JP2010013970A - Abnormality determination device of exhaust heat recovery equipment - Google Patents

Abnormality determination device of exhaust heat recovery equipment Download PDF

Info

Publication number
JP2010013970A
JP2010013970A JP2008173219A JP2008173219A JP2010013970A JP 2010013970 A JP2010013970 A JP 2010013970A JP 2008173219 A JP2008173219 A JP 2008173219A JP 2008173219 A JP2008173219 A JP 2008173219A JP 2010013970 A JP2010013970 A JP 2010013970A
Authority
JP
Japan
Prior art keywords
heat
exhaust
temperature difference
heat recovery
reference range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008173219A
Other languages
Japanese (ja)
Other versions
JP4957667B2 (en
Inventor
Koseki Sugiyama
宏石 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008173219A priority Critical patent/JP4957667B2/en
Publication of JP2010013970A publication Critical patent/JP2010013970A/en
Application granted granted Critical
Publication of JP4957667B2 publication Critical patent/JP4957667B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform high-precision determination of abnormality of an exhaust heat recovery equipment for practicing heat exchange between itself and a fuel system of an internal combustion engine by utilizing exhaust heat recovered from an exhaust system of the internal combustion engine. <P>SOLUTION: In satisfying an exhaust system temperature difference > a reference range and a fuel system temperature difference < a reference range, or in satisfying a heat pipe temperature > a reference range and the fuel system temperature difference < the reference range, the abnormality of the fuel system is determined. Further, in satisfying the exhaust system temperature difference < the reference range, the fuel system temperature difference > the reference range, in satisfying the heat pipe temperature < the reference range, and the fuel system temperature difference > the reference range, or the exhaust system temperature difference < the reference range, and the heat pipe temperature > the reference range, the deficiency in exhaust heat recovered amount, performed by a heat recovery unit 201 is determined (step 204). Furthermore, in satisfying the exhaust system temperature difference > the reference range and the heat pipe temperature < the reference range, the trouble of the heat pipe 203 is determined (step 304). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、排気熱回収装置の異常判定装置に係り、特に、内燃機関の排気系から回収した排気熱を利用して、該内燃機関の燃料系との間で熱交換を行う排気熱回収装置の異常判定装置に関する。   The present invention relates to an abnormality determination device for an exhaust heat recovery device, and in particular, an exhaust heat recovery device for exchanging heat with the fuel system of the internal combustion engine using exhaust heat recovered from the exhaust system of the internal combustion engine. The present invention relates to an abnormality determination device.

従来、例えば、実開平7−42867号公報に開示されるように、エンジンの排気熱を利用して燃料を予熱する装置が知られている。この予熱装置では、エンジンの排気系と燃料系との間にヒートパイプが設けられている。より具体的には、作動液が流通するループ型のヒートパイプの蒸発部に、セラミックスや金属からなる顕熱蓄熱型の固体の蓄熱体が設けられ、該ヒートパイプの凝縮部に熱交換器が設けられている。そして、蓄熱体が機関の排気管の途中に介設され、熱交換器が機関の燃料通路の途中に介設されている。このような装置によれば、蓄熱体が蓄熱した排気熱がヒートパイプ内の作動液が流通することにより瞬時に熱交換器へ輸送され、この熱により燃料を応答よく予熱することができる。   Conventionally, as disclosed in, for example, Japanese Utility Model Laid-Open No. 7-42867, an apparatus for preheating fuel using exhaust heat of an engine is known. In this preheating device, a heat pipe is provided between the exhaust system of the engine and the fuel system. More specifically, a sensible heat storage solid heat storage body made of ceramics or metal is provided in the evaporation part of a loop heat pipe through which the working fluid flows, and a heat exchanger is provided in the condensation part of the heat pipe. Is provided. And a heat storage body is interposed in the middle of the exhaust pipe of the engine, and a heat exchanger is interposed in the middle of the fuel passage of the engine. According to such an apparatus, the exhaust heat stored in the heat storage body is instantaneously transported to the heat exchanger as the working fluid in the heat pipe flows, and the fuel can be preheated with good response by this heat.

実開平7−42867号公報Japanese Utility Model Publication No. 7-42867 特開2005−69161号公報JP 2005-69161 A

ところで、内燃機関の排気系から回収した排気熱を利用して、該内燃機関の燃料系との間で熱交換を行う排気熱回収装置は、内燃機関10の燃料系と排気系との間に介在している。つまり、通常であれば互いに独立して存在しているはずの内燃機関の燃料系と排気系とが、該排気熱回収装置を介して連結されている。このため、何れかの系側に異常発生した場合であっても、他方の系側にも種々の影響が生じてしまう。したがって、排気熱回収装置に異常が発生した場合に、発生している異常の種類、および箇所等を高精度に判定することが困難であった。   By the way, an exhaust heat recovery apparatus for exchanging heat with the fuel system of the internal combustion engine using the exhaust heat recovered from the exhaust system of the internal combustion engine is provided between the fuel system and the exhaust system of the internal combustion engine 10. Intervene. In other words, the fuel system and the exhaust system of the internal combustion engine, which would normally exist independently from each other, are connected via the exhaust heat recovery device. For this reason, even if an abnormality occurs on either system side, various effects also occur on the other system side. Therefore, when an abnormality occurs in the exhaust heat recovery apparatus, it is difficult to determine the type and location of the abnormality that has occurred with high accuracy.

この発明は、上述のような課題を解決するためになされたもので、内燃機関の排気系から回収した排気熱を利用して、該内燃機関の燃料系との間で熱交換を行う排気熱回収装置の異常を高精度に判定することのできる排気熱回収装置の異常判定装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and uses exhaust heat recovered from an exhaust system of an internal combustion engine to perform heat exchange with the fuel system of the internal combustion engine. An object of the present invention is to provide an abnormality determination device for an exhaust heat recovery device that can determine an abnormality of a recovery device with high accuracy.

第1の発明は、上記の目的を達成するため、排気熱回収装置の異常判定装置であって、
内燃機関の燃料系に介在し、該燃料系との間で熱交換を行う熱交換部と、前記内燃機関の排気系に介在し、該排気系から排気熱を回収する熱回収部と、前記熱回収部から前記熱交換部への熱伝達を行う熱伝達部と、を有する排気熱回収装置と、
前記燃料系と前記熱交換部との間で交換された交換熱量の相関値(以下、交換熱量相関値)と、前記排気系から前記熱回収部へ回収された回収熱量の相関値(以下、回収熱量相関値)と、前記熱伝達部の温度(以下、熱伝達部温度)と、の少なくとも何れか2つの値に基づいて、前記燃料系の異常有無、前記熱回収部における排気熱回収不足有無、或いは前記熱伝達部の異常有無の判定を行う判定手段と、
を備えることを特徴とする。
In order to achieve the above object, a first invention is an abnormality determination device for an exhaust heat recovery device,
A heat exchanging part interposed in the fuel system of the internal combustion engine for exchanging heat with the fuel system; a heat recovery part interposed in the exhaust system of the internal combustion engine for recovering exhaust heat from the exhaust system; An exhaust heat recovery device having a heat transfer unit that transfers heat from the heat recovery unit to the heat exchange unit;
Correlation value of exchange heat amount exchanged between the fuel system and the heat exchange unit (hereinafter referred to as exchange heat amount correlation value) and correlation value of recovery heat amount recovered from the exhaust system to the heat recovery unit (hereinafter, Based on at least one of the values of the recovered heat quantity correlation value) and the temperature of the heat transfer section (hereinafter referred to as heat transfer section temperature), whether there is an abnormality in the fuel system, exhaust heat recovery shortage in the heat recovery section Determination means for determining presence or absence or presence or absence of abnormality of the heat transfer unit;
It is characterized by providing.

第2の発明は、第1の発明において、
前記判定手段は、
前記燃料系の前記熱交換部前後での温度差(以下、燃料系温度差)を前記交換熱量相関値として取得する手段と、
前記排気系の前記熱回収部前後での温度差(以下、排気系温度差)を前記回収熱量相関値として取得する手段と、を含み、
前記排気系温度差が所定の基準範囲より大きく、且つ、前記燃料系温度差が所定の基準範囲よりも小さい場合に、前記燃料系の異常を判定することを特徴とする。
According to a second invention, in the first invention,
The determination means includes
Means for acquiring a temperature difference before and after the heat exchange part of the fuel system (hereinafter referred to as a fuel system temperature difference) as the exchange heat quantity correlation value;
Means for acquiring a temperature difference before and after the heat recovery part of the exhaust system (hereinafter referred to as an exhaust system temperature difference) as the recovered heat quantity correlation value;
The abnormality of the fuel system is determined when the exhaust system temperature difference is larger than a predetermined reference range and the fuel system temperature difference is smaller than a predetermined reference range.

第3の発明は、第1の発明において、
前記判定手段は、
前記熱伝達部温度を取得する手段と、
前記燃料系の前記熱交換部前後での温度差(以下、燃料系温度差)を前記交換熱量相関値として取得する手段と、を含み、
前記熱伝達部温度が所定の基準範囲より大きく、且つ、前記燃料系温度差が所定の基準範囲よりも小さい場合に、前記燃料系の異常を判定することを特徴とする。
According to a third invention, in the first invention,
The determination means includes
Means for obtaining the heat transfer section temperature;
Means for obtaining a temperature difference (hereinafter referred to as a fuel system temperature difference) before and after the heat exchange part of the fuel system as the exchange heat quantity correlation value,
An abnormality of the fuel system is determined when the temperature of the heat transfer section is larger than a predetermined reference range and the fuel system temperature difference is smaller than a predetermined reference range.

第4の発明は、第1の発明において、
前記判定手段は、
前記燃料系の前記熱交換部前後での温度差(以下、燃料系温度差)を前記交換熱量相関値として取得する手段と、
前記排気系の前記熱回収部前後での温度差(以下、排気系温度差)を前記回収熱量相関値として取得する手段と、を含み、
前記排気系温度差が所定の基準範囲より小さく、且つ、前記燃料系温度差が所定の基準範囲よりも大きい場合に、前記熱回収部における排気熱回収不足を判定することを特徴とする。
According to a fourth invention, in the first invention,
The determination means includes
Means for acquiring a temperature difference before and after the heat exchange part of the fuel system (hereinafter referred to as a fuel system temperature difference) as the exchange heat quantity correlation value;
Means for acquiring a temperature difference before and after the heat recovery part of the exhaust system (hereinafter referred to as an exhaust system temperature difference) as the recovered heat quantity correlation value;
When the exhaust system temperature difference is smaller than a predetermined reference range and the fuel system temperature difference is larger than a predetermined reference range, it is determined whether exhaust heat recovery is insufficient in the heat recovery unit.

第5の発明は、第1の発明において、
前記判定手段は、
前記熱伝達部温度を取得する手段と、
前記燃料系の前記熱交換部前後での温度差(以下、燃料系温度差)を前記交換熱量相関値として取得する手段と、を含み、
前記熱伝達部温度が所定の基準範囲より小さく、且つ、前記燃料系温度差が所定の基準範囲よりも大きい場合に、前記熱回収部における排気熱回収不足を判定することを特徴とする。
According to a fifth invention, in the first invention,
The determination means includes
Means for obtaining the heat transfer section temperature;
Means for obtaining a temperature difference (hereinafter referred to as a fuel system temperature difference) before and after the heat exchange part of the fuel system as the exchange heat quantity correlation value,
When the heat transfer unit temperature is smaller than a predetermined reference range and the fuel system temperature difference is larger than a predetermined reference range, it is determined whether exhaust heat recovery in the heat recovery unit is insufficient.

第6の発明は、第1の発明において、
前記判定手段は、
前記排気系の前記熱回収部前後での温度差(以下、排気系温度差)を前記回収熱量相関値として取得する手段と、
前記熱伝達部温度を取得する手段と、を含み、
前記排気系温度差が所定の基準範囲より小さく、且つ、前記熱伝達部温度が所定の基準範囲よりも大きい場合に、前記熱回収部における排気熱回収不足を判定することを特徴とする。
According to a sixth invention, in the first invention,
The determination means includes
Means for obtaining a temperature difference before and after the heat recovery unit of the exhaust system (hereinafter referred to as an exhaust system temperature difference) as the recovered heat quantity correlation value;
Means for acquiring the heat transfer section temperature,
When the exhaust system temperature difference is smaller than a predetermined reference range and the heat transfer section temperature is larger than a predetermined reference range, it is determined whether exhaust heat recovery in the heat recovery section is insufficient.

第7の発明は、第4乃至第6の何れか1つの発明において、
前記判定手段により前記熱回収部における排気熱回収不足が判定された場合に、前記熱交換部へ流通する燃料量を減量する燃料流量減量手段を更に備えることを特徴とする。
A seventh invention is the invention according to any one of the fourth to sixth inventions,
When the determination means determines that the exhaust heat recovery in the heat recovery section is insufficient, the fuel flow reduction means further reduces the amount of fuel flowing to the heat exchange section.

第9の発明は、第1の発明において、
前記判定手段は、
前記排気系の前記熱回収部前後での温度差(以下、排気系温度差)を前記回収熱量相関値として取得する手段と、
前記熱伝達部温度を取得する手段と、を含み、
前記排気系温度差が所定の基準範囲より大きく、且つ、前記熱伝達部温度が所定の基準範囲よりも小さい場合に、前記熱伝達部の異常を判定することを特徴とする。
According to a ninth invention, in the first invention,
The determination means includes
Means for obtaining a temperature difference before and after the heat recovery unit of the exhaust system (hereinafter referred to as an exhaust system temperature difference) as the recovered heat quantity correlation value;
Means for acquiring the heat transfer section temperature,
When the exhaust system temperature difference is larger than a predetermined reference range and the heat transfer unit temperature is smaller than a predetermined reference range, an abnormality of the heat transfer unit is determined.

第1の発明によれば、排気系から熱回収部へ回収された回収熱量は、熱伝達部を伝達して、燃料系と熱交換部との間の交換熱量として使用される。交換熱量、回収熱量、および熱伝達部温度を相互にそれぞれ比較すると、熱交換部、熱回収部、および熱伝達部における熱移動が規定どおり行われているか否かを、それぞれ判断することができる。このため、本発明によれば、交換熱量相関値と、回収熱量相関値と、熱伝達部温度と、の少なくとも何れか2つの値に基づいて、燃料系の異常有無、熱回収部における排気熱回収不足有無、或いは熱伝達部の異常有無を判定することができる。   According to the first invention, the recovered heat amount recovered from the exhaust system to the heat recovery unit is transmitted to the heat transfer unit and used as an exchange heat amount between the fuel system and the heat exchange unit. When the exchange heat amount, the recovered heat amount, and the heat transfer unit temperature are compared with each other, it is possible to determine whether the heat transfer in the heat exchange unit, the heat recovery unit, and the heat transfer unit is performed as prescribed. . For this reason, according to the present invention, based on at least any two values of the exchange heat quantity correlation value, the recovered heat quantity correlation value, and the heat transfer section temperature, whether there is an abnormality in the fuel system, the exhaust heat in the heat recovery section Whether there is insufficient recovery or whether there is an abnormality in the heat transfer unit can be determined.

回収熱量が所定の基準範囲よりも大きいにもかかわらず、交換熱量が所定範囲よりも小さい場合には、熱交換部に流入する燃料量が規定値から外れている可能性が高い。このため、第2の発明によれば、回収熱量相関値としての排気系温度差が所定の基準範囲より大きく、且つ、交換熱量相関値としての燃料系温度差が所定の基準範囲よりも小さい場合に、燃料系の異常を判定することができる。   When the amount of heat recovered is larger than the predetermined reference range, but the amount of heat exchanged is smaller than the predetermined range, there is a high possibility that the amount of fuel flowing into the heat exchanging unit is out of the specified value. Therefore, according to the second aspect, when the exhaust system temperature difference as the recovered heat quantity correlation value is larger than the predetermined reference range, and the fuel system temperature difference as the exchange heat quantity correlation value is smaller than the predetermined reference range. In addition, the abnormality of the fuel system can be determined.

熱伝達部温度が所定の基準範囲よりも大きいにもかかわらず、交換熱量が所定範囲よりも小さい場合には、熱交換部に流入する燃料量が規定値から外れている可能性が高い。このため、第3の発明によれば、熱伝達部温度が所定の基準範囲より大きく、且つ、交換熱量相関値としての燃料系温度差が所定の基準範囲よりも小さい場合に、燃料系の異常を判定することができる。   When the heat transfer unit temperature is larger than the predetermined reference range and the exchange heat amount is smaller than the predetermined range, there is a high possibility that the fuel amount flowing into the heat exchange unit is out of the specified value. Therefore, according to the third aspect of the present invention, when the heat transfer section temperature is larger than the predetermined reference range and the fuel system temperature difference as the exchange heat quantity correlation value is smaller than the predetermined reference range, the abnormality of the fuel system Can be determined.

交換熱量が所定範囲よりも大きいにもかかわらず、回収熱量が所定の基準範囲よりも小さい場合には、熱回収部における排気熱回収量が不足している可能性が高い。このため、第4の発明によれば、交換熱量相関値としての燃料系温度差が所定の基準範囲よりも大きく、且つ、回収熱量相関値としての排気系温度差が所定の基準範囲より小さい場合に、熱回収部における排気熱回収不足の異常を判定することができる。   In the case where the recovered heat quantity is smaller than the predetermined reference range even though the exchange heat quantity is larger than the predetermined range, there is a high possibility that the exhaust heat recovery amount in the heat recovery unit is insufficient. Therefore, according to the fourth aspect, when the fuel system temperature difference as the exchange heat quantity correlation value is larger than the predetermined reference range and the exhaust system temperature difference as the recovered heat quantity correlation value is smaller than the predetermined reference range. In addition, it is possible to determine abnormality in exhaust heat recovery shortage in the heat recovery unit.

交換熱量が所定範囲よりも大きいにもかかわらず、熱伝達部温度が所定の基準範囲よりも小さい場合には、熱回収部における排気熱回収量が不足している可能性が高い。このため、第5の発明によれば、交換熱量相関値としての燃料系温度差が所定の基準範囲よりも大きく、且つ、熱伝達部温度が所定の基準範囲より小さい場合に、熱回収部における排気熱回収不足の異常を判定することができる。   If the heat transfer unit temperature is smaller than the predetermined reference range even though the exchange heat amount is larger than the predetermined range, there is a high possibility that the exhaust heat recovery amount in the heat recovery unit is insufficient. Therefore, according to the fifth aspect of the present invention, when the fuel system temperature difference as the exchange heat quantity correlation value is larger than the predetermined reference range and the heat transfer unit temperature is smaller than the predetermined reference range, Abnormality of exhaust heat recovery shortage can be determined.

熱伝達部温度が所定の基準範囲よりも大きいにもかかわらず、回収熱量が所定範囲よりも小さい場合には、熱回収部における排気熱回収量が不足している可能性が高い。第6の発明によれば、熱伝達部温度が所定の基準範囲よりも大きく、且つ、回収熱量相関値としての排気系温度差が所定の基準範囲より小さい場合に、熱回収部における排気熱回収不足の異常を判定することができる。   When the heat transfer unit temperature is larger than the predetermined reference range and the recovered heat amount is smaller than the predetermined range, there is a high possibility that the exhaust heat recovery amount in the heat recovery unit is insufficient. According to the sixth aspect of the invention, when the heat transfer unit temperature is larger than the predetermined reference range and the exhaust system temperature difference as the recovered heat quantity correlation value is smaller than the predetermined reference range, the exhaust heat recovery in the heat recovery unit. A deficiency abnormality can be determined.

第7の発明によれば、熱回収部における排気熱回収不足が判定された場合に、熱交換部へ流入する燃料量が減量される。このため、本発明によれば、加熱不足の燃料が熱交換部から流出する事態を効果的に抑制することができる。   According to the seventh aspect, when it is determined that exhaust heat recovery is insufficient in the heat recovery unit, the amount of fuel flowing into the heat exchange unit is reduced. For this reason, according to the present invention, it is possible to effectively suppress a situation in which fuel with insufficient heating flows out of the heat exchange section.

回収熱量が所定範囲よりも大きいにもかかわらず、熱伝達部温度が所定の基準範囲よりも小さい場合には、熱伝達部に異常が発生している可能性が高い。このため、第8の発明によれば、回収熱量相関値としての排気系温度差が所定の基準範囲より大きく、且つ、熱伝達部温度が所定の基準範囲よりも小さい場合に、該熱伝達部の異常を判定することができる。   In the case where the heat transfer unit temperature is smaller than the predetermined reference range even though the recovered heat amount is larger than the predetermined range, there is a high possibility that an abnormality has occurred in the heat transfer unit. Therefore, according to the eighth aspect of the present invention, when the exhaust system temperature difference as the recovered heat quantity correlation value is larger than the predetermined reference range and the heat transfer section temperature is smaller than the predetermined reference range, the heat transfer section Can be determined.

以下、図面に基づいてこの発明の実施の形態について説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。また、以下の実施の形態によりこの発明が限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted. The present invention is not limited to the following embodiments.

実施の形態.
[実施の形態の構成]
図1は、本発明の実施の形態に係るシステムの構成を説明するための図である。内燃機関10は排気熱回収装置20を備えている。排気熱回収装置20は、より具体的には、内燃機関10の排気通路12に介設された熱回収部201と、当該内燃機関10における燃料配管14に介設された熱交換部202と、熱回収部201と熱交換部202との間の熱伝達を行うヒートパイプ203とを備えている。また、燃料配管14における熱交換部202の上流側には、該燃料配管14を流れる燃料の流量を調整するための流量調整器16が介設されている。
Embodiment.
[Configuration of the embodiment]
FIG. 1 is a diagram for explaining the configuration of a system according to an embodiment of the present invention. The internal combustion engine 10 includes an exhaust heat recovery device 20. More specifically, the exhaust heat recovery device 20 includes a heat recovery unit 201 provided in the exhaust passage 12 of the internal combustion engine 10, a heat exchange unit 202 provided in the fuel pipe 14 in the internal combustion engine 10, A heat pipe 203 that performs heat transfer between the heat recovery unit 201 and the heat exchange unit 202 is provided. Further, a flow rate regulator 16 for adjusting the flow rate of the fuel flowing through the fuel pipe 14 is interposed on the upstream side of the heat exchange unit 202 in the fuel pipe 14.

燃料配管14における熱交換部202の上流側近傍には、該熱交換部202へ流入する燃料の温度T1を検知するための温度センサ32が配置されている。また、熱交換部202の下流側近傍には、該熱交換部202から流出する燃料の温度T2を検知するための温度センサ34が配置されている。   A temperature sensor 32 for detecting the temperature T1 of the fuel flowing into the heat exchange unit 202 is disposed near the upstream side of the heat exchange unit 202 in the fuel pipe 14. Further, a temperature sensor 34 for detecting the temperature T2 of the fuel flowing out from the heat exchange unit 202 is disposed in the vicinity of the downstream side of the heat exchange unit 202.

ヒートパイプ203には、該ヒートパイプ203の表面温度T3を検知するための温度センサ36が配置されている。更に、排気通路12における熱回収部201の下流側近傍には、該熱回収部から流出する排気ガスの温度T4を検知するための温度センサ38が配置されている。また、熱回収部201の上流側近傍には、該熱回収部201へ流入する排気ガスの温度T5を検知するための温度センサ40が配置されている。   In the heat pipe 203, a temperature sensor 36 for detecting the surface temperature T3 of the heat pipe 203 is disposed. Further, a temperature sensor 38 for detecting the temperature T4 of the exhaust gas flowing out from the heat recovery unit is disposed in the exhaust passage 12 near the downstream side of the heat recovery unit 201. Further, a temperature sensor 40 for detecting the temperature T5 of the exhaust gas flowing into the heat recovery unit 201 is disposed in the vicinity of the upstream side of the heat recovery unit 201.

図1に示すように、本実施形態の制御装置はECU(Electronic Control Unit)30を備えている。ECU30の入力には、上述した温度センサ32,34,36,38,40に加え、内燃機関10の運転状態を検出するための各種センサ(図示せず)が接続されている。また、ECU30の出力には、上述した流量調整器16などの各種アクチュエータが接続されている。   As shown in FIG. 1, the control device of the present embodiment includes an ECU (Electronic Control Unit) 30. In addition to the temperature sensors 32, 34, 36, 38, and 40 described above, various sensors (not shown) for detecting the operating state of the internal combustion engine 10 are connected to the input of the ECU 30. Further, various actuators such as the flow rate regulator 16 described above are connected to the output of the ECU 30.

[実施の形態の動作]
(排気熱回収装置の動作について)
次に、排気熱回収装置20の動作について説明する。排気熱回収装置20は、排気通路12を流通する排気ガスから熱を回収し、燃料配管14を流通する燃料を過熱する装置である。より具体的には、排気通路12に介設されている熱回収部201は、該熱回収部を通過する排気ガスから排気熱を回収する。回収された排気熱は、ヒートパイプ203を介して熱交換部202へ伝達される。上述したとおり、熱交換部202は燃料配管14の途中に介設されている。このため、熱交換部202を通過する燃料は、該熱交換部202内で熱交換を行い加熱される。加熱された燃料は、燃料配管14を流通して、内燃機関10へ供給される。
[Operation of the embodiment]
(Operation of exhaust heat recovery device)
Next, the operation of the exhaust heat recovery device 20 will be described. The exhaust heat recovery device 20 is a device that recovers heat from the exhaust gas flowing through the exhaust passage 12 and superheats the fuel flowing through the fuel pipe 14. More specifically, the heat recovery unit 201 provided in the exhaust passage 12 recovers exhaust heat from the exhaust gas that passes through the heat recovery unit. The recovered exhaust heat is transmitted to the heat exchange unit 202 via the heat pipe 203. As described above, the heat exchanging unit 202 is interposed in the middle of the fuel pipe 14. For this reason, the fuel passing through the heat exchanging unit 202 is heated by exchanging heat in the heat exchanging unit 202. The heated fuel flows through the fuel pipe 14 and is supplied to the internal combustion engine 10.

(排気熱回収装置の異常診断について)
次に、排気熱回収装置20の異常診断について説明する。上述したとおり、排気熱回収装置20は、内燃機関10の排気系から回収した熱量を燃料系へ伝達する装置である。このため、排気熱回収装置20に異常が発生した場合、燃料配管14を流通する燃料を十分に加熱することができないおそれがある。また、排気熱回収装置20は、内燃機関10の燃料系と排気系との間に介在している。つまり、通常であれば互いに独立して存在しているはずの内燃機関10の燃料系と排気系とが、該排気熱回収装置20を介して連結されている。このため、何れかの系側に異常発生した場合であっても、他方の系側にも種々の影響が生じてしまう。したがって、排気熱回収装置に異常が発生した場合に、発生している異常の種類、および箇所等を高精度に判定することが困難となる。
(About abnormality diagnosis of exhaust heat recovery equipment)
Next, abnormality diagnosis of the exhaust heat recovery device 20 will be described. As described above, the exhaust heat recovery device 20 is a device that transmits the amount of heat recovered from the exhaust system of the internal combustion engine 10 to the fuel system. For this reason, when an abnormality occurs in the exhaust heat recovery apparatus 20, there is a possibility that the fuel flowing through the fuel pipe 14 cannot be sufficiently heated. Further, the exhaust heat recovery device 20 is interposed between the fuel system and the exhaust system of the internal combustion engine 10. In other words, the fuel system and the exhaust system of the internal combustion engine 10 that would normally exist independently from each other are connected via the exhaust heat recovery device 20. For this reason, even if an abnormality occurs on either system side, various effects also occur on the other system side. Therefore, when an abnormality occurs in the exhaust heat recovery apparatus, it is difficult to determine the type and location of the abnormality that has occurred with high accuracy.

ここで、排気系から熱回収部201へ回収された回収熱量は、ヒートパイプ203を伝達して、燃料系と熱交換部202との間の交換熱量として使用される。このため、これらの交換熱量、回収熱量、および熱伝達部温度を相互に比較すると、熱交換部202、熱回収部201、およびヒートパイプ203における熱移動が規定どおり行われているか否かを、それぞれ判断することができる。   Here, the recovered heat amount recovered from the exhaust system to the heat recovery unit 201 is transmitted through the heat pipe 203 and used as an exchange heat amount between the fuel system and the heat exchange unit 202. For this reason, when these exchange heat quantity, recovery heat quantity, and heat transfer part temperature are compared with each other, whether heat transfer in the heat exchange part 202, the heat recovery part 201, and the heat pipe 203 is performed as prescribed, Each can be judged.

そこで、本実施の形態では、交換熱量と相関を有する熱交換部202の前後の燃料系温度差(T2−T1)と、回収熱量と相関を有する熱回収部201の前後の排気系温度差(T5−T4)と、熱伝達部温度と、の少なくとも何れか2つの値に基づいて、(a)燃料系の異常有無、(b)熱回収部における排気熱回収不足有無、(c)熱伝達部の異常有無をそれぞれ判定することとする。以下、各異常判定の具体的処理について詳細に説明する。   Therefore, in the present embodiment, the fuel system temperature difference (T2-T1) before and after the heat exchanging unit 202 having a correlation with the exchange heat amount, and the exhaust system temperature difference before and after the heat recovery unit 201 having a correlation with the recovered heat amount ( Based on at least one of T5-T4) and the heat transfer section temperature, (a) fuel system abnormality presence, (b) exhaust heat recovery shortage in heat recovery section, (c) heat transfer The presence / absence of abnormality of each part is determined. Hereinafter, specific processing for each abnormality determination will be described in detail.

[実施の形態における具体的処理]
(a)燃料系異常判定
次に、図2を参照して、本実施の形態において実行する処理の具体的内容について説明する。図2は、ECU30が、燃料系の異常を判定するために実行するルーチンのフローチャートである。
[Specific processing in the embodiment]
(A) Fuel system abnormality determination Next, with reference to FIG. 2, the specific content of the process performed in this Embodiment is demonstrated. FIG. 2 is a flowchart of a routine that the ECU 30 executes to determine an abnormality in the fuel system.

図3に示すルーチンでは、先ず、温度T1,T2,T3,T4,T5が取得される(ステップ100)。ここでは、具体的には、温度センサ32,34,36,38,40の検出信号に基づいて取得される。   In the routine shown in FIG. 3, first, temperatures T1, T2, T3, T4, and T5 are acquired (step 100). Here, specifically, it is acquired based on the detection signals of the temperature sensors 32, 34, 36, 38, and 40.

次に、排気系温度差(T5−T4)が所定の基準範囲よりも大きいか否か、および燃料系温度差(T2−T1)が所定の基準範囲よりも小さいか否かが判定される(ステップ102)。ここでは、具体的には、上記ステップ100において取得された温度T1,T2,T4,T5に基づいて、排気系温度差(T5−T4)および燃料系温度差(T2−T1)が演算される。そして、これらの排気系温度差(T5−T4)および燃料系温度差(T2−T1)と所定の基準範囲との大小関係が比較される。所定の基準範囲は、排気熱回収装置20の通常動作時に想定される温度範囲として、予め設定された値が使用される。   Next, it is determined whether the exhaust system temperature difference (T5-T4) is larger than a predetermined reference range and whether the fuel system temperature difference (T2-T1) is smaller than a predetermined reference range ( Step 102). Specifically, the exhaust system temperature difference (T5-T4) and the fuel system temperature difference (T2-T1) are calculated based on the temperatures T1, T2, T4, T5 acquired in step 100 above. . Then, the magnitude relationship between the exhaust system temperature difference (T5-T4) and the fuel system temperature difference (T2-T1) and a predetermined reference range is compared. As the predetermined reference range, a value set in advance is used as a temperature range assumed during normal operation of the exhaust heat recovery apparatus 20.

その結果、排気系温度差(T5−T4)>基準範囲、且つ、燃料系温度差(T2−T1)<基準範囲の成立が認められた場合には、熱回収部201による回収熱量が大きいにもかかわらず、熱交換部202による交換熱量が小さいことを意味している。かかる場合においては、熱交換部202に流入する燃料量が規定値から外れている可能性が高いと判断されて、次のステップに移行し、燃料系の異常が判定される(ステップ104)。ここでは、具体的には、流量調整器16の故障や燃料配管14の詰まり等の異常が発生していると判定される。   As a result, when the exhaust system temperature difference (T5-T4)> reference range and the fuel system temperature difference (T2-T1) <reference range are established, the amount of heat recovered by the heat recovery unit 201 is large. Nevertheless, this means that the amount of heat exchanged by the heat exchange unit 202 is small. In such a case, it is determined that there is a high possibility that the amount of fuel flowing into the heat exchanging unit 202 is out of the specified value, and the routine proceeds to the next step, where an abnormality in the fuel system is determined (step 104). Specifically, it is determined that an abnormality such as a failure of the flow rate regulator 16 or a clogging of the fuel pipe 14 has occurred.

一方、上記ステップ102において、排気系温度差(T5−T4)>基準範囲、且つ、燃料系温度差(T2−T1)<基準範囲の成立が認められない場合には、次のステップに移行し、ヒートパイプ温度T3が所定の基準範囲よりも大きいか否か、および燃料系温度差(T2−T1)が所定の基準範囲よりも小さいか否かが判定される(ステップ106)。所定の基準範囲は、排気熱回収装置20の通常動作時に想定される温度範囲として、予め設定された値が使用される。   On the other hand, in step 102, if the exhaust system temperature difference (T5-T4)> reference range and the fuel system temperature difference (T2-T1) <reference range are not recognized, the process proceeds to the next step. Then, it is determined whether or not the heat pipe temperature T3 is larger than a predetermined reference range and whether or not the fuel system temperature difference (T2−T1) is smaller than a predetermined reference range (step 106). As the predetermined reference range, a value set in advance is used as a temperature range assumed during normal operation of the exhaust heat recovery apparatus 20.

その結果、ヒートパイプ温度T3>基準範囲、且つ、燃料系温度差(T2−T1)<基準範囲の成立が認められた場合には、ヒートパイプ温度T3が大きいにもかかわらず、交換熱量が小さいことを意味している。かかる場合においては、熱交換部202に流入する燃料量が規定値から外れている可能性が高いと判断されて、上記ステップ104に移行し、燃料系の異常が判定される。   As a result, when it is recognized that the heat pipe temperature T3> reference range and the fuel system temperature difference (T2-T1) <reference range are established, the heat exchange temperature is small despite the high heat pipe temperature T3. It means that. In such a case, it is determined that there is a high possibility that the amount of fuel flowing into the heat exchanging unit 202 is out of the specified value, and the routine proceeds to the above step 104 to determine whether the fuel system is abnormal.

一方、上記ステップ106において、ヒートパイプ温度T3>基準範囲、且つ、燃料系温度差(T2−T1)<基準範囲の成立が認められない場合には、次のステップに移行し、燃料系の正常が判定される(ステップ108)。   On the other hand, if the establishment of the heat pipe temperature T3> reference range and the fuel system temperature difference (T2-T1) <reference range is not recognized in step 106, the process proceeds to the next step and the fuel system is normal. Is determined (step 108).

以上説明したとおり、図2に示すルーチンによれば、排気熱回収装置20に関連する各部の温度に基づいて、燃料系の異常の有無を簡易な構成および装置で判定することができる。   As described above, according to the routine shown in FIG. 2, the presence or absence of abnormality in the fuel system can be determined with a simple configuration and apparatus based on the temperature of each part related to the exhaust heat recovery apparatus 20.

(b)排気熱回収量の不足判定
次に、図3を参照して、本実施の形態において実行する処理の具体的内容について説明する。図3は、ECU30が、排気熱回収量の不足による異常を判定するために実行するルーチンのフローチャートである。
(B) Exhaust heat recovery amount shortage determination Next, with reference to FIG. 3, the specific content of the process performed in this Embodiment is demonstrated. FIG. 3 is a flowchart of a routine that is executed by the ECU 30 to determine an abnormality caused by a shortage of the exhaust heat recovery amount.

図3に示すルーチンでは、先ず、温度T1,T2,T3,T4,T5が取得される(ステップ200)。ここでは、具体的には、上記ステップ100と同様の処理が実行される。   In the routine shown in FIG. 3, first, temperatures T1, T2, T3, T4, and T5 are acquired (step 200). Here, specifically, the same processing as in step 100 is executed.

次に、排気系温度差(T5−T4)が所定の基準範囲よりも小さいか否か、および燃料系温度差(T2−T1)が所定の基準範囲よりも大きいか否かが判定される(ステップ202)。ここでは、具体的には、上記ステップ102と同様の処理が実行されて、排気系温度差(T5−T4)および燃料系温度差(T2−T1)が演算される。そして、これらの排気系温度差(T5−T4)および燃料系温度差(T2−T1)と所定の基準範囲との大小関係が比較される。所定の基準範囲は、排気熱回収装置20の通常動作時に想定される温度範囲として、予め設定された値が使用される。   Next, it is determined whether the exhaust system temperature difference (T5-T4) is smaller than a predetermined reference range and whether the fuel system temperature difference (T2-T1) is larger than a predetermined reference range ( Step 202). Specifically, the same processing as in step 102 is executed, and the exhaust system temperature difference (T5-T4) and the fuel system temperature difference (T2-T1) are calculated. Then, the magnitude relationship between the exhaust system temperature difference (T5-T4) and the fuel system temperature difference (T2-T1) and a predetermined reference range is compared. As the predetermined reference range, a value set in advance is used as a temperature range assumed during normal operation of the exhaust heat recovery apparatus 20.

その結果、排気系温度差(T5−T4)<基準範囲、且つ、燃料系温度差(T2−T1)>基準範囲の成立が認められた場合には、熱交換部202による交換熱量が大きいにもかかわらず、熱回収部201による回収熱量が小さいことを意味している。かかる場合においては、熱回収部201における排気熱回収量が不足している可能性が高いと判断されて、次のステップに移行し、排気熱回収量の不足が判定される(ステップ204)。   As a result, if it is confirmed that the exhaust system temperature difference (T5-T4) <reference range and the fuel system temperature difference (T2-T1)> reference range, the amount of heat exchanged by the heat exchanging unit 202 is large. Nevertheless, the amount of heat recovered by the heat recovery unit 201 is small. In such a case, it is determined that there is a high possibility that the exhaust heat recovery amount in the heat recovery unit 201 is insufficient, the process proceeds to the next step, and it is determined whether the exhaust heat recovery amount is insufficient (step 204).

次に、燃料流量が減量される(ステップ206)。ここでは、具体的には、流量調整器16が制御されて、燃料配管14を流通して熱交換部202へ流入する燃料量が減量される。   Next, the fuel flow rate is reduced (step 206). Here, specifically, the flow rate regulator 16 is controlled, and the amount of fuel flowing through the fuel pipe 14 and flowing into the heat exchange unit 202 is reduced.

一方、上記ステップ202において、排気系温度差(T5−T4)<基準範囲、且つ、燃料系温度差(T2−T1)>基準範囲の成立が認められない場合には、次のステップに移行し、ヒートパイプ温度T3が所定の基準範囲よりも小さいか否か、および燃料系温度差(T2−T1)が所定の基準範囲よりも大きいか否かが判定される(ステップ208)。所定の基準範囲は、排気熱回収装置20の通常動作時に想定される温度範囲として、予め設定された値が使用される。   On the other hand, if the exhaust system temperature difference (T5−T4) <reference range and the fuel system temperature difference (T2−T1)> reference range is not established in step 202, the process proceeds to the next step. It is determined whether the heat pipe temperature T3 is smaller than a predetermined reference range and whether the fuel system temperature difference (T2-T1) is larger than a predetermined reference range (step 208). As the predetermined reference range, a value set in advance is used as a temperature range assumed during normal operation of the exhaust heat recovery apparatus 20.

その結果、ヒートパイプ温度T3<基準範囲、且つ、燃料系温度差(T2−T1)>基準範囲の成立が認められた場合には、熱交換部202による交換熱量が大きいにもかかわらず、ヒートパイプ温度T3が小さいことを意味している。かかる場合においては、熱回収部201における排気熱回収量が不足している可能性が高いと判断されて、上記ステップ204に移行し、排気熱回収量の不足が判定される。   As a result, when it is confirmed that the heat pipe temperature T3 <reference range and the fuel system temperature difference (T2-T1)> reference range is established, the heat is exchanged even though the heat exchange amount by the heat exchange unit 202 is large. This means that the pipe temperature T3 is small. In such a case, it is determined that there is a high possibility that the exhaust heat recovery amount in the heat recovery unit 201 is insufficient, the process proceeds to step 204, and it is determined whether the exhaust heat recovery amount is insufficient.

一方、上記ステップ208において、ヒートパイプ温度T3<基準範囲、且つ、燃料系温度差(T2−T1)>基準範囲の成立が認められない場合には、次のステップに移行し、排気系温度差(T5−T4)が所定の基準範囲よりも小さいか否か、およびヒートパイプ温度T3が所定の基準範囲よりも大きいか否かが判定される(ステップ210)。   On the other hand, when the establishment of the heat pipe temperature T3 <reference range and the fuel system temperature difference (T2-T1)> reference range is not recognized in step 208, the process proceeds to the next step, and the exhaust system temperature difference is determined. It is determined whether (T5-T4) is smaller than a predetermined reference range and whether the heat pipe temperature T3 is larger than a predetermined reference range (step 210).

その結果、排気系温度差(T5−T4)<基準範囲、且つ、ヒートパイプ温度T3>基準範囲の成立が認められた場合には、ヒートパイプ203の温度T3が大きいにもかかわらず、熱回収部201による回収熱量が小さいことを意味している。かかる場合においては、熱回収部201における排気熱回収量が不足している可能性が高いと判断されて、上記ステップ204に移行し、排気熱回収量の不足が判定される。   As a result, if it is confirmed that the exhaust system temperature difference (T5−T4) <reference range and heat pipe temperature T3> reference range, the heat recovery is performed even though the temperature T3 of the heat pipe 203 is large. This means that the amount of heat recovered by the unit 201 is small. In such a case, it is determined that there is a high possibility that the exhaust heat recovery amount in the heat recovery unit 201 is insufficient, the process proceeds to step 204, and it is determined whether the exhaust heat recovery amount is insufficient.

一方、上記ステップ210において、排気系温度差(T5−T4)<基準範囲、且つ、ヒートパイプ温度T3>基準範囲の成立が認められない場合には、次のステップに移行し、排気熱回収量の正常が判定される(ステップ212)。   On the other hand, in step 210, if the exhaust system temperature difference (T5−T4) <reference range and the heat pipe temperature T3> reference range is not established, the process proceeds to the next step, and the exhaust heat recovery amount Is determined to be normal (step 212).

以上説明したとおり、図3に示すルーチンによれば、排気熱回収装置20に関連する各部の温度に基づいて、排気熱回収量の不足による異常を簡易な構成および装置で判定することができる。   As described above, according to the routine shown in FIG. 3, an abnormality due to a shortage of the exhaust heat recovery amount can be determined with a simple configuration and apparatus based on the temperature of each part related to the exhaust heat recovery apparatus 20.

また、図3に示すルーチンによれば、熱回収部201における排気熱回収量が不足している場合に、熱交換部202へ流入する燃料量が減量されるので、加熱不足の燃料が該熱交換部202から流出する事態を効果的に抑制することができる。   Further, according to the routine shown in FIG. 3, when the exhaust heat recovery amount in the heat recovery unit 201 is insufficient, the amount of fuel flowing into the heat exchange unit 202 is reduced. The situation of flowing out from the exchange unit 202 can be effectively suppressed.

(c)ヒートパイプの故障判定
次に、図4を参照して、本実施の形態において実行する処理の具体的内容について説明する。図4は、ECU30が、ヒートパイプ203の故障による異常を判定するために実行するルーチンのフローチャートである。
(C) Failure determination of heat pipe Next, with reference to FIG. 4, the specific content of the process performed in this Embodiment is demonstrated. FIG. 4 is a flowchart of a routine that the ECU 30 executes in order to determine an abnormality due to a failure of the heat pipe 203.

図4に示すルーチンでは、先ず、温度T3,T4,T5が取得される(ステップ300)。ここでは、具体的には、上記ステップ100と同様の処理が実行される。   In the routine shown in FIG. 4, first, temperatures T3, T4, and T5 are acquired (step 300). Here, specifically, the same processing as in step 100 is executed.

次に、排気系温度差(T5−T4)が所定の基準範囲よりも大きいか否か、およびヒートパイプ温度T3が所定の基準範囲よりも小さいか否かが判定される(ステップ302)。ここでは、具体的には、上記ステップ102と同様の処理が実行されて、排気系温度差(T5−T4)が演算される。そして、排気系温度差(T5−T4)と所定の基準範囲との大小関係、およびヒートパイプ温度T3と所定の基準範囲との大小関係が比較される。所定の基準範囲は、排気熱回収装置20の通常動作時に想定される温度範囲として、予め設定された値が使用される。   Next, it is determined whether the exhaust system temperature difference (T5-T4) is larger than a predetermined reference range and whether the heat pipe temperature T3 is smaller than a predetermined reference range (step 302). Here, specifically, the same processing as in step 102 is executed, and the exhaust system temperature difference (T5-T4) is calculated. Then, the magnitude relationship between the exhaust system temperature difference (T5-T4) and the predetermined reference range and the magnitude relationship between the heat pipe temperature T3 and the predetermined reference range are compared. As the predetermined reference range, a value set in advance is used as a temperature range assumed during normal operation of the exhaust heat recovery apparatus 20.

その結果、排気系温度差(T5−T4)>基準範囲、且つ、ヒートパイプ温度T3<基準範囲の成立が認められた場合には、熱回収部201による回収熱量が大きいにもかかわらず、ヒートパイプ温度T3が小さいことを意味している。かかる場合においては、ヒートパイプ203に異常が発生している可能性が高いと判断されて、次のステップに移行し、ヒートパイプ203の故障が判定される(ステップ304)。   As a result, when the exhaust system temperature difference (T5−T4)> reference range and the heat pipe temperature T3 <reference range are established, the heat recovery by the heat recovery unit 201 is large, but the heat This means that the pipe temperature T3 is small. In such a case, it is determined that there is a high possibility that an abnormality has occurred in the heat pipe 203, the process proceeds to the next step, and a failure of the heat pipe 203 is determined (step 304).

一方、上記ステップ302において、排気系温度差(T5−T4)>基準範囲、且つ、ヒートパイプ温度T3<基準範囲の成立が認められない場合には、次のステップに移行し、ヒートパイプ203の正常が判定される(ステップ306)。   On the other hand, when the exhaust system temperature difference (T5−T4)> reference range and the heat pipe temperature T3 <reference range are not established in step 302, the process proceeds to the next step, and the heat pipe 203 Normality is determined (step 306).

以上説明したとおり、図4に示すルーチンによれば、排気熱回収装置20に関連する各部の温度に基づいて、ヒートパイプ203の故障による異常を簡易な構成および装置で判定することができる。   As described above, according to the routine shown in FIG. 4, the abnormality due to the failure of the heat pipe 203 can be determined based on the temperature of each part related to the exhaust heat recovery apparatus 20 with a simple configuration and apparatus.

ところで、上述した実施の形態によれば、回収熱量相関値として、熱回収部201の前後の排気系温度差(T5−T4)を使用することとしているが、使用可能な回収熱量相関値はこれに限られない。すなわち、回収熱量と相関を有する値であれば、例えば、熱回収部201に導入される排気ガスの温度T5でもよいし、また、内燃機関10の運転条件に基づいて推定された排気ガスの温度を使用してもよい。また、熱回収部201に導入される排気ガスの温度T5に排気量を乗じた値を回収熱量相関値とすることとすれば、より精度よく異常判定を行うことが可能となる。   By the way, according to the embodiment described above, the exhaust system temperature difference (T5-T4) before and after the heat recovery unit 201 is used as the recovered heat quantity correlation value. Not limited to. That is, as long as the value has a correlation with the amount of recovered heat, for example, the temperature T5 of the exhaust gas introduced into the heat recovery unit 201 may be used, or the temperature of the exhaust gas estimated based on the operating conditions of the internal combustion engine 10 May be used. Further, if the value obtained by multiplying the exhaust gas temperature T5 introduced into the heat recovery unit 201 by the exhaust amount is set as the recovered heat amount correlation value, the abnormality determination can be performed with higher accuracy.

また、上述した実施の形態によれば、交換熱量相関値として、熱交換部202の前後の燃料系温度差(T2−T1)を使用することとしているが、使用可能な交換熱量相関値はこれに限られない。すなわち、交換熱量と相関を有する値であれば、例えば、熱交換部202から排出される燃料の温度T2でもよいし、また、燃料系温度差(T2−T1)に流量を乗じた値を交換熱量相関値とすることとしてもよい。   Further, according to the above-described embodiment, the fuel system temperature difference (T2-T1) before and after the heat exchanging unit 202 is used as the exchange heat quantity correlation value, but the usable exchange heat quantity correlation value is this. Not limited to. That is, as long as the value has a correlation with the exchange heat amount, for example, the temperature T2 of the fuel discharged from the heat exchange unit 202 may be used. It is good also as setting it as a calorific value correlation value.

尚、上述した実施の形態においては、ヒートパイプ203が前記第1の発明における「熱伝達部」に相当しているとともに、ECU30が、上記ステップ104または108の処理を実行することにより、前記第1の発明における「判定手段」が実現されている。   In the above-described embodiment, the heat pipe 203 corresponds to the “heat transfer unit” in the first aspect of the invention, and the ECU 30 executes the process of step 104 or 108 described above. The “determination means” in the first invention is realized.

また、上述した実施の形態においては、ECU30が、上記ステップ204または212の処理を実行することにより、前記第1の発明における「判定手段」が、上記ステップ206の処理を実行することにより、前記第7の発明における「燃料流量減量手段」が、実現されている。   In the above-described embodiment, the ECU 30 executes the process of step 204 or 212, and the “determination means” in the first invention executes the process of step 206. The “fuel flow reduction means” in the seventh invention is realized.

また、上述した実施の形態においては、ECU30が、上記ステップ304または306の処理を実行することにより、前記第1の発明における「判定手段」が実現されている。   In the embodiment described above, the “determining means” in the first aspect of the present invention is realized by the ECU 30 executing the process of step 304 or 306.

本発明の実施の形態に係るシステムの構成を説明するための図である。It is a figure for demonstrating the structure of the system which concerns on embodiment of this invention. 本発明の実施の形態において実行されるルーチンのフローチャートである。It is a flowchart of a routine executed in the embodiment of the present invention. 本発明の実施の形態において実行されるルーチンのフローチャートである。It is a flowchart of a routine executed in the embodiment of the present invention. 本発明の実施の形態において実行されるルーチンのフローチャートである。It is a flowchart of a routine executed in the embodiment of the present invention.

符号の説明Explanation of symbols

10 内燃機関
12 排気通路
14 燃料配管
16 流量調整器
20 排気熱回収装置
201 熱回収部
202 熱交換部
203 ヒートパイプ
30 ECU(Electronic Control Unit)
32,34,36,38,40 温度センサ
DESCRIPTION OF SYMBOLS 10 Internal combustion engine 12 Exhaust passage 14 Fuel piping 16 Flow regulator 20 Exhaust heat recovery apparatus 201 Heat recovery part 202 Heat exchange part 203 Heat pipe 30 ECU (Electronic Control Unit)
32, 34, 36, 38, 40 Temperature sensor

Claims (8)

内燃機関の燃料系に介在し、該燃料系との間で熱交換を行う熱交換部と、前記内燃機関の排気系に介在し、該排気系から排気熱を回収する熱回収部と、前記熱回収部から前記熱交換部への熱伝達を行う熱伝達部と、を有する排気熱回収装置と、
前記燃料系と前記熱交換部との間で交換された交換熱量の相関値(以下、交換熱量相関値)と、前記排気系から前記熱回収部へ回収された回収熱量の相関値(以下、回収熱量相関値)と、前記熱伝達部の温度(以下、熱伝達部温度)と、の少なくとも何れか2つの値に基づいて、前記燃料系の異常有無、前記熱回収部における排気熱回収不足有無、或いは前記熱伝達部の異常有無の判定を行う判定手段と、
を備えることを特徴とする排気熱回収装置の異常判定装置。
A heat exchanging part interposed in the fuel system of the internal combustion engine for exchanging heat with the fuel system; a heat recovery part interposed in the exhaust system of the internal combustion engine for recovering exhaust heat from the exhaust system; An exhaust heat recovery device having a heat transfer unit that transfers heat from the heat recovery unit to the heat exchange unit;
Correlation value of exchange heat amount exchanged between the fuel system and the heat exchange unit (hereinafter referred to as exchange heat amount correlation value) and correlation value of recovery heat amount recovered from the exhaust system to the heat recovery unit (hereinafter, Based on at least one of the values of the recovered heat quantity correlation value) and the temperature of the heat transfer section (hereinafter referred to as heat transfer section temperature), whether there is an abnormality in the fuel system, exhaust heat recovery shortage in the heat recovery section Determination means for determining presence or absence or presence or absence of abnormality of the heat transfer unit;
An abnormality determination device for an exhaust heat recovery device, comprising:
前記判定手段は、
前記燃料系の前記熱交換部前後での温度差(以下、燃料系温度差)を前記交換熱量相関値として取得する手段と、
前記排気系の前記熱回収部前後での温度差(以下、排気系温度差)を前記回収熱量相関値として取得する手段と、を含み、
前記排気系温度差が所定の基準範囲より大きく、且つ、前記燃料系温度差が所定の基準範囲よりも小さい場合に、前記燃料系の異常を判定することを特徴とする請求項1記載の排気熱回収装置の異常判定装置。
The determination means includes
Means for acquiring a temperature difference before and after the heat exchange part of the fuel system (hereinafter referred to as a fuel system temperature difference) as the exchange heat quantity correlation value;
Means for acquiring a temperature difference before and after the heat recovery part of the exhaust system (hereinafter referred to as an exhaust system temperature difference) as the recovered heat quantity correlation value;
The exhaust according to claim 1, wherein the abnormality of the fuel system is determined when the temperature difference of the exhaust system is larger than a predetermined reference range and the temperature difference of the fuel system is smaller than a predetermined reference range. Abnormality judgment device for heat recovery device.
前記判定手段は、
前記熱伝達部温度を取得する手段と、
前記燃料系の前記熱交換部前後での温度差(以下、燃料系温度差)を前記交換熱量相関値として取得する手段と、を含み、
前記熱伝達部温度が所定の基準範囲より大きく、且つ、前記燃料系温度差が所定の基準範囲よりも小さい場合に、前記燃料系の異常を判定することを特徴とする請求項1記載の排気熱回収装置の異常判定装置。
The determination means includes
Means for obtaining the heat transfer section temperature;
Means for obtaining a temperature difference (hereinafter referred to as a fuel system temperature difference) before and after the heat exchange part of the fuel system as the exchange heat quantity correlation value,
2. The exhaust according to claim 1, wherein the abnormality of the fuel system is determined when the temperature of the heat transfer unit is larger than a predetermined reference range and the temperature difference of the fuel system is smaller than a predetermined reference range. Abnormality judgment device for heat recovery device.
前記判定手段は、
前記燃料系の前記熱交換部前後での温度差(以下、燃料系温度差)を前記交換熱量相関値として取得する手段と、
前記排気系の前記熱回収部前後での温度差(以下、排気系温度差)を前記回収熱量相関値として取得する手段と、を含み、
前記排気系温度差が所定の基準範囲より小さく、且つ、前記燃料系温度差が所定の基準範囲よりも大きい場合に、前記熱回収部における排気熱回収不足を判定することを特徴とする請求項1記載の排気熱回収装置の異常判定装置。
The determination means includes
Means for acquiring a temperature difference before and after the heat exchange part of the fuel system (hereinafter referred to as a fuel system temperature difference) as the exchange heat quantity correlation value;
Means for acquiring a temperature difference before and after the heat recovery part of the exhaust system (hereinafter referred to as an exhaust system temperature difference) as the recovered heat quantity correlation value;
The exhaust heat recovery shortage in the heat recovery unit is determined when the exhaust system temperature difference is smaller than a predetermined reference range and the fuel system temperature difference is larger than a predetermined reference range. The abnormality determination device for the exhaust heat recovery device according to claim 1.
前記判定手段は、
前記熱伝達部温度を取得する手段と、
前記燃料系の前記熱交換部前後での温度差(以下、燃料系温度差)を前記交換熱量相関値として取得する手段と、を含み、
前記熱伝達部温度が所定の基準範囲より小さく、且つ、前記燃料系温度差が所定の基準範囲よりも大きい場合に、前記熱回収部における排気熱回収不足を判定することを特徴とする請求項1記載の排気熱回収装置の異常判定装置。
The determination means includes
Means for obtaining the heat transfer section temperature;
Means for obtaining a temperature difference (hereinafter referred to as a fuel system temperature difference) before and after the heat exchange part of the fuel system as the exchange heat quantity correlation value,
The exhaust heat recovery shortage in the heat recovery unit is determined when the heat transfer unit temperature is smaller than a predetermined reference range and the fuel system temperature difference is larger than a predetermined reference range. The abnormality determination device for the exhaust heat recovery device according to claim 1.
前記判定手段は、
前記排気系の前記熱回収部前後での温度差(以下、排気系温度差)を前記回収熱量相関値として取得する手段と、
前記熱伝達部温度を取得する手段と、を含み、
前記排気系温度差が所定の基準範囲より小さく、且つ、前記熱伝達部温度が所定の基準範囲よりも大きい場合に、前記熱回収部における排気熱回収不足を判定することを特徴とする請求項1記載の排気熱回収装置の異常判定装置。
The determination means includes
Means for acquiring a temperature difference (hereinafter referred to as an exhaust system temperature difference) before and after the heat recovery unit of the exhaust system as the recovered heat quantity correlation value;
Means for acquiring the heat transfer section temperature,
The exhaust heat recovery shortage in the heat recovery unit is determined when the exhaust system temperature difference is smaller than a predetermined reference range and the heat transfer unit temperature is larger than a predetermined reference range. The abnormality determination device for the exhaust heat recovery device according to claim 1.
前記判定手段により前記熱回収部における排気熱回収不足が判定された場合に、前記熱交換部へ流通する燃料量を減量する燃料流量減量手段を更に備えることを特徴とする請求項4乃至6の何れか1項記載の排気熱回収装置の異常判定装置。   7. The fuel flow rate reducing means for reducing the amount of fuel flowing to the heat exchanging section when the determination means determines that exhaust heat recovery in the heat recovery section is insufficient. The abnormality determination device for an exhaust heat recovery device according to any one of the preceding claims. 前記判定手段は、
前記排気系の前記熱回収部前後での温度差(以下、排気系温度差)を前記回収熱量相関値として取得する手段と、
前記熱伝達部温度を取得する手段と、を含み、
前記排気系温度差が所定の基準範囲より大きく、且つ、前記熱伝達部温度が所定の基準範囲よりも小さい場合に、前記熱伝達部の異常を判定することを特徴とする請求項1記載の排気熱回収装置の異常判定装置。
The determination means includes
Means for acquiring a temperature difference (hereinafter referred to as an exhaust system temperature difference) before and after the heat recovery unit of the exhaust system as the recovered heat quantity correlation value;
Means for acquiring the heat transfer section temperature,
The abnormality of the heat transfer unit is determined when the exhaust system temperature difference is larger than a predetermined reference range and the heat transfer unit temperature is smaller than a predetermined reference range. Abnormality determination device for exhaust heat recovery device.
JP2008173219A 2008-07-02 2008-07-02 Exhaust heat recovery device abnormality determination device Expired - Fee Related JP4957667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008173219A JP4957667B2 (en) 2008-07-02 2008-07-02 Exhaust heat recovery device abnormality determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008173219A JP4957667B2 (en) 2008-07-02 2008-07-02 Exhaust heat recovery device abnormality determination device

Publications (2)

Publication Number Publication Date
JP2010013970A true JP2010013970A (en) 2010-01-21
JP4957667B2 JP4957667B2 (en) 2012-06-20

Family

ID=41700300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008173219A Expired - Fee Related JP4957667B2 (en) 2008-07-02 2008-07-02 Exhaust heat recovery device abnormality determination device

Country Status (1)

Country Link
JP (1) JP4957667B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190092A1 (en) * 2015-05-28 2016-12-01 日立オートモティブシステムズ株式会社 Engine control device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138672A (en) * 1990-09-28 1992-05-13 Nippon Telegr & Teleph Corp <Ntt> Alarm device and judging method for deterioration of fuel cell exhaust heat utilization system
JPH04287710A (en) * 1991-03-15 1992-10-13 Nissan Motor Co Ltd Heat exchanger
JPH06249010A (en) * 1993-02-26 1994-09-06 Kubota Corp Operation control device of exhaust heat recovery device for engine heat pump
JP2005069161A (en) * 2003-08-27 2005-03-17 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2006153300A (en) * 2004-11-25 2006-06-15 Toyota Motor Corp Malfunction detecting device for exhaust heat recovery system
JP2008051019A (en) * 2006-08-25 2008-03-06 Toyota Motor Corp Exhaust heat recovery device for internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138672A (en) * 1990-09-28 1992-05-13 Nippon Telegr & Teleph Corp <Ntt> Alarm device and judging method for deterioration of fuel cell exhaust heat utilization system
JPH04287710A (en) * 1991-03-15 1992-10-13 Nissan Motor Co Ltd Heat exchanger
JPH06249010A (en) * 1993-02-26 1994-09-06 Kubota Corp Operation control device of exhaust heat recovery device for engine heat pump
JP2005069161A (en) * 2003-08-27 2005-03-17 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2006153300A (en) * 2004-11-25 2006-06-15 Toyota Motor Corp Malfunction detecting device for exhaust heat recovery system
JP2008051019A (en) * 2006-08-25 2008-03-06 Toyota Motor Corp Exhaust heat recovery device for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190092A1 (en) * 2015-05-28 2016-12-01 日立オートモティブシステムズ株式会社 Engine control device
JP2016223312A (en) * 2015-05-28 2016-12-28 日立オートモティブシステムズ株式会社 Engine controller
CN107532525A (en) * 2015-05-28 2018-01-02 日立汽车系统株式会社 Engine controller
EP3306059A4 (en) * 2015-05-28 2019-01-02 Hitachi Automotive Systems, Ltd. Engine control device

Also Published As

Publication number Publication date
JP4957667B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
CN101074771B (en) Multi-channel fuel-saving device and method for temperature controlling used for selective catalytic reactor
JP2014047980A (en) Latent heat recovery type hot water supply device
US20090020282A1 (en) Heat exchanger and method for regulating a heat exchanger
CN102734783A (en) Method for calibrating monitoring data parameters of heat-absorbing surfaces at each level of supercritical boiler of power station
US9157350B2 (en) Engine system
JP4957667B2 (en) Exhaust heat recovery device abnormality determination device
JP2023171451A (en) Carbon dioxide recovery system and carbon dioxide recovery method
JP5018200B2 (en) Combustion device
JP5182200B2 (en) Catalyst deterioration determination device and catalyst deterioration determination method
JP2010265786A (en) Catalyst bed temperature estimation device
JP2011202639A (en) Failure detecting device for exhaust emission control system for internal combustion engine
JP5052330B2 (en) Steam supply device
CN107110488B (en) Feed water preheating system bypass
EP1541824A1 (en) Working medium supply controller in heat exchanger
JP5842492B2 (en) Boiler system
JP2011237151A (en) Water supply control device and method
JP6161329B2 (en) Water supply preheating boiler
JP2009216279A (en) Gas-gas heat exchanger and its heat exchanging method
US8591844B1 (en) Start up catalyst heating
JP2010112254A (en) Abnormality determination system for particulate filter
CN211176737U (en) Exhaust-heat boiler and exhaust-heat boiler flue gas heat transfer system
JP2004278836A (en) Failure diagnosing method and its device
CN112534122B (en) Combined cycle power plant
KR102175955B1 (en) Integrated heat recovery system and egr
JP6707058B2 (en) Waste heat boiler, waste heat recovery system, and waste heat recovery method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4957667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees