JP2007012974A - Method of forming resist film - Google Patents

Method of forming resist film Download PDF

Info

Publication number
JP2007012974A
JP2007012974A JP2005193565A JP2005193565A JP2007012974A JP 2007012974 A JP2007012974 A JP 2007012974A JP 2005193565 A JP2005193565 A JP 2005193565A JP 2005193565 A JP2005193565 A JP 2005193565A JP 2007012974 A JP2007012974 A JP 2007012974A
Authority
JP
Japan
Prior art keywords
resist film
resist
forming
defects
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005193565A
Other languages
Japanese (ja)
Other versions
JP4450219B2 (en
Inventor
Masataka Watanabe
政孝 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005193565A priority Critical patent/JP4450219B2/en
Publication of JP2007012974A publication Critical patent/JP2007012974A/en
Application granted granted Critical
Publication of JP4450219B2 publication Critical patent/JP4450219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of forming a less defective resist film by reliably and efficiently removing microcontamination causing micro defects in a resist liquid, and preventing fine bubbles from being produced. <P>SOLUTION: The method of forming a resist film by coating a board with a resist liquid after filtering the resist liquid at a filtering pressure of 9,500 Pa or less, using a high polymer material-made filter having a hole diameter of 0.02 μm. This reliably and efficiently removes microcontamination in the resist liquid causing micro defects from which no problem arises in the prior art, prevents fine bubbles from being produced to lessen the defect of the resist film down to a required quantity of defects, and improves the yield of a resist film-coated product such as photo mask blank formed with the resist film and a work under process such as finely processed photo masks using the resist film. Thus, the resist film is formed efficiently by keeping the productivity of the resist film forming at a maximum with meeting the requirements of the resist film for lessening the defect. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、フォトマスク、半導体集積回路、CCD(電荷結合素子)等の加工に使用されるレジスト膜の成膜方法、特に、レジスト液中の微小異物を確実かつ効率的に除去すると共に、微小気泡の発生を防止して、欠陥の少ないレジスト膜を成膜する方法に関する。   The present invention relates to a method for forming a resist film used for processing a photomask, a semiconductor integrated circuit, a CCD (charge coupled device), and the like, and in particular, removes minute foreign matters in a resist solution reliably and efficiently, The present invention relates to a method of forming a resist film with few defects by preventing generation of bubbles.

近年、半導体加工、特に、大規模集積回路の高集積化により、回路パターンの微細化が進められており、その結果、回路を構成する配線パターンの細線化や、セルを構成する層間の配線のためのコンタクトホールパターンの微細化技術の要求はますます高まってきている。また、この配線パターンやコンタクトホールパターンを形成する光リソグラフィーで用いられるマスクパターンが書き込まれたフォトマスクの製造においても、上記微細化に伴い、より微細かつ正確なマスクパターンを書き込むことができる技術が求められている。   In recent years, circuit processing has been miniaturized due to semiconductor processing, in particular, high integration of large-scale integrated circuits. As a result, wiring patterns constituting a circuit have been thinned and wiring between layers constituting a cell has been reduced. Therefore, there is an increasing demand for miniaturization technology for contact hole patterns. Also, in the manufacture of a photomask in which a mask pattern used in photolithography for forming a wiring pattern or a contact hole pattern is written, there is a technique capable of writing a finer and more accurate mask pattern with the miniaturization. It has been demanded.

そのため、例えば、光リソグラフィーを行う際の原板となるフォトマスクの加工においては、より精度の高いマスクパターンをフォトマスク上に形成しなければならず、それにはフォトマスクブランク上に高精度のレジストパターンを形成することが必要になる。   Therefore, for example, in the processing of a photomask that is an original plate when performing photolithography, a mask pattern with higher accuracy must be formed on the photomask, and for this purpose, a highly accurate resist pattern is formed on the photomask blank. It is necessary to form.

実際の半導体基板を加工する際の光リソグラフィーは縮小投影を行うため、マスクパターンは実際に必要な被転写パターンサイズの4倍程度の大きさであるが、それだけ精度が緩くなるというわけではなく、原板であるフォトマスクには、露光後の被転写パターン精度に求められるものよりも高い精度が求められる。更に、すでに現在行われているリソグラフィーでは、描画しようとしている回路パターン(被転写パターン)は、使用する光の波長をかなり下回るサイズになっており、回路の形状をそのまま4倍にしたマスクパターンを使用すると、光リソグラフィーを行う際に生じる光の干渉等の影響で、マスクパターンどおりの形状が回路パターンとして転写されない。   Since optical lithography when processing an actual semiconductor substrate performs reduction projection, the mask pattern is about four times as large as the size of the transferred pattern that is actually required, but that does not mean that the accuracy is loosened. Photomasks that are original plates are required to have higher accuracy than that required for transferred pattern accuracy after exposure. Furthermore, in the lithography that is currently being performed, the circuit pattern (transfer pattern) to be drawn is a size that is considerably smaller than the wavelength of the light to be used. If it is used, the shape as the mask pattern is not transferred as a circuit pattern due to the influence of light interference or the like that occurs during photolithography.

そこでこれらの影響を減じるため、マスクパターンをOPC(Optical Proximity Correction)等の手法により実際の回路パターンより複雑な形状に加工する技術が用いられており、フォトマスクブランク加工の際に必要なレジストパターンにも、より微細かつ高精度なリソグラフィー技術が求められている。また、使用されるレジスト材料も、高感度、高解像度を与える化学増幅型が使用されるようになっている。   In order to reduce these effects, a technique for processing a mask pattern into a more complicated shape than an actual circuit pattern by a technique such as OPC (Optical Proximity Correction) is used, and a resist pattern necessary for photomask blank processing is used. In addition, there is a demand for a finer and more accurate lithography technique. Also, the resist material used is a chemically amplified type that provides high sensitivity and high resolution.

一方、描画される回路パターンが微細化し、回路パターンの微細化に伴ってレジスト膜の膜厚が低下するに従い、レジストパターンの欠陥についても、より微細な欠陥、例えば0.2〜0.3μm程度又はそれ以下のサイズの欠陥が問題になってきている。従来に比べて微細な回路パターンを転写するフォトマスクの製造において、このような微細な欠陥の問題は、レジストパターンを用いてマスクパターンを形成する際のみならず、フォトマスクを用いて転写した回路パターンの精度に影響を与えるものであるから、レジストパターンに問題となる欠陥が発生してしまった場合は何らかの方法で補修することになるが、レジストパターンが微細になるほどその補修には多大の労力とコストが必要となる。   On the other hand, as the circuit pattern to be drawn becomes finer and the film thickness of the resist film decreases with the miniaturization of the circuit pattern, the resist pattern defect also becomes more fine, for example, about 0.2 to 0.3 μm. Or defects of a smaller size have become a problem. In the production of photomasks that transfer a fine circuit pattern compared to conventional ones, the problem of such fine defects is not only when forming a mask pattern using a resist pattern, but also when a circuit is transferred using a photomask. Since it affects the accuracy of the pattern, if a defective defect occurs in the resist pattern, it will be repaired in some way. However, the finer the resist pattern, the greater the effort required to repair it. And cost.

レジストパターンの欠陥の問題は多くの原因が考えられ、その1つはレジスト液塗布時に発生する欠陥である。これはレジスト液中に存在する異物によるものである。そのため、レジスト液を塗布する際にフィルターを通して異物を濾過することが行われており、最近、この異物を除去するためのフィルターとして、孔径が小さいものでは0.02μmのフィルターが使われるようになっている。   There are many possible causes for the defect of the resist pattern, one of which is a defect that occurs during the application of the resist solution. This is due to foreign matter present in the resist solution. Therefore, foreign matter is filtered through a filter when applying a resist solution. Recently, a filter having a small pore diameter of 0.02 μm has been used as a filter for removing the foreign matter. ing.

ところが、孔径の小さいフィルターを使用すれば、そのフィルターの孔径に対応するサイズの異物が完全に除去できるわけではなく、このような孔径の小さいフィルターを用いても0.2μm程度又はそれ以上のサイズの欠陥を引き起こす異物を十分には除去しきれないことが問題となっている。更に、このようなフィルターを用いてレジスト液を濾過したときに、微小な気泡が発生してそれに由来する欠陥が生じることも懸念されている。   However, if a filter with a small pore size is used, foreign matters having a size corresponding to the pore size of the filter cannot be completely removed. Even if such a filter with a small pore size is used, the size is about 0.2 μm or more. It is a problem that the foreign matter causing the defect cannot be sufficiently removed. Furthermore, when the resist solution is filtered using such a filter, there is a concern that minute bubbles are generated and defects derived therefrom are generated.

なお、この発明に関連する先行技術文献情報としては以下のものがある。   The prior art document information related to the present invention includes the following.

特開平10−305256号公報JP-A-10-305256 特開平9−171955号公報JP-A-9-171955 特開2004−212975号公報JP 2004-221975 A

本発明は、上記問題を解決するためになされたもので、従来は問題とならなかった微細な欠陥の原因となるレジスト液中の微小異物を確実かつ効率的に除去すると共に、微小気泡の発生を防止して、欠陥の少ないレジスト膜を成膜することができる方法を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and it is possible to reliably and efficiently remove minute foreign matters in a resist solution that cause fine defects that have not been a problem in the past, and to generate microbubbles. It is an object of the present invention to provide a method capable of preventing the above and forming a resist film with few defects.

本発明者は、レジスト膜の微細な欠陥を防ぐため、レジスト液中の微小異物をフィルターにより濾過することにより除去する方法を検討したが、孔径0.02μmのフィルターを使用し、一般的に適用されている条件でレジスト液を濾過しても、微細な欠陥、特に、フォトマスクブランク上に塗布したレジスト膜の0.2μmサイズの欠陥を優位に減少させることができなかった。   In order to prevent fine defects in the resist film, the present inventor examined a method for removing fine foreign matters in the resist solution by filtering through a filter. However, the present inventor generally uses a filter having a pore diameter of 0.02 μm and is generally applicable. Even when the resist solution was filtered under the conditions as described above, it was not possible to significantly reduce fine defects, particularly 0.2 μm size defects of the resist film coated on the photomask blank.

そこで、本発明者は、上記事情に鑑み鋭意検討を重ねた結果、レジスト液を孔径が0.02μm以下、例えば、孔径が0.02μmの高分子材料製フィルター、特にポリオレフィン製フィルターにて9,500Pa以下、好ましくは7,000〜9,500Paの濾過圧で濾過し、この濾過されたレジスト液を基板上に塗布してレジスト膜を成膜すると、上記濾過圧より高い濾過圧で濾過したときと比べて単位時間当たりのレジスト液の濾過量を大きく低下させずに、欠陥量が格段に低減し、例えば0.2μmサイズの欠陥が問題となる100nm以下のマスクパターンが形成されるフォトマスクブランク等の基板上に欠陥の極めて少ないレジスト膜を成膜できることを見出し、本発明をなすに至った。   Therefore, as a result of intensive studies in view of the above circumstances, the present inventors have found that the resist solution has a pore size of 0.02 μm or less, for example, a polymer material filter having a pore size of 0.02 μm, particularly a polyolefin filter, 9, When filtration is performed at a filtration pressure of 500 Pa or less, preferably 7,000 to 9,500 Pa, and the filtered resist solution is applied onto the substrate to form a resist film. Photomask blank in which a mask pattern of 100 nm or less in which, for example, a 0.2 μm size defect is a problem is formed, without significantly reducing the amount of filtered resist solution per unit time compared to The present inventors have found that a resist film with very few defects can be formed on a substrate such as the above, and have made the present invention.

即ち、本発明は、以下のレジスト膜の成膜方法を提供する。
請求項1:
基板上にレジスト液を塗布してレジスト膜を成膜する方法であって、レジスト液を孔径が0.02μm以下の高分子材料製フィルターにて9,500Pa以下の濾過圧で濾過して塗布することを特徴とするレジスト膜の成膜方法。
請求項2:
上記高分子材料がポリオレフィンであることを特徴とする請求項1記載の成膜方法。
請求項3:
上記基板が200nm以下のマスクパターンが形成されるフォトマスクブランクであることを特徴とする請求項1又は2記載の成膜方法。
That is, the present invention provides the following resist film formation method.
Claim 1:
A method of forming a resist film by applying a resist solution on a substrate, and applying the resist solution by filtering with a polymer material filter having a pore size of 0.02 μm or less at a filtration pressure of 9,500 Pa or less. A method for forming a resist film.
Claim 2:
2. The film forming method according to claim 1, wherein the polymer material is polyolefin.
Claim 3:
3. The film forming method according to claim 1, wherein the substrate is a photomask blank on which a mask pattern of 200 nm or less is formed.

本発明によれば、従来は問題とならなかった微細な欠陥の原因となるレジスト液中の微小異物を確実かつ効率的に除去すると共に、微小気泡の発生を防止して、要求される欠陥量までレジスト膜の欠陥を低減し、レジスト膜を成膜したフォトマスクブランク等のレジスト膜被覆物、更には、レジスト膜を用いて微細加工されたフォトマスク等の被加工物の歩留まりを向上させることができる。また、レジスト膜の欠陥低減の要求を満足しつつレジスト膜の成膜の生産性を最大限に維持して効率よくレジスト膜を成膜することができる。   According to the present invention, it is possible to reliably and efficiently remove minute foreign matters in a resist solution that cause fine defects that have not been a problem in the past, and to prevent generation of microbubbles, thereby requiring a required amount of defects. To improve the yield of workpieces such as photomasks that have been finely processed using a resist film. Can do. In addition, the resist film can be efficiently formed while maintaining the resist film formation productivity to the maximum while satisfying the demand for reducing the defects of the resist film.

以下、本発明について更に詳しく説明する。
本発明においてレジスト膜は、レジスト液を孔径が0.02μm以下の高分子材料製フィルターにて9,500Pa以下の濾過圧で濾過して基板上に塗布することにより成膜する。
Hereinafter, the present invention will be described in more detail.
In the present invention, the resist film is formed by filtering the resist solution through a filter made of a polymer material having a pore diameter of 0.02 μm or less at a filtration pressure of 9,500 Pa or less and applying the resist solution onto the substrate.

本発明においては、微小異物、特に0.2μmサイズの異物をより確実に除去するため、レジスト液の濾過に孔径が0.02μm以下の高分子材料製フィルターを用いる。異物の除去率と濾過効率(生産性)とを勘案すると、特に孔径0.02μmのフィルターを用いることが好ましい。フィルターの材質としては、超高分子量ポリエチレン、ポリエチレン−ポリプロピレン等のポリオレフィンが好ましい。上記材質で形成された上記孔径のフィルターとしては、市販品を使用し得る。   In the present invention, a filter made of a polymer material having a pore size of 0.02 μm or less is used for filtering the resist solution in order to more surely remove minute foreign matters, particularly 0.2 μm size foreign matters. Considering the removal rate of foreign substances and the filtration efficiency (productivity), it is particularly preferable to use a filter having a pore diameter of 0.02 μm. The filter material is preferably a polyolefin such as ultrahigh molecular weight polyethylene or polyethylene-polypropylene. A commercially available product can be used as the filter having the above pore diameter formed of the above material.

また、本発明においては、レジスト液の濾過の濾過圧(差圧)を9,500Pa以下、好ましくは7,500〜9,500Paの濾過圧で濾過するが、濾過圧の設定及び調整は、例えば特開平9−171955号公報(特許文献2)などに記載されている従来公知の装置が使用でき、レジスト液供給用のポンプを有し、濾過圧、即ちフィルター前後の差圧を計測して、自動で又は手動でポンプの吐出圧力を調節することができる濾過機構により、レジスト液の濾過圧を上記範囲に設定することにより実施可能である。   Further, in the present invention, the filtration pressure (differential pressure) of the resist solution is filtered at a filtration pressure of 9,500 Pa or less, preferably 7,500-9,500 Pa. A conventionally known apparatus described in JP-A-9-171955 (Patent Document 2) can be used, has a resist solution supply pump, measures the filtration pressure, that is, the differential pressure before and after the filter, It can be carried out by setting the filtration pressure of the resist solution within the above range by a filtration mechanism capable of adjusting the discharge pressure of the pump automatically or manually.

そして、上述したように濾過したレジスト液をノズルから吐出させて、基板上に塗布する。塗布、成膜の方式はスピンコート、ロールコート、フローコート等多くの方法が知られており、本発明の塗布においては、特にこれら特定の方式に限られるものではないが、スピンコートは膜厚が小さく、かつ均一な膜を得る上で好ましい方法である。   Then, the resist solution filtered as described above is discharged from the nozzle and applied onto the substrate. Many methods such as spin coating, roll coating, and flow coating are known as coating and film forming methods, and the coating of the present invention is not particularly limited to these specific methods. Is a preferable method for obtaining a small and uniform film.

本発明は、レジスト液を従来適用されていた濾過圧よりも大幅に低い濾過圧で濾過するものであり、この濾過されたレジスト液を基板上に塗布してレジスト膜を成膜すると、欠陥量が格段に減少し、特に0.2μmサイズのより微細な欠陥が問題となる200nm以下のレジストパターンを形成するためのレジスト膜、例えば100nm以下の回路パターンを形成するために用いるフォトマスクの加工を行うためにフォトマスクブランク上に塗布されるレジスト膜の形成に有用であり、欠陥の極めて少ないレジスト膜を成膜することができる。   In the present invention, the resist solution is filtered at a filtration pressure that is significantly lower than the conventionally applied filtration pressure. When this filtered resist solution is applied onto a substrate to form a resist film, the amount of defects is reduced. In particular, processing of a photomask used to form a resist film for forming a resist pattern of 200 nm or less, for example, a circuit pattern of 100 nm or less, in which a finer defect having a size of 0.2 μm becomes a problem is particularly problematic. Therefore, it is useful for forming a resist film to be applied on a photomask blank, and a resist film with extremely few defects can be formed.

フォトマスクの加工の場合、レジスト液が塗布される基板として、透明基板上にクロム化合物に代表される金属性の遮光膜が形成されたフォトマスクブランクが使用される。この場合、フォトマスクブランク上に形成されたレジスト膜をパターン露光、現像してレジストパターンが形成され、このレジストパターンをマスクとしてフォトマスクブランクの遮光膜がパターンニングされてマスクパターンが形成される。なお、このようなパターン形成に用いられるレジスト膜の欠陥の有無は、例えば、日立ハイテクノロジーズ社製GM−1000等の市販の欠陥検査機を用いて検査することができる。   In the case of processing a photomask, a photomask blank in which a metallic light-shielding film typified by a chromium compound is formed on a transparent substrate is used as a substrate to which a resist solution is applied. In this case, the resist film formed on the photomask blank is subjected to pattern exposure and development to form a resist pattern, and the light shielding film of the photomask blank is patterned using this resist pattern as a mask to form a mask pattern. In addition, the presence or absence of the defect of the resist film used for such pattern formation can be test | inspected using commercially available defect inspection machines, such as Hitachi High-Technologies GM-1000.

本発明が対象とするレジスト液としては、公知のものがいずれも適用可能であるが、例えば100nm以下の回路パターンを形成するため、又は200nm以下のマスクパターンを有するフォトマスクの加工を行うためのレジスト材料としては、解像性が高い化学増幅型レジスト液が好ましく、必要に応じてポジ型もネガ型も選択し得る。   Any known resist solution can be applied to the present invention. For example, for forming a circuit pattern of 100 nm or less, or for processing a photomask having a mask pattern of 200 nm or less. As the resist material, a chemically amplified resist solution having high resolution is preferable, and a positive type or a negative type can be selected as necessary.

また、フォトマスクの加工を行うためのレジスト液としては、クロム等を含有する金属性の膜に対するエッチング選択性を要求されることから、レジスト材料樹脂に芳香属骨格を有するものが選択されることが多く、これらについては多数の公知例があるが、これらのいずれも適用可能であり、また、エキシマレーザー光用レジスト液や電子線照射用レジスト液も適用可能である。   In addition, as a resist solution for processing a photomask, an etching selectivity for a metallic film containing chromium or the like is required, so that a resist material resin having an aromatic skeleton is selected. There are many known examples of these, but any of these can be applied, and excimer laser light resist solutions and electron beam irradiation resist solutions are also applicable.

更に、本発明は、膜厚250nm以下のレジスト膜を成膜する際に特に有効である。レジスト液の粘度は、使用する樹脂等の固形分及び溶剤の種類並びにこれらの配合比、特に固形分濃度により異なるが、膜厚250nm以下のレジスト膜を成膜する場合に用いるレジスト液は、一般に固形分濃度が低く、比較的低粘度であることから、本発明の効果が特に発揮されるため好ましい。なお、濾過するレジスト液の固形分濃度及び粘度は、特に限定されるものではないが、例えば、固形分濃度が4〜10質量%、粘度が1〜200Pa・sが好適である。   Furthermore, the present invention is particularly effective when a resist film having a thickness of 250 nm or less is formed. The viscosity of the resist solution varies depending on the solid content of the resin, etc. used, the type of solvent, and their blending ratio, particularly the solid content concentration, but the resist solution used when forming a resist film with a film thickness of 250 nm or less is generally Since the solid content concentration is low and the viscosity is relatively low, the effect of the present invention is particularly exhibited, which is preferable. In addition, the solid content concentration and the viscosity of the resist solution to be filtered are not particularly limited. For example, the solid content concentration is preferably 4 to 10% by mass and the viscosity is 1 to 200 Pa · s.

以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited to the following Example.

[実施例1,2、比較例1〜3]
152mm×152mm×6.35mmの石英ガラス基板を用い,石英ガラス基板上にスパッタリングによりクロム化合物(CrON)の遮光膜を70.0nmの膜厚で成膜した。
[Examples 1 and 2 and Comparative Examples 1 to 3]
Using a 152 mm × 152 mm × 6.35 mm quartz glass substrate, a chromium compound (CrON) light-shielding film was formed on the quartz glass substrate by sputtering to a thickness of 70.0 nm.

次に、孔径0.02μmのフィルター(日本マイクロリース社製 CWAX061S2)を、濾過圧が計測できる濾過機構を備えたスピンコーターに装着し、下記の電子線描画露光用ネガ型レジスト液をフィルターで、濾過圧を各々7,000Pa、9,500Pa、13,000Pa、20,000Pa、27,500Paに調整して濾過し、濾過後のレジスト液を上記基板上のクロム遮光膜上に各々4ml塗布した。   Next, a filter having a pore size of 0.02 μm (CWAX061S2 manufactured by Nihon Micro Lease Co., Ltd.) is attached to a spin coater equipped with a filtration mechanism capable of measuring filtration pressure, and the following negative resist solution for electron beam drawing exposure is used as a filter. Filtration pressures were adjusted to 7,000 Pa, 9,500 Pa, 13,000 Pa, 20,000 Pa, and 27,500 Pa, respectively, and 4 ml of the resist solution after filtration was applied onto the chromium light-shielding film on the substrate.

電子線描画用ネガ型レジスト液
ヒドロキシスチレン−インデン(85:15)コポリマー(Mw=3,000) 80質量部
トリ(4−エチルフェニル)スルホニウムトリフルオロメタンスルホネート 10質量部
テトラメトキシメチルグリコールウリル 10質量部
トリ−n−ブチルアミン 0.6質量部
フッ素系界面活性剤 0.2質量部
プロピレングリコールジメチルエーテルアセテート 900質量部
乳酸エチル 400質量部
Negative resist solution for electron beam drawing Hydroxystyrene-indene (85:15) copolymer (Mw = 3,000) 80 parts by mass Tri (4-ethylphenyl) sulfonium trifluoromethanesulfonate 10 parts by mass tetramethoxymethyl glycol Uril 10 parts by mass Tri-n-butylamine 0.6 parts by mass Fluorosurfactant 0.2 parts by mass Propylene glycol dimethyl ether acetate 900 parts by mass Ethyl lactate 400 parts by mass

次に、レジスト液を塗布した基板を、常法によりプリベークし、冷却して、欠陥検査機(日立ハイテクノロジ−ズ社製GM−1000)でレジスト膜の欠陥数を測定した。結果を表1に示す。   Next, the substrate coated with the resist solution was pre-baked by a conventional method, cooled, and the number of defects in the resist film was measured with a defect inspection machine (GM-1000 manufactured by Hitachi High-Technologies Corporation). The results are shown in Table 1.

Figure 2007012974
Figure 2007012974

上記結果より、濾過圧を7,000〜9,500Paとしたとき、これより高い濾過圧、例えば13,000Paで濾過したときと比べて単位時間当たりのレジスト液の濾過量は1/2〜3/4に低減するが、欠陥総数は1/5〜2/5、特に0.2μmを超えて0.3μm以下のサイズの微細欠陥にあっては1/6〜1/3に減少する。従って、濾過圧を9,500Pa以下とすれば、レジスト膜の欠陥数が格段に低減、即ち、図1に示されるように、単位濾過流速当たりの欠陥率が低減し、特に、濾過圧を7,000〜9,500Paとすれば、欠陥数をレジスト液塗布の生産性を大きく落とすことなく、レジスト膜の欠陥数を格段に低減できることがわかる。   From the above results, when the filtration pressure is 7,000 to 9,500 Pa, the filtration amount of the resist solution per unit time is 1/2 to 3 as compared with the filtration pressure higher than this, for example, 13,000 Pa. Although the number of defects is reduced to / 4, the total number of defects is reduced to 1/5 to 2/5, particularly to 1/6 to 1/3 for fine defects having a size of more than 0.2 μm and not more than 0.3 μm. Therefore, if the filtration pressure is set to 9,500 Pa or less, the number of defects in the resist film is remarkably reduced, that is, the defect rate per unit filtration flow rate is reduced as shown in FIG. It can be seen that the number of defects in the resist film can be remarkably reduced without greatly reducing the productivity of the resist solution coating when the number of defects is set to 1,000 to 9,500 Pa.

実施例及び比較例のレジスト液の濾過圧に対するレジスト膜の欠陥数をプロットしたグラフである。It is the graph which plotted the number of defects of the resist film with respect to the filtration pressure of the resist liquid of an Example and a comparative example.

Claims (3)

基板上にレジスト液を塗布してレジスト膜を成膜する方法であって、レジスト液を孔径が0.02μm以下の高分子材料製フィルターにて9,500Pa以下の濾過圧で濾過して塗布することを特徴とするレジスト膜の成膜方法。   A method of forming a resist film by applying a resist solution on a substrate, and applying the resist solution by filtering with a filter made of a polymer material having a pore size of 0.02 μm or less with a filtration pressure of 9,500 Pa or less. A method for forming a resist film. 上記高分子材料がポリオレフィンであることを特徴とする請求項1記載の成膜方法。   2. The film forming method according to claim 1, wherein the polymer material is polyolefin. 上記基板が200nm以下のマスクパターンが形成されるフォトマスクブランクであることを特徴とする請求項1又は2記載の成膜方法。
3. The film forming method according to claim 1, wherein the substrate is a photomask blank on which a mask pattern of 200 nm or less is formed.
JP2005193565A 2005-07-01 2005-07-01 Method for forming resist film and method for preventing generation of microbubbles in resist solution Active JP4450219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005193565A JP4450219B2 (en) 2005-07-01 2005-07-01 Method for forming resist film and method for preventing generation of microbubbles in resist solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005193565A JP4450219B2 (en) 2005-07-01 2005-07-01 Method for forming resist film and method for preventing generation of microbubbles in resist solution

Publications (2)

Publication Number Publication Date
JP2007012974A true JP2007012974A (en) 2007-01-18
JP4450219B2 JP4450219B2 (en) 2010-04-14

Family

ID=37751058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005193565A Active JP4450219B2 (en) 2005-07-01 2005-07-01 Method for forming resist film and method for preventing generation of microbubbles in resist solution

Country Status (1)

Country Link
JP (1) JP4450219B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025790A1 (en) * 2016-08-03 2018-02-08 東京応化工業株式会社 Method for purifying liquid, and method for producing porous membrane
JP2018046269A (en) * 2016-09-08 2018-03-22 東京エレクトロン株式会社 Process liquid supply device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025790A1 (en) * 2016-08-03 2018-02-08 東京応化工業株式会社 Method for purifying liquid, and method for producing porous membrane
TWI804471B (en) * 2016-08-03 2023-06-11 日商東京應化工業股份有限公司 Liquid purification method and porous membrane manufacturing method
JP2018046269A (en) * 2016-09-08 2018-03-22 東京エレクトロン株式会社 Process liquid supply device

Also Published As

Publication number Publication date
JP4450219B2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
US8067147B2 (en) Removable pellicle for immersion lithography
JP5727350B2 (en) Method for producing resist composition for lithography, method for producing resist protective film forming composition, method for producing silicon-containing resist underlayer film forming method, and method for producing organic resist underlayer film forming composition
CN101930165B (en) Pellicle frame and lithographic pellicle
JP6806274B2 (en) How to make photomasks, photomask blanks, and photomasks
CN101930166B (en) Pellicle frame and lithographic pellicle
TWI447532B (en) Substrate treating solution and method for treating resist substrate using the same
JP2007142181A (en) Substrate processing method and rinse device
JP2005353763A (en) Exposure device and pattern forming method
JP4450219B2 (en) Method for forming resist film and method for preventing generation of microbubbles in resist solution
KR101109902B1 (en) Method of manufacturing photomask, pattern transfer method, processing device for photomask substate , and thin film patterning method
KR101666261B1 (en) Method for forming silicon-containing resist underlayer film
KR100384800B1 (en) Pattern formation material, pattern formation method, and manufacturing method of mask for exposure
US20090166319A1 (en) System and Method for Performing High Flow Rate Dispensation of a Chemical onto a Photolithographic Component
CN103135365A (en) Liquid immersion member, method for manufacturing liquid immersion member, exposure apparatus, and device manufacturing method
JP5989376B2 (en) Manufacturing method of defect evaluation mask blank and defect evaluation method
TWI440971B (en) Pellicle frame
Gallagher et al. EUV masks: ready or not?
CN109828438A (en) The method for monitoring the coating platform flatness of litho machine
US6551749B1 (en) Developer and method for forming resist pattern and photomask produced by use thereof
RU2484512C1 (en) Non-metal positive photoresist developer
Kohyama et al. Updated UPE filter design for point-of-use EUV CAR photoresist filtration for defect improvement
JP2022128851A (en) Reflection type mask blank, reflection type mask, and method for manufacturing reflection type mask
Tang Advanced Photoresists: Development, Application and Market
Kohyama et al. An update on the improvement in optimization of point-of-use filtration of metal oxide photoresists
RU2476917C1 (en) Method of making die for nanoimprint lithography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4450219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160205

Year of fee payment: 6