WO2017199904A1 - Component composition measuring system and component composition measuring method - Google Patents

Component composition measuring system and component composition measuring method Download PDF

Info

Publication number
WO2017199904A1
WO2017199904A1 PCT/JP2017/018180 JP2017018180W WO2017199904A1 WO 2017199904 A1 WO2017199904 A1 WO 2017199904A1 JP 2017018180 W JP2017018180 W JP 2017018180W WO 2017199904 A1 WO2017199904 A1 WO 2017199904A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser light
measurement
irradiation
laser
measurement target
Prior art date
Application number
PCT/JP2017/018180
Other languages
French (fr)
Japanese (ja)
Inventor
出口 祥啓
シュウ・ファン-ジュン
Original Assignee
国立大学法人徳島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人徳島大学 filed Critical 国立大学法人徳島大学
Priority to KR1020187032982A priority Critical patent/KR102298835B1/en
Priority to CN201780030052.5A priority patent/CN109154567B/en
Priority to JP2018518282A priority patent/JP6901145B2/en
Publication of WO2017199904A1 publication Critical patent/WO2017199904A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/72Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flame burners
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers

Definitions

  • the present invention relates to an apparatus and a method for measuring a component composition to be measured using laser-induced breakdown spectroscopy.
  • LIBS Laser-Induced-Breakdown-Spectroscopy
  • LIBS Laser-Induced-Breakdown-Spectroscopy
  • the surface of a measurement target is irradiated with laser light to generate plasma, and the emission spectrum of the plasma is analyzed to measure elemental components constituting the inspection target.
  • a laser beam is focused and irradiated onto a measurement target, and the surface of the measurement target is rapidly heated to generate a plasma containing ions in an excited state on the measurement target surface. Generate.
  • the excited electrons fall to a low energy level, they emit light having a component-specific frequency. Since the emission intensity has a correlation with the atom number density, it is possible to identify and survey a substance existing in the measurement target by obtaining the wavelength and spectral line intensity of each spectrum.
  • emission spectrum intensity Ii of atom i by spontaneous emission is expressed by the following equation.
  • n (i) is the concentration of element i
  • K (i) is a variable containing the Einstein coefficient
  • g (i) is the degree of degeneracy
  • E (i) is the upper energy
  • K B is the Boltzmann constant
  • T Indicates the plasma temperature.
  • Patent Document 1 discloses a system for detecting harmful substances in waste wood using laser-induced breakdown spectroscopy.
  • the system of Patent Document 1 is a system that detects harmful substances in waste wood, a transport device that transports waste wood, and a laser-induced breakdown that detects harmful substances in waste wood transported to the transport apparatus ( (LIBS) device and a sorting device for separating only harmful wood containing harmful substances from harmless wood by a signal from a laser-induced breakdown device.
  • LIBS transport apparatus
  • a sorting device for separating only harmful wood containing harmful substances from harmless wood by a signal from a laser-induced breakdown device.
  • harmful substances such as preservatives applied to waste wood from buildings and the like can be detected simply and quickly in real time.
  • Patent Document 2 and Non-Patent Document 1 disclose a LIBS apparatus using a short laser pulse and a long laser pulse.
  • Patent Document 2 discloses a LIBS apparatus in which a short laser pulse that causes breakdown and a long laser pulse that does not cause breakdown alone are combined.
  • Non-Patent Document 1 discloses a LIBS device in which the optical axes of a short laser pulse and a long laser pulse are matched.
  • Laser-induced breakdown spectroscopy has the advantage of being able to measure the elemental composition of the measurement object in real time, but on the other hand, it can be applied when the position or shape of the object changes because the accuracy decreases when fluctuations occur in the plasma generation process. There is a problem that is difficult.
  • An object of the present invention is to provide an apparatus and a method for analyzing a composition to be measured using laser-induced breakdown spectroscopy, and an apparatus and a method capable of accurately analyzing the composition.
  • the component composition measurement system includes a first laser light source that irradiates a measurement target with a first laser beam having an intensity that generates plasma, and a second laser that has an intensity that does not generate plasma.
  • a light emission spectrum indicating the intensity for each wavelength is measured from the second laser light source that irradiates light to the measurement target and the light emission of the plasma generated by the irradiation of the first laser light from the first laser light source to the measurement target.
  • a spectrum measuring device; and a control device that analyzes a composition to be measured using data of the measured emission spectrum.
  • the second laser light source starts irradiation of the second laser light before the start of irradiation of the first laser light, and ends irradiation of the second laser light after the end of irradiation of the first laser light.
  • the component composition measuring method includes a step of irradiating a measurement target with a first laser beam having an intensity sufficient to generate plasma, and a second laser beam having an intensity sufficient not to generate plasma. Irradiating the measurement target with the first laser light, measuring the emission spectrum indicating the intensity for each wavelength from the plasma emission generated by irradiating the measurement target of the first laser light, and using the measured emission spectrum data Analyzing the composition to be measured.
  • the irradiation of the second laser light is started before the irradiation of the first laser light is started, and the irradiation of the second laser light is ended after the irradiation of the first laser light is completed.
  • the measurement object before plasma generation can be heated, the temperature (intensity) of the plasma once generated can be maintained, and the decrease (attenuation) can be delayed. it can.
  • a spectrum including a high-level signal that does not depend on the properties of the measurement target can be obtained, so that high measurement accuracy can be ensured.
  • the figure which showed the structure of the component composition measuring system in Embodiment 1 of this invention The figure explaining the change over time of emission intensity and emission spectrum observed in laser induced breakdown spectroscopy (LIBS) Diagram explaining the timing of laser pulse irradiation and plasma measurement in the component composition measurement system Flow chart showing operation of component composition measurement system Diagram explaining an example of a spectrum observed in laser-induced breakdown spectroscopy
  • the component composition measurement system described below is a system that measures a composition to be measured using laser-induced breakdown spectroscopy (LIBS).
  • LIBS laser-induced breakdown spectroscopy
  • FIG. 1 shows the configuration of the first embodiment of the component composition measuring system of the present invention.
  • the component composition measurement system 100 includes a laser light source 10, a beam splitter 12, a focus lens 14, a focus adjustment unit 16, an optical path changing optical member 18, an irradiation position changing unit 20, a condensing lens 22, and spectrum measurement.
  • a device 30, a three-dimensional shape measurement device 40, and a control device 50 (analysis device) are provided.
  • the laser light source 10 is a light source device that has an intensity that does not generate plasma and is capable of outputting laser light in a predetermined wavelength band, and is composed of, for example, a YAG laser.
  • the focus adjusting unit 16 is a means for adjusting the focus of the laser light emitted from the laser light source 10, and includes a motor, an actuator, and the like for moving the focus lens 14 along the optical axis.
  • the optical path changing optical member 18 is an optical member for changing the optical path of the laser light emitted from the laser light source 10, and is composed of a mirror, a prism, a flat glass or the like.
  • the irradiation position changing unit 20 is a means for rotating or translating the optical path changing optical member 18 in order to change the optical path of the laser light, and includes a motor, an actuator, and the like.
  • the beam splitter 12 has a function of transmitting the laser light emitted from the laser light source 10 and reflecting the light incident from the measurement target 200 side to the spectrum measurement device 30 side.
  • the spectrum measuring device 30 is a device that measures an intensity distribution (emission spectrum) for each wavelength with respect to incident light.
  • the spectrum measuring apparatus 30 includes a spectroscope 32 and an ICCD (Intensified Charge Coupled Device) camera 35.
  • the spectroscope 32 includes, for example, a diffraction grating or a bandpass filter.
  • the ICCD camera 35 generates an emission spectrum by converting a light signal spatially modulated by the spectroscope 32 based on a wavelength into an electric signal (image signal). Note that the spectrum measuring apparatus 30 is not limited to the configuration shown in FIG. 1, and may have any configuration as long as it can measure an emission spectrum.
  • the three-dimensional shape measurement device 40 is a device that three-dimensionally measures the shape (that is, the distance) of the measurement target 200. Any configuration (technique) can be used as long as it is a configuration capable of measuring the three-dimensional shape of the object as the three-dimensional measuring device.
  • the three-dimensional measuring apparatus 40 may include a TOF (Time Of Flight) sensor.
  • the three-dimensional measurement apparatus 40 includes two cameras arranged at different positions, and three-dimensionally measures the shape of the measurement target using the stereo method using images captured by the two cameras. May be.
  • the three-dimensional shape measurement device 40 transmits information indicating the measurement result of the measurement target 200 to the control device 50.
  • the control device 50 acquires emission spectrum data from the spectrum measurement device 30, analyzes it, and analyzes the component composition of the measurement target 200. In addition to the analysis of the emission spectrum, the control device 50 determines the shape and distance of the measurement target 200 based on the measurement result of the three-dimensional shape measurement device 40, and changes the focus adjustment unit 16 and the irradiation position based on the determination result.
  • the unit 20 is also controlled.
  • the control device 50 is an information processing device (for example, a personal computer) including a CPU, and realizes a predetermined function by the CPU executing a predetermined program. Note that the analysis function of the emission spectrum and the control functions of the focus adjusting unit 16 and the irradiation position changing unit 20 may be realized by separate computers (CPUs).
  • control device 50 may be realized only by hardware (electronic circuit) designed exclusively to realize a predetermined function, instead of being realized by a combination of hardware (CPU) and software.
  • control device 50 may include an MPU, DSP, FPGA, ASIC, or the like instead of the CPU.
  • the component composition measuring system 100 measures the composition of the measurement target 200 using laser induced breakdown spectroscopy (LIBS).
  • LIBS laser induced breakdown spectroscopy
  • the component composition measurement system 100 irradiates the surface of the measurement target 200 with laser light from the laser light source 10.
  • the focus of the irradiated laser beam is adjusted by the focus adjustment unit 16.
  • the irradiation position of the laser beam on the measurement target 200 (that is, the optical path of the laser beam) is changed by the irradiation position changing unit 20.
  • the three-dimensional shape measuring device 40 measures the shape (distance) of the measurement target 200 three-dimensionally and transmits it to the control device 50.
  • the control device 50 controls the focus adjustment unit 16 and the irradiation position changing unit 20 based on the measurement result from the three-dimensional shape measurement device 40.
  • the laser light source 10 emits pulsed laser light (laser pulse).
  • Laser light (laser pulse) passes through the focus lens 14, the optical path changing optical member 18, and the beam splitter 12 and is irradiated on the surface of the measurement target 200.
  • High temperature plasma is generated on the surface of the measurement target 200 by irradiating the surface of the measurement target 200 with laser light.
  • the light emitted from the plasma is reflected by the beam splitter 12 and enters the spectrum measuring device 30 via the lens 22.
  • the spectrum measuring apparatus 30 measures the intensity of light from the plasma for each wavelength to obtain an emission spectrum.
  • the emission spectrum data is transmitted to the control device 50.
  • the control device 50 analyzes the composition of the measurement target 200 by analyzing the emission spectrum data.
  • FIG. 2 is a diagram for explaining laser-induced breakdown spectroscopy.
  • FIG. 2A is a diagram showing a change with time of plasma emission observed in laser-induced breakdown spectroscopy.
  • laser light laser pulse
  • FIG. 2A when laser light (laser pulse) is irradiated onto the measurement target surface at time t0, plasma is generated on the measurement target surface.
  • the emission intensity of plasma shows the maximum value immediately after laser pulse irradiation, and then decreases as the plasma cools with time.
  • Atomic emission is measured during the plasma cooling process. The composition to be measured is measured based on the atomic emission measured at this time.
  • FIGS. 2B, 2C, and 2D are diagrams showing emission spectra observed with the plasma emission shown in FIG. 2A, and the emission observed at times t1, t2, and t3, respectively. The spectrum is shown.
  • noise due to blackbody radiation is large, and thus the spectrum of atomic emission is hidden by noise and cannot be observed.
  • FIGS. 2C and 2D As time passes, as shown in FIGS. 2C and 2D, when the noise is reduced and the level of atomic emission relative to the noise is relatively high (that is, when the S / N ratio is increased), atomic emission is caused. It becomes observable.
  • plasma emission that is, atomic emission
  • Tm observation time
  • D delay time
  • the delay time (D) is set to a time when noise is sufficiently reduced and atomic emission can be sufficiently observed (that is, a time when a sufficient S / N ratio is obtained).
  • the component composition measurement system 100 of the present embodiment controls the laser pulse irradiation conditions so that the state of the generated plasma does not fluctuate, and further analyzes the measurement results measured in the fluctuating plasma state. Do not use. This improves the accuracy of composition analysis.
  • the three-dimensional shape measuring device 40 measures the shape and distance of the measuring object 200 (S11). The measurement result is transmitted to the control device 50.
  • the control device 50 Based on the measurement result (distance, shape) by the three-dimensional shape measurement device 40, the control device 50 has a shape change in which the measurement target 200 is at the in-focus position and the shape at the irradiation position of the laser pulse on the measurement target is sharply reduced. It is determined whether or not the region is a flat region (S12).
  • the control device 50 determines the distance of the laser pulse irradiation position in the measurement target 200, and determines whether the measurement target 200 is at the in-focus position based on the distance. to decide. Further, the control device 50 determines the shape of the region of the irradiation position of the laser pulse in the measurement target 200 based on the measurement result by the three-dimensional shape measurement device 40, and the region has a flat shape without a sudden decrease in shape. Judge whether there is. Whether or not the shape is a flat shape without a sudden change in shape is determined based on, for example, the angle formed by the laser irradiation direction and the measurement surface.
  • the control device 50 stores information on the predetermined angle (X °), calculates the laser irradiation direction and the angle of the measurement surface from the shape measurement result, and compares the calculated angle with the predetermined angle (X °). Thus, it is determined whether or not the shape is a flat shape without a sudden change in shape.
  • the angle X is set according to the measurement target (for example, iron material, slag, molten metal, etc.).
  • control device 50 uses laser light.
  • the irradiation conditions are adjusted (S19).
  • the control device 50 adjusts the position of the focus lens 14 by controlling the focus adjustment unit 16 so that the measurement target 200 is in the in-focus position. Thereby, even when the position of the measurement target 200 fluctuates, the laser light can be irradiated in a state where the measurement target 200 is always focused.
  • the control device 50 causes the laser pulse on the measurement target 200 to be flat on the measurement target 200.
  • the irradiation position changing unit 20 is controlled to change the irradiation position of the laser pulse so as to irradiate the area (that is, the area where there is no sudden change in shape) (S19). Thereafter, the process returns to step S11.
  • the temperature of the generated plasma differs between the case where the flat region is irradiated with laser light and the case where the region where there is a sudden shape change is irradiated with laser light.
  • the laser irradiation area mainly increases and the amount of laser energy irradiated per unit area decreases.
  • the angle between the laser irradiation direction and the measurement surface is X °
  • the amount of laser energy irradiated per unit area is sin (X) times.
  • the state (temperature) of the generated plasma differs depending on the shape of the irradiation region of the laser beam, and fluctuations in the state of the plasma affect the measurement accuracy. Therefore, in order to reduce such fluctuations in the plasma state, in the present embodiment, the shape of the measurement target 200 is determined, and control is performed so that a flat region is irradiated with the laser light (S12, S19). .
  • control device 50 Irradiates a laser pulse from the laser light source 10, generates plasma on the surface of the measurement object 200, and obtains an emission spectrum from the plasma (S13).
  • Control device 50 calculates signal intensity and plasma temperature from the acquired emission spectrum (S14).
  • the signal intensity of the emission spectrum may be calculated using, for example, the signal intensity of a predetermined element, or may be calculated using the signal intensity indicating the maximum amplitude.
  • the plasma temperature can be calculated from the emission spectrum by the following method.
  • FIG. 5 shows the emission spectrum obtained from the plasma.
  • the intensity ratio (I Mg1 / I Mg2 ) of the plurality of magnesium spectra (Mg1, Mg2) varies depending on the temperature. Therefore, it is possible to detect the temperature of the plasma by detecting a spectrum of a plurality of magnesium (Mg1, Mg2) intensity ratio (I Mg1 / I Mg2).
  • the spectrum used in temperature detection is not limited to the spectrum of magnesium, and the spectrum of other elements (iron, aluminum, etc.) may be used.
  • the control device 50 determines whether or not the calculated signal intensity and plasma temperature are within predetermined ranges (S15). For example, the control device 50 determines whether or not the calculated signal intensity is a predetermined value or more, and determines whether or not the plasma temperature is a predetermined value or more. If at least one of the signal intensity and the plasma temperature is not within the predetermined range (NO in S15), the control device 50 returns to step S11. In this case, the measured data is not used for composition analysis. In addition, after changing the irradiation position of a laser beam, you may make it return to step S11.
  • control device 50 adds the signal intensity data measured at that time to the signal intensity data measured in the past. (S16).
  • the measurement result is not used. That is, only a measurement result indicating a good plasma state in which the plasma state satisfies certain conditions (signal intensity, temperature) is used. By using only the measurement result showing a good plasma state in this way, a decrease in measurement accuracy is prevented.
  • the control device 50 determines whether or not the number of times the spectrum signal intensity has been accumulated has reached a predetermined number of times (S17). If the predetermined number of integrations has not been reached (NO in S17), the control device 50 returns to step S11, repeats the above processing (S11 to S16), and acquires data for the predetermined number of integrations. In addition, after changing the irradiation position of a laser beam, you may make it return to step S11. Thus, by integrating and using a plurality of measurement data, the influence of noise is eliminated and the measurement accuracy is improved.
  • the control device 50 calculates the concentration of each element constituting the measurement object 200 from the spectrum in which the signal intensity is integrated (S18).
  • the calculated density information may be recorded on a recording medium (SSD, HDD) in the control device 50, may be displayed on a display, or may be printed by a printer. Alternatively, it may be transmitted to other devices (control device, server, etc.).
  • the component composition measurement system 100 includes the laser light source (10) that irradiates the measurement target 200 with the laser light (laser pulse), and the laser light from the laser light source to the measurement target 200.
  • a spectrum measuring device 30 that measures an emission spectrum indicating the intensity for each wavelength from light emission of plasma generated by irradiation, and a control device 50 that analyzes the composition of the measurement object using data of the measured emission spectrum.
  • the control device 50 determines the property of the emission spectrum (S15 in FIG. 4), and analyzes the composition of the measurement object using only the emission spectrum data whose property is in a predetermined state.
  • the characteristics of the emission spectrum may be judged and accuracy may be reduced based on the characteristics. Exclude signals from data used for analysis. Thereby, the fluctuation
  • control device 50 may determine the temperature and / or signal intensity of the plasma from the emission spectrum (S15), and analyze the composition to be measured using the emission spectrum whose plasma temperature is equal to or higher than a predetermined temperature.
  • the component composition measuring system 100 may analyze the composition to be measured using the result of measuring the emission spectrum a plurality of times and integrating the data of the plurality of emission spectra. By accumulating and using data measured a plurality of times, the accuracy of the measurement data can be improved.
  • the component composition measurement system 100 includes a three-dimensional shape measurement device 40 that measures the three-dimensional shape of the measurement target 200 and a focus adjustment unit 16 that adjusts the focal length of the laser light emitted from the laser light source 10 to the measurement target. Further, it may be provided.
  • the control device 50 may adjust the focal length of the laser light by controlling the focus adjustment unit 16 based on the measurement result by the three-dimensional shape measurement device 40.
  • the laser beam can be always focused and irradiated onto the measurement object 200 without depending on the shape (distance) of the measurement object 200, and the laser beam can be irradiated with a constant intensity. Therefore, a constant emission spectrum can be obtained without depending on the shape of the measurement target 200, and the accuracy of measurement data is improved.
  • the component composition measurement system 100 may further include an irradiation position changing unit 20 that adjusts the irradiation position on the measurement target of the laser light.
  • the control device 50 may adjust the irradiation position of the laser beam on the measurement target 200 by controlling the irradiation position changing unit 20 based on the measurement result by the three-dimensional shape measurement apparatus 40. Thereby, a laser beam can be irradiated to a position (region) where a good plasma state is obtained, and a constant emission spectrum can be obtained without depending on the shape of the measurement target, thereby improving the accuracy of measurement data.
  • the measurement target 200 is irradiated with one type of laser pulse to generate plasma.
  • a second laser pulse having an intensity that does not generate plasma is irradiated.
  • irradiation of only a laser pulse for generating plasma as in the first embodiment is referred to as “single pulse irradiation”, and in order to generate plasma as in the present embodiment.
  • single pulse irradiation irradiation with another laser pulse to maintain the plasma temperature is referred to as “double pulse irradiation”.
  • FIG. 6 is a diagram showing a configuration of a component composition measuring system in the second embodiment.
  • the component composition measurement system 100b according to the second embodiment further includes a second laser light source 10b and a beam combiner 24 in addition to the configuration of the component composition measurement system 100 according to the first embodiment.
  • the laser light source 10 is referred to as a “first laser light source”.
  • the beam combiner 24 is an optical member that synthesizes the laser light from the first laser light source 10 and the laser light from the second laser light source 10 b and guides them to the beam splitter 12.
  • the first and second laser light sources 10 are irradiated so that the laser light from the first laser light source 10 and the laser light from the second laser light source 10b are irradiated to the measurement object 200 in a state where their optical axes coincide.
  • the optical axis of 10b is adjusted.
  • FIG. 7 is a diagram illustrating laser pulses emitted from the first and second laser light sources 10 and 10b.
  • a laser pulse hereinafter also referred to as “long pulse”
  • L2 output from the second laser light source 10b is a laser pulse (hereinafter referred to as “short pulse”) output from the first laser light source 10.
  • short pulse a laser pulse (hereinafter referred to as “short pulse”) output from the first laser light source 10. It has a pulse width sufficiently larger than the pulse width of L1.
  • the pulse width of the laser pulse L1 from the first laser light source 10 is 6 ns
  • the pulse width of the laser pulse L2 from the second laser light source 10b is 10,000 ns.
  • the intensity of the laser pulse L1 output from the first laser light source 10 is set to an intensity that can generate plasma by itself.
  • the intensity of the laser pulse L2 output from the second laser light source 10b is set to such an intensity that plasma cannot be generated by itself.
  • the output of the laser pulse L2 is started before the laser pulse L1 is output, and the output is completed after the output of the laser pulse L1 is completed.
  • the measurement target can be heated in advance before the output of the laser pulse L1, and further, the effect of cleaning the measurement target surface (hereinafter referred to as “surface cleaning ⁇ A pre-treatment effect).
  • surface cleaning ⁇ A pre-treatment effect the effect of cleaning the measurement target surface
  • plasma can be easily generated.
  • an effect that a decrease in plasma temperature can be sent hereinafter referred to as “surface heating effect”.
  • FIG. 8A is a diagram showing a temperature change of the plasma (P1) generated when the single pulse irradiation is performed
  • FIG. 8B is a temperature of the plasma (P2) generated when the double pulse irradiation is performed. It is the figure which showed the change.
  • the temperature (intensity) of the plasma emission P1 rapidly decreases with time.
  • irradiation with the laser pulse L2 is started before irradiation with the laser pulse L1 for plasma generation.
  • the measurement object is heated in advance (irradiation effect (heating effect)) before irradiation with the laser pulse L1, the temperature rises, and the measurement object surface is cleaned (surface cleaning effect).
  • plasma is generated by the laser pulse L1
  • the generated high temperature plasma is maintained at a high temperature by the laser pulse L2 (heating effect).
  • strength (temperature) of light emission P2 from a plasma becomes higher, and the fall rate can be reduced.
  • the timing of plasma measurement (that is, the delay time D) can be set later than in the case of single pulse irradiation, and the accuracy does not depend on the fluctuation of plasma. Measurement is possible.
  • FIG. 9 is a diagram illustrating the waveform of each pulse used for measurement.
  • Laser light having a wavelength of 532 nm was used as laser light (laser pulse L1) for generating plasma.
  • a laser beam having a wavelength of 1064 nm was used as the laser beam (laser pulse L2) for maintaining the plasma temperature.
  • Two targets were prepared as measurement targets. The first target is an iron plate (stainless steel plate) installed in the air, and the second target is an aluminum plate installed in water.
  • (A) 1st measurement result As a 1st measurement, the plasma emission spectrum by double pulse irradiation was measured with respect to the iron plate (stainless steel plate) installed in the air.
  • Such composition analysis of a target installed in the air can be applied to, for example, measurement of iron components in a blast furnace.
  • FIG. 10C is a diagram showing a spectrum observed by double pulse irradiation.
  • FIGS. 10A and 10B show measurement results obtained by one-time pulse irradiation for comparison.
  • FIG. 10A shows an emission spectrum observed when single pulse irradiation, that is, irradiation with only laser light L1 having a wavelength of 532 nm is performed.
  • a signal indicating an iron (Fe) element can be observed, but its intensity is small.
  • FIG. 10B shows an emission spectrum observed when only laser light having a wavelength of 1064 nm (that is, laser light L2 for maintaining plasma temperature) is irradiated. In this case, a signal indicating an element component is not observed.
  • FIG. 1064 nm that is, laser light L2 for maintaining plasma temperature
  • 10C shows an emission spectrum observed by double pulse irradiation (that is, irradiation with laser light L1 having a wavelength of 532 nm and laser light L2 having a wavelength of 1064 nm). As shown in FIG. 10C, a higher signal intensity (4.5 times) is obtained by double pulse irradiation than in the case of single pulse irradiation (see FIG. 10A). I understand.
  • FIG. 11C shows a spectrum observed by double pulse irradiation.
  • FIGS. 11A and 11B show measurement results obtained by one-time pulse irradiation for comparison.
  • FIG. 11A shows an emission spectrum observed when single pulse irradiation, that is, irradiation with only laser light L1 having a wavelength of 532 nm is performed.
  • a signal indicating aluminum element (Al) was not observed. This is because the generated plasma disappears in a short time in water, making measurement more difficult.
  • FIG. 11B shows an emission spectrum observed when only laser light having a wavelength of 1064 nm (that is, laser light L2 for maintaining plasma temperature) is irradiated. Also in this case, a signal indicating an aluminum element is not observed.
  • FIG. 11A shows an emission spectrum observed when only laser light having a wavelength of 1064 nm (that is, laser light L2 for maintaining plasma temperature) is irradiated. Also in this case, a signal indicating an aluminum element is not observed.
  • 11C shows an emission spectrum observed by double pulse irradiation (that is, irradiation with laser light L1 having a wavelength of 532 nm and laser light L2 having a wavelength of 1064 nm). Although it could not be observed with single pulse irradiation, a signal indicating aluminum element (Al) was observed with double pulse irradiation.
  • another laser beam L2 (long pulse) is irradiated.
  • the influence of surface properties is reduced by the surface cleaning effect and the pretreatment effect, and plasma is easily generated.
  • the temperature of the generated plasma can be maintained by the heating effect, and the rate of temperature decrease (strength decrease) can be reduced. As a result, a signal indicating an element in the plasma emission spectrum can be observed more clearly.
  • FIG. 13 shows the result of measurement performed on the sample whose surface was polished
  • FIG. 14 shows the result of measurement performed on the sample whose surface was rusted.
  • FIGS. 13A and 14A show spectrum measurement results in the case of single pulse irradiation.
  • FIGS. 13B and 14B are spectrum measurement results in the case of double pulse irradiation (after).
  • FIGS. 13C and 14C show spectrum measurement results in the case of double pulse irradiation (previous).
  • FIGS. 13A to 13C for the sample whose surface was polished, a slightly good spectrum was obtained in the case of double pulse irradiation (before), but a significant difference was seen. Absent. This is considered to be because the sample surface was polished, and thus the cleaning effect was not affected.
  • FIGS. 14 (A) and 14 (B) a single pulse irradiation and a double pulse irradiation (after) give a noisy spectrum waveform and a usable measurement result is obtained for a sample whose surface is rusted. I could't.
  • FIG. 14C in the case of double pulse irradiation (before), a good measurement result is obtained due to the surface cleaning effect. This is considered to be because the surface rust was removed by the surface cleaning effect.
  • FIG. 15 (A) is an SEM image obtained by photographing a state of the target surface after irradiating a measurement target with rust with a single pulse with a scanning electron microscope (SEM).
  • FIG. 15B is an SEM image obtained by photographing the state of the target surface after the double pulse irradiation (front) is performed on the target with rust.
  • the laser pulse L1 having a short pulse width is irradiated twice.
  • a relatively large amount of rust 80 remains as shown in FIG.
  • double pulse irradiation it can be seen that a relatively large amount of rust is removed as shown in FIG. From this, it can be seen that there is a cleaning effect on the target surface by double pulse irradiation (before).
  • FIG. 16 and FIG. 17 are diagrams showing the results of measurements performed on solid steel (room temperature) and molten steel (1600 ° C.) in order to confirm the pretreatment effect (heating effect). Also in this measurement, the spectrum was measured using each of the three types of laser pulse irradiation methods shown in FIG. In the following, attention is paid to the measurement of the manganese (Mn) component contained in the steel.
  • FIGS. 16A and 16B show measurement results when single pulse irradiation or double pulse irradiation (after) is performed on solid steel and molten steel, respectively.
  • FIGS. 17A and 17B show the measurement results in the case of performing double pulse irradiation (previous) on solid steel and molten steel, respectively.
  • the spectrum of manganese (Mn) can be measured even for solid steel. This is considered to be because the surface of the measurement target is heated to a sufficiently high temperature (heating effect) by irradiating the long pulse L2 before the short pulse L1 irradiation. As described above, by the double pulse irradiation (before), a good measurement result can be obtained regardless of whether the measurement object is solid or liquid. In other words, the spectrum of manganese can be measured without being affected by the properties of the surface to be measured.
  • the temperature of the measurement target can be raised in advance by irradiating the long pulse L2 (double pulse irradiation (previous)) before the irradiation of the short pulse L1 for generating plasma (pretreatment effect). ). Furthermore, when the target surface is flattened by the cleaning effect (that is, when there is no sudden shape change of the target surface), the laser irradiation is performed more effectively, so that plasma can be generated efficiently. As a result, plasma can be generated regardless of the properties of the measurement target.
  • the component composition measurement system 100b of the present embodiment has the first laser light source 10 that irradiates the measurement target 200 with the laser beam L1 having an intensity sufficient to generate plasma, and the extent that plasma is not generated.
  • a control device 50 that analyzes the composition of the measurement target using data of the measured emission spectrum.
  • the second laser light source 10b is a first laser light source 10b.
  • the laser beam L2 is irradiated onto the measurement target 200 for a period longer than the period during which the laser beam L2 from the laser light source 10 is irradiated onto the measurement target 200.
  • the decrease (attenuation) of the temperature (intensity) of the plasma once generated can be delayed. it can.
  • the second laser light source 10b starts irradiating the laser light L2 before starting the irradiation of the laser light L1, and ends the irradiation of the laser light L2 after the irradiation of the laser light L1 ends.
  • the measuring object 200 is heated in advance and becomes high temperature before irradiation with the laser beam L1. Further, if there is rust on the surface to be measured, it is cleaned. As a result, plasma is easily generated, and measurement is possible without being affected by the properties of the measurement target.
  • the plasma can be kept warm from the time of the plasma generation, and thus more effective.
  • a decrease in plasma temperature can be reduced.
  • a spectrum including a high level signal that does not depend on the strength of the plasma can be obtained, so that high measurement accuracy can be ensured.
  • Patent Document 1 and Non-Patent Document 1 also disclose LIBS apparatuses that irradiate two types of laser pulses.
  • Patent Document 1 and Non-Patent Document 1 also disclose LIBS apparatuses that irradiate two types of laser pulses.
  • irradiation of the other laser pulse having an intensity not generating plasma is started, The technical idea of ending the irradiation of the other laser pulse after the irradiation is not disclosed. Therefore, from the techniques disclosed in Patent Document 1 and Non-Patent Document 1, it is not possible to obtain the surface cleaning effect and the pretreatment effect shown in the present embodiment.
  • the measurement accuracy in laser-induced breakdown spectroscopy is improved, and even in the case where the position or shape of the measurement target in the process changes, the real-time component Concentration measurement is possible.
  • the idea of the component composition measurement system described in the above embodiment is an apparatus for monitoring specific components contained in raw materials and products for quality control and control in production processes such as synthetic chemical plants and steel plants. And can be applied to systems.
  • the first and second embodiments have been described as examples of the embodiment of the present invention.
  • the idea of the present invention is not limited to these examples, and can be applied to embodiments in which changes, replacements, additions, omissions, etc. are made as appropriate.
  • the laser light from the second laser light source 10b may be transmitted to the vicinity of the beam combiner 24 through an optical fiber.
  • the 2nd laser light source 10b can be arrange
  • the second laser light source 10b that outputs a long-pulse laser beam is a large-sized device, and the installation position is limited. Therefore, transmitting the laser beam of the second laser light source 10b with an optical fiber is useful in that the degree of freedom in layout of the second laser light source 10b is increased.
  • the functions of the first laser light source 10 that outputs a short pulse and the second laser light source 10b that outputs a long pulse may be realized by a single light source device.
  • FIG. 18 shows an example of the configuration of such a light source device.
  • the laser light source 10 c includes an excitation source 51, laser media 52 and 53, and mirrors 55 disposed at both ends on the optical path of the laser media 52 and 53. Further, the laser light source 10 c includes a Pockel cell 57, a mirror 59, a wave plate 61, and a beam combiner 63.
  • the excitation source 51 is composed of a flash lamp, for example, and outputs excitation light.
  • the laser media 52 and 53 include Nd: YAG crystals that are excited by excitation light and generate laser light.
  • the beam combiner 63 combines the beams using the polarization characteristics of the laser light.
  • the Pockel cell 57 is an element that causes laser light to oscillate in a short pulse.
  • the wave plate 61 is an element that changes the polarization characteristics of the laser light.
  • the laser media 52 and 53 are excited by excitation light from the excitation source 51 and output light. Light generated by the laser media 52 and 53 is reflected between the mirrors 55 and output as laser light.
  • the laser light from the laser medium 52 is outputted as a short pulse laser light via the Pockel cell 57 to the mirror 59.
  • the laser medium 53 outputs a long pulse laser beam.
  • the mirror 59 changes the optical path of the laser light from the Pockel cell 57 so that it enters the wave plate 61.
  • the short-pulse laser light that has passed through the wave plate 61 is incident on the combiner 63.
  • the combiner 63 combines the short pulse laser light from the laser medium 52 and the long pulse laser light from the laser medium 553 and outputs the combined light.
  • two laser beams having different pulse widths can be output from one laser light source 10c.
  • the laser light source 10c having such a configuration With the configuration as described above, two laser beams having different pulse widths can be output from one laser light source 10c.
  • the second laser light source starts the irradiation of the second laser light before starting the irradiation of the first laser light, and finishes the irradiation of the second laser light after the end of the irradiation of the first laser light.
  • the measurement target can be heated and the measurement target can be cleaned before the plasma is generated. Further, after the plasma is generated, the decrease in the plasma temperature can be delayed. Thereby, since a spectrum including a high level signal is obtained, high measurement accuracy can be ensured.
  • the first and second lasers are irradiated so that the first laser beam and the second laser beam are irradiated onto the measurement target in a state where their optical axes coincide with each other.
  • the optical axis of the light source may be adjusted.
  • the first laser beam can be irradiated to the portion to be measured heated by the second laser beam.
  • the temperature of the plasma generated by the first laser light can be kept warm by the second laser light.
  • the control device may determine the property of the emission spectrum and analyze the composition to be measured using only the data of the emission spectrum having the property in a predetermined state. As a result, a signal that may cause a decrease in accuracy can be excluded from the data used for analysis, and high measurement accuracy can be ensured.
  • the control device may determine the temperature of the plasma from the emission spectrum, and analyze the composition to be measured using the emission spectrum whose plasma temperature is equal to or higher than a predetermined temperature. . As a result, a signal that may cause a decrease in accuracy can be excluded from data used for analysis.
  • the control device determines the signal intensity of the emission spectrum, and analyzes the composition of the measurement object using the emission spectrum data in which the signal intensity is a predetermined value or more. Good. As a result, a signal that may cause a decrease in accuracy can be excluded from data used for analysis.
  • control device may analyze the composition to be measured using the result of measuring the emission spectrum a plurality of times and integrating the data of the plurality of emission spectra. By accumulating and using data measured a plurality of times, the accuracy of the measurement data can be improved.
  • the component composition measurement system according to (1) to (6) includes a three-dimensional shape measurement device that measures a three-dimensional shape and distance of a measurement target, and a laser beam emitted from the first laser light source to the measurement target. You may further provide the focus adjustment means to adjust a focal distance.
  • the control device may adjust the focal length of the laser light by controlling the focus adjusting means based on the measurement result by the three-dimensional shape measuring device. As a result, the laser beam can always be focused and irradiated to the measurement object without depending on the shape (distance) of the measurement object, and the laser beam can be irradiated with a constant intensity.
  • the component composition measurement system according to (1) to (6) may further include a three-dimensional shape measurement device and irradiation position changing means for adjusting the irradiation position of the laser beam on the measurement target.
  • the control device may adjust the irradiation position of the laser beam on the measurement target by controlling the irradiation position changing means based on the measurement result by the three-dimensional shape measurement apparatus.
  • the present disclosure discloses the following component composition measuring method. Irradiating a measurement target with a first laser beam having an intensity sufficient to generate plasma; Irradiating a measurement target with a second laser beam having an intensity that does not generate plasma; A step of measuring an emission spectrum indicating an intensity for each wavelength from light emission of plasma generated by irradiation of the measurement target of the first laser beam; Analyzing the composition to be measured using the measured emission spectrum data, and Before starting the irradiation of the first laser light, start the irradiation of the second laser light, and after finishing the irradiation of the first laser light, end the irradiation of the second laser light.
  • Component composition measurement method Component composition measurement method.
  • the property of the emission spectrum may be determined, and the composition to be measured may be analyzed using only the data of the emission spectrum having the property in a predetermined state.

Abstract

This component composition measuring system is provided with: a first laser light source which radiates first laser light (L1), having an intensity sufficient to generate plasma, onto an object to be measured; a second laser light source which radiates second laser light (L2), having an intensity not sufficient to generate plasma, onto the object to be measured; a spectrum measuring device which measures a light-emission spectrum indicating the intensity at each wavelength, from plasma emissions generated by radiating the first laser light onto the object to be measured; and a control device which uses data relating to the measured light-emission spectrum to analyze the composition of the object to be measured. The second laser light source starts radiating the second laser light (L2) before the start of radiation of the first laser light (L1), and stops radiating the second laser light (L2) after radiation of the first laser light (L1) has stopped.

Description

成分組成計測システム及び成分組成計測方法Component composition measuring system and component composition measuring method
 本発明は、レーザ誘起ブレークダウン分光法を用いて計測対象の成分組成を計測する装置及び方法に関する。 The present invention relates to an apparatus and a method for measuring a component composition to be measured using laser-induced breakdown spectroscopy.
 物質の成分組成を分析する手法として、レーザ誘起ブレークダウン分光法(LIBS:Laser Induced Breakdown Spectroscopy)がある。レーザ誘起ブレークダウン分光法は、計測対象の表面にレーザ光を照射してプラズマを発生させ、プラズマの発光スペクトルを分析することにより、検査対象を構成する元素成分を測定する。 There is a laser-induced breakdown spectroscopy (LIBS: Laser-Induced-Breakdown-Spectroscopy) as a method for analyzing the component composition of substances. In laser-induced breakdown spectroscopy, the surface of a measurement target is irradiated with laser light to generate plasma, and the emission spectrum of the plasma is analyzed to measure elemental components constituting the inspection target.
 より具体的には、レーザ誘起ブレークダウン分光法では,レーザを集光して計測対象に照射し、計測対象の表面を急速に加熱することにより、計測対象表面において励起状態のイオンを含むプラズマを生成する。励起された電子が低いエネルギーレベルに落ちるときに、成分特有の周波数を有する光を発する。その発光強度は原子数密度に相関があるため、各スペクトルの波長とスペクトル線強度を求めることで、計測対象中に存在する物質の識別と測量が可能になる。ここで、自然放出による原子iの発光スペクトル強度Iiは以下の式で表される。
Figure JPOXMLDOC01-appb-M000001
n(i)は元素iの濃度,K(i),jはアインシュタイン係数を含む変数,g(i),jは縮退度,E(i),jは上位エネルギー、KBはボルツマン定数、Tはプラズマ温度を示す。定量分析を行う場合、プラズマ温度など,発光強度I(i)に影響を与える要素の明確化が重要となる。
More specifically, in laser-induced breakdown spectroscopy, a laser beam is focused and irradiated onto a measurement target, and the surface of the measurement target is rapidly heated to generate a plasma containing ions in an excited state on the measurement target surface. Generate. When the excited electrons fall to a low energy level, they emit light having a component-specific frequency. Since the emission intensity has a correlation with the atom number density, it is possible to identify and survey a substance existing in the measurement target by obtaining the wavelength and spectral line intensity of each spectrum. Here, emission spectrum intensity Ii of atom i by spontaneous emission is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
n (i) is the concentration of element i, K (i), j is a variable containing the Einstein coefficient, g (i), j is the degree of degeneracy, E (i), j is the upper energy, K B is the Boltzmann constant, T Indicates the plasma temperature. When performing quantitative analysis, it is important to clarify factors that affect the emission intensity I (i) , such as plasma temperature.
 レーザ誘起ブレークダウン分光法は、種々のサンプルに対する定量及び元素分析に適用される。例えば、特許文献1は、レーザ誘起ブレークダウン分光法を用いて廃棄木材中の有害物質を検出するシステムを開示する。特許文献1のシステムは、廃棄木材中の有害物を検出するシステムであって、廃棄木材を搬送する搬送装置と、搬送装置に搬送された廃棄木材中の有害物を検出するレーザ誘起ブレークダウン(LIBS)装置と、レーザ誘起ブレークダウン装置からの信号により有害物を含む有害木材のみを無害木材から分別する分別装置とからなる。特許文献1のシステムによれば、建築物等からの廃棄木材に塗布された防腐剤等の有害物をリアルタイムで簡易且つ迅速に検出することができる。 Laser induced breakdown spectroscopy is applied to quantitative and elemental analysis on various samples. For example, Patent Document 1 discloses a system for detecting harmful substances in waste wood using laser-induced breakdown spectroscopy. The system of Patent Document 1 is a system that detects harmful substances in waste wood, a transport device that transports waste wood, and a laser-induced breakdown that detects harmful substances in waste wood transported to the transport apparatus ( (LIBS) device and a sorting device for separating only harmful wood containing harmful substances from harmless wood by a signal from a laser-induced breakdown device. According to the system of Patent Document 1, harmful substances such as preservatives applied to waste wood from buildings and the like can be detected simply and quickly in real time.
 また、特許文献2及び非特許文献1は、短いレーザパルスと長いレーザパルスとを用いたLIBS装置を開示する。特許文献2は、ブレークダウンを起こす短いレーザパルスと、単独ではブレークダウンを起こさない長いレーザパルスとを組み合わせたLIBS装置を開示している。非特許文献1は、短いレーザパルスと長いレーザパルスとの光軸を一致させたLIBS装置を開示している。 Patent Document 2 and Non-Patent Document 1 disclose a LIBS apparatus using a short laser pulse and a long laser pulse. Patent Document 2 discloses a LIBS apparatus in which a short laser pulse that causes breakdown and a long laser pulse that does not cause breakdown alone are combined. Non-Patent Document 1 discloses a LIBS device in which the optical axes of a short laser pulse and a long laser pulse are matched.
特開2007-10371号公報JP 2007-10371 米国特許8,125,627号明細書US Patent 8,125,627
 レーザ誘起ブレークダウン分光法は、計測対象の元素組成をリアルタイムに計測できる利点を有するが、他方、プラズマ生成過程において変動が生じると精度が低下し、対象の位置や形状が変化する場では、適用が難しいという問題がある。 Laser-induced breakdown spectroscopy has the advantage of being able to measure the elemental composition of the measurement object in real time, but on the other hand, it can be applied when the position or shape of the object changes because the accuracy decreases when fluctuations occur in the plasma generation process. There is a problem that is difficult.
 本発明は、レーザ誘起ブレークダウン分光法を用いて計測対象の組成を分析する装置及び方法において、精度よく組成の分析を可能とする装置及び方法を提供することを目的とする。 An object of the present invention is to provide an apparatus and a method for analyzing a composition to be measured using laser-induced breakdown spectroscopy, and an apparatus and a method capable of accurately analyzing the composition.
 本発明に係る成分組成計測システムは、プラズマを発生させる程度の強度を有する第1のレーザ光を計測対象へ照射する第1のレーザ光源と、プラズマを発生させない程度の強度を有する第2のレーザ光を計測対象へ照射する第2のレーザ光源と、第1のレーザ光源から計測対象への第1のレーザ光の照射により生じたプラズマの発光から、波長毎の強度を示す発光スペクトルを測定するスペクトル測定装置と、測定された発光スペクトルのデータを用いて計測対象の組成を分析する制御装置と、を備える。第2のレーザ光源は、第1のレーザ光の照射開始前に、第2のレーザ光の照射を開始し、第1のレーザ光の照射終了後に、第2のレーザ光の照射を終了する。 The component composition measurement system according to the present invention includes a first laser light source that irradiates a measurement target with a first laser beam having an intensity that generates plasma, and a second laser that has an intensity that does not generate plasma. A light emission spectrum indicating the intensity for each wavelength is measured from the second laser light source that irradiates light to the measurement target and the light emission of the plasma generated by the irradiation of the first laser light from the first laser light source to the measurement target. A spectrum measuring device; and a control device that analyzes a composition to be measured using data of the measured emission spectrum. The second laser light source starts irradiation of the second laser light before the start of irradiation of the first laser light, and ends irradiation of the second laser light after the end of irradiation of the first laser light.
 本発明に係る成分組成計測方法は、プラズマを発生させる程度の強度を有する第1のレーザ光を計測対象へ照射するステップと、プラズマを発生させない程度の強度を有する第2のレーザ光を計測対象へ照射するステップと、第1のレーザ光の計測対象への照射により生じたプラズマの発光から、波長毎の強度を示す発光スペクトルを測定するステップと、測定された発光スペクトルのデータを用いて前記計測対象の組成を分析するステップと、を備える。第1のレーザ光の照射開始前に、第2のレーザ光の照射を開始し、第1のレーザ光の照射終了後に、第2のレーザ光の照射を終了する。 The component composition measuring method according to the present invention includes a step of irradiating a measurement target with a first laser beam having an intensity sufficient to generate plasma, and a second laser beam having an intensity sufficient not to generate plasma. Irradiating the measurement target with the first laser light, measuring the emission spectrum indicating the intensity for each wavelength from the plasma emission generated by irradiating the measurement target of the first laser light, and using the measured emission spectrum data Analyzing the composition to be measured. The irradiation of the second laser light is started before the irradiation of the first laser light is started, and the irradiation of the second laser light is ended after the irradiation of the first laser light is completed.
 本発明の成分組成計測システム及び成分組成計測方法によれば、プラズマ発生前の計測対象を加熱でき、また一旦発生させたプラズマの温度(強度)を維持でき、その低下(減衰)を遅らせることができる。これにより、計測対象の性状に依存しない、高いレベルの信号を含むスペクトルが得られるため、高い計測精度を確保することができる。 According to the component composition measurement system and component composition measurement method of the present invention, the measurement object before plasma generation can be heated, the temperature (intensity) of the plasma once generated can be maintained, and the decrease (attenuation) can be delayed. it can. As a result, a spectrum including a high-level signal that does not depend on the properties of the measurement target can be obtained, so that high measurement accuracy can be ensured.
本発明の実施の形態1における成分組成計測システムの構成を示した図The figure which showed the structure of the component composition measuring system in Embodiment 1 of this invention. レーザ誘起ブレークダウン分光法(LIBS)において観測される発光の強度及び発光スペクトルの経時的な変化を説明した図The figure explaining the change over time of emission intensity and emission spectrum observed in laser induced breakdown spectroscopy (LIBS) 成分組成計測システムにおけるレーザパルス照射及びプラズマ計測のタイミングを説明した図Diagram explaining the timing of laser pulse irradiation and plasma measurement in the component composition measurement system 成分組成計測システムの動作を示すフローチャートFlow chart showing operation of component composition measurement system レーザ誘起ブレークダウン分光法において観測されるスペクトルの一例を説明した図Diagram explaining an example of a spectrum observed in laser-induced breakdown spectroscopy 本発明の実施の形態2における成分組成計測システムの構成を示した図The figure which showed the structure of the component composition measuring system in Embodiment 2 of this invention. 実施の形態2におけるダブルパルス照射を説明した図The figure explaining double pulse irradiation in Embodiment 2. (A)シングルパルス照射された場合のプラズマ発光の強度変化を示した図、(B)ダブルパルス照射された場合のプラズマ発光の強度変化を示した図(A) The figure which showed the intensity change of the plasma luminescence at the time of single pulse irradiation, (B) The figure which showed the intensity change of the plasma luminescence at the time of double pulse irradiation 第1及び第2の測定に使用した各パルスの波形を説明した図The figure explaining the waveform of each pulse used for the 1st and 2nd measurement 第1の測定の結果を示す図(計測対象=空気中に設置された鉄板(ステンレス板))The figure which shows the result of the 1st measurement (measuring object = iron plate (stainless steel plate) installed in the air) 第2の測定の結果を示す図(計測対象=水中に設置されたアルミ板)The figure which shows the result of the 2nd measurement (measurement object = aluminum plate installed in water) レーザパルスの種々の照射方法における照射タイミングを説明した図Diagram explaining the irradiation timing in various laser pulse irradiation methods 表面が研磨されたサンプルに対して行った測定結果を示した図The figure which showed the measurement result which was done to the sample where the surface was polished 表面が錆びたサンプルに対して行った測定結果を示した図The figure which showed the measurement result done to the sample where the surface rusted (A)計測対象にシングルパルス照射した後の計測対象表面のSEM画像を示す図、(B)計測対象にダブルパルス照射した後の計測対象表面のSEM画像を示す図(A) The figure which shows the SEM image of the measurement object surface after irradiating a measurement object with a single pulse, (B) The figure which shows the SEM image of the measurement object surface after irradiating a measurement object with a double pulse 前処理効果(加熱効果)を確認するために、固体の鋼と溶鋼に対して、シングルパルス照射またはダブルパルス照射(後)を行った場合の測定結果を示した図The figure which showed the measurement result when performing single pulse irradiation or double pulse irradiation (after) to solid steel and molten steel in order to confirm the pretreatment effect (heating effect) 前処理効果(加熱効果)を確認するために、固体の鋼と溶鋼に対して、ダブルパルス照射(前)を行った場合の測定結果を示した図The figure which showed the measurement result at the time of performing double pulse irradiation (previous) to solid steel and molten steel in order to confirm the pretreatment effect (heating effect) 2種類のレーザ光を照射可能な光源装置の構成の例を示す図The figure which shows the example of a structure of the light source device which can irradiate two types of laser beams
 以下、添付の図面を参照して、本発明に係る成分組成計測システムの実施の形態を説明する。以下に説明する成分組成計測システムは、レーザ誘起ブレークダウン分光法(LIBS)を用いて計測対象の組成を計測するシステムである。 Hereinafter, an embodiment of a component composition measuring system according to the present invention will be described with reference to the accompanying drawings. The component composition measurement system described below is a system that measures a composition to be measured using laser-induced breakdown spectroscopy (LIBS).
(実施の形態1)
1.システムの構成
 図1に本発明の成分組成計測システムの第一の実施の形態の構成を示す。成分組成計測システム100は、レーザ光源10と、ビームスプリッタ12と、フォーカスレンズ14と、焦点調整部16と、光路変更光学部材18と、照射位置変更部20と、集光レンズ22と、スペクトル測定装置30と、三次元形状計測装置40と、制御装置50(解析装置)と、を備える。
(Embodiment 1)
1. System Configuration FIG. 1 shows the configuration of the first embodiment of the component composition measuring system of the present invention. The component composition measurement system 100 includes a laser light source 10, a beam splitter 12, a focus lens 14, a focus adjustment unit 16, an optical path changing optical member 18, an irradiation position changing unit 20, a condensing lens 22, and spectrum measurement. A device 30, a three-dimensional shape measurement device 40, and a control device 50 (analysis device) are provided.
 レーザ光源10は、プラズマを発生させない程度の強度を有し、所定の波長帯域のレーザ光を出力可能な光源装置であり、例えばYAGレーザで構成される。 The laser light source 10 is a light source device that has an intensity that does not generate plasma and is capable of outputting laser light in a predetermined wavelength band, and is composed of, for example, a YAG laser.
 焦点調整部16は、レーザ光源10から照射されたレーザ光の焦点を調整する手段であり、フォーカスレンズ14を光軸に沿って移動させるためのモータやアクチュエータ等を含む。 The focus adjusting unit 16 is a means for adjusting the focus of the laser light emitted from the laser light source 10, and includes a motor, an actuator, and the like for moving the focus lens 14 along the optical axis.
 光路変更光学部材18は、レーザ光源10から照射されたレーザ光の光路を変更するための光学部材であり、ミラー、プリズムまたは平板ガラスなどで構成される。照射位置変更部20は、レーザ光の光路を変更するために光路変更光学部材18を回転や平行移動させるための手段であり、モータやアクチュエータ等を含む。 The optical path changing optical member 18 is an optical member for changing the optical path of the laser light emitted from the laser light source 10, and is composed of a mirror, a prism, a flat glass or the like. The irradiation position changing unit 20 is a means for rotating or translating the optical path changing optical member 18 in order to change the optical path of the laser light, and includes a motor, an actuator, and the like.
 ビームスプリッタ12は、レーザ光源10から照射されたレーザ光を透過させるとともに、計測対象200側から入射した光をスペクトル測定装置30側へ反射させる機能を有する。 The beam splitter 12 has a function of transmitting the laser light emitted from the laser light source 10 and reflecting the light incident from the measurement target 200 side to the spectrum measurement device 30 side.
 スペクトル測定装置30は、入射した光に対して波長毎の強度分布(発光スペクトル)を計測する装置である。スペクトル測定装置30は分光器32とICCD(Intensified Charge Coupled Device)カメラ35とで構成される。分光器32は、例えば回折格子またはバンドパスフィルタを備える。ICCDカメラ35は、分光器32により波長に基づき空間的に変調された光の信号を電気信号(画像信号)に変換することにより、発光スペクトルを生成する。なお、スペクトル測定装置30は、図1に示す構成に限定されず、発光スペクトルを測定できるものであれば任意の構成をとり得る。 The spectrum measuring device 30 is a device that measures an intensity distribution (emission spectrum) for each wavelength with respect to incident light. The spectrum measuring apparatus 30 includes a spectroscope 32 and an ICCD (Intensified Charge Coupled Device) camera 35. The spectroscope 32 includes, for example, a diffraction grating or a bandpass filter. The ICCD camera 35 generates an emission spectrum by converting a light signal spatially modulated by the spectroscope 32 based on a wavelength into an electric signal (image signal). Note that the spectrum measuring apparatus 30 is not limited to the configuration shown in FIG. 1, and may have any configuration as long as it can measure an emission spectrum.
 三次元形状計測装置40は、計測対象200の形状(すなわち距離)を三次元的に計測する装置である。三次元計測装置として、物体の三次元形状が測定できる構成であれば、任意の構成(技術)を使用できる。例えば、三次元計測装置40は、TOF(Time Of Flight)センサを備えても良い。または、三次元計測装置40は、位置をずらして配置された2台のカメラを備え、2台のカメラで撮影された画像を用いてステレオ法により、計測対象の形状を三次元的に計測してもよい。三次元形状計測装置40は計測対象200の計測結果を示す情報を制御装置50に送信する。 The three-dimensional shape measurement device 40 is a device that three-dimensionally measures the shape (that is, the distance) of the measurement target 200. Any configuration (technique) can be used as long as it is a configuration capable of measuring the three-dimensional shape of the object as the three-dimensional measuring device. For example, the three-dimensional measuring apparatus 40 may include a TOF (Time Of Flight) sensor. Alternatively, the three-dimensional measurement apparatus 40 includes two cameras arranged at different positions, and three-dimensionally measures the shape of the measurement target using the stereo method using images captured by the two cameras. May be. The three-dimensional shape measurement device 40 transmits information indicating the measurement result of the measurement target 200 to the control device 50.
 制御装置50(解析装置)は、スペクトル測定装置30から発光スペクトルのデータを取得し、それを解析して計測対象200の成分組成を分析する。制御装置50は、発光スペクトルの解析に加えて、三次元形状計測装置40による計測結果に基づいて、計測対象200の形状や距離を判断し、その判断結果に基づき焦点調整部16および照射位置変更部20の制御も行う。制御装置50は、CPUを含む情報処理装置(例えば、パーソナルコンピュータ)であり、CPUが所定のプログラムを実行することにより所定の機能を実現する。なお、発光スペクトルの解析機能と、焦点調整部16および照射位置変更部20の制御機能とを別々のコンピュータ(CPU)で実現してもよい。また、制御装置50の機能を、ハードウェア(CPU)とソフトウェアの組み合わせにより実現する代わりに、所定の機能を実現するように専用に設計されたハードウェア(電子回路)のみで実現してもよい。すなわち、制御装置50は、CPUに代えて、MPU、DSP、FPGAまたはASIC等を含んでもよい。 The control device 50 (analysis device) acquires emission spectrum data from the spectrum measurement device 30, analyzes it, and analyzes the component composition of the measurement target 200. In addition to the analysis of the emission spectrum, the control device 50 determines the shape and distance of the measurement target 200 based on the measurement result of the three-dimensional shape measurement device 40, and changes the focus adjustment unit 16 and the irradiation position based on the determination result. The unit 20 is also controlled. The control device 50 is an information processing device (for example, a personal computer) including a CPU, and realizes a predetermined function by the CPU executing a predetermined program. Note that the analysis function of the emission spectrum and the control functions of the focus adjusting unit 16 and the irradiation position changing unit 20 may be realized by separate computers (CPUs). Further, the function of the control device 50 may be realized only by hardware (electronic circuit) designed exclusively to realize a predetermined function, instead of being realized by a combination of hardware (CPU) and software. . That is, the control device 50 may include an MPU, DSP, FPGA, ASIC, or the like instead of the CPU.
2.システムの動作
 以上のように構成される成分組成計測システム100の動作について説明する。成分組成計測システム100は、レーザ誘起ブレークダウン分光法(LIBS)を用いて計測対象200の組成を計測する。
2. The operation of the component composition measuring system 100 configured as described above will be described. The component composition measurement system 100 measures the composition of the measurement target 200 using laser induced breakdown spectroscopy (LIBS).
 成分組成計測システム100は、計測対象200の表面に対してレーザ光源10からレーザ光を照射する。照射されるレーザ光のフォーカスは焦点調整部16により調整される。また、計測対象200上のレーザ光の照射位置(すなわち、レーザ光の光路)は、照射位置変更部20により変更される。三次元形状計測装置40は計測対象200の形状(距離)を三次元的に計測し、制御装置50に送信する。制御装置50は、三次元形状計測装置40からの測定結果に基づき、焦点調整部16および照射位置変更部20を制御する。 The component composition measurement system 100 irradiates the surface of the measurement target 200 with laser light from the laser light source 10. The focus of the irradiated laser beam is adjusted by the focus adjustment unit 16. Further, the irradiation position of the laser beam on the measurement target 200 (that is, the optical path of the laser beam) is changed by the irradiation position changing unit 20. The three-dimensional shape measuring device 40 measures the shape (distance) of the measurement target 200 three-dimensionally and transmits it to the control device 50. The control device 50 controls the focus adjustment unit 16 and the irradiation position changing unit 20 based on the measurement result from the three-dimensional shape measurement device 40.
 レーザ光源10はパルス状のレーザ光(レーザパルス)を照射する。レーザ光(レーザパルス)は、フォーカスレンズ14、光路変更光学部材18及びビームスプリッタ12を透過して計測対象200の表面に照射される。計測対象200の表面にレーザ光が照射されることにより計測対象200の表面に高温プラズマが発生する。プラズマの発光は、ビームスプリッタ12で反射され、レンズ22を介してスペクトル測定装置30に入射される。 The laser light source 10 emits pulsed laser light (laser pulse). Laser light (laser pulse) passes through the focus lens 14, the optical path changing optical member 18, and the beam splitter 12 and is irradiated on the surface of the measurement target 200. High temperature plasma is generated on the surface of the measurement target 200 by irradiating the surface of the measurement target 200 with laser light. The light emitted from the plasma is reflected by the beam splitter 12 and enters the spectrum measuring device 30 via the lens 22.
 スペクトル測定装置30は、プラズマからの光の強度を波長毎に測定して発光スペクトルを得る。この発光スペクトルのデータは制御装置50に送信される。制御装置50は、発光スペクトルのデータを解析して計測対象200の組成を分析する。 The spectrum measuring apparatus 30 measures the intensity of light from the plasma for each wavelength to obtain an emission spectrum. The emission spectrum data is transmitted to the control device 50. The control device 50 analyzes the composition of the measurement target 200 by analyzing the emission spectrum data.
 図2は、レーザ誘起ブレークダウン分光法を説明した図である。図2(A)は、レーザ誘起ブレークダウン分光法において観測されるプラズマ発光の経時的な変化を示した図である。図2(A)に示すように、時刻t0でレーザ光(レーザパルス)が計測対象表面に照射されると、計測対象表面にプラズマが発生する。プラズマの発光強度は、レーザパルス照射直後に最高値を示し、その後時間経過と共にプラズマが冷却していくと、低下していく。このプラズマの冷却過程において原子発光が計測される。このとき計測される原子発光に基づいて計測対象の組成を計測する。 FIG. 2 is a diagram for explaining laser-induced breakdown spectroscopy. FIG. 2A is a diagram showing a change with time of plasma emission observed in laser-induced breakdown spectroscopy. As shown in FIG. 2A, when laser light (laser pulse) is irradiated onto the measurement target surface at time t0, plasma is generated on the measurement target surface. The emission intensity of plasma shows the maximum value immediately after laser pulse irradiation, and then decreases as the plasma cools with time. Atomic emission is measured during the plasma cooling process. The composition to be measured is measured based on the atomic emission measured at this time.
 図2(B)、(C)、(D)は、図2(A)に示すプラズマ発光に伴い観測される発光スペクトルを示した図であり、それぞれ時刻t1、t2、t3において観測される発光スペクトルを示す。レーザパルス照射直後の時刻t1では、図2(B)に示すように、黒体放射によるノイズが大きいため、原子発光のスペクトルはノイズにより隠蔽され、観測することができない。時間が経過すると、図2(C)、(D)に示すように、ノイズが低減してノイズに対する原子発光のレベルが相対的に高くなると(すなわちS/N比が高くなると)、原子発光が観測可能になる。 FIGS. 2B, 2C, and 2D are diagrams showing emission spectra observed with the plasma emission shown in FIG. 2A, and the emission observed at times t1, t2, and t3, respectively. The spectrum is shown. At time t1 immediately after laser pulse irradiation, as shown in FIG. 2B, noise due to blackbody radiation is large, and thus the spectrum of atomic emission is hidden by noise and cannot be observed. As time passes, as shown in FIGS. 2C and 2D, when the noise is reduced and the level of atomic emission relative to the noise is relatively high (that is, when the S / N ratio is increased), atomic emission is caused. It becomes observable.
 このため、成分組成計測システム100においては、図3に示すように、レーザパルスの照射から所定の遅延時間(D)経過後に、所定幅の観測時間(Tm)の間、プラズマ発光すなわち原子発光の計測を行う。遅延時間(D)は、ノイズが十分に低下し、原子発光が十分に観測できるようになる時間(すなわち十分なS/N比が得られる時間)に設定される。 For this reason, in the component composition measurement system 100, as shown in FIG. 3, plasma emission, that is, atomic emission, is observed for an observation time (Tm) of a predetermined width after a predetermined delay time (D) has elapsed since the laser pulse irradiation. Measure. The delay time (D) is set to a time when noise is sufficiently reduced and atomic emission can be sufficiently observed (that is, a time when a sufficient S / N ratio is obtained).
 ここで、遅延時間(D)や観測時間(Tm)を一定にしても、生成されるプラズマの状態が計測毎に変動すると、観測される原子発光も大きく変動し、精度のよい測定が困難になる。そこで、本実施の形態の成分組成計測システム100は、生成されるプラズマの状態が変動しないようにレーザパルスの照射条件を制御し、さらに、変動のあるプラズマ状態で測定された測定結果を分析に使用しないようにする。これにより、組成分析の精度を向上させている。 Here, even if the delay time (D) and the observation time (Tm) are constant, if the state of the generated plasma fluctuates for each measurement, the atomic emission to be observed fluctuates greatly, making accurate measurement difficult. Become. Therefore, the component composition measurement system 100 of the present embodiment controls the laser pulse irradiation conditions so that the state of the generated plasma does not fluctuate, and further analyzes the measurement results measured in the fluctuating plasma state. Do not use. This improves the accuracy of composition analysis.
 以下、図4のフローチャートを用いて成分組成計測システム100の動作を説明する。 Hereinafter, the operation of the component composition measuring system 100 will be described using the flowchart of FIG.
 成分組成計測システム100において、三次元形状計測装置40により、計測対象200の形状及び距離を計測する(S11)。計測結果は制御装置50に送信される。 In the component composition measuring system 100, the three-dimensional shape measuring device 40 measures the shape and distance of the measuring object 200 (S11). The measurement result is transmitted to the control device 50.
 制御装置50は、三次元形状計測装置40による計測結果(距離、形状)に基づき、計測対象200が合焦位置にあり、かつ、計測対象上のレーザパルスの照射位置における形状が急減な形状変化がない平坦な領域であるか否かを判断する(S12)。 Based on the measurement result (distance, shape) by the three-dimensional shape measurement device 40, the control device 50 has a shape change in which the measurement target 200 is at the in-focus position and the shape at the irradiation position of the laser pulse on the measurement target is sharply reduced. It is determined whether or not the region is a flat region (S12).
 制御装置50は、三次元形状計測装置40による計測結果に基づき、計測対象200におけるレーザパルスの照射位置の部分の距離を判断し、その距離から計測対象200が合焦位置にあるか否かを判断する。また、制御装置50は、三次元形状計測装置40による計測結果に基づき、計測対象200におけるレーザパルスの照射位置の領域の形状を判断し、その領域が、急減な形状変化のない平坦な形状であるか否かを判断する。急減な形状変化のない平坦な形状であるか否かは、例えば、レーザ照射方向と計測面とのなす角度に基づき判断する。具体的には、レーザ照射方向と計測面とのなす角度が所定角度(X°)以下であるときに、急減な形状変化のない平坦な形状であると判断する。制御装置50は、所定角度(X°)の情報を記憶しておき、形状計測結果からレーザ照射方向と計測面の角度を算出して、算出した角度と所定角度(X°)を比較することにより、急減な形状変化のない平坦な形状であるか否かを判断する。角度Xは計測対象(例えば、鉄材料、スラグ、溶融金属など)に応じて設定する。 Based on the measurement result by the three-dimensional shape measurement device 40, the control device 50 determines the distance of the laser pulse irradiation position in the measurement target 200, and determines whether the measurement target 200 is at the in-focus position based on the distance. to decide. Further, the control device 50 determines the shape of the region of the irradiation position of the laser pulse in the measurement target 200 based on the measurement result by the three-dimensional shape measurement device 40, and the region has a flat shape without a sudden decrease in shape. Judge whether there is. Whether or not the shape is a flat shape without a sudden change in shape is determined based on, for example, the angle formed by the laser irradiation direction and the measurement surface. Specifically, when the angle formed between the laser irradiation direction and the measurement surface is equal to or smaller than a predetermined angle (X °), it is determined that the shape is flat without a sudden decrease in shape. The control device 50 stores information on the predetermined angle (X °), calculates the laser irradiation direction and the angle of the measurement surface from the shape measurement result, and compares the calculated angle with the predetermined angle (X °). Thus, it is determined whether or not the shape is a flat shape without a sudden change in shape. The angle X is set according to the measurement target (for example, iron material, slag, molten metal, etc.).
 少なくとも、計測対象200が合焦位置にないか、計測対象200上のレーザパルスの照射位置における形状が平坦でない場合(急減な形状変化がある場合)(S12でNO)、制御装置50はレーザ光の照射条件を調整する(S19)。 At least when measurement object 200 is not in the focus position or when the shape at the irradiation position of the laser pulse on measurement object 200 is not flat (when there is a sudden decrease in shape) (NO in S12), control device 50 uses laser light. The irradiation conditions are adjusted (S19).
 すなわち、計測対象200が合焦位置にない場合、制御装置50は、計測対象200が合焦位置に位置するように焦点調整部16を制御して、フォーカスレンズ14の位置を調整する。これにより、計測対象200の位置が変動する場合でも、計測対象200に常に合焦させた状態でレーザ光を照射することができる。 That is, when the measurement target 200 is not in the in-focus position, the control device 50 adjusts the position of the focus lens 14 by controlling the focus adjustment unit 16 so that the measurement target 200 is in the in-focus position. Thereby, even when the position of the measurement target 200 fluctuates, the laser light can be irradiated in a state where the measurement target 200 is always focused.
 また、計測対象200上のレーザパルスの照射位置における形状が平坦でない場合(すなわち、急減な形状変化がある場合)、制御装置50は、計測対象200上のレーザパルスが計測対象200上の平坦な領域(すなわち、急減な形状変化がない領域)に照射されるように、照射位置変更部20を制御してレーザパルスの照射位置を変更する(S19)。その後、処理はステップS11に戻る。 In addition, when the shape of the laser pulse irradiation position on the measurement target 200 is not flat (that is, when there is a sudden decrease in shape), the control device 50 causes the laser pulse on the measurement target 200 to be flat on the measurement target 200. The irradiation position changing unit 20 is controlled to change the irradiation position of the laser pulse so as to irradiate the area (that is, the area where there is no sudden change in shape) (S19). Thereafter, the process returns to step S11.
 ここで、上記のようにレーザ光を平坦な領域に照射するように制御する理由を説明する。平坦な領域にレーザ光を照射した場合と、急激な形状変化がある領域にレーザ光を照射した場合とでは、発生するプラズマの温度が異なる。急激な形状変化がある領域では、主にレーザ照射面積が増加し、単位面積当たりに照射されるレーザエネルギー量が低下する。レーザ照射方向と計測面の角度がX°の場合、単位面積当たりに照射されるレーザエネルギー量はsin(X)倍となる。sin(X)は1以下であり、X=90°(計測面に対して直角のレーザ光が照射)の時にsin(X)=1、X=45°(計測面に対して45°の角度でレーザ光が照射)の時にsin(X)=1/√2となる。すなわち、角度Xが90°からずれるほど、単位面積当たりに照射されるエネルギー量の減衰量は大きくなる。よって、急激な形状変化がある領域(すなわち凹凸がある領域)へのレーザ光の照射により発生するプラズマの温度は、平坦な領域へのレーザ光の照射により発生するプラズマの温度よりも低くなる。このようにレーザ光の照射領域の形状に応じて、発生するプラズマの状態(温度)が異なり、プラズマの状態の変動は測定精度に影響を与える。そこで、このようなプラズマの状態の変動を低減するため、本実施の形態では、計測対象200の形状を判定し、レーザ光を平坦な領域に照射するように制御している(S12、S19)。 Here, the reason why the laser beam is controlled to irradiate a flat area as described above will be described. The temperature of the generated plasma differs between the case where the flat region is irradiated with laser light and the case where the region where there is a sudden shape change is irradiated with laser light. In a region where there is an abrupt change in shape, the laser irradiation area mainly increases and the amount of laser energy irradiated per unit area decreases. When the angle between the laser irradiation direction and the measurement surface is X °, the amount of laser energy irradiated per unit area is sin (X) times. sin (X) is 1 or less, and when X = 90 ° (laser beam perpendicular to the measurement surface is irradiated), sin (X) = 1, X = 45 ° (45 ° angle to the measurement surface) And sin (X) = 1 / √2 when the laser beam is irradiated. That is, as the angle X deviates from 90 °, the attenuation amount of the energy amount irradiated per unit area increases. Therefore, the temperature of the plasma generated by the laser beam irradiation on the region having an abrupt shape change (that is, the region having the unevenness) is lower than the temperature of the plasma generated by the laser beam irradiation on the flat region. As described above, the state (temperature) of the generated plasma differs depending on the shape of the irradiation region of the laser beam, and fluctuations in the state of the plasma affect the measurement accuracy. Therefore, in order to reduce such fluctuations in the plasma state, in the present embodiment, the shape of the measurement target 200 is determined, and control is performed so that a flat region is irradiated with the laser light (S12, S19). .
 一方、計測対象200が合焦位置にあり、かつ、計測対象上のレーザパルスの照射位置における形状が平坦である場合(すなわち、急減な形状変化がない場合)(S12でYES)、制御装置50はレーザ光源10からレーザパルスを照射し、計測対象200の表面にプラズマを発生させ、プラズマからの発光スペクトルを取得する(S13)。 On the other hand, when measurement object 200 is at the in-focus position and the shape at the irradiation position of the laser pulse on the measurement object is flat (that is, when there is no sudden change in shape) (YES in S12), control device 50 Irradiates a laser pulse from the laser light source 10, generates plasma on the surface of the measurement object 200, and obtains an emission spectrum from the plasma (S13).
 制御装置50は、取得した発光スペクトルから信号強度及びプラズマの温度を算出する(S14)。発光スペクトルの信号強度は、例えば、所定の元素の信号の強度を用いて算出してもよいし、最大振幅を示す信号の強度を用いて算出してもよい。 Control device 50 calculates signal intensity and plasma temperature from the acquired emission spectrum (S14). The signal intensity of the emission spectrum may be calculated using, for example, the signal intensity of a predetermined element, or may be calculated using the signal intensity indicating the maximum amplitude.
 プラズマの温度は発光スペクトルから以下の方法で算出できる。図5は、プラズマから得られた発光スペクトルを示す。図5に示すプラズマの発光スペクトルにおいて、マグネシウム(Mg)に起因するスペクトルが複数観察されている。この複数のマグネシウムのスペクトル(Mg1、Mg2)の強度比(IMg1/IMg2)は温度に応じて変動する。よって、複数のマグネシウムのスペクトル(Mg1、Mg2)の強度比(IMg1/IMg2)を検出することによりプラズマの温度を検出することができる。なお、温度検出において使用するスペクトルはマグネシウムのスペクトルに限らず、他の元素(鉄、アルミニウム等)のスペクトルを用いても良い。 The plasma temperature can be calculated from the emission spectrum by the following method. FIG. 5 shows the emission spectrum obtained from the plasma. In the emission spectrum of the plasma shown in FIG. 5, a plurality of spectra due to magnesium (Mg) are observed. The intensity ratio (I Mg1 / I Mg2 ) of the plurality of magnesium spectra (Mg1, Mg2) varies depending on the temperature. Therefore, it is possible to detect the temperature of the plasma by detecting a spectrum of a plurality of magnesium (Mg1, Mg2) intensity ratio (I Mg1 / I Mg2). Note that the spectrum used in temperature detection is not limited to the spectrum of magnesium, and the spectrum of other elements (iron, aluminum, etc.) may be used.
 図4のフローチャートに戻り、制御装置50は、算出した信号強度及びプラズマ温度がそれぞれ所定範囲内にあるか否かを判断する(S15)。例えば、制御装置50は、算出した信号強度が所定値以上あるか否かを判断し、かつ、プラズマ温度が所定値以上あるか否かを判断する。信号強度及びプラズマ温度のうちの少なくともいずれかが所定範囲内にない場合(S15でNO)、制御装置50はステップS11に戻る。この場合、測定したデータは組成分析に使用しない。なお、レーザ光の照射位置を変更した後にステップS11に戻るようにしてもよい。 Referring back to the flowchart of FIG. 4, the control device 50 determines whether or not the calculated signal intensity and plasma temperature are within predetermined ranges (S15). For example, the control device 50 determines whether or not the calculated signal intensity is a predetermined value or more, and determines whether or not the plasma temperature is a predetermined value or more. If at least one of the signal intensity and the plasma temperature is not within the predetermined range (NO in S15), the control device 50 returns to step S11. In this case, the measured data is not used for composition analysis. In addition, after changing the irradiation position of a laser beam, you may make it return to step S11.
 一方、信号強度及びプラズマ温度のいずれも所定範囲内にある場合(S15でYES)、制御装置50は、そのときに測定された信号強度のデータを、過去に測定した信号強度のデータに積算する(S16)。 On the other hand, when both the signal intensity and the plasma temperature are within the predetermined range (YES in S15), the control device 50 adds the signal intensity data measured at that time to the signal intensity data measured in the past. (S16).
 このように、本実施の形態では、信号強度及びプラズマ温度のうちの少なくとも一方が所定の条件を満たさない場合、その測定結果を使用しないようにする。すなわち、プラズマの状態が一定の条件(信号強度、温度)を満たす、良好なプラズマ状態を示す測定結果のみを使用する。このように良好なプラズマ状態を示す測定結果のみを使用することで、測定精度の低下を防止している。 As described above, in the present embodiment, when at least one of the signal intensity and the plasma temperature does not satisfy a predetermined condition, the measurement result is not used. That is, only a measurement result indicating a good plasma state in which the plasma state satisfies certain conditions (signal intensity, temperature) is used. By using only the measurement result showing a good plasma state in this way, a decrease in measurement accuracy is prevented.
 制御装置50は、スペクトルの信号強度を積算した回数が所定の積算回数に達したか否かを判断する(S17)。所定の積算回数に達していない場合(S17でNO)、制御装置50は、ステップS11に戻り、上記の処理(S11~S16)を繰り返し、所定の積算回数分のデータを取得する。なお、レーザ光の照射位置を変更した後にステップS11に戻るようにしてもよい。このように、複数回の測定データを積算して使用することで、ノイズの影響を排除し、測定精度を向上している。所定の積算回数に達した場合(S17でYES)、制御装置50は、信号強度が積算されたスペクトルから計測対象200を構成する各元素の濃度を算出する(S18)。算出された濃度の情報は、制御装置50内の記録媒体(SSD、HDD)に記録されてもよいし、ディスプレイに表示されてもよいし、プリンタで印刷されてもよい。または、他の機器(制御機器、サーバ等)に送信されてもよい。 The control device 50 determines whether or not the number of times the spectrum signal intensity has been accumulated has reached a predetermined number of times (S17). If the predetermined number of integrations has not been reached (NO in S17), the control device 50 returns to step S11, repeats the above processing (S11 to S16), and acquires data for the predetermined number of integrations. In addition, after changing the irradiation position of a laser beam, you may make it return to step S11. Thus, by integrating and using a plurality of measurement data, the influence of noise is eliminated and the measurement accuracy is improved. When the predetermined number of integrations has been reached (YES in S17), the control device 50 calculates the concentration of each element constituting the measurement object 200 from the spectrum in which the signal intensity is integrated (S18). The calculated density information may be recorded on a recording medium (SSD, HDD) in the control device 50, may be displayed on a display, or may be printed by a printer. Alternatively, it may be transmitted to other devices (control device, server, etc.).
3.まとめ
 以上説明したように、本実施の形態の成分組成計測システム100は、計測対象200へレーザ光(レーザパルス)を照射するレーザ光源(10)と、レーザ光源から計測対象200へのレーザ光の照射により生じたプラズマの発光から、波長毎の強度を示す発光スペクトルを測定するスペクトル測定装置30と、測定された発光スペクトルのデータを用いて計測対象の組成を分析する制御装置50と、を備える。制御装置50は、発光スペクトルの性状を判定し(図4のS15)、性状が所定状態にある発光スペクトルのデータのみを用いて前記計測対象の組成を分析する。
3. Summary As described above, the component composition measurement system 100 according to the present embodiment includes the laser light source (10) that irradiates the measurement target 200 with the laser light (laser pulse), and the laser light from the laser light source to the measurement target 200. A spectrum measuring device 30 that measures an emission spectrum indicating the intensity for each wavelength from light emission of plasma generated by irradiation, and a control device 50 that analyzes the composition of the measurement object using data of the measured emission spectrum. . The control device 50 determines the property of the emission spectrum (S15 in FIG. 4), and analyzes the composition of the measurement object using only the emission spectrum data whose property is in a predetermined state.
 このように、本実施の形態の成分組成計測システム100によれば、レーザ誘起ブレークダウン分光法を適用する上で、発光スペクトルの性状を判断し、その性状に基づき精度低下が生じる可能性のある信号を分析に使用するデータから排除する。これにより、生成されるプラズマの状態の変動を低減でき、高い計測精度を確保することができる。 As described above, according to the component composition measurement system 100 of the present embodiment, when applying laser-induced breakdown spectroscopy, the characteristics of the emission spectrum may be judged and accuracy may be reduced based on the characteristics. Exclude signals from data used for analysis. Thereby, the fluctuation | variation of the state of the produced | generated plasma can be reduced and high measurement accuracy can be ensured.
 例えば、制御装置50は、発光スペクトルからプラズマの温度及び/または信号強度を判定し(S15)、プラズマ温度が所定温度以上である発光スペクトルを用いて計測対象の組成を分析してもよい。 For example, the control device 50 may determine the temperature and / or signal intensity of the plasma from the emission spectrum (S15), and analyze the composition to be measured using the emission spectrum whose plasma temperature is equal to or higher than a predetermined temperature.
 さらに、成分組成計測システム100は、発光スペクトルを複数回測定し、複数の発光スペクトルのデータを積算した結果を用いて計測対象の組成を分析してもよい。複数回測定したデータを積算して用いることで測定データの精度を向上させることができる。 Furthermore, the component composition measuring system 100 may analyze the composition to be measured using the result of measuring the emission spectrum a plurality of times and integrating the data of the plurality of emission spectra. By accumulating and using data measured a plurality of times, the accuracy of the measurement data can be improved.
 さらに、成分組成計測システム100は、計測対象200の三次元形状を計測する三次元形状計測装置40と、レーザ光源10から計測対象へ照射されるレーザ光の焦点距離を調整する焦点調整部16をさらに備えてもよい。 Furthermore, the component composition measurement system 100 includes a three-dimensional shape measurement device 40 that measures the three-dimensional shape of the measurement target 200 and a focus adjustment unit 16 that adjusts the focal length of the laser light emitted from the laser light source 10 to the measurement target. Further, it may be provided.
 制御装置50は、三次元形状計測装置40による測定結果に基づき焦点調整部16を制御して、レーザ光の焦点距離を調整してもよい。これにより、計測対象200の形状(距離)に依存せず、常にレーザ光を合焦させて計測対象200に照射でき、一定の強度でレーザ光を照射できる。よって、計測対象200の形状に依存せずに一定状態の発光スペクトルを得ることができ、測定データの精度が向上する。 The control device 50 may adjust the focal length of the laser light by controlling the focus adjustment unit 16 based on the measurement result by the three-dimensional shape measurement device 40. As a result, the laser beam can be always focused and irradiated onto the measurement object 200 without depending on the shape (distance) of the measurement object 200, and the laser beam can be irradiated with a constant intensity. Therefore, a constant emission spectrum can be obtained without depending on the shape of the measurement target 200, and the accuracy of measurement data is improved.
 また、成分組成計測システム100は、レーザ光の計測対象上の照射位置を調整する照射位置変更部20をさらに備えてもよい。制御装置50は、三次元形状計測装置40による測定結果に基づき照射位置変更部20を制御して、計測対象200上のレーザ光の照射位置を調整してもよい。これにより、良好なプラズマ状態が得られる位置(領域)にレーザ光を照射でき、計測対象の形状に依存せずに一定状態の発光スペクトルを得ることができ、測定データの精度が向上する。 The component composition measurement system 100 may further include an irradiation position changing unit 20 that adjusts the irradiation position on the measurement target of the laser light. The control device 50 may adjust the irradiation position of the laser beam on the measurement target 200 by controlling the irradiation position changing unit 20 based on the measurement result by the three-dimensional shape measurement apparatus 40. Thereby, a laser beam can be irradiated to a position (region) where a good plasma state is obtained, and a constant emission spectrum can be obtained without depending on the shape of the measurement target, thereby improving the accuracy of measurement data.
(実施の形態2)
 実施の形態1では、図3に示すように、計測対象200に1種類のレーザパルスを照射してプラズマを発生させた。これに対して、本実施の形態では、プラズマを発生させるためのレーザパルスに加えて、さらに、プラズマを発生させない程度の強度を持つ第2のレーザパルスを照射する。このように第2のレーザパルスを照射することにより、発生するプラズマの強度を高いレベルで安定化でき、プラズマの変動によらずに、原子発光を示す信号の強度を安定化することができる。
(Embodiment 2)
In the first embodiment, as shown in FIG. 3, the measurement target 200 is irradiated with one type of laser pulse to generate plasma. In contrast, in the present embodiment, in addition to the laser pulse for generating plasma, a second laser pulse having an intensity that does not generate plasma is irradiated. By irradiating the second laser pulse in this manner, the intensity of the generated plasma can be stabilized at a high level, and the intensity of the signal indicating atomic emission can be stabilized regardless of the fluctuation of the plasma.
 なお、以下の説明において、実施の形態1のように、プラズマを発生させるためのレーザパルスのみを照射することを「シングルパルス照射」といい、本実施の形態のように、プラズマを発生させるためのレーザパルスの照射に加えて、プラズマ温度を維持するために別のレーザパルスを照射することを「ダブルパルス照射」という。 In the following description, irradiation of only a laser pulse for generating plasma as in the first embodiment is referred to as “single pulse irradiation”, and in order to generate plasma as in the present embodiment. In addition to the laser pulse irradiation, irradiation with another laser pulse to maintain the plasma temperature is referred to as “double pulse irradiation”.
1.システムの構成
 図6は、実施の形態2における成分組成計測システムの構成を示した図である。実施の形態2における成分組成計測システム100bは、実施の形態1における成分組成計測システム100の構成に加えて、第2のレーザ光源10bと、ビームコンバイナ24とをさらに備えている。以下、レーザ光源10を「第1のレーザ光源」という。ビームコンバイナ24は、第1のレーザ光源10からのレーザ光と、第2のレーザ光源10bからのレーザ光とを合成してビームスプリッタ12へ導くための光学部材である。第1のレーザ光源10からのレーザ光と第2のレーザ光源10bからのレーザ光がそれらの光軸が一致した状態で計測対象200に照射されるように、第1及び第2のレーザ光源10、10bの光軸が調整されている。
1. System Configuration FIG. 6 is a diagram showing a configuration of a component composition measuring system in the second embodiment. The component composition measurement system 100b according to the second embodiment further includes a second laser light source 10b and a beam combiner 24 in addition to the configuration of the component composition measurement system 100 according to the first embodiment. Hereinafter, the laser light source 10 is referred to as a “first laser light source”. The beam combiner 24 is an optical member that synthesizes the laser light from the first laser light source 10 and the laser light from the second laser light source 10 b and guides them to the beam splitter 12. The first and second laser light sources 10 are irradiated so that the laser light from the first laser light source 10 and the laser light from the second laser light source 10b are irradiated to the measurement object 200 in a state where their optical axes coincide. The optical axis of 10b is adjusted.
2.ダブルパルス照射
 図7は、第1及び第2のレーザ光源10、10bから出射されるレーザパルスを説明した図である。図7に示すように、第2のレーザ光源10bから出力されるレーザパルス(以下「ロングパルス」ともいう)L2は、第1のレーザ光源10から出力されるレーザパルス(以下「ショートパルス」ともいう)L1のパルス幅よりも十分に大きいパルス幅を有する。例えば、第1のレーザ光源10からのレーザパルスL1のパルス幅は6nsであるのに対して、第2のレーザ光源10bからのレーザパルスL2のパルス幅は10,000nsである。第1のレーザ光源10から出力されるレーザパルスL1の強度は、それだけでプラズマを発生させることができる程度の強度に設定される。一方、第2のレーザ光源10bから出力されるレーザパルスL2の強度は、それだけではプラズマを発生させることができない程度の強度に設定される。レーザパルスL1(ショートパルス)とレーザパルスL2(ロングパルス)の強度の比は、例えば、L1:L2=1:10~15である。
2. Double Pulse Irradiation FIG. 7 is a diagram illustrating laser pulses emitted from the first and second laser light sources 10 and 10b. As shown in FIG. 7, a laser pulse (hereinafter also referred to as “long pulse”) L2 output from the second laser light source 10b is a laser pulse (hereinafter referred to as “short pulse”) output from the first laser light source 10. It has a pulse width sufficiently larger than the pulse width of L1. For example, the pulse width of the laser pulse L1 from the first laser light source 10 is 6 ns, whereas the pulse width of the laser pulse L2 from the second laser light source 10b is 10,000 ns. The intensity of the laser pulse L1 output from the first laser light source 10 is set to an intensity that can generate plasma by itself. On the other hand, the intensity of the laser pulse L2 output from the second laser light source 10b is set to such an intensity that plasma cannot be generated by itself. The intensity ratio between the laser pulse L1 (short pulse) and the laser pulse L2 (long pulse) is, for example, L1: L2 = 1: 10-15.
 また、レーザパルスL2は、レーザパルスL1が出力される前に、その出力が開始され、レーザパルスL1の出力完了後に、その出力が完了する。このようなタイミングでレーザパルスL2(ロングパルス)を出力することにより、レーザパルスL1の出力前に、計測対象を事前に加熱でき、さらに、計測対象表面をクリーニングするという効果(以下「表面クリーニング・前処理効果」という)が得られる。これにより、プラズマを発生し易くできる。さらに、プラズマ発生後は、プラズマ温度の低下を送らせることができるという効果(以下「表面加熱効果」という)が得られる。 Further, the output of the laser pulse L2 is started before the laser pulse L1 is output, and the output is completed after the output of the laser pulse L1 is completed. By outputting the laser pulse L2 (long pulse) at such a timing, the measurement target can be heated in advance before the output of the laser pulse L1, and further, the effect of cleaning the measurement target surface (hereinafter referred to as “surface cleaning · A pre-treatment effect). Thereby, plasma can be easily generated. Furthermore, after plasma generation, an effect that a decrease in plasma temperature can be sent (hereinafter referred to as “surface heating effect”) is obtained.
 図8(A)は、シングルパルス照射した場合に発生するプラズマ(P1)の温度変化を示した図であり、図8(B)は、ダブルパルス照射した場合に発生するプラズマ(P2)の温度変化を示した図である。シングルパルス照射の場合、図8(A)に示すように、レーザパルスL1の照射後、プラズマ発光P1の温度(強度)は時間と共に急激に低下していく。 FIG. 8A is a diagram showing a temperature change of the plasma (P1) generated when the single pulse irradiation is performed, and FIG. 8B is a temperature of the plasma (P2) generated when the double pulse irradiation is performed. It is the figure which showed the change. In the case of single pulse irradiation, as shown in FIG. 8A, after irradiation with the laser pulse L1, the temperature (intensity) of the plasma emission P1 rapidly decreases with time.
 ダブルパルス照射の場合、図8(B)に示すように、レーザパルスL2の照射は、プラズマ生成のためのレーザパルスL1の照射前に開始される。これにより、レーザパルスL1の照射前に予め計測対象が加熱され(前処理効果(加熱効果))、温度が上昇し、さらに、計測対象表面がクリーニングされる(表面クリーニング効果)。その後、レーザパルスL1によってプラズマが発生すると、発生した高温プラズマはレーザパルスL2により高温に維持される(加熱効果)。このため、図8(A)に示す場合と比べて、プラズマからの発光P2の強度(温度)がより高くなり、また、その低下速度を低減することができる。このように、プラズマ発光強度の低下を遅らせることができるため、プラズマ計測のタイミング(すなわち遅延時間D)を、シングルパルス照射の場合よりもより遅く設定することができ、プラズマの変動に依存しない精度のよい計測が可能となる。 In the case of double pulse irradiation, as shown in FIG. 8B, irradiation with the laser pulse L2 is started before irradiation with the laser pulse L1 for plasma generation. As a result, the measurement object is heated in advance (irradiation effect (heating effect)) before irradiation with the laser pulse L1, the temperature rises, and the measurement object surface is cleaned (surface cleaning effect). Thereafter, when plasma is generated by the laser pulse L1, the generated high temperature plasma is maintained at a high temperature by the laser pulse L2 (heating effect). For this reason, compared with the case shown to FIG. 8 (A), the intensity | strength (temperature) of light emission P2 from a plasma becomes higher, and the fall rate can be reduced. As described above, since the decrease in plasma emission intensity can be delayed, the timing of plasma measurement (that is, the delay time D) can be set later than in the case of single pulse irradiation, and the accuracy does not depend on the fluctuation of plasma. Measurement is possible.
3.測定結果
 以下、本実施の形態で示したダブルパルス照射を用いたプラズマの発光スペクトルの測定結果の例を示す。図9は、測定に使用した各パルスの波形を説明した図である。プラズマを発生させるためのレーザ光(レーザパルスL1)として、波長が532nmのレーザ光を使用した。また、プラズマ温度維持等のためのレーザ光(レーザパルスL2)として、波長が1064nmのレーザ光を使用した。計測対象として2つのターゲットを用意した。第1のターゲットは、空気中に設置された鉄板(ステンレス板)であり、第2のターゲットは、水中に設置されたアルミ板である。
3. Measurement result An example of the measurement result of the emission spectrum of plasma using the double pulse irradiation shown in this embodiment will be shown below. FIG. 9 is a diagram illustrating the waveform of each pulse used for measurement. Laser light having a wavelength of 532 nm was used as laser light (laser pulse L1) for generating plasma. Further, a laser beam having a wavelength of 1064 nm was used as the laser beam (laser pulse L2) for maintaining the plasma temperature. Two targets were prepared as measurement targets. The first target is an iron plate (stainless steel plate) installed in the air, and the second target is an aluminum plate installed in water.
(A)第1の測定結果
 第1の測定として、空気中に設置された鉄板(ステンレス板)に対して、ダブルパルス照射によるプラズマ発光スペクトルを測定した。このような空気中に設置されたターゲットの組成分析は、例えば、溶鉱炉内の鉄成分の計測に適用できる。
(A) 1st measurement result As a 1st measurement, the plasma emission spectrum by double pulse irradiation was measured with respect to the iron plate (stainless steel plate) installed in the air. Such composition analysis of a target installed in the air can be applied to, for example, measurement of iron components in a blast furnace.
 図10(C)は、ダブルパルス照射により観測されたスペクトルを示す図である。図10(A)、(B)は対比のための1回のパルス照射による測定結果である。具体的には、図10(A)は、シングルパルス照射、すなわち、波長が532nmのレーザ光L1のみを照射したときに観測された発光スペクトルを示す。図10(A)に示す測定結果においては、鉄(Fe)元素を示すシグナルが観測できるが、その強度は小さい。図10(B)は、波長が1064nmのレーザ光(すなわち、プラズマ温度維持のためのレーザ光L2)のみを照射したときに観測された発光スペクトルを示す。この場合、元素成分を示すシグナルは観測されない。図10(C)は、ダブルパルス照射(すなわち、波長が532nmのレーザ光L1と波長が1064nmのレーザ光L2を照射)により観測された発光スペクトルを示す。図10(C)に示すように、ダブルパルス照射により、シングルパルス照射の場合(図10(A)参照)に比して、より高いシグナル強度(4.5倍)が得られていることが分かる。 FIG. 10C is a diagram showing a spectrum observed by double pulse irradiation. FIGS. 10A and 10B show measurement results obtained by one-time pulse irradiation for comparison. Specifically, FIG. 10A shows an emission spectrum observed when single pulse irradiation, that is, irradiation with only laser light L1 having a wavelength of 532 nm is performed. In the measurement result shown in FIG. 10A, a signal indicating an iron (Fe) element can be observed, but its intensity is small. FIG. 10B shows an emission spectrum observed when only laser light having a wavelength of 1064 nm (that is, laser light L2 for maintaining plasma temperature) is irradiated. In this case, a signal indicating an element component is not observed. FIG. 10C shows an emission spectrum observed by double pulse irradiation (that is, irradiation with laser light L1 having a wavelength of 532 nm and laser light L2 having a wavelength of 1064 nm). As shown in FIG. 10C, a higher signal intensity (4.5 times) is obtained by double pulse irradiation than in the case of single pulse irradiation (see FIG. 10A). I understand.
(B)第2の測定結果
 第2の測定として、水中に設置されたアルミ板に対して、ダブルパルス照射によるプラズマ発光スペクトルを測定した。このような水中に設置されたターゲットの組成分析は、例えば、メルトダウンした原子炉内のデブリ成分の計測に適用できる。
(B) Second measurement result As a second measurement, a plasma emission spectrum by double pulse irradiation was measured for an aluminum plate installed in water. Such composition analysis of a target installed in water can be applied to, for example, measurement of debris components in a meltdown reactor.
 図11(C)は、ダブルパルス照射により観測されたスペクトルを示す図である。図11(A)、(B)は対比のための1回のパルス照射による測定結果である。 FIG. 11C shows a spectrum observed by double pulse irradiation. FIGS. 11A and 11B show measurement results obtained by one-time pulse irradiation for comparison.
 具体的には、図11(A)は、シングルパルス照射、すなわち、波長が532nmのレーザ光L1のみを照射したときに観測された発光スペクトルを示す。図11(A)に示す測定結果においては、アルミ元素(Al)を示すシグナルは観測できなかった。これは、水中においては、発生したプラズマが短時間で消滅することから、計測がより困難になるためである。図11(B)は、波長が1064nmのレーザ光(すなわち、プラズマ温度維持のためのレーザ光L2)のみを照射したときに観測された発光スペクトルを示す。この場合も、アルミ元素を示すシグナルは観測されていない。図11(C)は、ダブルパルス照射(すなわち、波長が532nmのレーザ光L1と波長が1064nmのレーザ光L2を照射)により観測された発光スペクトルを示す。シングルパルス照射では観測できなかったにも関わらず、ダブルパルス照射によりアルミ元素(Al)を示すシグナルが観測された。 Specifically, FIG. 11A shows an emission spectrum observed when single pulse irradiation, that is, irradiation with only laser light L1 having a wavelength of 532 nm is performed. In the measurement results shown in FIG. 11A, a signal indicating aluminum element (Al) was not observed. This is because the generated plasma disappears in a short time in water, making measurement more difficult. FIG. 11B shows an emission spectrum observed when only laser light having a wavelength of 1064 nm (that is, laser light L2 for maintaining plasma temperature) is irradiated. Also in this case, a signal indicating an aluminum element is not observed. FIG. 11C shows an emission spectrum observed by double pulse irradiation (that is, irradiation with laser light L1 having a wavelength of 532 nm and laser light L2 having a wavelength of 1064 nm). Although it could not be observed with single pulse irradiation, a signal indicating aluminum element (Al) was observed with double pulse irradiation.
 このように、プラズマを発生させるためのレーザ光L1(ショートパルス)に加えて、別のレーザ光L2(ロングパルス)を照射する。これにより、表面クリーニング効果、前処理効果により、表面性状(温度、凹凸形状)の影響が低減され、プラズマが発生し易くなる。さらに、加熱効果により、発生したプラズマの温度を維持することができ、温度低下(強度低下)の速度を遅くすることができる。その結果、プラズマ発光スペクトルにおいて元素を示すシグナルがより明確に観測できるようになる。 Thus, in addition to the laser beam L1 (short pulse) for generating plasma, another laser beam L2 (long pulse) is irradiated. Thereby, the influence of surface properties (temperature, uneven shape) is reduced by the surface cleaning effect and the pretreatment effect, and plasma is easily generated. Furthermore, the temperature of the generated plasma can be maintained by the heating effect, and the rate of temperature decrease (strength decrease) can be reduced. As a result, a signal indicating an element in the plasma emission spectrum can be observed more clearly.
(C)第3の測定結果
 さらに、本発明者は、表面クリーニング効果を確認するための測定を行った。対比のため、図12に示す3種類のレーザパルス照射方法のそれぞれを用いて測定した。すなわち、図12(A)に示すように、ショートパルスL1のみを照射した場合(以下「シングルパルス照射」という)と、図12(B)に示すように、ショートパルスL1の照射後にロングパルスL2の照射を開始した場合(以下「ダブルパルス照射(後)」という)と、図12(C)に示すように、ショートパルスL1の照射開始前にロングパルスL2の照射を開始した場合(以下「ダブルパルス照射(前)」という)とで、それぞれプラズマ発光スペクトルを測定した。
(C) Third Measurement Result Further, the present inventor performed measurement for confirming the surface cleaning effect. For comparison, measurement was performed using each of the three types of laser pulse irradiation methods shown in FIG. That is, as shown in FIG. 12A, when only the short pulse L1 is irradiated (hereinafter referred to as “single pulse irradiation”), as shown in FIG. 12B, the long pulse L2 is irradiated after the short pulse L1 is irradiated. When irradiation of the long pulse L2 is started (hereinafter referred to as “double pulse irradiation (after)”) and when irradiation of the long pulse L2 is started before the irradiation of the short pulse L1, as shown in FIG. The plasma emission spectrum was measured respectively for “double pulse irradiation (previous)”.
 表面クリーニングを検証するために、表面が研磨されたサンプルと、表面が錆びたサンプルとを用いて測定を行った。図13は、表面が研磨されたサンプルに対して行った測定結果を示したものであり、図14は、表面が錆びたサンプルに対して行った測定結果を示したものである。図13(A)、図14(A)は、シングルパルス照射の場合のスペクトルの測定結果である。図13(B)、図14(B)は、ダブルパルス照射(後)の場合のスペクトルの測定結果である。図13(C)、図14(C)は、ダブルパルス照射(前)の場合のスペクトルの測定結果である。 In order to verify surface cleaning, measurement was performed using a sample whose surface was polished and a sample whose surface was rusted. FIG. 13 shows the result of measurement performed on the sample whose surface was polished, and FIG. 14 shows the result of measurement performed on the sample whose surface was rusted. FIGS. 13A and 14A show spectrum measurement results in the case of single pulse irradiation. FIGS. 13B and 14B are spectrum measurement results in the case of double pulse irradiation (after). FIGS. 13C and 14C show spectrum measurement results in the case of double pulse irradiation (previous).
 図13(A)~(C)を参照すると、表面が研磨されたサンプルに対しては、ダブルパルス照射(前)の場合に若干良好なスペクトルが得られているが、顕著な差は見られない。これはサンプル表面が研磨されていることから、クリーニング効果の影響が及ばなかったと考えられる。一方、表面が錆びたサンプルに対しては、図14(A)、(B)に示すように、シングルパルス照射とダブルパルス照射(後)では、ノイズが多いスペクトル波形となり使用できる測定結果は得られなかった。しかし、図14(C)に示すように、ダブルパルス照射(前)の場合では、表面クリーニング効果によって、良好な測定結果が得られている。これは、表面クリーニング効果により表面の錆びが除去されたためのであると考えられる。 Referring to FIGS. 13A to 13C, for the sample whose surface was polished, a slightly good spectrum was obtained in the case of double pulse irradiation (before), but a significant difference was seen. Absent. This is considered to be because the sample surface was polished, and thus the cleaning effect was not affected. On the other hand, as shown in FIGS. 14 (A) and 14 (B), a single pulse irradiation and a double pulse irradiation (after) give a noisy spectrum waveform and a usable measurement result is obtained for a sample whose surface is rusted. I couldn't. However, as shown in FIG. 14C, in the case of double pulse irradiation (before), a good measurement result is obtained due to the surface cleaning effect. This is considered to be because the surface rust was removed by the surface cleaning effect.
 図15(A)は、錆のある計測対象にシングルパルス照射した後の対象表面の様子を走査電子顕微鏡(SEM)で撮影したSEM画像である。図15(B)は、錆のある対象にダブルパルス照射(前)した後の対象表面の様子を撮影したSEM画像である。図15(A)では、ショートパルス幅を有するレーザパルスL1を2回照射している。シングルパルス照射の場合、図15(A)に示すように錆80が比較的多く残っている。これに対して、ダブルパルス照射の場合、図15(B)に示すように、錆が比較的多く取り除かれていることが分かる。このことから、ダブルパルス照射(前)による対象表面のクリーニング効果があることが分かる。 FIG. 15 (A) is an SEM image obtained by photographing a state of the target surface after irradiating a measurement target with rust with a single pulse with a scanning electron microscope (SEM). FIG. 15B is an SEM image obtained by photographing the state of the target surface after the double pulse irradiation (front) is performed on the target with rust. In FIG. 15A, the laser pulse L1 having a short pulse width is irradiated twice. In the case of single pulse irradiation, a relatively large amount of rust 80 remains as shown in FIG. On the other hand, in the case of double pulse irradiation, it can be seen that a relatively large amount of rust is removed as shown in FIG. From this, it can be seen that there is a cleaning effect on the target surface by double pulse irradiation (before).
(D)第4の測定結果
 さらに、本発明者は、前処理効果(加熱効果)を確認するための測定を行った。図16、図17は、前処理効果(加熱効果)を確認するために、固体の鋼(常温)と、溶鋼(1600°C)に対して行った測定結果を示した図である。この測定においても、図12に示す3種類のレーザパルスの照射方法のそれぞれを用いてスペクトルを測定した。なお、以下では、鋼中に含まれるマンガン(Mn)成分の測定に注目する。図16(A)、(B)はそれぞれ固体の鋼と溶鋼に対してシングルパルス照射またはダブルパルス照射(後)を行った場合の測定結果を示す。図17(A)、(B)はそれぞれ固体の鋼と溶鋼に対してダブルパルス照射(前)を行った場合の測定結果を示す。
(D) Fourth Measurement Result Further, the present inventor performed measurement for confirming the pretreatment effect (heating effect). FIG. 16 and FIG. 17 are diagrams showing the results of measurements performed on solid steel (room temperature) and molten steel (1600 ° C.) in order to confirm the pretreatment effect (heating effect). Also in this measurement, the spectrum was measured using each of the three types of laser pulse irradiation methods shown in FIG. In the following, attention is paid to the measurement of the manganese (Mn) component contained in the steel. FIGS. 16A and 16B show measurement results when single pulse irradiation or double pulse irradiation (after) is performed on solid steel and molten steel, respectively. FIGS. 17A and 17B show the measurement results in the case of performing double pulse irradiation (previous) on solid steel and molten steel, respectively.
 図16を参照すると、シングルパルス照射またはダブルパルス照射(後)の場合、固体の鋼に対する測定結果からは、マンガン(Mn)のスペクトルが確認できないが、溶鋼に対する測定結果においては、マンガン(Mn)のスペクトルが確認できている。これは、溶鋼の場合、マンガン(Mn)のスペクトルが計測できる程度に十分な温度にあるが、固体の鋼は温度が低く、計測に十分な温度に達していないためであると考えられる。 Referring to FIG. 16, in the case of single pulse irradiation or double pulse irradiation (after), the spectrum of manganese (Mn) cannot be confirmed from the measurement results for solid steel, but in the measurement results for molten steel, manganese (Mn) The spectrum of can be confirmed. This is considered to be because in the case of molten steel, the temperature is sufficient to measure the manganese (Mn) spectrum, but the solid steel has a low temperature and does not reach a sufficient temperature for measurement.
 一方、ダブルパルス照射(前)の場合、図17に示すように、固体の鋼に対しても、マンガン(Mn)のスペクトルが計測できている。これは、ショートパルスL1照射前にロングパルスL2を照射することで、測定対象の表面が十分な高温に加熱される(加熱効果)ためであると考えられる。このように、ダブルパルス照射(前)により、計測対象が固体でも液体でも良好な測定結果が得られる。すなわち、測定対象表面の性状の影響を受けずにマンガンのスペクトルの計測が可能になっている。 On the other hand, in the case of double pulse irradiation (before), as shown in FIG. 17, the spectrum of manganese (Mn) can be measured even for solid steel. This is considered to be because the surface of the measurement target is heated to a sufficiently high temperature (heating effect) by irradiating the long pulse L2 before the short pulse L1 irradiation. As described above, by the double pulse irradiation (before), a good measurement result can be obtained regardless of whether the measurement object is solid or liquid. In other words, the spectrum of manganese can be measured without being affected by the properties of the surface to be measured.
 以上のように、プラズマを発生させるためのショートパルスL1の照射前にロングパルスL2を照射すること(ダブルパルス照射(前))で、予め計測対象の温度を上昇させることができる(前処理効果)。さらに、クリーニング効果により対象表面が平坦になると(すなわち、対象表面の急激な形状変化がなくなると)、より効果的にレーザ照射がなされるため、効率よくプラズマを発生させることが可能となる。これらにより、計測対象の性状に依らず、プラズマを発生させることができる。 As described above, the temperature of the measurement target can be raised in advance by irradiating the long pulse L2 (double pulse irradiation (previous)) before the irradiation of the short pulse L1 for generating plasma (pretreatment effect). ). Furthermore, when the target surface is flattened by the cleaning effect (that is, when there is no sudden shape change of the target surface), the laser irradiation is performed more effectively, so that plasma can be generated efficiently. As a result, plasma can be generated regardless of the properties of the measurement target.
 さらに、レーザパルスL1の照射後もレーザパルスL2を継続して照射することで、プラズマの温度を保持でき、プラズマ温度の低下を抑制することができる(加熱効果)。 Furthermore, by continuously irradiating the laser pulse L2 after the irradiation with the laser pulse L1, it is possible to maintain the plasma temperature and suppress a decrease in the plasma temperature (heating effect).
4.まとめ
 以上のように、本実施の形態の成分組成計測システム100bは、プラズマを発生させる程度の強度を有するレーザ光L1を計測対象200へ照射する第1のレーザ光源10と、プラズマを発生させない程度の強度を有するレーザ光L2を計測対象200へ照射する第2のレーザ光源10bと、第1のレーザ光源10から計測対象200へのレーザ光の照射により生じたプラズマの発光から、波長毎の強度を示す発光スペクトルを測定するスペクトル測定装置(30と、測定された発光スペクトルのデータを用いて前記計測対象の組成を分析する制御装置50と、を備える。第2のレーザ光源10bは、第1のレーザ光源10のレーザ光L2を計測対象200へ照射する期間よりも長い期間の間、計測対象200へレーザ光L2を照射する。第1のレーザ光源からのレーザ光L1に加えて第2のレーザ光源10からレーザ光L2を照射することで、一旦発生させたプラズマの温度(強度)の低下(減衰)を遅らせることができる。
4). Summary As described above, the component composition measurement system 100b of the present embodiment has the first laser light source 10 that irradiates the measurement target 200 with the laser beam L1 having an intensity sufficient to generate plasma, and the extent that plasma is not generated. The intensity of each wavelength from the second laser light source 10b that irradiates the measurement target 200 with the laser light L2 having the intensity of, and the emission of the plasma generated by the irradiation of the laser light from the first laser light source 10 to the measurement target 200 And a control device 50 that analyzes the composition of the measurement target using data of the measured emission spectrum. The second laser light source 10b is a first laser light source 10b. The laser beam L2 is irradiated onto the measurement target 200 for a period longer than the period during which the laser beam L2 from the laser light source 10 is irradiated onto the measurement target 200. By irradiating the laser light L2 from the second laser light source 10 in addition to the laser light L1 from the first laser light source, the decrease (attenuation) of the temperature (intensity) of the plasma once generated can be delayed. it can.
 特に、第2のレーザ光源10bは、図7に示すように、レーザ光L1の照射開始前に、レーザ光L2の照射を開始し、レーザ光L1の照射終了後に、レーザ光L2の照射を終了する。これにより、レーザ光L1の照射前に計測対象200が事前に加熱され高温になる。さらに、計測対象表面に錆び等がある場合にはクリーニングされる。これにより、プラズマが発生しやすくなり、計測対象の性状の影響を受けずに測定が可能となる。また、第1のレーザ光源10からのレーザ光L1の照射によりプラズマが発生した時点で第2のレーザ光源10bからのレーザ光が照射されているため、プラズマ発生時点からプラズマを保温でき、より効果的にプラズマ温度の低下を低減することができる。これにより、プラズマの強弱に依存しない、高いレベルの信号を含むスペクトルが得られるため、高い計測精度を確保することができる。 In particular, as shown in FIG. 7, the second laser light source 10b starts irradiating the laser light L2 before starting the irradiation of the laser light L1, and ends the irradiation of the laser light L2 after the irradiation of the laser light L1 ends. To do. Thereby, the measuring object 200 is heated in advance and becomes high temperature before irradiation with the laser beam L1. Further, if there is rust on the surface to be measured, it is cleaned. As a result, plasma is easily generated, and measurement is possible without being affected by the properties of the measurement target. Further, since the laser light from the second laser light source 10b is irradiated when the plasma is generated by the irradiation of the laser light L1 from the first laser light source 10, the plasma can be kept warm from the time of the plasma generation, and thus more effective. In particular, a decrease in plasma temperature can be reduced. As a result, a spectrum including a high level signal that does not depend on the strength of the plasma can be obtained, so that high measurement accuracy can be ensured.
 特許文献1、非特許文献1においても2種類のレーザパルスを照射するLIBS装置が開示されてしている。しかし、これらの文献において、プラズマを発生させる程度の強度を有する一方のレーザパルスの照射開始前に、プラズマを発生させない程度の強度を有する他方のレーザパルスの照射を開始し、一方のレーザパルスの照射終了後に、他方のレーザパルスの照射を終了するという技術思想は開示されていない。よって、特許文献1及び非特許文献1に開示の技術からは、本実施の形態で示した表面クリーニング効果、前処理効果を得ることはできない。 Patent Document 1 and Non-Patent Document 1 also disclose LIBS apparatuses that irradiate two types of laser pulses. However, in these documents, before the start of irradiation of one laser pulse having an intensity sufficient to generate plasma, irradiation of the other laser pulse having an intensity not generating plasma is started, The technical idea of ending the irradiation of the other laser pulse after the irradiation is not disclosed. Therefore, from the techniques disclosed in Patent Document 1 and Non-Patent Document 1, it is not possible to obtain the surface cleaning effect and the pretreatment effect shown in the present embodiment.
 上記の実施の形態で説明した成分組成計測システム100、100bによれば、レーザ誘起ブレークダウン分光法における測定精度が向上し、プロセス中の計測対象の位置や形状が変化する場でも、リアルタイムの成分濃度計測が可能となる。上記の実施の形態で説明した成分組成計測システムの思想は、合成化学プラント、鉄鋼プラント等の生産プロセスでの品質管理や制御のために原料や製品などに含まれる特定成分をモニタするための装置やシステムに適用できる。 According to the component composition measurement systems 100 and 100b described in the above embodiments, the measurement accuracy in laser-induced breakdown spectroscopy is improved, and even in the case where the position or shape of the measurement target in the process changes, the real-time component Concentration measurement is possible. The idea of the component composition measurement system described in the above embodiment is an apparatus for monitoring specific components contained in raw materials and products for quality control and control in production processes such as synthetic chemical plants and steel plants. And can be applied to systems.
 以上のように、本発明の実施の形態の例示として、実施の形態1、2を説明した。しかしながら、本発明の思想はこれらの例に限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、上記実施の形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。すなわち、上述した実施の形態は、本発明における技術のいくつかの具体的な例を示したものであり、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 As described above, the first and second embodiments have been described as examples of the embodiment of the present invention. However, the idea of the present invention is not limited to these examples, and can be applied to embodiments in which changes, replacements, additions, omissions, etc. are made as appropriate. Moreover, it is also possible to combine each component demonstrated in the said embodiment and it can also be set as a new embodiment. That is, the above-described embodiments show some specific examples of the technology in the present invention, and various modifications, replacements, additions, omissions, etc. are made within the scope of the claims or their equivalents. Can do.
(他の実施の形態)
 実施の形態2の成分組成計測システム100bの構成において、第2のレーザ光源10bからのレーザ光をビームコンバイナ24の近傍まで光ファイバで伝送してもよい。これにより、第2のレーザ光源10bを任意の位置に配置することができる。一般にロングパルスのレーザ光を出力する第2のレーザ光源10bは大型な装置となり、設置位置に制約がある。よって、第2のレーザ光源10bのレーザ光を光ファイバで伝送することは、第2のレーザ光源10bのレイアウトの自由度が増す点で有用である。
(Other embodiments)
In the configuration of the component composition measuring system 100b according to the second embodiment, the laser light from the second laser light source 10b may be transmitted to the vicinity of the beam combiner 24 through an optical fiber. Thereby, the 2nd laser light source 10b can be arrange | positioned in arbitrary positions. Generally, the second laser light source 10b that outputs a long-pulse laser beam is a large-sized device, and the installation position is limited. Therefore, transmitting the laser beam of the second laser light source 10b with an optical fiber is useful in that the degree of freedom in layout of the second laser light source 10b is increased.
 実施の形態2において、ショートパルスを出力する第1のレーザ光源10とロングパルスを出力する第2のレーザ光源10bの機能を1つの光源装置で実現してもよい。図18に、そのような光源装置の構成の一例を示す。レーザ光源10cは、励起源51と、レーザ媒体52、53と、レーザ媒体52、53の光路上の両端に配置されたミラー55とを備える。さらにレーザ光源10cは、ポッケルセル57と、ミラー59と、波長板61と、ビームコンバイナ63とを備える。 In Embodiment 2, the functions of the first laser light source 10 that outputs a short pulse and the second laser light source 10b that outputs a long pulse may be realized by a single light source device. FIG. 18 shows an example of the configuration of such a light source device. The laser light source 10 c includes an excitation source 51, laser media 52 and 53, and mirrors 55 disposed at both ends on the optical path of the laser media 52 and 53. Further, the laser light source 10 c includes a Pockel cell 57, a mirror 59, a wave plate 61, and a beam combiner 63.
 励起源51は例えばフラッシュランプで構成され、励起光を出力する。レーザ媒体52、53は、励起光により励起されてレーザ光を発生するNd:YAG結晶を含む。ビームコンバイナ63は、レーザ光の偏光特性を用いてビームを合成する。ポッケルセル57は、レーザ光をショートパルス発振させる素子である。波長板61は、レーザ光の偏光特性を変化させる素子である。 The excitation source 51 is composed of a flash lamp, for example, and outputs excitation light. The laser media 52 and 53 include Nd: YAG crystals that are excited by excitation light and generate laser light. The beam combiner 63 combines the beams using the polarization characteristics of the laser light. The Pockel cell 57 is an element that causes laser light to oscillate in a short pulse. The wave plate 61 is an element that changes the polarization characteristics of the laser light.
 レーザ媒体52、53は、励起源51からの励起光により励起され、光を出力する。レーザ媒体52、53で生成された光はミラー55間で反射され、レーザ光として出力される。レーザ媒体52からのレーザ光はポッケルセル57を介して、ショートパルスのレーザ光となりミラー59に出力される。一方、レーザ媒体53はロングパルスのレーザ光を出力する。ミラー59は、ポッケルセル57からのレーザ光の光路を変更し、波長板61に入射するようにする。波長板61を通過したショートパルスのレーザ光は、コンバイナ63に入射する。コンバイナ63は、レーザ媒体52からのショートパルスのレーザ光と、レーザ媒体553からのロングパルスのレーザ光とを合成し、出力する。 The laser media 52 and 53 are excited by excitation light from the excitation source 51 and output light. Light generated by the laser media 52 and 53 is reflected between the mirrors 55 and output as laser light. The laser light from the laser medium 52 is outputted as a short pulse laser light via the Pockel cell 57 to the mirror 59. On the other hand, the laser medium 53 outputs a long pulse laser beam. The mirror 59 changes the optical path of the laser light from the Pockel cell 57 so that it enters the wave plate 61. The short-pulse laser light that has passed through the wave plate 61 is incident on the combiner 63. The combiner 63 combines the short pulse laser light from the laser medium 52 and the long pulse laser light from the laser medium 553 and outputs the combined light.
 以上のような構成により、1つのレーザ光源10cから、パルス幅の異なる2つのレーザ光を出力することができる。このような構成を有するレーザ光源10cを、図1に示す成分組成計測システム100内のレーザ光源10と置換することで、実施の形態2で示した成分組成計測システム100bと同等の機能を実現できる。 With the configuration as described above, two laser beams having different pulse widths can be output from one laser light source 10c. By replacing the laser light source 10c having such a configuration with the laser light source 10 in the component composition measuring system 100 shown in FIG. 1, functions equivalent to those of the component composition measuring system 100b shown in the second embodiment can be realized. .
(本開示)
 上記の実施の形態1および実施の形態2のそれぞれに開示した思想を組み合わせることができることは言うまでもない。すなわち、本開示は、以下の成分組成計測システムを開示する。
(This disclosure)
Needless to say, the ideas disclosed in the first embodiment and the second embodiment can be combined. That is, this indication discloses the following component composition measuring systems.
 (1)プラズマを発生させる程度の強度を有する第1のレーザ光(L1)を計測対象へ照射する第1のレーザ光源と、
 プラズマを発生させない程度の強度を有する第2のレーザ光(L2)を計測対象へ照射する第2のレーザ光源と、
 第1のレーザ光源から前記計測対象へのレーザ光の照射により生じたプラズマの発光から、波長毎の強度を示す発光スペクトルを測定するスペクトル測定装置と、
 測定された発光スペクトルのデータを用いて前記計測対象の組成を分析する制御装置と、を備え、
 第2のレーザ光源は、第1のレーザ光の照射開始前に、第2のレーザ光の照射を開始し、第1のレーザ光の照射終了後に、第2のレーザ光の照射を終了する
成分組成計測システム。
(1) a first laser light source that irradiates a measurement target with a first laser beam (L1) having an intensity sufficient to generate plasma;
A second laser light source that irradiates the measurement target with a second laser beam (L2) having an intensity that does not generate plasma;
A spectrum measuring device for measuring an emission spectrum indicating an intensity for each wavelength from light emission of plasma generated by irradiation of laser light to the measurement object from a first laser light source;
A control device for analyzing the composition of the measurement object using data of the measured emission spectrum,
The second laser light source starts the irradiation of the second laser light before starting the irradiation of the first laser light, and finishes the irradiation of the second laser light after the end of the irradiation of the first laser light. Composition measurement system.
 この成分組成計測システムによれば、プラズマ発生前に、計測対象を加熱できるとともに、計測対象をクリーニングできる。さらに、プラズマ発生後はプラズマの温度の低下を遅らせることができる。これにより、高いレベルの信号を含むスペクトルが得られるため、高い計測精度を確保することができる。 According to this component composition measurement system, the measurement target can be heated and the measurement target can be cleaned before the plasma is generated. Further, after the plasma is generated, the decrease in the plasma temperature can be delayed. Thereby, since a spectrum including a high level signal is obtained, high measurement accuracy can be ensured.
 (2)(1)の成分組成計測システムにおいて、第1のレーザ光と第2のレーザ光がそれらの光軸が一致した状態で計測対象へ照射されるように、第1及び第2のレーザ光源の光軸が調整されてもよい。これにより、第2のレーザ光により加熱した計測対象の部分に第1のレーザ光を照射できる。さらに、第1のレーザ光により発生したプラズマの温度を第2のレーザ光により保温することができる。 (2) In the component composition measurement system according to (1), the first and second lasers are irradiated so that the first laser beam and the second laser beam are irradiated onto the measurement target in a state where their optical axes coincide with each other. The optical axis of the light source may be adjusted. Thereby, the first laser beam can be irradiated to the portion to be measured heated by the second laser beam. Furthermore, the temperature of the plasma generated by the first laser light can be kept warm by the second laser light.
 (3)(1)の成分組成計測システムにおいて、制御装置は、発光スペクトルの性状を判定し、性状が所定状態にある発光スペクトルのデータのみを用いて計測対象の組成を分析してもよい。これにより、精度低下が生じる可能性のある信号を分析に使用するデータから排除でき、高い計測精度を確保することができる。 (3) In the component composition measurement system of (1), the control device may determine the property of the emission spectrum and analyze the composition to be measured using only the data of the emission spectrum having the property in a predetermined state. As a result, a signal that may cause a decrease in accuracy can be excluded from the data used for analysis, and high measurement accuracy can be ensured.
 (4)(3)の成分組成計測システムにおいて、制御装置は、発光スペクトルからプラズマの温度を判定し、プラズマ温度が所定温度以上である発光スペクトルを用いて計測対象の組成を分析してもよい。これにより、精度低下が生じる可能性のある信号を分析に使用するデータから排除できる。 (4) In the component composition measurement system of (3), the control device may determine the temperature of the plasma from the emission spectrum, and analyze the composition to be measured using the emission spectrum whose plasma temperature is equal to or higher than a predetermined temperature. . As a result, a signal that may cause a decrease in accuracy can be excluded from data used for analysis.
 (5)(3)の成分組成計測システムにおいて、制御装置は、発光スペクトルの信号強度を判定し、信号強度が所定値以上となる発光スペクトルのデータを用いて計測対象の組成を分析してもよい。これにより、精度低下が生じる可能性のある信号を分析に使用するデータから排除できる。 (5) In the component composition measurement system of (3), the control device determines the signal intensity of the emission spectrum, and analyzes the composition of the measurement object using the emission spectrum data in which the signal intensity is a predetermined value or more. Good. As a result, a signal that may cause a decrease in accuracy can be excluded from data used for analysis.
 (6)(3)の成分組成計測システムにおいて、制御装置は、発光スペクトルを複数回測定し、複数の発光スペクトルのデータを積算した結果を用いて計測対象の組成を分析してもよい。複数回測定したデータを積算して用いることで測定データの精度を向上させることができる。 (6) In the component composition measurement system of (3), the control device may analyze the composition to be measured using the result of measuring the emission spectrum a plurality of times and integrating the data of the plurality of emission spectra. By accumulating and using data measured a plurality of times, the accuracy of the measurement data can be improved.
 (7)(1)~(6)の成分組成計測システムは、計測対象の三次元形状及び距離を計測する三次元形状計測装置と、第1のレーザ光源から計測対象へ照射されるレーザ光の焦点距離を調整する焦点調整手段をさらに備えてもよい。制御装置は、三次元形状計測装置による測定結果に基づき焦点調整手段を制御して、レーザ光の焦点距離を調整してもよい。これにより、計測対象の形状(距離)に依存せず、常にレーザ光を合焦させて計測対象に照射でき、一定の強度でレーザ光を照射できる。 (7) The component composition measurement system according to (1) to (6) includes a three-dimensional shape measurement device that measures a three-dimensional shape and distance of a measurement target, and a laser beam emitted from the first laser light source to the measurement target. You may further provide the focus adjustment means to adjust a focal distance. The control device may adjust the focal length of the laser light by controlling the focus adjusting means based on the measurement result by the three-dimensional shape measuring device. As a result, the laser beam can always be focused and irradiated to the measurement object without depending on the shape (distance) of the measurement object, and the laser beam can be irradiated with a constant intensity.
 (8)(1)~(6)の成分組成計測システムは、三次元形状計測装置と、レーザ光の前記計測対象上の照射位置を調整する照射位置変更手段と、をさらに備えてもよい。制御装置は、三次元形状計測装置による測定結果に基づき照射位置変更手段を制御して、計測対象上のレーザ光の照射位置を調整してもよい。これにより、良好なプラズマ状態が得られる位置(領域)にレーザ光を照射でき、計測対象の形状に依存せずに一定状態の発光スペクトルを得ることができる。 (8) The component composition measurement system according to (1) to (6) may further include a three-dimensional shape measurement device and irradiation position changing means for adjusting the irradiation position of the laser beam on the measurement target. The control device may adjust the irradiation position of the laser beam on the measurement target by controlling the irradiation position changing means based on the measurement result by the three-dimensional shape measurement apparatus. Thereby, a laser beam can be irradiated to a position (region) where a good plasma state is obtained, and a constant emission spectrum can be obtained without depending on the shape of the measurement target.
 (9)さらに本開示は以下の成分組成計測方法を開示する。
 プラズマを発生させる程度の強度を有する第1のレーザ光を計測対象へ照射するステップと、
 プラズマを発生させない程度の強度を有する第2のレーザ光を計測対象へ照射するステップと、
 第1のレーザ光の計測対象への照射により生じたプラズマの発光から、波長毎の強度を示す発光スペクトルを測定するステップと、
 測定された発光スペクトルのデータを用いて計測対象の組成を分析するステップと、を含み、
 第1のレーザ光の照射開始前に、第2のレーザ光の照射を開始し、第1のレーザ光の照射終了後に、第2のレーザ光の照射を終了する、
成分組成計測方法。
(9) Further, the present disclosure discloses the following component composition measuring method.
Irradiating a measurement target with a first laser beam having an intensity sufficient to generate plasma;
Irradiating a measurement target with a second laser beam having an intensity that does not generate plasma;
A step of measuring an emission spectrum indicating an intensity for each wavelength from light emission of plasma generated by irradiation of the measurement target of the first laser beam;
Analyzing the composition to be measured using the measured emission spectrum data, and
Before starting the irradiation of the first laser light, start the irradiation of the second laser light, and after finishing the irradiation of the first laser light, end the irradiation of the second laser light.
Component composition measurement method.
 (10)(9)の成分組成計測方法において、分析するステップにおいて、発光スペクトルの性状を判定し、性状が所定状態にある発光スペクトルのデータのみを用いて計測対象の組成を分析してもよい。 (10) In the component composition measurement method of (9), in the analyzing step, the property of the emission spectrum may be determined, and the composition to be measured may be analyzed using only the data of the emission spectrum having the property in a predetermined state. .

Claims (10)

  1.  プラズマを発生させる程度の強度を有する第1のレーザ光を計測対象へ照射する第1のレーザ光源と、
     プラズマを発生させない程度の強度を有する第2のレーザ光を前記計測対象へ照射する第2のレーザ光源と、
     前記第1のレーザ光源から前記計測対象への第1のレーザ光の照射により生じたプラズマの発光から、波長毎の強度を示す発光スペクトルを測定するスペクトル測定装置と、
     測定された発光スペクトルのデータを用いて前記計測対象の組成を分析する制御装置と、を備え、
     前記第2のレーザ光源は、前記第1のレーザ光の照射開始前に、前記第2のレーザ光の照射を開始し、前記第1のレーザ光の照射終了後に、前記第2のレーザ光の照射を終了する、
    成分組成計測システム。
    A first laser light source that irradiates a measurement target with a first laser beam having an intensity sufficient to generate plasma;
    A second laser light source that irradiates the measurement target with a second laser beam having an intensity that does not generate plasma;
    A spectrum measuring device for measuring an emission spectrum indicating an intensity for each wavelength from light emission of plasma generated by irradiation of the first laser light from the first laser light source to the measurement target;
    A control device for analyzing the composition of the measurement object using data of the measured emission spectrum,
    The second laser light source starts irradiation of the second laser light before the start of irradiation of the first laser light, and after the irradiation of the first laser light ends, End the irradiation,
    Component composition measurement system.
  2.  前記第1のレーザ光と前記第2のレーザ光がそれらの光軸が一致した状態で前記計測対象へ照射されるように、前記第1及び第2のレーザ光源の光軸が調整されている、請求項1に記載の成分組成計測システム。 The optical axes of the first and second laser light sources are adjusted so that the measurement target is irradiated with the first laser light and the second laser light in a state where their optical axes coincide with each other. The component composition measuring system according to claim 1.
  3.  前記制御装置は、前記発光スペクトルの性状を判定し、前記性状が所定状態にある発光スペクトルのデータのみを用いて前記計測対象の組成を分析する、
    請求項1に記載の成分組成計測システム。
    The control device determines the property of the emission spectrum, and analyzes the composition of the measurement target using only the data of the emission spectrum in which the property is in a predetermined state.
    The component composition measuring system according to claim 1.
  4.  前記制御装置は、前記発光スペクトルからプラズマの温度を判定し、プラズマ温度が所定温度以上である発光スペクトルを用いて前記計測対象の組成を分析する、請求項3に記載の成分組成計測システム。 4. The component composition measurement system according to claim 3, wherein the control device determines a plasma temperature from the emission spectrum, and analyzes the composition of the measurement target using an emission spectrum having a plasma temperature equal to or higher than a predetermined temperature.
  5.  前記制御装置は、前記発光スペクトルの信号強度を判定し、信号強度が所定値以上となる発光スペクトルのデータを用いて前記計測対象の組成を分析する、請求項3に記載の成分組成計測システム。 4. The component composition measurement system according to claim 3, wherein the control device determines the signal intensity of the emission spectrum and analyzes the composition of the measurement target using data of the emission spectrum in which the signal intensity is a predetermined value or more.
  6.  前記制御装置は、発光スペクトルを複数回測定し、複数の発光スペクトルのデータを積算した結果を用いて前記計測対象の組成を分析する、請求項3に記載の成分組成計測システム。 4. The component composition measurement system according to claim 3, wherein the control device measures the emission spectrum a plurality of times and analyzes the composition of the measurement target using a result obtained by integrating the data of the plurality of emission spectra.
  7.  計測対象の三次元形状及び距離を計測する三次元形状計測装置と、
     前記第1のレーザ光源から前記計測対象へ照射されるレーザ光の焦点距離を調整する焦点調整手段をさらに備え、
     前記制御装置は、前記三次元形状計測装置による測定結果に基づき焦点調整手段を制御して、前記レーザ光の焦点距離を調整する、
    請求項1ないし6のいずれかに記載の成分組成計測システム。
    A three-dimensional shape measuring apparatus for measuring a three-dimensional shape and distance of a measurement target;
    A focus adjusting unit that adjusts a focal length of the laser light emitted from the first laser light source to the measurement target;
    The control device adjusts a focal length of the laser beam by controlling a focus adjusting unit based on a measurement result by the three-dimensional shape measuring device;
    The component composition measuring system according to any one of claims 1 to 6.
  8.  計測対象の三次元形状及び距離を計測する三次元形状計測装置と、
     前記レーザ光の前記計測対象上の照射位置を調整する照射位置変更手段と、をさらに備え、
     前記制御装置は、前記三次元形状計測装置による測定結果に基づき前記照射位置変更手段を制御して、前記計測対象上のレーザ光の照射位置を調整する、
    請求項1ないし6のいずれかに記載の成分組成計測システム。
    A three-dimensional shape measuring apparatus for measuring a three-dimensional shape and distance of a measurement target;
    Irradiation position changing means for adjusting the irradiation position on the measurement target of the laser light, further comprising:
    The control device controls the irradiation position changing unit based on a measurement result by the three-dimensional shape measurement apparatus, and adjusts the irradiation position of the laser light on the measurement target.
    The component composition measuring system according to any one of claims 1 to 6.
  9.  プラズマを発生させる程度の強度を有する第1のレーザ光を計測対象へ照射するステップと、
     プラズマを発生させない程度の強度を有する第2のレーザ光を前記計測対象へ照射するステップと、
     前記第1のレーザ光の前記計測対象への照射により生じたプラズマの発光から、波長毎の強度を示す発光スペクトルを測定するステップと、
     測定された発光スペクトルのデータを用いて前記計測対象の組成を分析するステップと、含み、
     前記第1のレーザ光の照射開始前に、前記第2のレーザの照射を開始し、前記第1のレーザ光の照射終了後に、前記第2のレーザ光の照射を終了する、
    成分組成計測方法。
    Irradiating a measurement target with a first laser beam having an intensity sufficient to generate plasma;
    Irradiating the measurement object with a second laser beam having an intensity that does not generate plasma;
    Measuring an emission spectrum indicating an intensity for each wavelength from light emission of plasma generated by irradiating the measurement target with the first laser beam;
    Analyzing the composition of the measurement object using data of the measured emission spectrum,
    Starting the irradiation of the second laser before starting the irradiation of the first laser light, and ending the irradiation of the second laser light after the irradiation of the first laser light;
    Component composition measurement method.
  10.  前記分析するステップにおいて、前記発光スペクトルの性状を判定し、前記性状が所定状態にある発光スペクトルのデータのみを用いて前記計測対象の組成を分析する、
    請求項9に記載の成分組成計測方法。
    In the analyzing step, the property of the emission spectrum is determined, and the composition of the measurement target is analyzed using only the data of the emission spectrum in which the property is in a predetermined state.
    The component composition measuring method according to claim 9.
PCT/JP2017/018180 2016-05-17 2017-05-15 Component composition measuring system and component composition measuring method WO2017199904A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187032982A KR102298835B1 (en) 2016-05-17 2017-05-15 Component composition measurement system and method for component composition measurement
CN201780030052.5A CN109154567B (en) 2016-05-17 2017-05-15 Component composition measuring system and component composition measuring method
JP2018518282A JP6901145B2 (en) 2016-05-17 2017-05-15 Component composition measurement system and component composition measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-099035 2016-05-17
JP2016099035 2016-05-17

Publications (1)

Publication Number Publication Date
WO2017199904A1 true WO2017199904A1 (en) 2017-11-23

Family

ID=60325108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018180 WO2017199904A1 (en) 2016-05-17 2017-05-15 Component composition measuring system and component composition measuring method

Country Status (4)

Country Link
JP (1) JP6901145B2 (en)
KR (1) KR102298835B1 (en)
CN (1) CN109154567B (en)
WO (1) WO2017199904A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021043041A (en) * 2019-09-10 2021-03-18 トヨタ自動車株式会社 Method for analyzing composition of element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112044807A (en) * 2020-07-17 2020-12-08 江汉大学 Lithium battery electrode sorting and recycling device
CN115436330B (en) * 2022-08-08 2024-01-12 哈尔滨工业大学 Double-pulse laser-induced desorption spectrum measurement system and method for measuring deuterium distribution in tokamak co-deposition layer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007640A (en) * 2009-06-26 2011-01-13 Shikoku Electric Power Co Inc Continuous concentration measuring apparatus and method
US20120262712A1 (en) * 2011-04-15 2012-10-18 Rhm Technologies, Inc. Laser induced breakdown spectroscopy
US20120314214A1 (en) * 2011-06-07 2012-12-13 Alexander Dennis R Laser Induced Breakdown Spectroscopy Having Enhanced Signal-to-Noise Ratio
JP2013190411A (en) * 2012-02-15 2013-09-26 Central Research Institute Of Electric Power Industry Concentration measurement method and device of metal surface adhesion component
WO2014042221A1 (en) * 2012-09-13 2014-03-20 国立大学法人東京大学 Component analysis device
WO2015037643A1 (en) * 2013-09-10 2015-03-19 株式会社Ihi Material identification system and material identification method
JP2015148442A (en) * 2014-02-04 2015-08-20 株式会社Ihi Substance identification method and substance identification system
WO2015178338A1 (en) * 2014-05-21 2015-11-26 浜松ホトニクス株式会社 Microscope device and image acquisition method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010371A (en) 2005-06-28 2007-01-18 Kenji Yasuda Harmful substance detecting system, detection method of harmful wood, and waste wood treatment system
US8125627B2 (en) 2007-04-27 2012-02-28 Alakai Defense Systems, Inc. Laser spectroscopy system
CN201575971U (en) * 2009-12-23 2010-09-08 中国科学院沈阳自动化研究所 Laser-induced breakdown spectroscopy device for molten metal
CN104142316B (en) * 2014-08-15 2017-01-25 中国科学院上海技术物理研究所 Pre-ablation and reheating combined triple-pulse LIBS (laser-induced breakdown spectroscopy) detection system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007640A (en) * 2009-06-26 2011-01-13 Shikoku Electric Power Co Inc Continuous concentration measuring apparatus and method
US20120262712A1 (en) * 2011-04-15 2012-10-18 Rhm Technologies, Inc. Laser induced breakdown spectroscopy
US20120314214A1 (en) * 2011-06-07 2012-12-13 Alexander Dennis R Laser Induced Breakdown Spectroscopy Having Enhanced Signal-to-Noise Ratio
JP2013190411A (en) * 2012-02-15 2013-09-26 Central Research Institute Of Electric Power Industry Concentration measurement method and device of metal surface adhesion component
WO2014042221A1 (en) * 2012-09-13 2014-03-20 国立大学法人東京大学 Component analysis device
WO2015037643A1 (en) * 2013-09-10 2015-03-19 株式会社Ihi Material identification system and material identification method
JP2015148442A (en) * 2014-02-04 2015-08-20 株式会社Ihi Substance identification method and substance identification system
WO2015178338A1 (en) * 2014-05-21 2015-11-26 浜松ホトニクス株式会社 Microscope device and image acquisition method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021043041A (en) * 2019-09-10 2021-03-18 トヨタ自動車株式会社 Method for analyzing composition of element

Also Published As

Publication number Publication date
KR20190008231A (en) 2019-01-23
JPWO2017199904A1 (en) 2019-03-14
CN109154567A (en) 2019-01-04
CN109154567B (en) 2021-06-01
KR102298835B1 (en) 2021-09-07
JP6901145B2 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
US9909923B2 (en) Laser induced breakdown spectroscopy (LIBS) apparatus based on high repetition rate pulsed laser
US20150346103A1 (en) Laser Induced Breakdown Spectroscopy (LIBS) Apparatus and Method for Performing Spectral Imaging of a Sample Surface
US9797776B2 (en) Laser induced breakdown spectroscopy (LIBS) apparatus based on high repetition rate pulsed laser
JP5397451B2 (en) Tissue material measurement system
JP6901145B2 (en) Component composition measurement system and component composition measurement method
CN110088600B (en) Laser-induced breakdown spectroscopy system and method, and detection system and method thereof
Lednev et al. Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam
Banerjee et al. High resolution scanning microanalysis on material surfaces using UV femtosecond laser induced breakdown spectroscopy
US10241380B2 (en) Terahertz wave generator
JP2009288068A (en) Analyzing method and analyzer
JP6682466B2 (en) Optical inspection device
CN108318459A (en) Pulsed Laser induces the measuring device and measuring method of photoluminescence spectrum
Tang et al. Micro-destructive analysis with high sensitivity using double-pulse resonant laser-induced breakdown spectroscopy
JP4685572B2 (en) Material measuring device for metal workpieces
JP2008032606A (en) Analyzing method and device in laser induced plasma spectroscopy
JPWO2019044600A1 (en) Optical measuring device, measuring method, program and recording medium
JP4439363B2 (en) Online crystal grain size measuring apparatus and measuring method using laser ultrasonic wave
Huang et al. Confocal controlled LIBS microscopy with high spatial resolution and stability
JP3884594B2 (en) Fluorescence lifetime measuring device
JP2020122904A (en) Plasma analysis system
JP4430261B2 (en) Method and apparatus for remote monitoring of refining furnace
JP2000055809A (en) Raman microspectroscope and method therefor
JP7363028B2 (en) Component measuring device and component measuring method
JP2000074755A (en) Method and apparatus for measuring plasma temperature distribution
JPH06102086A (en) Laser measuring device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018518282

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187032982

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799328

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799328

Country of ref document: EP

Kind code of ref document: A1