JP2010019562A - Two-dimensional distribution measuring instrument using laser beam - Google Patents

Two-dimensional distribution measuring instrument using laser beam Download PDF

Info

Publication number
JP2010019562A
JP2010019562A JP2008177628A JP2008177628A JP2010019562A JP 2010019562 A JP2010019562 A JP 2010019562A JP 2008177628 A JP2008177628 A JP 2008177628A JP 2008177628 A JP2008177628 A JP 2008177628A JP 2010019562 A JP2010019562 A JP 2010019562A
Authority
JP
Japan
Prior art keywords
laser
cell
measured
fluorescence
molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008177628A
Other languages
Japanese (ja)
Inventor
Kazumi Yasuda
和巳 安田
Kazuhiro Oshiryoji
一浩 押領司
Kenji Yamamoto
研二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008177628A priority Critical patent/JP2010019562A/en
Publication of JP2010019562A publication Critical patent/JP2010019562A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a two-dimensional distribution measuring instrument using a laser beam for measuring a density distribution with high precision in a measuring field with a large density deviation of a molecule to be measured. <P>SOLUTION: The two-dimensional distribution measuring instrument includes a beam expander which outputs a sheetlike laser beam to irradiate the molecule to be measured of the measuring field, the cell provided between the beam expander and the measuring field to have a fluorescent substance sealed therein and permitting the laser beam to pass, a fluorescence measuring means for measuring the fluorescent intensity of the fluorescence emitted from the fluorescent substance in the cell and the fluorescent intensity of the fluorescence emitted from the molecule to be measured of the measuring field, and a measuring means for normalizing the fluorescent intensity of the measuring field by the fluorescent intensity in the cell using the position data of the cell and the position data of the measuring field, so that a density distribution is measured with high precision. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、レーザ誘起蛍光法を用いた被計測分子の濃度、温度などの特性に関する2次元分布を計測するレーザ光を用いた計測装置に関する。   The present invention relates to a measuring apparatus using a laser beam that measures a two-dimensional distribution related to characteristics such as concentration and temperature of a molecule to be measured using a laser-induced fluorescence method.

被計測分子の濃度や温度の2次元分布を計測する方法として、2次元のシート状のレーザ光を用いたレーザシート法とレーザ誘起蛍光法(LIF:Laser Induced Fluorescence)を組み合わせた計測手法、Planer− LIF(以下P−LIFと略す)が従来用いられている。   As a method to measure the two-dimensional distribution of the concentration and temperature of the molecule to be measured, a measurement method combining the laser sheet method using a two-dimensional sheet-like laser beam and the laser induced fluorescence (LIF), Planer -LIF (hereinafter abbreviated as P-LIF) is conventionally used.

図6に、一般的なP−LIFを用いた2次元濃度計測装置の概略構成を示す。本計測装置において、励起用パルスレーザ装置1から発振したレーザは波長可変色素レーザ装置2に入力され、被計測分子の電子励起エネルギーに対応した波長に変換されたビーム状のレーザ光11を発振する。レーザ光11はビームエキスパンダ13で厚さ1mm前後のシート状に広げられ、凸面レンズ20で射出方向に平行な幅を持つレーザシート光12に整形されて、被計測分子を含む計測場10に照射される。図のレーザシート光の拡がりは紙面とほぼ平行である。   FIG. 6 shows a schematic configuration of a two-dimensional concentration measuring apparatus using a general P-LIF. In this measurement apparatus, the laser oscillated from the excitation pulse laser apparatus 1 is input to the wavelength tunable dye laser apparatus 2 and oscillates a beam-shaped laser beam 11 converted to a wavelength corresponding to the electron excitation energy of the molecule to be measured. . The laser beam 11 is spread by a beam expander 13 into a sheet shape having a thickness of about 1 mm, and is shaped into a laser sheet beam 12 having a width parallel to the emission direction by the convex lens 20 to form a measurement field 10 containing a molecule to be measured. Irradiated. The spread of the laser sheet light in the figure is almost parallel to the paper surface.

計測場10の被計測分子はレーザシート光12の一部を吸収して励起状態になり、基底状態に戻るときに特定の波長を持った蛍光を発する。この蛍光をレーザシート光に対しほぼ直交する方向あるいは斜め方向からレンズ5で集光してCCDカメラ4で蛍光強度の2次元分布データとして計測する。計測場10とレンズ5の間には光学フィルタ6を設置し、光学フィルタ6によってレーザシート光12の散乱光などの迷光を低減し被計測分子の蛍光を選択的にレンズ5に導く。計測したデータはライン8で制御装置である制御コンピュータ3に取り込む。また制御コンピュータ3に設けた同時計測手段により同期ライン9で励起用パルスレーザ装置1の発振とCCDカメラ4の露光タイミングを調整する。   A molecule to be measured in the measurement field 10 absorbs a part of the laser sheet light 12 to be in an excited state, and emits fluorescence having a specific wavelength when returning to the ground state. The fluorescence is condensed by the lens 5 from a direction substantially orthogonal to or oblique to the laser sheet light and measured as two-dimensional distribution data of fluorescence intensity by the CCD camera 4. An optical filter 6 is installed between the measurement field 10 and the lens 5, and stray light such as scattered light of the laser sheet light 12 is reduced by the optical filter 6 to selectively guide the fluorescence of the molecule to be measured to the lens 5. The measured data is fetched into the control computer 3 which is a control device on line 8. Further, the simultaneous measurement means provided in the control computer 3 adjusts the oscillation of the excitation pulse laser device 1 and the exposure timing of the CCD camera 4 through the synchronization line 9.

P−LIFでは、蛍光強度は被計測分子の濃度とレーザシート光の強度の積に比例する。レーザシート光は一般に不均質な強度分布を持っており、計測する全領域において一様な強度分布のレーザシート光12を照射することは困難である。したがって被計測分子の濃度すなわち蛍光強度を正確に計測するためには、CCDカメラ4で計測した蛍光強度からレーザシート光12の強度分布の変化による影響を除去する必要がある。   In P-LIF, the fluorescence intensity is proportional to the product of the concentration of the molecule to be measured and the intensity of the laser sheet light. The laser sheet light generally has an inhomogeneous intensity distribution, and it is difficult to irradiate the laser sheet light 12 having a uniform intensity distribution in the entire region to be measured. Therefore, in order to accurately measure the concentration of the molecule to be measured, that is, the fluorescence intensity, it is necessary to remove the influence of the change in the intensity distribution of the laser sheet light 12 from the fluorescence intensity measured by the CCD camera 4.

レーザシート光12の強度を計測する方法として、計測場10での測定前に、均一な所定濃度の蛍光物質を封入したセル7を計測場10に挿入してレーザシート光によるセル7の蛍光強度を計測する方法が知られている。セル7に封入した蛍光物質の濃度は均一でありセル7の蛍光強度はレーザシート光12の強度に比例する。上記のようにあらかじめ計測したレーザシート光の蛍光強度を用いて計測場10の蛍光強度を除算することにより計測値を正規化し、レーザシート光の強度分布の影響を除去し計測場10の被計測分子濃度を正確に計測する。   As a method of measuring the intensity of the laser sheet light 12, before the measurement at the measurement field 10, a cell 7 in which a fluorescent substance having a uniform predetermined concentration is inserted is inserted into the measurement field 10, and the fluorescence intensity of the cell 7 by the laser sheet light is measured. A method for measuring the current is known. The concentration of the fluorescent material sealed in the cell 7 is uniform, and the fluorescence intensity of the cell 7 is proportional to the intensity of the laser sheet light 12. The measurement value is normalized by dividing the fluorescence intensity of the laser sheet light measured in advance as described above to remove the influence of the intensity distribution of the laser sheet light, and the measurement object 10 is measured. Accurately measure molecular concentration.

また、特許文献1には、計測場とビームエキスパンダの間に蛍光物質を封入したセルを設置し、計測場の蛍光を計測するCCDカメラとは別に、セル中の蛍光物質が発する蛍光を計測するCCDカメラを設置し、2つのCCDカメラで計測場とセルの蛍光強度分布を同時に計測し、セルの蛍光強度分布で計測場の蛍光強度分布を除算して計測値を正規化する計測装置が示されている。   In Patent Document 1, a cell in which a fluorescent material is sealed is installed between a measurement field and a beam expander, and the fluorescence emitted from the fluorescent material in the cell is measured separately from the CCD camera that measures the fluorescence in the measurement field. A measurement device that installs a CCD camera, measures the fluorescence intensity distribution of the measurement field and the cell simultaneously with two CCD cameras, and normalizes the measurement value by dividing the fluorescence intensity distribution of the measurement field by the fluorescence intensity distribution of the cell. It is shown.

特許文献2には、ビームエキスパンダと計測場の間にレーザ光の一部を分岐するビームスプリッタを設け、ビームスプリッタによって分岐したレーザ光を蛍光物質を塗布したガラス板に照射し、ガラス板の蛍光物質から発する蛍光強度を測定し、この蛍光強度分布で計測場の蛍光強度分布を除算することで正規化する計測装置が示されている。   In Patent Document 2, a beam splitter that branches a part of a laser beam is provided between a beam expander and a measurement field, the laser beam branched by the beam splitter is irradiated onto a glass plate coated with a fluorescent material, There is shown a measuring apparatus that measures the fluorescence intensity emitted from a fluorescent substance and normalizes the fluorescence intensity distribution by dividing the fluorescence intensity distribution of the measurement field by this fluorescence intensity distribution.

特開平7-198611号公報Japanese Patent Laid-Open No. 7-198611 特開平9-210909号公報Japanese Unexamined Patent Publication No. 9-210909

しかしながら、上記の被計測分子の計測前にレーザシート光の強度をあらかじめ計測しておく方法では計測場10の蛍光強度とレーザシート光12の強度とを同時に計測できなかった。レーザシート光出力は時間的変動が大きく、そのため、時間的に同期のとれない複数の計測データについて蛍光強度を比較することが困難であった。   However, in the method of measuring the intensity of the laser sheet light in advance before the measurement of the molecule to be measured, the fluorescence intensity of the measurement field 10 and the intensity of the laser sheet light 12 cannot be measured simultaneously. The laser sheet light output varies greatly with time, and it is therefore difficult to compare the fluorescence intensities of a plurality of measurement data that cannot be synchronized in time.

また、P−LIFでは、レーリー散乱や被計測分子を励起するための吸収により、レーザシート光の強度はレーザ装置から離れるに従って減衰し、その減衰量は被計測分子の濃度に比例する。したがって、特許文献1に記載の装置のように、計測場の蛍光強度を均一濃度の蛍光物質を封入したセルの一様な蛍光強度で除算すると、計測場とセル内部の蛍光物質の濃度分布が異なることに起因する計測誤差が生じる。また、特許文献1には、レーザシート光の減衰に対する補正は開示されていない。   In P-LIF, the intensity of the laser sheet light attenuates as the distance from the laser device increases due to Rayleigh scattering or absorption for exciting the molecule to be measured, and the amount of attenuation is proportional to the concentration of the molecule to be measured. Therefore, as in the apparatus described in Patent Document 1, when the fluorescence intensity of the measurement field is divided by the uniform fluorescence intensity of the cell in which the fluorescent substance having a uniform concentration is enclosed, the concentration distribution of the fluorescent substance inside the measurement field and the cell is obtained. A measurement error due to the difference occurs. Patent Document 1 does not disclose correction for attenuation of laser sheet light.

特許文献2に記載の装置では、レーザシート光の幅方向の強度分布を補正することはできるが、レーザシート光の照射方向のレーザシート光の減衰については記載されていない。   In the apparatus described in Patent Document 2, the intensity distribution in the width direction of the laser sheet light can be corrected, but the attenuation of the laser sheet light in the irradiation direction of the laser sheet light is not described.

また、特許文献1および特許文献2に記載の装置はいずれもレーザシート光が完全な平行光である必要があり、レーザシート光を平行にできないときや調整が不十分なときには、濃度を計測できなかったり計測誤差が生じたりする。さらに、上記のいずれの方法においても濃度の絶対値を計測することはできなかった。   In addition, both of the apparatuses described in Patent Document 1 and Patent Document 2 require that the laser sheet light be completely parallel light, and can measure the density when the laser sheet light cannot be made parallel or adjustment is insufficient. Or measurement errors may occur. Furthermore, the absolute value of the concentration could not be measured by any of the above methods.

本発明の目的は、計測場における被計測分子の濃度偏差が大きな計測場においても濃度分布を高精度に計測できるレーザを用いた2次元分布計測装置を提供することである。また、あわせて濃度の絶対値を計測できるレーザを用いた2次元分布計測装置を提供することである。   An object of the present invention is to provide a two-dimensional distribution measurement apparatus using a laser capable of measuring a concentration distribution with high accuracy even in a measurement field where the concentration deviation of molecules to be measured in the measurement field is large. Another object of the present invention is to provide a two-dimensional distribution measuring apparatus using a laser capable of measuring the absolute value of concentration.

本発明は、レーザビームを出力するレーザ装置と、レーザビームをレーザシート光に変換するビームエキスパンダと、被計測分子を有する計測場と、前記計測場の被計測分子に照射されたレーザシート光による被計測分子の蛍光強度を測定する蛍光測定手段と、前記レーザ装置のレーザシート光照射時間と前記蛍光測定手段の測定時間のタイミングを調整する制御装置とを有する2次元分布計測装置において、前記レーザ装置と計測場の間に、内部に蛍光物質が封入されレーザシート光が照射されるセルを設け、前記計測場の被計測分子および前記セルの内部に封入した蛍光物質が発する蛍光を蛍光測定手段によって同時に計測する同時計測手段と、セルの蛍光強度および位置情報と前記計測場の蛍光強度および位置情報を用いて計測場における被計測分子の蛍光強度を正規化する正規化手段とを設けたことを特徴とする。   The present invention relates to a laser device that outputs a laser beam, a beam expander that converts a laser beam into laser sheet light, a measurement field having a molecule to be measured, and laser sheet light irradiated to the molecule to be measured in the measurement field In the two-dimensional distribution measuring apparatus, comprising: a fluorescence measuring means for measuring the fluorescence intensity of the molecule to be measured by: a control device for adjusting the timing of the laser sheet light irradiation time of the laser apparatus and the measuring time of the fluorescence measuring means; Between the laser device and the measurement field, a cell is provided in which a fluorescent material is sealed and irradiated with laser sheet light, and the fluorescence emitted by the molecule to be measured in the measurement field and the fluorescent material sealed in the cell is measured. Means for simultaneous measurement by means of means, and the fluorescence intensity and position information of the cell and the fluorescence intensity and position information of the measurement field. Characterized in that the fluorescence intensity of the measured molecular that provided a normalization means for normalizing.

また、前記正規化手段は、レーザシート光によるセルの蛍光強度により被計測分子の特性を求めて計測場におけるレーザシート光の強度を計算し、計測された被計測分子の蛍光強度を前記計測場におけるレーザ光の強度で正規化して計測場における被計測分子の特性分布を計算することを特徴とする。   Further, the normalizing means calculates the intensity of the laser sheet light in the measurement field by obtaining the characteristic of the molecule to be measured from the fluorescence intensity of the cell by the laser sheet light, and calculates the fluorescence intensity of the measured molecule in the measurement field. The characteristic distribution of the molecule to be measured in the measurement field is calculated by normalizing with the intensity of the laser beam at.

また、前記正規化手段における被計測分子の特性は、被計測分子の吸光係数と、蛍光強度とレーザシート光強度に関する比例定数を含むことを特徴とする。   Further, the characteristic of the molecule to be measured in the normalizing means includes an absorption coefficient of the molecule to be measured, and a proportional constant relating to the fluorescence intensity and the laser sheet light intensity.

さらに、前記同時計測手段は、前記計測場の被計測分子および前記セルの内部に封入した蛍光物質が発する蛍光を単一の蛍光測定手段によって同時に計測することを特徴とする。   Further, the simultaneous measurement means is characterized in that the fluorescence emitted from the molecule to be measured in the measurement field and the fluorescent substance enclosed in the cell is simultaneously measured by a single fluorescence measurement means.

さらに、上記ビームエキスパンダと計測場の間に設けられ前記シートレーザ光を分岐するビームスプリッタと、前記ビームスプリッタを透過し前記計測場に照射するレーザシート光と平行になるように前記ビームスプリッタにより分岐したレーザシート光を反射させるミラーと、ビームスプリッタによって分岐したレーザ光を通過させる前記セルと、前記計測場の被計測分子および前記セルの内部に封入した蛍光物質が発する蛍光を単一の蛍光測定手段によって同時に計測する同時計測手段を備えたことを特徴とする。   Furthermore, a beam splitter provided between the beam expander and the measurement field and for branching the sheet laser beam, and a beam splitter that passes through the beam splitter and is parallel to the laser sheet beam that irradiates the measurement field. Fluorescence emitted from the mirror that reflects the branched laser sheet light, the cell that passes the laser light branched by the beam splitter, the molecule to be measured in the measurement field, and the fluorescent material enclosed in the cell is a single fluorescence. It is characterized by comprising simultaneous measuring means for simultaneously measuring by the measuring means.

さらに、上記ビームエキスパンダと計測場の間に設けられ前記シート状のレーザ光を分岐するビームスプリッタと、前記ビームスプリッタを透過し前記計測場に照射するレーザ光と平行になるように前記ビームスプリッタによって分岐したレーザ光を反射させるミラーと、前記ビームスプリッタによって分岐したレーザ光を通過させる前記セルと、前記セルの蛍光強度を測定するセル蛍光測定手段と、前記計測場の被計測分子および前記セルの内部に封入した蛍光物質が発する蛍光を前記蛍光測定手段およびセル蛍光測定手段によって同時に計測する同時計測手段を備えたことを特徴とする。   Further, a beam splitter provided between the beam expander and the measurement field and for branching the sheet-like laser beam, and the beam splitter so as to be parallel to the laser beam that passes through the beam splitter and irradiates the measurement field. A mirror that reflects the laser beam branched by the beam splitter, the cell that allows the laser beam branched by the beam splitter to pass through, a cell fluorescence measurement means that measures the fluorescence intensity of the cell, a molecule to be measured in the measurement field, and the cell And a simultaneous measurement means for simultaneously measuring the fluorescence emitted from the fluorescent material enclosed in the cell by the fluorescence measurement means and the cell fluorescence measurement means.

さらに、前記レーザ装置と上記ビームエキスパンダとの間に設置され前記ビーム状のレーザ光を分岐するビームスプリッタと、前記ビームスプリッタを透過し前記計測場に照射するレーザ光と平行になるように前記ビームスプリッタによって分岐したレーザ光を反射させるミラーと、前記ミラーによって反射したレーザ光をレーザシート光に変換して前記セルに照射するビームエキスパンダと、前記セルの蛍光強度を測定するセル蛍光測定手段と、前記計測場の被計測分子および前記セルの内部に封入した蛍光物質が発する蛍光を前記蛍光測定手段およびセル蛍光測定手段によって同時に計測する同時計測手段を備えたことを特徴とする。   Further, a beam splitter installed between the laser device and the beam expander and for branching the beam-shaped laser beam, and the laser beam that passes through the beam splitter and irradiates the measurement field so as to be parallel to the laser beam. A mirror that reflects the laser light branched by the beam splitter, a beam expander that converts the laser light reflected by the mirror into laser sheet light and irradiates the cell, and a cell fluorescence measuring means that measures the fluorescence intensity of the cell And a simultaneous measurement means for simultaneously measuring fluorescence emitted from a molecule to be measured in the measurement field and a fluorescent substance enclosed in the cell by the fluorescence measurement means and the cell fluorescence measurement means.

さらに、前記セルに封入する蛍光物質を前記計測場の被計測分子と同一物質にしたことを特徴とする。   Furthermore, the fluorescent substance sealed in the cell is the same substance as the molecule to be measured in the measurement field.

本発明によれば、被計測分子の濃度偏差が激しい計測場における蛍光強度を高精度に計測可能なレーザ光を用いた計測装置を実現できる。さらに2次元濃度分布などの複数の計測データの平均値や変動成分を高精度に統計処理できるレーザ光を用いた計測装置を実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the measuring device using the laser beam which can measure the fluorescence intensity in the measurement field where the density | concentration deviation of a molecule | numerator to be measured is severe with high precision is realizable. Furthermore, it is possible to realize a measuring apparatus using laser light that can statistically process an average value and fluctuation components of a plurality of measurement data such as a two-dimensional concentration distribution with high accuracy.

また、上記の計測装置において、計測対象と同一物質をセルに封入することで計測場の絶対濃度を計測できる計測装置を実現できる。   Moreover, in said measuring apparatus, the measuring apparatus which can measure the absolute density | concentration of a measurement field is realizable by enclosing the same substance as a measuring object in a cell.

以下に、本発明によるレーザ光を用いた計測装置について図を参照して説明する。
〔第1の実施形態〕
本発明の第1の実施形態について、全体の概略構成を図1に示す。本計測装置は、励起用パルスレーザ装置1と波長可変色素レーザ装置2からなるレーザ装置、ビームエキスパンダ13、蛍光測定手段であるCCDカメラ4、制御装置である制御コンピュータ3、セル7、計測場10で構成される。
Hereinafter, a measuring apparatus using laser light according to the present invention will be described with reference to the drawings.
[First Embodiment]
The overall schematic configuration of the first embodiment of the present invention is shown in FIG. This measuring apparatus includes a laser apparatus composed of an excitation pulse laser apparatus 1 and a tunable dye laser apparatus 2, a beam expander 13, a CCD camera 4 serving as a fluorescence measuring means, a control computer 3 serving as a control apparatus, a cell 7, a measurement field. 10 is composed.

励起用パルスレーザ装置1が発振したレーザは波長可変色素レーザ装置2にて被計測分子の電子励起エネルギーに対応した波長に変換されたビーム状のレーザ光11として発振される。レーザ光11はビームエキスパンダ13で紙面と平行に拡散するシート状のレーザシート光12に拡げられ、被計測分子と同一種類の分子からなる所定濃度の蛍光物質を封入したセル7を透過して被計測分子を含む計測場10に照射される。   The laser oscillated by the excitation pulse laser device 1 is oscillated by the wavelength tunable dye laser device 2 as a beam-like laser beam 11 converted to a wavelength corresponding to the electron excitation energy of the molecule to be measured. The laser beam 11 is spread by a beam expander 13 into a sheet-like laser sheet beam 12 that is diffused in parallel with the paper surface, and passes through a cell 7 encapsulating a fluorescent substance having a predetermined concentration composed of molecules of the same type as the molecule to be measured. The measurement field 10 containing the molecule to be measured is irradiated.

セル7と計測場10で発光した蛍光をレンズ5で集光し、CCDカメラ4で蛍光強度の2次元分布を計測する。蛍光強度の2次元分布は、CCDカメラ4を構成するCCD画素数に対応した2次元のデジタルデータである。計測した蛍光強度の2次元分布データはライン8で制御コンピュータ3に取り込まれ処理される。また制御コンピュータ3は、同期ライン9で励起用パルスレーザ装置1の発振とCCDカメラ4の露光のタイミングを調整する。CCDカメラ4によって計測した蛍光強度の2次元分布データには、レーザ装置側にセル7の蛍光強度、レーザ装置から離れた領域に計測場10の蛍光強度が各々連続的に記録される。   The fluorescence emitted from the cell 7 and the measurement field 10 is collected by the lens 5, and the two-dimensional distribution of the fluorescence intensity is measured by the CCD camera 4. The two-dimensional distribution of fluorescence intensity is two-dimensional digital data corresponding to the number of CCD pixels constituting the CCD camera 4. The two-dimensional distribution data of the measured fluorescence intensity is captured by the control computer 3 at line 8 and processed. Further, the control computer 3 adjusts the oscillation timing of the excitation pulse laser device 1 and the exposure timing of the CCD camera 4 through the synchronization line 9. In the two-dimensional distribution data of the fluorescence intensity measured by the CCD camera 4, the fluorescence intensity of the cell 7 is continuously recorded on the laser device side, and the fluorescence intensity of the measurement field 10 is continuously recorded in a region away from the laser device.

計測場10とレンズ5との間には光学フィルタ6が設置され、レーザシート光12やその散乱光、そのほかの迷光を低減している。レーザ装置は励起用パルスレーザ装置1と波長可変色素レーザ装置2に替えてエキシマレーザなどの波長可変レーザを用いてもよい。また、レーザシート光12は図5と同様にビームエキスパンダと凸レンズを組み合わせて平行な幅を持つレーザシート光にしてもよい。   An optical filter 6 is installed between the measurement field 10 and the lens 5 to reduce the laser sheet light 12, its scattered light, and other stray light. The laser device may use a wavelength tunable laser such as an excimer laser instead of the excitation pulse laser device 1 and the wavelength tunable dye laser device 2. Further, the laser sheet light 12 may be a laser sheet light having a parallel width by combining a beam expander and a convex lens as in FIG.

励起用パルスレーザ装置1のレーザ光のパルス幅は数ナノ秒であり、蛍光の発光持続時間は1マイクロ秒程度である。蛍光強度は励起レーザ光の照射後に指数関数的に減衰する。従ってCCDカメラ4の露光時間は数ナノから数百ナノ秒に設定するとよい。
〔被計測分子濃度の計算〕
上記により計測した計測場10の蛍光強度Iの2次元分布データは、計測場10の被計測分子の濃度Cとレーザシート光12の強度Iの積に比例している。すなわち、蛍光強度Iとレーザ光の強度Iとの間には次の関係がある。
= aCI ……(式1)
ここでaはCCDカメラ4や光学フィルタ6など計測装置の特性によって決まる比例定数である。したがって、被計測分子の濃度Cは、計測した蛍光強度Iをレーザシート光12の強度Iで除算することで求められる。被計測分子の2次元濃度分布を得るためには、CCDカメラ4の画素1点1点について、計測した各画素の蛍光強度Iを、各画素におけるレーザシート光の強度Iで除算する。各画素のレーザシート光の強度Iは、射出されるレーザシート光12の不均一性と被計測分子によるレーザシート光の吸収減衰の2つを考慮して計算する。
The pulse width of the laser light of the excitation pulse laser device 1 is several nanoseconds, and the fluorescence emission duration is about 1 microsecond. The fluorescence intensity decays exponentially after irradiation with excitation laser light. Therefore, the exposure time of the CCD camera 4 is preferably set to several nanoseconds to several hundred nanoseconds.
[Calculation of measured molecule concentration]
The two-dimensional distribution data of the fluorescence intensity If of the measurement field 10 measured as described above is proportional to the product of the concentration C of the molecule to be measured in the measurement field 10 and the intensity I of the laser sheet light 12. That is, there is the following relationship between the fluorescence intensity If and the intensity I of the laser beam.
If = aCI (Formula 1)
Here, a is a proportionality constant determined by the characteristics of the measuring device such as the CCD camera 4 and the optical filter 6. Therefore, the concentration C of the molecule to be measured can be obtained by dividing the measured fluorescence intensity If by the intensity I of the laser sheet light 12. In order to obtain the two-dimensional concentration distribution of the molecule to be measured, the fluorescence intensity If measured for each pixel of the pixel of the CCD camera 4 is divided by the intensity I of the laser sheet light at each pixel. The intensity I of the laser sheet light of each pixel is calculated in consideration of the non-uniformity of the emitted laser sheet light 12 and the absorption attenuation of the laser sheet light by the molecules to be measured.

以下に各画素のレーザシート光強度Iの計算方法について図6により説明する。図2(a)にレーザシート光の拡がり方向に対し直交する方向から見た、CCDカメラ4の計測領域とレーザシート光12の照射方向の関係を示す。図2(b)にはレーザシート光12のある光線について、図2(a)のX方向に対応したレーザシート光の強度Iと蛍光強度Iの分布を示す。図2(c)に図2(a)のA−A断面におけるレーザシート光の強度Iと蛍光強度Iの分布を示す。
〔レーザ光の不均一性の補正〕
まず、レーザシート光12が平行光でない場合について不均一性を補正する計算について説明する。図2(a)において、CCDカメラ4の計測領域30には、セル7の蛍光強度31および計測場10の蛍光強度32が計測されている。図1におけるレーザシート光12は、ビームエキスパンダ13の焦点に相当する、仮想的な光源33から拡がり角θで拡がりながら、計測領域30を照射しているとみなせる。以下、本図のY方向をレーザシート光12の幅方向、X方向をレーザシート光12の照射方向と呼ぶ。
Hereinafter, a method of calculating the laser sheet light intensity I of each pixel will be described with reference to FIG. FIG. 2A shows the relationship between the measurement area of the CCD camera 4 and the irradiation direction of the laser sheet light 12 as seen from the direction orthogonal to the spreading direction of the laser sheet light. FIG. 2B shows the distribution of the intensity I and the fluorescence intensity If of the laser sheet light 12 corresponding to the X direction in FIG. FIG. 2C shows the distribution of the intensity I of the laser sheet light and the fluorescence intensity If in the AA cross section of FIG.
[Correction of non-uniformity of laser light]
First, calculation for correcting nonuniformity when the laser sheet light 12 is not parallel light will be described. In FIG. 2A, the fluorescence intensity 31 of the cell 7 and the fluorescence intensity 32 of the measurement field 10 are measured in the measurement region 30 of the CCD camera 4. The laser sheet light 12 in FIG. 1 can be regarded as irradiating the measurement region 30 while spreading from the virtual light source 33 corresponding to the focal point of the beam expander 13 at the spread angle θ. Hereinafter, the Y direction in this figure is referred to as the width direction of the laser sheet light 12, and the X direction is referred to as the irradiation direction of the laser sheet light 12.

レーザシート光12は、図1の波長可変色素レーザ装置2から発振したビーム状のレーザ光11をビームエキスパンダ13でシート状に広げて形成しているため、レーザシート光12の幅方向について強度は均一でない。CCDカメラ4の計測領域30において、セル7の蛍光強度31のレーザシート光12の幅方向A−A断面について図2(c)の実線に示すような蛍光強度Iの分布が得られる。セル7の蛍光物質の濃度Cは幅方向に一様であり、蛍光強度Iはレーザシート光12の強度Iに比例するため、蛍光強度Iの分布からレーザシート光12の幅方向A−A断面における強度Iの分布が得られる。 The laser sheet light 12 is formed by spreading the beam-shaped laser light 11 oscillated from the wavelength tunable dye laser device 2 in FIG. 1 into a sheet shape by the beam expander 13, and therefore the intensity in the width direction of the laser sheet light 12. Is not uniform. In the measurement region 30 of the CCD camera 4, a distribution of the fluorescence intensity If as shown by the solid line in FIG. 2C is obtained for the cross section AA of the laser sheet 12 having the fluorescence intensity 31 of the cell 7 in the width direction. Since the concentration C of the fluorescent substance in the cell 7 is uniform in the width direction, and the fluorescence intensity If is proportional to the intensity I of the laser sheet light 12, the width direction A- of the laser sheet light 12 is determined from the distribution of the fluorescence intensity If . A distribution of intensity I in the A section is obtained.

次に、セル7の蛍光強度31の分布から、レーザシート光12の拡がり角θとレーザシート光12の光源33の位置を計算する。レーザシート光12は光源33から光線34のように照射している。CCDカメラ4の計測領域30の任意の点におけるレーザシート光12の強度Iは、セル7の蛍光強度31と、シート光12の拡がり角θと光源33の位置、および光源33から計算する任意の点までの距離Lから計算する。   Next, from the distribution of the fluorescence intensity 31 of the cell 7, the spread angle θ of the laser sheet light 12 and the position of the light source 33 of the laser sheet light 12 are calculated. The laser sheet light 12 is emitted from a light source 33 as a light beam 34. The intensity I of the laser sheet light 12 at an arbitrary point in the measurement area 30 of the CCD camera 4 is calculated from the fluorescence intensity 31 of the cell 7, the spread angle θ of the sheet light 12, the position of the light source 33, and the light source 33. Calculate from the distance L to the point.

なお、セル7の蛍光強度31の分布データが不十分でレーザシート光12の光源33を計算できない場合には、ビームエキスパンダ13とセル7の位置関係、及びレーザシート光12の拡がり角から光源33を決めてもよい。また、レーザシート光12が完全な平行光である場合は、次に示すレーザの減衰補正のみを計算するとよい。
〔レーザ光の吸収減衰の補正〕
さらに、被計測分子によるレーザシート光12の吸収減衰を補正する計算について説明する。計測場10の蛍光強度32について、光源33から照射する一本の光線34について説明する。光線34の照射方向についてレーザシート光の強度Iと蛍光強度Iの分布を図2(b)に示す。実線はCCDカメラ4によって計測した蛍光強度Iの分布であり、一点鎖線は上記のレーザシート光12の拡がりのみを考慮して計算したレーザシート光12の強度分布であり、点線はさらに被計測分子による光の吸収のファクタを加えて計算したレーザシート光12の強度Iabsの分布を示す。
When the distribution data of the fluorescence intensity 31 of the cell 7 is insufficient and the light source 33 of the laser sheet light 12 cannot be calculated, the light source is determined from the positional relationship between the beam expander 13 and the cell 7 and the spread angle of the laser sheet light 12. 33 may be determined. Further, when the laser sheet light 12 is completely parallel light, it is preferable to calculate only the following laser attenuation correction.
[Correction of laser beam absorption attenuation]
Further, calculation for correcting the absorption attenuation of the laser sheet light 12 by the molecule to be measured will be described. A single light beam 34 emitted from the light source 33 will be described with respect to the fluorescence intensity 32 of the measurement field 10. FIG. 2B shows the distribution of the intensity I and the fluorescence intensity If of the laser sheet light in the irradiation direction of the light beam 34. The solid line is the distribution of the fluorescence intensity If measured by the CCD camera 4, the alternate long and short dash line is the intensity distribution of the laser sheet light 12 calculated considering only the spread of the laser sheet light 12, and the dotted line is further measured. The distribution of the intensity I abs of the laser sheet light 12 calculated by adding the light absorption factor by the molecule is shown.

被計測分子の光の吸収に関する吸光計数εは、セル7に入射する前の光の強度Iが幅Lcellのセル7中を透過したときの光の強度をILcellとしたとき、セル7中の被計測分子の濃度Cを用いて以下の式で示される。
Log ( ILcell /I ) = εCLcell ……(式2)
本計測装置では、セル7の大きさLcell、被計測分子の濃度Cは既知であるから、セル7の蛍光強度31を用いて吸光係数εを計算する。なお、被計測分子の吸光係数εが既知である場合はその値を用いてもよい。
The absorption coefficient ε relating to the absorption of the light of the molecule to be measured is given by the cell 7 when the light intensity I 0 before entering the cell 7 is transmitted through the cell 7 having the width L cell as I Lcell. It is expressed by the following equation using the concentration C of the molecule to be measured.
Log (I Lcell / I 0 ) = εCL cell (Expression 2)
In this measuring apparatus, since the size L cell of the cell 7 and the concentration C of the molecule to be measured are known, the extinction coefficient ε is calculated using the fluorescence intensity 31 of the cell 7. In addition, when the extinction coefficient ε of the molecule to be measured is known, the value may be used.

セル7の蛍光強度31から、レーザシート光12の強度Iと被計測分子の濃度Cに対する蛍光強度Iの関係式(1)により、比例定数aを計算する。 From the fluorescence intensity 31 of cell 7, the relationship of the fluorescence intensity I f to the concentration C of the intensity I and the measured molecular laser light sheet 12 (1), to calculate the proportionality constant a.

上記式(1)(2)によって計算した比例定数aおよび吸光係数εを用いて、計測場10の蛍光強度32について、CCDの画素ごとに光源33側から順に光源33から離れる照射方向に順に被計測分子による光の吸収を考慮したレーザシート光12の強度Iabsを計算する。レーザシート光12の強度Iabsと各画素の蛍光強度Iから濃度Cが計算できる。 Using the proportionality constant a and the extinction coefficient ε calculated by the above formulas (1) and (2), the fluorescence intensity 32 of the measurement field 10 is sequentially covered in the irradiation direction away from the light source 33 sequentially from the light source 33 side for each CCD pixel. The intensity I abs of the laser sheet light 12 in consideration of light absorption by the measurement molecule is calculated. The density C can be calculated from the intensity I abs of the laser sheet light 12 and the fluorescence intensity If of each pixel.

上記の方法で得られた光源33に近い領域から離れる照射方向にしたがって被計測分子による光の吸収を考慮したレーザシート光12の強度Iabsの分布を用いることで、レーザシート光12の拡散による強度低下と被計測分子によるレーザシート光12の吸収による影響を低減した、高精度な被計測分子の濃度分布を得ることができる。上記の計算は制御コンピュータにおいて、所定のソフトウェアを用いて行われる。すなわち正規化手段、計算手段はこれらハードウェア、ソフトウェア上に構成される。 By using the distribution of the intensity I abs of the laser sheet light 12 in consideration of the absorption of light by the molecules to be measured according to the irradiation direction away from the region close to the light source 33 obtained by the above method, It is possible to obtain a highly accurate concentration distribution of the molecule to be measured, in which the influence of the intensity reduction and the absorption of the laser sheet light 12 by the molecule to be measured is reduced. The above calculation is performed using predetermined software in the control computer. That is, the normalization means and the calculation means are configured on these hardware and software.

P−LIFでは高感度なCCDカメラで計測するが、ノイズを低減したり非定常な計測場における濃度の時間平均分布を計測するために、連続して計測した2次元蛍光強度分布データを平均化することが多い。しかしすでに述べたように、蛍光強度はレーザ光照射からの経過時間に強く依存し、レーザ光照射とCCDカメラの露光タイミングが僅かにずれるだけで計測する蛍光強度は大きく異なる。したがって、レーザパワーメータ等によるレーザ強度と計測された蛍光強度が比例しないことがある。   P-LIF measures with a highly sensitive CCD camera, but averages the two-dimensional fluorescence intensity distribution data measured continuously in order to reduce noise or measure the time average distribution of concentration in an unsteady measurement field. Often to do. However, as already described, the fluorescence intensity strongly depends on the elapsed time from the laser light irradiation, and the measured fluorescence intensity differs greatly only when the laser light irradiation and the exposure timing of the CCD camera are slightly shifted. Therefore, the laser intensity measured by a laser power meter or the like and the measured fluorescence intensity may not be proportional.

本実施形態では、計測場の計測と同時に同一計測場に設けた均一濃度のセルの蛍光を同時計測手段として用いる単一のCCDカメラで計測することで、照射するレーザ光の強度を高精度に補正することができる。CCDカメラ4で計測した蛍光強度の2次元分布データを単純に平均化するのではなく、上記の方法で正確に求めたレーザ光強度で被計測分子の蛍光強度を正規化して計算することにより高精度に2次元濃度分布データを得ることができる。   In this embodiment, the intensity of the laser beam to be irradiated is highly accurate by measuring with a single CCD camera that uses the fluorescence of a uniform concentration cell provided in the same measurement field as the simultaneous measurement means simultaneously with measurement of the measurement field. It can be corrected. Rather than simply averaging the two-dimensional distribution data of the fluorescence intensity measured by the CCD camera 4, the fluorescence intensity of the molecule to be measured is calculated by normalizing with the laser light intensity accurately obtained by the above method. Two-dimensional concentration distribution data can be obtained with high accuracy.

セル7には被計測分子と同一物質を用いると被計測分子濃度の絶対値を得ることができる。また同一物質に代えて別の蛍光物質を封入してもよい。この場合には、別途封入する蛍光物質と被計測分子が発する蛍光強度の比と、照射するレーザシート光の強度Iと蛍光Iとの比例定数を求めておくとよい。
〔第2の実施形態〕
本発明の第2の実施形態について、全体の概略構成を図3に示す。図においてレーザシート光は紙面に垂直な方向に拡がっている。基本的な動作は第1の実施形態と同様であり以下に異なる点を説明する。
When the same substance as the molecule to be measured is used for the cell 7, the absolute value of the molecule to be measured can be obtained. In addition, another fluorescent substance may be enclosed instead of the same substance. In this case, it is preferable to obtain a proportional constant between the ratio of the fluorescence intensity emitted from the separately encapsulated fluorescent substance and the molecule to be measured and the intensity I of the laser sheet light to be irradiated and the fluorescence If .
[Second Embodiment]
FIG. 3 shows an overall schematic configuration of the second embodiment of the present invention. In the figure, the laser sheet light spreads in a direction perpendicular to the paper surface. The basic operation is the same as that of the first embodiment, and different points will be described below.

ビームエキスパンダ13と計測場10との間にビームスプリッタ14を設置する。ビームスプリッタ14を透過したレーザシート光12と分岐したレーザシート光12’とが平行になるようにミラー15で調整する。CCDカメラ14の計測領域において光源側にセル7を配置する。レーザシート光12によって発光した被計測分子の蛍光をCCDカメラ4で計測しないように、レーザシート光12とセル7の間に遮光板16を設置してマスキングする。ビームエキスパンダ13と図示しない凸レンズを組み合わせてレーザシート光12およびレーザシート光12’は平行な幅を持つ平行光にするのが望ましい。   A beam splitter 14 is installed between the beam expander 13 and the measurement field 10. Adjustment is made by the mirror 15 so that the laser sheet light 12 transmitted through the beam splitter 14 and the branched laser sheet light 12 'are parallel to each other. The cell 7 is arranged on the light source side in the measurement region of the CCD camera 14. A light shielding plate 16 is provided between the laser sheet light 12 and the cell 7 for masking so that the fluorescence of the molecule to be measured emitted by the laser sheet light 12 is not measured by the CCD camera 4. It is desirable to combine the beam expander 13 and a convex lens (not shown) so that the laser sheet light 12 and the laser sheet light 12 'are parallel lights having parallel widths.

ビームスプリッタ14と計測場10との距離Lと、ビームスプリッタ14とセル7との距離L’およびセル7の蛍光強度を用いて、計測場10を照射するレーザシート光12の強度Iの分布を計算する。また、レーザシート光12の強度とレーザシート光12’の強度の比をあらかじめ計測しておくことで、第1の実施形態と同様にCCDカメラ4によって計測した蛍光強度分布から計測場10の濃度分布を計測できる。シート12および12’が平行光でない場合には、ビームエキスパンダ13からの距離を用いて、計測場10とセル7を照射するレーザシート光12の強度Iを補正するとよい。   Using the distance L between the beam splitter 14 and the measurement field 10, the distance L ′ between the beam splitter 14 and the cell 7, and the fluorescence intensity of the cell 7, the distribution of the intensity I of the laser sheet light 12 that irradiates the measurement field 10 is calculated. calculate. Further, by measuring the ratio of the intensity of the laser sheet light 12 and the intensity of the laser sheet light 12 ′ in advance, the concentration of the measurement field 10 can be determined from the fluorescence intensity distribution measured by the CCD camera 4 as in the first embodiment. Distribution can be measured. When the sheets 12 and 12 ′ are not parallel light, the distance I from the beam expander 13 may be used to correct the intensity I of the laser sheet light 12 that irradiates the measurement field 10 and the cell 7.

本実施形態では、計測場10の近傍にセル7を設置できない場合においても、測定場10の蛍光強度とセル7の蛍光強度を、同時計測手段としての単一のCCDカメラで同時に計測できるため、被計測分子によるレーザシート光の吸収によるレーザシート光の減衰を考慮した高精度な2次元濃度分布データを得ることができる。
〔第3の実施形態〕
本発明の第3の実施形態について、全体の概略構成を図4に示す。基本的な動作は第2の実施形態と同様であり以下に異なる点を説明する。
In the present embodiment, even when the cell 7 cannot be installed in the vicinity of the measurement field 10, the fluorescence intensity of the measurement field 10 and the fluorescence intensity of the cell 7 can be measured simultaneously with a single CCD camera as a simultaneous measurement unit. It is possible to obtain highly accurate two-dimensional concentration distribution data in consideration of attenuation of the laser sheet light due to absorption of the laser sheet light by the molecule to be measured.
[Third Embodiment]
FIG. 4 shows the overall schematic configuration of the third embodiment of the present invention. The basic operation is the same as that of the second embodiment, and different points will be described below.

第2の実施形態と異なるのは、CCDカメラ4で計測場10を計測し、加えてセル蛍光測定手段としてセル専用のCCDカメラ4’、集光レンズ5’、光学フィルタ6’を別に設けてセル7を計測する点である。レーザ装置1とCCDカメラ4および4’は同期ライン9を介して制御コンピュータ3に設けた同時計測手段により発振と露光のタイミングを調整している。CCDカメラ4’で計測した蛍光強度分布データもライン8により制御コンピュータ3に取り込む。   The difference from the second embodiment is that the measurement field 10 is measured by the CCD camera 4, and additionally a cell-dedicated CCD camera 4 ′, a condenser lens 5 ′, and an optical filter 6 ′ are separately provided as cell fluorescence measurement means. This is a point at which the cell 7 is measured. The laser device 1 and the CCD cameras 4 and 4 ′ adjust the oscillation and exposure timings by the simultaneous measurement means provided in the control computer 3 via the synchronization line 9. The fluorescence intensity distribution data measured by the CCD camera 4 ′ is also taken into the control computer 3 through the line 8.

CCDカメラ4と4’の露光時間を数ナノ秒以下の誤差で同期化することは難しいため絶対値の比較はできなくなるものの、本実施形態により、単一のCCDカメラ4の撮影範囲内にセル7を設置できない場合でも、被計測分子によるレーザシート光の吸収によるレーザシート光の減衰を考慮した、従来例に比較して高精度な相対濃度分布を計測できる。
〔第4の実施形態〕
本発明の第4の実施形態について、全体の概略構成を図5に示す。基本的な動作は第3の実施形態と同様であり以下に異なる点を説明する。
Although it is difficult to synchronize the exposure times of the CCD cameras 4 and 4 'with an error of several nanoseconds or less, the absolute values cannot be compared. However, according to the present embodiment, the cells within the photographing range of the single CCD camera 4 can be used. Even when 7 cannot be installed, it is possible to measure the relative concentration distribution with higher accuracy than the conventional example in consideration of the attenuation of the laser sheet light due to the absorption of the laser sheet light by the molecule to be measured.
[Fourth Embodiment]
FIG. 5 shows an overall schematic configuration of the fourth embodiment of the present invention. The basic operation is the same as that of the third embodiment, and different points will be described below.

第3の実施形態と異なるのは、ビームスプリッタ14をビームエキスパンダ13よりも可変長色素レーザ装置2側に設置した点と、ビームスプリッタ14によって分岐したレーザ光11’をシート状に広げるビームエキスパンダ13’を設置した点である。計測場10とビームエキスパンダ13との距離とセル7とビームエキスパンダ13’との距離を等しくする。ビームエキスパンダ13’の焦点距離はビームエキスパンダ13の焦点距離と等しくする。   The difference from the third embodiment is that the beam splitter 14 is installed closer to the variable length dye laser device 2 than the beam expander 13, and the beam expander that spreads the laser beam 11 ′ branched by the beam splitter 14 into a sheet shape. The panda 13 'is installed. The distance between the measurement field 10 and the beam expander 13 and the distance between the cell 7 and the beam expander 13 'are made equal. The focal length of the beam expander 13 ′ is made equal to the focal length of the beam expander 13.

上記の構成にすることで、計測場10と計測場10を照射するレーザシート光12と仮想的な光源33との相対的な位置関係を、セル7とセル7を照射するレーザシート光12’の光源33との相対的な位置関係と等しくすることができる。   With the above-described configuration, the relative positional relationship between the measurement field 10, the laser sheet light 12 that irradiates the measurement field 10, and the virtual light source 33 is set to the laser sheet light 12 ′ that irradiates the cells 7 and 7. The relative positional relationship with the light source 33 can be made equal.

したがって、CCDカメラ4’で計測したセル7の蛍光強度の分布から、第1の実施形態と同様にして求めたレーザシート光12’の強度を用いて、計測場10の蛍光強度から濃度分布を計算することができる。   Therefore, using the intensity of the laser sheet light 12 ′ obtained in the same manner as in the first embodiment from the distribution of the fluorescence intensity of the cell 7 measured by the CCD camera 4 ′, the concentration distribution is calculated from the fluorescence intensity of the measurement field 10. Can be calculated.

CCDカメラ4と4’の露光時間を数ナノ秒以下の誤差で同期化することは難しいため絶対値の比較はできなくなるものの、測定場10の近くにセル7を設置できない場合でも、本実施形態により、被計測分子によるレーザシート光の吸収によるレーザシート光の減衰を考慮した高精度な相対濃度分布を計測できる。   Although it is difficult to synchronize the exposure times of the CCD cameras 4 and 4 'with an error of several nanoseconds or less, the absolute values cannot be compared. However, even if the cell 7 cannot be installed near the measurement field 10, this embodiment Thus, it is possible to measure the relative concentration distribution with high accuracy in consideration of the attenuation of the laser sheet light due to the absorption of the laser sheet light by the molecule to be measured.

本発明の第1の実施形態を示す模式図である。It is a schematic diagram which shows the 1st Embodiment of this invention. 本発明の第1の実施形態の蛍光強度分布を示す模式図である。It is a schematic diagram which shows the fluorescence intensity distribution of the 1st Embodiment of this invention. 本発明の第2の実施形態を示す模式図である。It is a schematic diagram which shows the 2nd Embodiment of this invention. 本発明の第3の実施形態を示す模式図である。It is a schematic diagram which shows the 3rd Embodiment of this invention. 本発明の第4の実施形態を示す模式図である。It is a schematic diagram which shows the 4th Embodiment of this invention. 従来のレーザ光を用いた2次元分布計測装置を示す模式図である。It is a schematic diagram which shows the two-dimensional distribution measuring apparatus using the conventional laser beam.

符号の説明Explanation of symbols

1…励起用パルスレーザ装置、2…波長可変色素レーザ装置、3…制御コンピュータ、4…CCDカメラ、5…集光レンズ、6…光学フィルタ、7…セル、8…データ取り込みライン、9…同期ライン、10…計測場、11…レーザ光、12…レーザシート光、13…ビームエキスパンダ、14…ビームスプリッタ、15…ミラー、16…遮光板、20…凸レンズ DESCRIPTION OF SYMBOLS 1 ... Excitation pulse laser apparatus, 2 ... Wavelength variable dye laser apparatus, 3 ... Control computer, 4 ... CCD camera, 5 ... Condensing lens, 6 ... Optical filter, 7 ... Cell, 8 ... Data acquisition line, 9 ... Synchronization Line 10, measurement field 11 laser beam 12 laser beam 13 beam expander 14 beam splitter 15 mirror 16 light shielding plate 20 convex lens

Claims (8)

レーザビームを出力するレーザ装置と、レーザビームをレーザシート光に変換するビームエキスパンダと、被計測分子を有する計測場と、前記計測場の被計測分子に照射されたレーザシート光による被計測分子の蛍光強度を測定する蛍光測定手段と、前記レーザ装置のレーザシート光照射時間と前記蛍光測定手段の測定時間のタイミングを調整する制御装置とを有する2次元分布計測装置において、
前記レーザ装置と計測場の間に、内部に蛍光物質が封入されレーザシート光が照射されるセルを設け、前記計測場の被計測分子および前記セルの内部に封入した蛍光物質が発する蛍光を蛍光測定手段によって同時に計測する同時計測手段と、セルの蛍光強度および位置情報と前記計測場の蛍光強度および位置情報を用いて計測場における被計測分子の蛍光強度を正規化する正規化手段とを設けたことを特徴とするレーザ光を用いた2次元分布計測装置。
Laser apparatus for outputting laser beam, beam expander for converting laser beam into laser sheet light, measurement field having molecule to be measured, molecule to be measured by laser sheet light irradiated to molecule to be measured in the measurement field A two-dimensional distribution measuring apparatus having a fluorescence measuring means for measuring the fluorescence intensity of the laser, and a control device for adjusting the timing of the laser sheet light irradiation time of the laser apparatus and the measuring time of the fluorescence measuring means,
Provided between the laser device and the measurement field is a cell in which a fluorescent material is sealed and irradiated with laser sheet light, and the fluorescence emitted from the molecule to be measured in the measurement field and the fluorescent material sealed in the cell is fluorescent. Simultaneous measurement means for simultaneous measurement by the measurement means, and normalization means for normalizing the fluorescence intensity of the molecule to be measured in the measurement field using the fluorescence intensity and position information of the cell and the fluorescence intensity and position information of the measurement field A two-dimensional distribution measuring apparatus using a laser beam characterized by the above.
請求項1記載のレーザ光を用いた2次元分布計測装置において、
前記正規化手段は、レーザシート光によるセルの蛍光強度により被計測分子の特性を求めて計測場におけるレーザシート光の強度を計算し、計測された被計測分子の蛍光強度を前記計測場におけるレーザ光の強度で正規化して計測場における被計測分子の特性分布を計算することを特徴とするレーザ光を用いた2次元分布計測装置。
In the two-dimensional distribution measuring apparatus using the laser beam according to claim 1,
The normalizing means obtains the characteristics of the molecule to be measured from the fluorescence intensity of the cell by the laser sheet light, calculates the intensity of the laser sheet light in the measurement field, and calculates the fluorescence intensity of the measured molecule in the laser in the measurement field. A two-dimensional distribution measuring apparatus using laser light, wherein the characteristic distribution of molecules to be measured in a measurement field is calculated by normalizing with light intensity.
請求項2記載のレーザ光を用いた2次元分布計測装置において、
前記正規化手段における被計測分子の特性は、被計測分子の吸光係数と、蛍光強度とレーザシート光強度に関する比例定数を含むことを特徴とするレーザ光を用いた2次元分布計測装置。
In the two-dimensional distribution measuring apparatus using the laser beam according to claim 2,
2. The two-dimensional distribution measuring apparatus using laser light, wherein the characteristic of the molecule to be measured in the normalizing means includes an absorption coefficient of the molecule to be measured and a proportionality constant relating to fluorescence intensity and laser sheet light intensity.
請求項1乃至3のいずれか1項に記載のレーザ光を用いた2次元分布計測装置において、
前記同時計測手段は、前記計測場の被計測分子および前記セルの内部に封入した蛍光物質が発する蛍光を単一の蛍光測定手段によって同時に計測することを特徴とするレーザ光を用いた2次元分布計測装置。
In the two-dimensional distribution measuring apparatus using the laser beam according to any one of claims 1 to 3,
The two-dimensional distribution using laser light, wherein the simultaneous measurement means simultaneously measures fluorescence emitted from a molecule to be measured in the measurement field and a fluorescent substance enclosed in the cell by a single fluorescence measurement means Measuring device.
請求項1乃至3のいずれか1項に記載のレーザ光を用いた2次元分布計測装置において、
前記ビームエキスパンダと計測場の間に設けられ前記シートレーザ光を分岐するビームスプリッタと、前記ビームスプリッタを透過し前記計測場に照射するレーザシート光と平行になるように前記ビームスプリッタにより分岐したレーザシート光を反射させるミラーと、ビームスプリッタによって分岐したレーザ光を通過させる前記セルと、前記計測場の被計測分子および前記セルの内部に封入した蛍光物質が発する蛍光を単一の蛍光測定手段によって同時に計測する同時計測手段を備えたことを特徴とするレーザ光を用いた2次元分布計測装置。
In the two-dimensional distribution measuring apparatus using the laser beam according to any one of claims 1 to 3,
A beam splitter provided between the beam expander and the measurement field and for branching the sheet laser light, and branched by the beam splitter so as to be parallel to the laser sheet light that passes through the beam splitter and irradiates the measurement field. Fluorescence emitted from a mirror that reflects the laser sheet light, the cell that allows the laser light branched by the beam splitter to pass through, a molecule to be measured in the measurement field, and a fluorescent material enclosed inside the cell is a single fluorescence measurement means A two-dimensional distribution measuring apparatus using a laser beam, characterized by comprising simultaneous measuring means for simultaneously measuring by means of.
請求項1乃至3のいずれか1項に記載のレーザ光を用いた2次元分布計測装置において、
前記ビームエキスパンダと計測場の間に設けられ前記シート状のレーザ光を分岐するビームスプリッタと、前記ビームスプリッタを透過し前記計測場に照射するレーザ光と平行になるように前記ビームスプリッタによって分岐したレーザ光を反射させるミラーと、前記ビームスプリッタによって分岐したレーザ光を通過させる前記セルと、前記セルの蛍光強度を測定するセル蛍光測定手段と、前記計測場の被計測分子および前記セルの内部に封入した蛍光物質が発する蛍光を前記蛍光測定手段およびセル蛍光測定手段によって同時に計測する同時計測手段を備えたことを特徴とするレーザ光を用いた2次元分布計測装置。
In the two-dimensional distribution measuring apparatus using the laser beam according to any one of claims 1 to 3,
A beam splitter provided between the beam expander and the measurement field and for branching the sheet-like laser beam, and branched by the beam splitter so as to be parallel to the laser beam that passes through the beam splitter and irradiates the measurement field. A mirror for reflecting the laser beam, the cell through which the laser beam branched by the beam splitter passes, cell fluorescence measurement means for measuring the fluorescence intensity of the cell, the molecule to be measured in the measurement field, and the inside of the cell A two-dimensional distribution measuring apparatus using laser light, comprising: simultaneous measurement means for simultaneously measuring fluorescence emitted from the fluorescent substance enclosed in the cell by the fluorescence measurement means and the cell fluorescence measurement means.
請求項1乃至3のいずれか1項に記載のレーザ光を用いた2次元分布計測装置において、
前記レーザ装置と前記ビームエキスパンダとの間に設置され前記ビーム状のレーザ光を分岐するビームスプリッタと、前記ビームスプリッタを透過し前記計測場に照射するレーザ光と平行になるように前記ビームスプリッタによって分岐したレーザ光を反射させるミラーと、前記ミラーによって反射したレーザ光をレーザシート光に変換して前記セルに照射するビームエキスパンダと、前記セルの蛍光強度を測定するセル蛍光測定手段と、前記計測場の被計測分子および前記セルの内部に封入した蛍光物質が発する蛍光を前記蛍光測定手段およびセル蛍光測定手段によって同時に計測する同時計測手段を備えたことを特徴とするレーザ光を用いた2次元分布計測装置。
In the two-dimensional distribution measuring apparatus using the laser beam according to any one of claims 1 to 3,
A beam splitter installed between the laser device and the beam expander and branching the beam-shaped laser beam; and the beam splitter so as to be parallel to the laser beam passing through the beam splitter and irradiating the measurement field A mirror that reflects the laser light branched by the beam, a beam expander that converts the laser light reflected by the mirror into laser sheet light and irradiates the cell, and a cell fluorescence measurement means that measures the fluorescence intensity of the cell; Using a laser beam characterized by comprising simultaneous measurement means for simultaneously measuring fluorescence to be measured by a molecule to be measured in the measurement field and a fluorescent substance enclosed in the cell by the fluorescence measurement means and the cell fluorescence measurement means Two-dimensional distribution measuring device.
請求項1乃至7のいずれか1項に記載のレーザ光を用いた2次元分布計測装置において、前記セルに封入する蛍光物質を前記計測場の被計測分子と同一物質にしたことを特徴とするレーザ光を用いた2次元分布計測装置。   The two-dimensional distribution measurement apparatus using laser light according to any one of claims 1 to 7, wherein the fluorescent substance sealed in the cell is the same substance as the molecule to be measured in the measurement field. Two-dimensional distribution measuring device using laser light.
JP2008177628A 2008-07-08 2008-07-08 Two-dimensional distribution measuring instrument using laser beam Pending JP2010019562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008177628A JP2010019562A (en) 2008-07-08 2008-07-08 Two-dimensional distribution measuring instrument using laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008177628A JP2010019562A (en) 2008-07-08 2008-07-08 Two-dimensional distribution measuring instrument using laser beam

Publications (1)

Publication Number Publication Date
JP2010019562A true JP2010019562A (en) 2010-01-28

Family

ID=41704640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008177628A Pending JP2010019562A (en) 2008-07-08 2008-07-08 Two-dimensional distribution measuring instrument using laser beam

Country Status (1)

Country Link
JP (1) JP2010019562A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019002698A (en) * 2017-06-12 2019-01-10 株式会社ジェイテクト Temperature measurement device and temperature measurement method
CN113008367A (en) * 2021-02-18 2021-06-22 上海交通大学 Laser light intensity three-dimensional distribution measuring system and measuring method
JP2021121794A (en) * 2020-01-31 2021-08-26 ダイハツ工業株式会社 Method of analyzing mixture state of mixed gas in engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019002698A (en) * 2017-06-12 2019-01-10 株式会社ジェイテクト Temperature measurement device and temperature measurement method
JP2021121794A (en) * 2020-01-31 2021-08-26 ダイハツ工業株式会社 Method of analyzing mixture state of mixed gas in engine
JP7328912B2 (en) 2020-01-31 2023-08-17 ダイハツ工業株式会社 Mixed state analysis method of mixed gas in engine
CN113008367A (en) * 2021-02-18 2021-06-22 上海交通大学 Laser light intensity three-dimensional distribution measuring system and measuring method

Similar Documents

Publication Publication Date Title
US11320309B2 (en) Far-infrared spectroscopy device
KR100822365B1 (en) Apparatus and method for measuring concentration of fluid by using acetone planar laser induced fluorescence
JPH0915156A (en) Spectroscopic measuring method and measuring device
US20180066938A1 (en) Measurement method, measurement device, and program
US10203278B2 (en) Far-infrared imaging device and far-infrared imaging method
JP5011389B2 (en) System and method for compensating system delay in sample analysis
JP2006125940A (en) Photoluminescence quantum yield measurement method and device used therein
JP2010019562A (en) Two-dimensional distribution measuring instrument using laser beam
EP1544641A1 (en) Dose distribution reading method for glass dosimeter
WO2003010519A1 (en) Time resolution transient absorption measuring device
WO2019116461A1 (en) Far-infrared light source and far-infrared spectrometer
WO2017199904A1 (en) Component composition measuring system and component composition measuring method
JP2007218860A (en) Strain measuring device and strain measuring method
US11607750B2 (en) Analysis apparatus and analysis method
JP2008256440A (en) Analyzer
JP7012045B2 (en) Far infrared spectroscope
KR101499642B1 (en) Method for Error Compensation in Doppler Lidar for Wind Field Measurement
JP2000055809A (en) Raman microspectroscope and method therefor
JP2000162047A (en) Detecting apparatus for wavelength
JP2000258130A (en) Optical type thickness meter and optical type range finder
JPS62278436A (en) Fluorescence light measuring method and apparatus
JP3281857B2 (en) Temperature distribution measuring device in combustor
JP2005033104A (en) Wavelength detector for two-stage laser and its calibrator
JPH09210909A (en) Measuring device using laser beam
Mann et al. Characterization of excimer laser beam parameters