ヒドロキシアパタイト、ゼオライト(モレキュラーシーブス等)、ガラス、カチオン性若しくはアニオン性のイオン交換樹脂膜、ポリアミド系合成繊維(ナイロン6、ナイロン66等)及びウレタン等のうちから選ばれる少なくとも一種の濾材から構成されることが好ましい。これらの濾材が用いられる場合には、目的とする重量平均分子量よりも高分子量のポリマー異物を効果的に捕集することができる。更には、濾材に起因して発生する異物を抑制することができるため好ましい。   The hydrophilic filter medium layer (hereinafter also referred to as “hydrophilic filter medium layer”) used in the filtration step of the present invention is silica gel, hydroxyapatite, zeolite (such as molecular sieves), glass, cationic or anionic ion. It is preferably composed of at least one filter medium selected from exchange resin membranes, polyamide synthetic fibers (nylon 6, nylon 66, etc.) and urethane. When these filter media are used, polymer foreign matters having a higher molecular weight than the intended weight average molecular weight can be effectively collected. Furthermore, it is preferable because foreign matters generated due to the filter medium can be suppressed.

また、前記濾過工程においては、前記親水性濾材層にレジスト用樹脂含有溶液を通液させることで、目的とする重量平均分子量よりも高分子量のポリマー異物を効果的に捕集される。更には、その他のディフェクト要因となり得る異物をも効果的に除去することができる。具体的には、例えば、シリカゲルを濾材とするシリカゲルカラムでは、目的とする重量平均分子量よりも高分子量のポリマー異物に加えて、金属異物や未反応モノマー異物を効果的に捕集することができる。また、カチオン性若しくはアニオン性のイオン交換樹脂膜を濾材として用いる場合には、高分子量のポリマー異物に加えて、金属イオン異物や金属成分を効果的に捕集することができる。   Moreover, in the said filtration process, the polymer foreign material whose molecular weight is higher than the target weight average molecular weight is effectively collected by letting the resin containing solution for resist pass through the said hydrophilic filter medium layer. Furthermore, foreign substances that can cause other defects can be effectively removed. Specifically, for example, in a silica gel column using silica gel as a filter medium, in addition to a polymer foreign substance having a molecular weight higher than the target weight average molecular weight, a metal foreign substance or an unreacted monomer foreign substance can be effectively collected. . In addition, when a cationic or anionic ion exchange resin membrane is used as a filter medium, metal ion foreign matter and metal components can be effectively collected in addition to high molecular weight polymer foreign matter.

前記濾過工程において用いられる前記疎水性の濾材層(以下、「疎水性濾材層」ともいう。)は、活性炭、テフロン(登録商標)、ポリエチレン及びポリプロピレン等のうちから選ばれる少なくとも一種の濾材から構成されることが好ましい。これらの濾材が用いられる場合には、前記親水性濾材層と同等以上の異物捕集効果が得られるため好ましい。   The hydrophobic filter medium layer (hereinafter also referred to as “hydrophobic filter medium layer”) used in the filtration step is composed of at least one filter medium selected from activated carbon, Teflon (registered trademark), polyethylene, polypropylene, and the like. It is preferred that When these filter media are used, it is preferable because a foreign matter collecting effect equal to or higher than that of the hydrophilic filter media layer can be obtained.

前記親水性濾材と疎水性濾材との組み合わせては特に限定されないが、例えば、シリカゲルと活性炭との組み合わせ、ヒドロキシアパタイトと活性炭との組み合わせ、ポリアミド系合成繊維とポリエチレンとの組み合わせ、ポリアミド系合成繊維とポリプロピレンとの組み合わせ等が好ましく、特に、ポリアミド系合成繊維とポリエチレンとの組み合わせが好ましい。   The combination of the hydrophilic filter medium and the hydrophobic filter medium is not particularly limited, for example, a combination of silica gel and activated carbon, a combination of hydroxyapatite and activated carbon, a combination of polyamide synthetic fiber and polyethylene, a polyamide synthetic fiber, A combination with polypropylene is preferable, and a combination of polyamide synthetic fiber and polyethylene is particularly preferable.

また、前記各濾材の形態は特に限定されず、シート状のフィルターを用いてもよいし、カラム等に充填して用いられる粉体状のものであってもよい。特に、1次側に親水性濾材が配され且つ2次側に疎水性濾材が配された積層フィルム等の一体型の濾材が好ましい。   Moreover, the form of each said filter medium is not specifically limited, A sheet-like filter may be used and the powder-form thing used by filling a column etc. may be used. In particular, an integrated filter medium such as a laminated film in which a hydrophilic filter medium is disposed on the primary side and a hydrophobic filter medium is disposed on the secondary side is preferable.

また、本発明における濾過工程では、前記親水性濾過層と前記疎水性濾過層とが近接しており、それらの間隔が短いため、飛躍的に高分子量のポリマー異物及びその他ディフェクト要因となり得る異物を効果的に除去することができる。
尚、本発明における前記親水性濾材層と前記疎水性濾材層との間隔(距離)1000mm未満であり、特に0〜500mm、更には0〜200mmとすることができる。この間隔が1000mm以下である場合には、ディフェクト要因となり得る異物を十分除去することができる。
Further, in the filtration step in the present invention, the hydrophilic filtration layer and the hydrophobic filtration layer are close to each other, and the distance between them is short, so that a foreign substance that can dramatically increase the molecular weight of the polymer and other defects can be removed. It can be effectively removed.
In addition, the space | interval (distance) of the said hydrophilic filter medium layer and the said hydrophobic filter medium layer in this invention is less than 1000 mm , and can be 0-500 mm especially 0-200 mm. When this interval is 1000 mm or less, foreign substances that can cause defects can be sufficiently removed.

前記濾過工程における線速度は、20〜130L/(hr・m)であることが好ましく、より好ましくは40〜110L/(hr・m)である。尚、本発明における「線速度」とは、濾材層の単位時間(hr)、単位面積(m)あたりの対象液通過量(L)をいう。 The linear velocity in the filtration step is preferably 20~130L / (hr · m 2) , and more preferably 40~110L / (hr · m 2) . In addition, the “linear velocity” in the present invention means a target liquid passage amount (L) per unit time (hr) and unit area (m 2 ) of the filter medium layer.

また、本発明のレジスト用樹脂含有溶液の製造方法が上述の特定の濾過工程を備えることにより、異物除去能力が飛躍的に向上する詳細なメカニズムは未だに明らかとなってはいないが、以下のように推測することができる。
親水性濾材層を構成する親水性濾材にレジスト用樹脂含有溶液が接する場合、目的のレジスト用樹脂は疎水性であるため、ポリマーの分子構造は糸まり状となる。そのため、図6に示すように、ディフェクト要因である目的とする重量平均分子量よりも高分子量のポリマー4(ポリマー異物)も、親水性濾材に接する際には糸まり状のポリマー41となり、親水性濾材に捕集されやすい分子構造をとる。これによって、大部分の高分子量のポリマー異物4は親水性濾材層5に捕集されると推測している(図6における捕集されたポリマー異物411参照)。但し、僅かに残った特定の高分子量のポリマー異物42(即ち、親水性濾過層を通過してしまったポリマー異物)は、致命的なディフェクト要因となり得る。この僅かに捕集されずに残った高分子量のポリマー異物42を捕集するためには、次工程でポリマーとの親和性に優れる疎水性濾過層6に接触させることが適している。
In addition, the detailed mechanism by which the foreign substance removing ability is dramatically improved by providing the above-described specific filtration step in the method for producing a resist resin-containing solution of the present invention has not yet been clarified. Can be guessed.
When the resist resin-containing solution is in contact with the hydrophilic filter medium constituting the hydrophilic filter medium layer, the target resist resin is hydrophobic, so that the molecular structure of the polymer becomes a string shape. Therefore, as shown in FIG. 6, the polymer 4 (polymer foreign matter) having a higher molecular weight than the target weight average molecular weight, which is a defect factor, also becomes a string-like polymer 41 when contacting the hydrophilic filter medium. It has a molecular structure that is easy to collect on the filter medium. As a result, it is presumed that most of the high molecular weight polymer foreign matter 4 is collected in the hydrophilic filter medium layer 5 (see the collected polymer foreign matter 411 in FIG. 6). However, the slightly remaining specific high molecular weight polymer foreign matter 42 (that is, the polymer foreign matter that has passed through the hydrophilic filtration layer) can be a fatal defect factor. In order to collect the high molecular weight polymer foreign matter 42 remaining without being collected slightly, it is suitable to contact the hydrophobic filtration layer 6 having excellent affinity with the polymer in the next step.

しかしながら、一般的な設備では、親水性濾材層と備える濾過装置と、疎水性濾過層を備える濾過装置との間は配管で接続されており、各濾過装置間には、一定以上の間隔(距離)がある。そのため、濾過装置間の配管を流れる間に、溶液の流れの存在により、ポリマー異物の分子鎖は糸まり状から伸びた形状となり、立体的な分子構造としては濾過捕集しにくい構造となってしまい、疎水性濾過層においても捕集されずにポリマー異物が残ってしまっていると推測できる。即ち、図6に示すように、親水性濾過層5と、疎水性濾過層6との間の間隔L2が長くなるほど、ポリマー異物の分子鎖は糸まり状(ポリマー異物42参照)から、分子鎖が伸びた形状(ポリマー異物43参照)となり、疎水性濾過層6に捕集されにくくなっていると考えられる(疎水性濾材層6を通過したポリマー異物431参照)。
一方、本発明における濾過工程では、図5に示すように、親水性濾材層5と疎水性濾材層6とを近接させ、それらの間隔L1を短くすることにより、親水性濾過層5を通過してしまったポリマー異物42を、濾過捕集し易い糸まり状の分子構造となっている状態で疎水性濾過層6に接触させることができ、疎水性濾過層6でポリマー異物を捕集することができるため(疎水性濾過層6で捕集されたポリマー異物421参照)、異物除去能力が飛躍的に向上すると考えられる。
However, in a general facility, a filtration device provided with a hydrophilic filter medium layer and a filtration device provided with a hydrophobic filtration layer are connected by a pipe, and a certain distance (distance) is provided between the filtration devices. ) Therefore, the molecular chain of the polymer foreign substance becomes a shape extending from the string shape due to the presence of the solution flow while flowing through the piping between the filtration devices, and the three-dimensional molecular structure is difficult to filter and collect. Therefore, it can be presumed that polymer foreign matter remains without being collected even in the hydrophobic filtration layer. That is, as shown in FIG. 6, as the distance L2 between the hydrophilic filtration layer 5 and the hydrophobic filtration layer 6 becomes longer, the molecular chain of the polymer foreign substance becomes more stringy (see the polymer foreign substance 42). It is considered that the shape is elongated (see the polymer foreign matter 43) and is less likely to be collected by the hydrophobic filter layer 6 (see the polymer foreign matter 431 that has passed through the hydrophobic filter layer 6).
On the other hand, in the filtration step in the present invention, as shown in FIG. 5, the hydrophilic filter layer 5 and the hydrophobic filter layer 6 are brought close to each other, and the distance L1 between them is shortened to pass through the hydrophilic filter layer 5. The polymer foreign matter 42 that has been collected can be brought into contact with the hydrophobic filtration layer 6 in a state of a string-like molecular structure that is easy to collect by filtration, and the polymer foreign matter is collected by the hydrophobic filtration layer 6. (See the polymer foreign matter 421 collected by the hydrophobic filtration layer 6), it is considered that the foreign matter removing ability is remarkably improved.

以下、実施例を挙げて、本発明を更に具体的に説明する。但し、本発明は、これらの実施例に何ら制約されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

[1]レジスト用樹脂含有溶液の製造(実施例1〜3及び比較例1〜5)
<実施例1>
まず、2−メチル−2−アダマンチルメタクリレートとノルボルナンラクトンメタクリレートとの共重合体(レジスト用樹脂、Mw:13000)のプロピレングリコールモノメチルエーテルアセテート溶液、及び酸発生剤(トリフェニルスルホニウム)を含有する粗レジスト用樹脂含有溶液を調製した。
次いで、溶液タンク、濾過カラム管、ポンプ及び流量計を備える循環濾過装置を組み立てた。尚、図1に示すように、濾過カラム管10(内径:47mm、高さ:110mm)内には、上流側に親水性濾材(シリカゲル、富士シリシア化学株式会社製、商品名「Super Micro Bead Silika Gel」、粒径:30μm)が充填されて形成された親水性濾材層21(厚み;50mm)、及び、下流側に疎水性濾材(活性炭、クラレケミカル社製、商品名「クラレコールPW」)が充填されて形成された疎水性濾材層31(厚み;50mm)を備える。
その後、前記溶液タンク内に、前記粗レジスト用樹脂含有溶液5Lを投入し、常圧下、温度:20℃、線速度:50L/(hr・m)の条件にて濾過を行い、実施例1のレジスト用樹脂含有溶液を製造した。
[1] Production of resist-containing resin-containing solutions (Examples 1 to 3 and Comparative Examples 1 to 5)
<Example 1>
First, a crude resist containing a propylene glycol monomethyl ether acetate solution of a copolymer of 2-methyl-2-adamantyl methacrylate and norbornane lactone methacrylate (resist resin, Mw: 13000), and an acid generator (triphenylsulfonium) A resin-containing solution was prepared.
Next, a circulation filtration device including a solution tank, a filtration column tube, a pump and a flow meter was assembled. As shown in FIG. 1, in the filtration column tube 10 (inner diameter: 47 mm, height: 110 mm), a hydrophilic filter medium (silica gel, manufactured by Fuji Silysia Chemical Co., Ltd., trade name “Super Micro Bead Silica” Gel ”, particle size: 30 μm) filled with a hydrophilic filter medium layer 21 (thickness: 50 mm), and a hydrophobic filter medium on the downstream side (activated carbon, manufactured by Kuraray Chemical Co., Ltd., trade name“ Kuraray Coal PW ”) Is provided with a hydrophobic filter medium layer 31 (thickness: 50 mm).
Thereafter, 5 L of the resin solution for rough resist was put into the solution tank, and filtration was performed under normal pressure, temperature: 20 ° C., and linear velocity: 50 L / (hr · m 2 ). A resist-containing solution for resist was prepared.

<実施例2>
実施例1と同様にして、溶液タンク、濾過カラム管、ポンプ及び流量計を備える循環濾過装置を組み立てた。尚、図2に示すように、濾過カラム管10(内径:47mm、高さ:110mm)内には、上流側に親水性濾材(ポリアミド系合成繊維(ナイロン66)シート、キュノ株式会社製、商品名「エレクトロポア」、孔径:0.04μm、枚数:1枚)が配設されて形成された親水性濾材層22、及び、下流側に疎水性濾材(ポリエチレンシート、インテグリス社製、商品名「超高分子量ポリエチレンメンブレン」、孔径:0.02μm、枚数:1枚)が配設されて形成された疎水性濾材層32を備える。
次いで、実施例1と同様にして、前記粗レジスト用樹脂含有溶液を溶液タンクに投入して濾過を行い、実施例2のレジスト用樹脂含有溶液を製造した。
<Example 2>
In the same manner as in Example 1, a circulation filtration device including a solution tank, a filtration column tube, a pump, and a flow meter was assembled. In addition, as shown in FIG. 2, in the filtration column tube 10 (inner diameter: 47 mm, height: 110 mm), a hydrophilic filter medium (polyamide-based synthetic fiber (nylon 66) sheet, manufactured by Cuno Co., Ltd., product) The name “electropore”, pore size: 0.04 μm, number of sheets: 1) and a hydrophilic filter medium layer 22 formed on the downstream side and a hydrophobic filter medium (polyethylene sheet, manufactured by Entegris, trade name “ And a hydrophobic filter medium layer 32 formed by arranging “ultra high molecular weight polyethylene membrane”, pore diameter: 0.02 μm, number of sheets: 1).
Next, in the same manner as in Example 1, the crude resist resin-containing solution was put into a solution tank and filtered to produce the resist resin-containing solution of Example 2.

<実施例3>
溶液タンク、第1濾過カラム管、第2濾過カラム管、ポンプ及び流量計を備える循環濾過装置を組み立てた。この際、各濾過カラム管は、図3に示すように、第1濾過カラム管11(内径:47mm、高さ:110mm)が上流側、第2濾過カラム管12(内径:47mm、高さ:110mm)が下流側となるように、2つのカラム管を直列に接続した。尚、各カラム管の間は配管(内径:4mm、長さ:100mm)(図示せず)で接続されている。また、第1濾過カラム管11内には、親水性濾材(ポリアミド系合成繊維(ナイロン66)シート、キュノ株式会社製、商品名「エレクトロポア」、孔径:0.04μm、枚数:1枚)が配設されており、親水性濾材層23が形成されている。更に、第2濾過カラム管12内には、疎水性濾材(ポリエチレンシート、インテグリス社製、商品名「超高分子量ポリエチレンメンブレン」、孔径:0.02μm、枚数:1枚)が配設されており、疎水性濾材層33が形成されている。
次いで、実施例1と同様にして、前記粗レジスト用樹脂含有溶液を溶液タンクに投入して濾過を行い、実施例3のレジスト用樹脂含有溶液を製造した。
<Example 3>
A circulation filtration device including a solution tank, a first filtration column tube, a second filtration column tube, a pump, and a flow meter was assembled. At this time, as shown in FIG. 3, each filtration column tube has a first filtration column tube 11 (inner diameter: 47 mm, height: 110 mm) on the upstream side, and a second filtration column tube 12 (inner diameter: 47 mm, height: Two column tubes were connected in series so that 110 mm) was on the downstream side. Each column tube is connected by a pipe (inner diameter: 4 mm, length: 100 mm) (not shown). Further, in the first filtration column tube 11, there is a hydrophilic filter medium (polyamide synthetic fiber (nylon 66) sheet, manufactured by Cuno Co., Ltd., trade name “Electropore”, pore diameter: 0.04 μm, number of sheets: 1). The hydrophilic filter medium layer 23 is formed. Further, a hydrophobic filter medium (polyethylene sheet, manufactured by Entegris, trade name “ultra high molecular weight polyethylene membrane”, pore size: 0.02 μm, number of sheets: 1) is disposed in the second filtration column tube 12. A hydrophobic filter medium layer 33 is formed.
Next, in the same manner as in Example 1, the crude resist resin-containing solution was put into a solution tank and filtered to produce the resist resin-containing solution of Example 3.

<比較例1>
実施例3と同様にして、溶液タンク、第1濾過カラム管、第2濾過カラム管、ポンプ及び流量計を備える循環濾過装置を組み立てた。この際、各濾過カラム管は、図4に示すように、第1濾過カラム管11(内径:47mm、高さ:110mm)が上流側、第2カラム管12(内径:47mm、高さ:110mm)が下流側となるように、2つのカラム管を直列に接続した。尚、各カラム管の間は配管(内径:4mm、長さ:1000mm)(図示せず)で接続されている。また、第1濾過カラム管11内には、親水性濾材(シリカゲル、富士シリシア化学株式会社製、商品名「Super Micro Bead Silika Gel」、粒径:30μmが充填されており、親水性濾材層24(厚み:50mm)が形成されている。更に、第2濾過カラム管12内には疎水性濾材(活性炭、クラレケミカル社製、商品名「クラレコールPW」)が充填されており、疎水性濾材層34(厚み:50mm)が形成されている。
次いで、実施例3と同様にして、前記粗レジスト用樹脂含有溶液を溶液タンクに投入して濾過を行い、比較例1のレジスト用樹脂含有溶液を製造した。
<Comparative Example 1>
In the same manner as in Example 3, a circulation filtration device including a solution tank, a first filtration column tube, a second filtration column tube, a pump, and a flow meter was assembled. At this time, as shown in FIG. 4, each filtration column tube has a first filtration column tube 11 (inner diameter: 47 mm, height: 110 mm) upstream, and a second column tube 12 (inner diameter: 47 mm, height: 110 mm). The two column tubes were connected in series so that) was on the downstream side. The column tubes are connected by piping (inner diameter: 4 mm, length: 1000 mm) (not shown). The first filtration column tube 11 is filled with a hydrophilic filter medium (silica gel, manufactured by Fuji Silysia Chemical Ltd., trade name “Super Micro Bead Silica Gel”, particle size: 30 μm, and the hydrophilic filter medium layer 24. Further, the second filtration column tube 12 is filled with a hydrophobic filter medium (activated carbon, manufactured by Kuraray Chemical Co., Ltd., trade name “Kuraray Coal PW”). A layer 34 (thickness: 50 mm) is formed.
Next, in the same manner as in Example 3, the resin solution for crude resist was put into a solution tank and filtered to produce the resin solution for resist of Comparative Example 1.

<比較例2>
実施例3と同様にして、溶液タンク、第1濾過カラム管、第2濾過カラム管、ポンプ及び流量計を備える循環濾過装置を組み立て、各カラム管の間を、配管(内径:4mm、長さ:1000mm)で接続したこと以外は、実施例3と同様にして、前記粗レジスト用樹脂含有溶液の濾過を行い、比較例2のレジスト用樹脂含有溶液を製造した。
<Comparative Example 2>
In the same manner as in Example 3, a circulation filtration device including a solution tank, a first filtration column tube, a second filtration column tube, a pump and a flow meter was assembled, and a pipe (inner diameter: 4 mm, length) was provided between each column tube. : The resin-containing solution for resist of Comparative Example 2 was produced in the same manner as in Example 3 except that the resin-containing solution for rough resist was filtered.

<比較例3>
実施例2と同様にして、溶液タンク、濾過カラム管、ポンプ及び流量計を備える循環濾過装置を組み立て、カラム管10内の下流側に親水性濾材層22を形成し、且つカラム管10内の上流側に疎水性濾材層32を形成し、親水性濾材層22と疎水性濾材層32との形成位置を逆にしたこと以外は、実施例2と同様にして、前記粗レジスト用樹脂含有溶液の濾過を行い、比較例3のレジスト用樹脂含有溶液を製造した。
<Comparative Example 3>
In the same manner as in Example 2, a circulation filtration device including a solution tank, a filtration column tube, a pump, and a flow meter is assembled, a hydrophilic filter medium layer 22 is formed on the downstream side in the column tube 10, and the column tube 10 In the same manner as in Example 2, except that the hydrophobic filter medium layer 32 is formed on the upstream side, and the formation positions of the hydrophilic filter medium layer 22 and the hydrophobic filter medium layer 32 are reversed. The resin-containing solution for resist of Comparative Example 3 was produced.

<比較例4>
実施例2と同様にして、溶液タンク、濾過カラム管、ポンプ及び流量計を備える循環濾過装置を組み立て、前記カラム管10内の下流側における疎水性濾材層32を、上流側と同様の親水性濾材層22に変更し、親水性の濾材のみとしたこと以外は、実施例2と同様にして、前記粗レジスト用樹脂含有溶液の濾過を行い、比較例4のレジスト用樹脂含有溶液を製造した。
<Comparative Example 4>
In the same manner as in Example 2, a circulation filtration device including a solution tank, a filtration column tube, a pump, and a flow meter was assembled, and the hydrophobic filter medium layer 32 on the downstream side in the column tube 10 was made hydrophilic as in the upstream side. The crude resin resin-containing solution was filtered in the same manner as in Example 2 except that the filter medium layer 22 was changed to only a hydrophilic filter medium, whereby a resist resin-containing solution of Comparative Example 4 was produced. .

<比較例5>
実施例2と同様にして、溶液タンク、濾過カラム管、ポンプ及び流量計を備える循環濾過装置を組み立て、前記カラム管10内の上流側における親水性濾材層22を、下流側と同様の疎水性濾材層32に変更し、疎水性の濾材のみとしたこと以外は、実施例2と同様にして、前記粗レジスト用樹脂含有溶液の濾過を行い、比較例5のレジスト用樹脂含有溶液を製造した。
<Comparative Example 5>
In the same manner as in Example 2, a circulation filtration device including a solution tank, a filtration column tube, a pump, and a flow meter was assembled, and the hydrophilic filter medium layer 22 on the upstream side in the column tube 10 was made hydrophobic as in the downstream side. The crude resin resin-containing solution was filtered in the same manner as in Example 2 except that the filter medium layer 32 was changed to a hydrophobic filter medium alone, and a resist resin-containing solution of Comparative Example 5 was produced. .

[2]レジスト用樹脂含有溶液の評価
以下の方法により、実施例及び比較例の各レジスト用樹脂含有溶液の評価を行った。その結果を表1に示す。
[2] Evaluation of Resin Resin-Containing Solution Each resist resin-containing solution in Examples and Comparative Examples was evaluated by the following method. The results are shown in Table 1.

(1)ディフェクト
8インチシリコンウエハー表面に150nmの乾燥膜厚が得られるように、各レジスト用樹脂含有溶液をスピンコーターにより塗布した後、100℃で90秒間PBを行い、レジスト被膜を形成した。次いで、レジスト被膜に、ArF露光装置(ニコン社製、型番「S306C」)を用い、線幅110nmのラインパターンが220nmのピッチで全面に形成されたフォトマスクを介して、ライン線幅110nmでピッチ220nmのライン・アンド・スペースパターンが形成されるようにArFエキシマレーザーを露光した。
その後、100℃で90秒間PEBを行った後、2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液を用いて、23℃で60秒間現像し、水洗し、乾燥して、現像欠陥検査用の基板を得た。尚、この際、レジスト用樹脂含有溶液の塗布、PB、PEB及び現像は、東京エレクトロン(株)製、型番「ACT8」を用いて、インラインで実施した。
次いで、前記現像欠陥検査用の基板について、欠陥検査装置(ケー・エル・エー・テンコール社製、型番「KLA2351」)を用いて、現像欠陥を評価した。尚、現像欠陥数の算出は、欠陥検査装置のピクセルサイズを0.16um、閾値を13に設定し、アレイモードで測定して、比較イメージとピクセル単位の重ね合わせによって生じる差異から抽出される現像欠陥を検出して評価した。この評価基準は以下の通りである。
「○」;パターン欠陥数がシリコンウェハー1枚当たり30個以下の場合
「×」;パターン欠陥数がシリコンウェハー1枚当たり30個を超える場合
(1) Defects Each resist resin-containing solution was applied by a spin coater so that a dry film thickness of 150 nm was obtained on the surface of an 8-inch silicon wafer, and then PB was performed at 100 ° C. for 90 seconds to form a resist film. Next, an ArF exposure apparatus (manufactured by Nikon Corporation, model number “S306C”) is used as a resist film, and a line pattern having a line width of 110 nm is pitched at a line line width of 110 nm through a photomask formed on the entire surface at a pitch of 220 nm. An ArF excimer laser was exposed so that a 220 nm line and space pattern was formed.
Thereafter, PEB is carried out at 100 ° C. for 90 seconds, and then developed using a 2.38 mass% tetramethylammonium hydroxide aqueous solution at 23 ° C. for 60 seconds, washed with water, and dried to provide a substrate for development defect inspection. Got. At this time, application of the resin-containing solution for resist, PB, PEB, and development were performed inline using a model number “ACT8” manufactured by Tokyo Electron Limited.
Next, the development defect was evaluated for the development defect inspection substrate using a defect inspection apparatus (manufactured by KLA-Tencor Corporation, model number “KLA2351”). The number of development defects is calculated by setting the pixel size of the defect inspection apparatus to 0.16 μm, setting the threshold value to 13, measuring in the array mode, and extracting from the difference caused by the comparison image and pixel unit overlap. Defects were detected and evaluated. The evaluation criteria are as follows.
“○”: When the number of pattern defects is 30 or less per silicon wafer “X”: When the number of pattern defects exceeds 30 per silicon wafer

(2)放射線透過率
各レジスト用樹脂含有溶液を石英ガラス上にスピンコートにより塗布し、130℃に保持したホットプレート上で90秒間PBを行って、膜厚0.34μmのレジスト被膜を形成した。その後、分光エリプソメーター(ジェー・エー・ウーラム・ジャパン株式会社製、型番「VUV−VASE」を用いて、レジスト被膜の波長193nmにおける吸光度を測定し、放射線透過率を算出して、遠紫外線領域における透明性の尺度とした。即ち、この透明性が低いほど、異物含有量が多いといえる。
(2) Radiation transmittance Each resist resin-containing solution was applied onto quartz glass by spin coating, and PB was performed for 90 seconds on a hot plate maintained at 130 ° C. to form a resist film having a thickness of 0.34 μm. . Then, using a spectroscopic ellipsometer (manufactured by JA Woollam Japan Co., Ltd., model number “VUV-VASE”), the absorbance at a wavelength of 193 nm of the resist film was measured, and the radiation transmittance was calculated, A measure of transparency, i.e., the lower the transparency, the greater the foreign matter content.

Figure 0005217627
Figure 0005217627

表1に示すように、本実施例の各レジスト用樹脂含有溶液を用いた場合にはディフェクトの発生を十分に抑制できることが確認できた。   As shown in Table 1, it was confirmed that the occurrence of defects can be sufficiently suppressed when each resist resin-containing solution of this example is used.

濾過カラムの構成を説明する模式図である。It is a schematic diagram explaining the structure of a filtration column. 濾過カラムの構成を説明する模式図である。It is a schematic diagram explaining the structure of a filtration column. 濾過カラムの構成を説明する模式図である。It is a schematic diagram explaining the structure of a filtration column. 濾過カラムの構成を説明する模式図である。It is a schematic diagram explaining the structure of a filtration column. 濾過工程における推定メカニズムを説明する模式図である。It is a schematic diagram explaining the presumed mechanism in a filtration process. 濾過工程における推定メカニズムを説明する模式図である。It is a schematic diagram explaining the presumed mechanism in a filtration process.

符号の説明Explanation of symbols

10;カラム管、11;第1濾過カラム管、12;第2濾過カラム管、21,22,23,24;親水性濾材層、31,32,33,34;疎水性濾材層、4、41;ポリマー異物、411;親水性濾材層に捕集されたポリマー異物、42、43;親水性濾材層を通過したポリマー異物、421;疎水性濾材層に捕集されたポリマー異物、431;疎水性濾材層を通過したポリマー異物、5;親水性濾材層、6;疎水性濾材層。   10; column tube, 11; first filtration column tube, 12; second filtration column tube, 21, 22, 23, 24; hydrophilic filter medium layer, 31, 32, 33, 34; hydrophobic filter medium layer, 4, 41 Polymer foreign matter, 411; polymer foreign matter collected in the hydrophilic filter media layer, 42, 43; polymer foreign matter passed through the hydrophilic filter media layer, 421; polymer foreign matter collected in the hydrophobic filter media layer, 431; hydrophobic Polymer foreign matter that has passed through the filter medium layer, 5; hydrophilic filter medium layer, 6; hydrophobic filter medium layer.

Claims (4)

レジスト用樹脂含有溶液を、親水性の濾材層に通液させた後、疎水性の濾材層に通液させる濾過工程を備えており、且つ前記親水性の濾材層と前記疎水性の濾材層との間隔が1000mm未満であることを特徴とするレジスト用樹脂含有溶液の製造方法。   A filtration step of passing the resin-containing solution for resist through the hydrophilic filter medium layer and then passing through the hydrophobic filter medium layer, and the hydrophilic filter medium layer and the hydrophobic filter medium layer; The manufacturing method of the resin containing solution for resists characterized by the above-mentioned. 前記親水性の濾材層が、シリカゲル、ヒドロキシアパタイト、ゼオライト、ガラス、イオン交換樹脂膜、ポリアミド系合成繊維及びウレタンのうちから選ばれる少なくとも一種により構成されている請求項1に記載のレジスト用樹脂含有溶液の製造方法。   The resist resin-containing composition according to claim 1, wherein the hydrophilic filter medium layer is composed of at least one selected from silica gel, hydroxyapatite, zeolite, glass, ion exchange resin membrane, polyamide synthetic fiber, and urethane. A method for producing a solution. 前記疎水性の濾材層が、活性炭、テフロン(登録商標)、ポリエチレン及びポリプロピレンのうちから選ばれる少なくとも一種により構成されている請求項1又は2に記載のレジスト用樹脂含有溶液の製造方法。   The method for producing a resin-containing solution for resist according to claim 1 or 2, wherein the hydrophobic filter medium layer is composed of at least one selected from activated carbon, Teflon (registered trademark), polyethylene, and polypropylene. 前記親水性の濾材層と前記疎水性の濾材層との間隔が0〜200mmである請求項1乃至3のいずれかに記載のレジスト用樹脂含有溶液の製造方法。   The method for producing a resin-containing solution for resist according to any one of claims 1 to 3, wherein an interval between the hydrophilic filter medium layer and the hydrophobic filter medium layer is 0 to 200 mm.
JP2008134761A 2008-05-22 2008-05-22 Method for producing resin-containing solution for resist Active JP5217627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008134761A JP5217627B2 (en) 2008-05-22 2008-05-22 Method for producing resin-containing solution for resist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008134761A JP5217627B2 (en) 2008-05-22 2008-05-22 Method for producing resin-containing solution for resist

Publications (2)

Publication Number Publication Date
JP2009282331A JP2009282331A (en) 2009-12-03
JP5217627B2 true JP5217627B2 (en) 2013-06-19

Family

ID=41452836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134761A Active JP5217627B2 (en) 2008-05-22 2008-05-22 Method for producing resin-containing solution for resist

Country Status (1)

Country Link
JP (1) JP5217627B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5914241B2 (en) * 2012-08-07 2016-05-11 株式会社ダイセル Method for producing polymer compound, polymer compound, and resin composition for photoresist
JP2014219506A (en) * 2013-05-07 2014-11-20 信越化学工業株式会社 Method of producing resist composition
JP6461668B2 (en) * 2014-08-11 2019-01-30 東京応化工業株式会社 Filtration material, filtration filter, production method of filtration material, and filtration method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1024224A (en) * 1996-04-10 1998-01-27 Mitsubishi Chem Corp Laminated porous film and its utilization
JP2002062667A (en) * 2000-08-23 2002-02-28 Sumitomo Chem Co Ltd Method of manufacturing photoresist composition decreased in amount of particulate
JP4006936B2 (en) * 2000-09-22 2007-11-14 住友化学株式会社 Method for producing photoresist composition with reduced amount of fine particles
JP4637476B2 (en) * 2002-12-19 2011-02-23 東京応化工業株式会社 Method for producing photoresist composition
US7276575B2 (en) * 2003-02-06 2007-10-02 Tokyo Ohka Kogyo Co., Ltd. Process for refining crude resin for resist
JP4577172B2 (en) * 2004-09-28 2010-11-10 住友化学株式会社 Chemically amplified resist composition
JP5071107B2 (en) * 2005-05-13 2012-11-14 Jsr株式会社 Method for producing radiation-sensitive resin composition
JP4786238B2 (en) * 2005-07-19 2011-10-05 東京応化工業株式会社 Resist composition manufacturing method, filtration apparatus, resist composition coating apparatus
EP1917096A4 (en) * 2005-08-26 2010-03-31 Entegris Inc Porous membranes containing exchange resin

Also Published As

Publication number Publication date
JP2009282331A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
Sanders Advances in patterning materials for 193 nm immersion lithography
JP6075124B2 (en) Developer purification method
JP4675776B2 (en) Positive resist composition, resist laminate, and resist pattern forming method
JP4786238B2 (en) Resist composition manufacturing method, filtration apparatus, resist composition coating apparatus
JP2004212975A (en) Method for manufacturing photoresist composition, filtering device, coating device, and photoresist composition
JP5702699B2 (en) Method for producing resist composition for lithography, method for producing resist protective film forming composition, method for producing silicon-containing resist underlayer film forming method, and method for producing organic resist underlayer film forming composition
JP5217627B2 (en) Method for producing resin-containing solution for resist
US20090068596A1 (en) Negative-tone,Ultraviolet Photoresists for Fabricating High Aspect Ratio Microstructures
WO2013018730A1 (en) Pellicle for lithography, photomask fitted with pellicle and exposure method
JP5136202B2 (en) Method for producing resin-containing solution for resist
JP6262416B2 (en) Lithographic polymer solution manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP5206986B2 (en) Positive resist material and pattern forming method
JP6520054B2 (en) Purification method and manufacturing method of polymer for semiconductor lithography, manufacturing method of resist composition, and manufacturing method of substrate on which a pattern is formed
Yamakawa et al. Affinity Analysis of Photoacid Generator in the Thin Film of Chemical Amplification Resist by Contact Angle Measurement
JP5285214B2 (en) Granular cross-linked polymer
JP5821317B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP6369103B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP6623562B2 (en) Method for producing lithographic material, method for producing lithographic composition, and method for producing substrate on which pattern is formed
JP5239567B2 (en) Apparatus for producing composition solution for semiconductor production
JP5751487B2 (en) Method for producing resist polymer, method for producing resist composition, and method for producing substrate on which pattern is formed
JP5428800B2 (en) Lithographic composition filling apparatus and lithographic composition filling method
JP6481334B2 (en) Purification method and manufacturing method of polymer for semiconductor lithography, manufacturing method of resist composition, and manufacturing method of substrate on which pattern is formed
JP2005123599A (en) Method of evaluating liquid solution for forming application film of semiconductor
Wu et al. Defect reduction in advanced lithography processes using a new dual functionality filter
JP6268804B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5217627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250