JP2010013301A - Quick-hardening pva short fiber-blended mortar and quick-hardening high toughness frc material using it - Google Patents

Quick-hardening pva short fiber-blended mortar and quick-hardening high toughness frc material using it Download PDF

Info

Publication number
JP2010013301A
JP2010013301A JP2008172803A JP2008172803A JP2010013301A JP 2010013301 A JP2010013301 A JP 2010013301A JP 2008172803 A JP2008172803 A JP 2008172803A JP 2008172803 A JP2008172803 A JP 2008172803A JP 2010013301 A JP2010013301 A JP 2010013301A
Authority
JP
Japan
Prior art keywords
mass
hardening
mortar
parts
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008172803A
Other languages
Japanese (ja)
Other versions
JP5160977B2 (en
Inventor
Satoshi Takagi
聡史 高木
Eiichi Arimizu
栄一 有水
Takumi Kushihashi
巧 串橋
Akitoshi Araki
昭俊 荒木
Minoru Morioka
実 盛岡
Noboru Sakata
昇 坂田
Yoshiki Hiraishi
剛紀 平石
Yuji Uchida
雄士 内田
Daisuke Hayashi
大介 林
Atsushi Oi
篤 大井
Tetsushi Kanda
徹志 閑田
Kosuke Yokozeki
康祐 横関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Denka Co Ltd
Original Assignee
Kajima Corp
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Denki Kagaku Kogyo KK filed Critical Kajima Corp
Priority to JP2008172803A priority Critical patent/JP5160977B2/en
Publication of JP2010013301A publication Critical patent/JP2010013301A/en
Application granted granted Critical
Publication of JP5160977B2 publication Critical patent/JP5160977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0004Compounds chosen for the nature of their cations
    • C04B2103/0006Alkali metal or inorganic ammonium compounds
    • C04B2103/0008Li
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a quick-hardening PVA short fiber-blended mortar which has excellent fluidity, sufficient usable time, no subsidence until mortar hardens and excellent initial strength development, and a high toughness FRC material of crack-distributed type using it which shows a tensile strain of 1.0% or more. <P>SOLUTION: The quick-hardening PVA short fiber-blended mortar is obtained by blending PVA short fibers of 1-5 vol.% having a fiber diameter of 0.05 mm or less, a fiber length of 5-20 mm and a fiber tensile strength of 1,500-2,400 MPa into mortar containing cement, a quick-hardening material, lithium carbonate, a setting retarder, a super-plasticizer, a nitrogen gas foaming substance, and a thickener. The mortar may contain fine aggregate of a maximum particle diameter of 0.8 mm or less in the range of 1.5 or less as the mass ratio (S/B) with binding material consisting of cement and a quick-hardening material. The high toughness FRC material is obtained by kneading at a water binding material ratio (W/B) of 30-50% using the quick-hardening PVA short fiber-blended mortar, which shows a compressive strength at the age of 3 hours of 20 N/mm<SP>2</SP>or more and a tensile strain of 1.0% or more in a tensile test of a hardened body at the age of 28 days. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、土木及び建築分野におけるコンクリート構造物の補修・補強工事で使用する急硬性の高靭性FRC材料に関する。   The present invention relates to a fast-hardening, high-toughness FRC material used in repair and reinforcement work for concrete structures in the civil engineering and construction fields.

合理化施工を目指す際、超速硬性で自己充填性やセルフレベリング性をもつ高流動モルタルが必要となる場合が多い。従来、超速硬性で高流動なモルタルとしては、短時間で実用強度を発現する超速硬グラウトモルタルが提案されている(特許文献1〜特許文献4等)。しかしながら、従来の超速硬グラウトモルタルは、場合によっては硬化するまでに沈下が認められ、安定した初期膨張性が得られない場合があるという課題を有するものであった。また、最近では、新たなニーズへの対応がせまられている。   When aiming at streamlined construction, high flow mortar with super-hardness and self-filling and self-leveling properties is often required. Conventionally, as a super-hard and high-flowing mortar, an ultra-fast hard grout mortar that exhibits practical strength in a short time has been proposed (Patent Documents 1 to 4, etc.). However, the conventional ultra-fast hard grout mortar has a problem that, in some cases, settlement occurs before curing, and stable initial expansibility may not be obtained. Recently, new needs have been addressed.

近年、特殊な短繊維を配合し、コンクリートやモルタル中に3次元にランダム配向させることにより、引張強度や曲げ強度を飛躍的に高めた一般的にHPFRCやECCと呼ばれるPVA繊維補強セメント複合材料が提案されている(特許文献5〜10)。この材料の特徴は1.0%以上の引張ひずみを示し、ひび割れを分散する点にもある。また、このPVA繊維補強セメント複合材料にカルシウムアルミネートと無水セッコウからなる急硬材をセメントに対して1/1000〜1/3加え、急硬性の高靭性FRC材料とすることも提案された(特許文献11)。しかしながら、PVA繊維補強セメント複合材料は繊維を多量に加えている上に、空気量も多いため、強度発現性に乏しい材料であった。また、これに特許文献11に記載されているように単に急硬材を加えたとしても、急硬性を付与することはできても、高い強度を発現することはできないものであった。すなわち、早く固まるが強度レベルは低いものであった。
PVA繊維補強セメント複合材料に急硬性を付与した高靭性FRC材料のニーズは高まりつつあり、高速道路の緊急補修にも検討が進んでいる。この場合、材齢3時間で20N/mm以上の圧縮強度を発現する必要がある。しかしながら、従来の技術では、材齢1日が経っても5N/mm程度の圧縮強度しか達成できていなかった。それほど、PVA繊維補強セメント複合材料の初期強度発現性を高めることは技術障壁が高いのである。
In recent years, PVA fiber reinforced cement composites generally called HPFRC and ECC, which have dramatically increased tensile strength and bending strength, are blended with special short fibers and randomly oriented three-dimensionally in concrete and mortar. It has been proposed (Patent Documents 5 to 10). This material is characterized in that it exhibits a tensile strain of 1.0% or more and disperses cracks. In addition, it was also proposed to add a rapid hardening material made of calcium aluminate and anhydrous gypsum to the PVA fiber reinforced cement composite material at a ratio of 1/1000 to 1/3 to make a rapid hardening high toughness FRC material ( Patent Document 11). However, the PVA fiber-reinforced cement composite material is a material having poor strength development because it adds a large amount of fibers and has a large amount of air. Moreover, even if a quick hardening material is simply added as described in Patent Document 11, a high strength cannot be expressed even if a quick hardening property can be imparted. That is, it hardened quickly but the strength level was low.
The need for a high toughness FRC material that imparts rapid hardening to a PVA fiber-reinforced cement composite material is increasing, and studies are also underway for emergency repair of highways. In this case, it is necessary to develop a compressive strength of 20 N / mm 2 or more at a material age of 3 hours. However, with the conventional technology, only a compressive strength of about 5 N / mm 2 has been achieved even after the age of one day has passed. Therefore, increasing the initial strength development of the PVA fiber-reinforced cement composite material has a high technical barrier.

他方、ポルトランドセメントに急硬性を与える目的でカルシウムアルミネートを加えること、また、さらにセッコウ類を併用することが米国のSpackmanにより古くから検討されている(特許文献12)。しかし、カルシウムアルミネートとセッコウ類からなる急硬性成分を加えたセメント組成物は、温度依存性が大きく、低温では十分な急硬性が得られないものであった。また、カルシウムアルミネートとセッコウ類の混合割合や急硬材の添加量によっては、低温で過膨張する傾向もあり、その信頼性に欠けるものであった。
最近では、前記の急硬性セメント組成物の改良が検討され、ポルトランドセメントにカルシウムアルミネート、無水セッコウ、炭酸リチウムを配合した超速硬セメントや(特許文献13)、ポルトランドセメントにカルシウムアルミネート、無水セッコウ、炭酸リチウムおよび消石灰を配合したモルタル組成物も提案されている(特許文献14)。しかしながら、このモルタルは可使時間の確保が充分でない上に、流動性の保持性に難点があるなど単なる急硬性モルタルとして見ても課題があった。
何より、特許文献12〜14の技術はPVA繊維補強セメント複合材料に関する技術思想は全くなく、引張強度や曲げ強度を飛躍的に高めたものではなく、また、1.0%以上の引張ひずみを示すひび割れ分散型の材料でもなかった。
On the other hand, the addition of calcium aluminate for the purpose of imparting rapid hardening to Portland cement and the combined use of gypsum have been studied by Spackman of the United States for a long time (Patent Document 12). However, a cement composition to which a rapid hardening component composed of calcium aluminate and gypsum is added has a large temperature dependency, and sufficient rapid hardening cannot be obtained at a low temperature. In addition, depending on the mixing ratio of calcium aluminate and gypsum and the amount of quick-hardening material, there is a tendency to overexpand at low temperatures, which is not reliable.
Recently, improvement of the above-mentioned rapid-hardening cement composition has been studied, and super fast-hardening cement containing calcium aluminate, anhydrous gypsum and lithium carbonate in Portland cement (Patent Document 13), calcium aluminate and anhydrous gypsum in Portland cement. A mortar composition containing lithium carbonate and slaked lime has also been proposed (Patent Document 14). However, this mortar has a problem even when viewed as a mere quick-hardening mortar, for example, because the pot life is not sufficient and the fluidity is difficult to maintain.
Above all, the techniques of Patent Documents 12 to 14 have no technical idea regarding PVA fiber-reinforced cement composite material, do not dramatically increase the tensile strength and bending strength, and exhibit a tensile strain of 1.0% or more. It was not a crack-dispersed material.


特開平03−12350号公報Japanese Patent Laid-Open No. 03-12350 特開平01−230455号公報Japanese Patent Laid-Open No. 01-230455 特開平11−21160号公報Japanese Patent Laid-Open No. 11-21160 特開平11−139859号公報Japanese Patent Laid-Open No. 11-139859 特開2000−7395号公報JP 2000-7395 A 特開2002−193653号公報JP 2002-193653 A 特開2005−238605号公報JP 2005-238605 A 特開2005−305682号公報Japanese Patent Laying-Open No. 2005-305682 特開2005−1965号公報JP 2005-1965 A 特開2006−214080号公報JP 2006-2104080 A 特開2007−63103号公報JP 2007-63103 A 米国特許第903019号US Patent No. 903019 特開平01−290543号公報JP-A-01-290543 特開2005−75712号公報JP-A-2005-75712

従来技術では、1.0%以上の引張ひずみを示すひび割れ分散型のPVA繊維補強セメント複合材料に、急硬性を付与することはできても、充分な可使時間の確保ができない上に、流動性の保持性にも難点があり、自己充填性やセルフレベリング性を得ることはできなかった。また、材齢3時間で20N/mm以上の圧縮強度を発現する高靭性FRC材料とすることもできなかった。
本発明は、上記従来技術の問題点を解決するものであり、優れた流動性と充分な可使時間と、モルタルが硬化するまでの沈下がなく、初期強度発現性に優れた、好ましくは、材齢3時間で20N/mm以上の圧縮強度を発現する急硬性のPVA短繊維配合モルタル、およびそれを用いた1.0%以上の引張ひずみを示すひび割れ分散型の高靭性FRC材料を提供することを課題とする。
In the prior art, a crack dispersive type PVA fiber reinforced cement composite material exhibiting a tensile strain of 1.0% or more can be given rapid hardening, but a sufficient pot life cannot be ensured. However, it has been difficult to maintain self-filling property and self-leveling property. Moreover, it was not able to be set as the high toughness FRC material which expresses the compressive strength of 20 N / mm < 2 > or more in material age 3 hours.
The present invention solves the above-mentioned problems of the prior art, and has excellent fluidity, sufficient pot life, no settling until the mortar is cured, and excellent initial strength development. Providing rapid-hardening PVA short fiber-containing mortar that exhibits a compressive strength of 20 N / mm 2 or more at a material age of 3 hours, and a crack-dispersed high-toughness FRC material using the same and exhibiting a tensile strain of 1.0% or more The task is to do.

本発明は、上記の課題を以下の手段により解決する。
(1)本発明は、セメントと、急硬材と、炭酸リチウムと、凝結遅延剤と、流動化剤と、窒素ガス発泡物質と、増粘剤を含有してなるモルタルに対して、繊維径が0.05mm以下で、繊維長が5〜20mmで、かつ、繊維引張強度が1500MPa〜2400MPaのPVA短繊維を1〜5体積%配合したことを特徴とする急硬性のPVA短繊維配合モルタルである。
(2)急硬材とセメントの割合が質量比で2/5〜1/1であることを特徴とする該急硬性のPVA短繊維配合モルタルであり、急硬材が、CaO/Alモル比0.75〜1.5のカルシウムアルミネートと、無水セッコウを含有することを特徴とする該急硬性のPVA短繊維配合モルタルであり、急硬材中のカルシウムアルミネートと無水セッコウとの比率が、質量比で3/1〜5/4であることを特徴とする該急硬性のPVA短繊維配合モルタルである。
(3)最大粒子径0.8mm以下の細骨材を含有してなり、かつ、細骨材と、セメントおよび急硬材からなる結合材との質量比(S/B)が1.5以下である該急硬性のPVA短繊維配合モルタルであり、最大粒子径0.8mm以下の細骨材が、珪砂、石灰石粉末、フライアッシュ、高炉スラグ微粉末、シリカフュームから選ばれる一種又は二種以上であることを特徴とする該急硬性のPVA短繊維配合モルタルであることを特徴とする該急硬性のPVA短繊維配合モルタルである。
(4)炭酸リチウムが、結合材100質量部に対して0.5〜3質量部であることを特徴とする該急硬性のPVA短繊維配合モルタルであり、凝結遅延剤が、有機酸とリチウム以外のアルカリ金属炭酸塩を含有し、かつ、結合材100質量部に対して0.5〜3質量部であることを特徴とする該急硬性のPVA短繊維配合モルタルであり、流動化剤が、結合材100質量部に対して3〜7質量部であることを特徴とする該急硬性のPVA短繊維配合モルタルであり、窒素ガス発泡物質が、アゾ化合物、ニトロソ化合物、およびヒドラジン誘導体からなる群から選ばれた少なくとも一種である該急硬性のPVA短繊維配合モルタルであり、窒素ガス発泡物質が、結合材100質量部に対して0.005〜1部であることを特徴とする該急硬性のPVA短繊維配合モルタルであり、増粘剤が、結合材100質量部に対して0.01〜1質量部であることを特徴とする該急硬性のPVA短繊維配合モルタルである。
(5)さらに、該急硬性のPVA短繊維配合モルタルを用いて、水結合材比(W/B)30〜50%で練り混ぜて得られる、材齢3時間の圧縮強度が20N/mm以上で、材齢28日の硬化体の引張試験において引張ひずみが1.0%以上を示すことを特徴とする急硬性の高靭性FRC材料である。
The present invention solves the above problems by the following means.
(1) The present invention relates to a fiber diameter with respect to a mortar containing cement, rapid hardening material, lithium carbonate, a setting retarder, a fluidizing agent, a nitrogen gas foaming substance, and a thickener. Is a hardened PVA short fiber-containing mortar characterized by containing 1 to 5% by volume of PVA short fibers having a fiber length of 5 to 20 mm and a fiber tensile strength of 1500 to 2400 MPa. is there.
(2) The quick-hardening PVA short fiber-containing mortar characterized in that the ratio of the quick-hardening material and cement is 2/5 to 1/1 by mass ratio, and the quick-hardening material is CaO / Al 2 O. A mortar containing quick hardening PVA short fibers characterized by containing calcium aluminate having a molar ratio of 3 to 0.75 to 1.5 and anhydrous gypsum, and containing calcium aluminate and anhydrous gypsum in the hardened material Is a rapid-setting PVA short fiber-containing mortar characterized by having a mass ratio of 3/1 to 5/4.
(3) The mass ratio (S / B) of the fine aggregate containing a fine aggregate having a maximum particle diameter of 0.8 mm or less and a binder composed of cement and a hardened material is 1.5 or less. The quick-hardening PVA short fiber-containing mortar, and the fine aggregate having a maximum particle diameter of 0.8 mm or less is one or more selected from quartz sand, limestone powder, fly ash, blast furnace slag fine powder, silica fume The rapid-hardening PVA short fiber-containing mortar characterized by being the rapid-hardening PVA short-fiber-containing mortar.
(4) The rapid-hardening PVA short fiber-containing mortar, wherein the lithium carbonate is 0.5 to 3 parts by mass with respect to 100 parts by mass of the binder, and the setting retarder is an organic acid and lithium The rapid-hardening PVA short fiber-containing mortar characterized by containing 0.5 to 3 parts by mass with respect to 100 parts by mass of the binder and containing an alkali metal carbonate other than 3 to 7 parts by mass with respect to 100 parts by mass of the binding material, the rapid-hardening PVA short fiber-containing mortar, wherein the nitrogen gas foaming substance is composed of an azo compound, a nitroso compound, and a hydrazine derivative. The rapid hardening PVA short fiber-containing mortar that is at least one selected from the group, wherein the nitrogen gas foaming material is 0.005 to 1 part with respect to 100 parts by mass of the binder. Hard VA is a short fiber blended mortar, thickener, a PVA short fiber blended mortar said acute rigid, characterized in that from 0.01 to 1 parts by mass with respect to the binder 100 parts by weight.
(5) Furthermore, the compressive strength at a material age of 3 hours obtained by kneading with the water-hardening material ratio (W / B) of 30 to 50% using the rapid-hardening PVA short fiber-containing mortar is 20 N / mm 2. As described above, it is a fast-hardening high-toughness FRC material characterized by a tensile strain of 1.0% or more in a tensile test of a cured product with a material age of 28 days.

特定の材料を特定割合で組み合わせて調製した組成物を用いると、流動性に優れ、充分な可使時間を確保でき、モルタルが硬化するまでの沈下がなく、初期強度発現性に優れたPVA短繊維配合モルタルとなる。また、急硬性を付与した1.0%以上の引張ひずみを示すひび割れ分散型の高靭性FRC材料となり、高速道路の緊急補修等への適用が可能となる。 When a composition prepared by combining specific materials in a specific ratio is used, PVA has excellent fluidity, sufficient pot life can be secured, there is no settlement until the mortar is cured, and initial strength development is excellent. It becomes a fiber blending mortar. Moreover, it becomes a crack-dispersion type high toughness FRC material having a tensile strain of 1.0% or more to which quick hardening is imparted, and can be applied to emergency repairs on highways.

以下、本発明を詳細に説明する。
本発明で使用するセメントとしては特に限定されるものではないが、JIS R 5210に規定されている各種ポルトランドセメント、JIS R 5211、JIS R 5212、およびJIS R 5213に規定された各種混合セメント、JISに規定された以上の混和材混入率で製造した高炉セメント、フライアッシュセメントおよびシリカセメント、石灰石粉末等を混合したフィラーセメントから選ばれる1種又は2種以上などが挙げられる。
Hereinafter, the present invention will be described in detail.
The cement used in the present invention is not particularly limited, but various portland cements defined in JIS R 5210, various mixed cements defined in JIS R 5211, JIS R 5212, and JIS R 5213, 1 type or 2 types or more selected from filler cement mixed with blast furnace cement, fly ash cement and silica cement, limestone powder and the like produced at the admixture mixing rate specified in the above.

本発明の急硬材は、カルシウムアルミネートと、無水セッコウを含有する。
本発明のカルシウムアルミネートとは、CaOとAlを主成分とする化合物を総称するものである。本発明では、CaO/Alモル比が0.75〜1.5のカルシウムアルミネートを用いる。カルシウムアルミネートの具体例としては、例えば、CaO・2Al、CaO・Al、12CaO・7Al、11CaO・7Al・CaF、3CaO・3Al・CaSOなどと表される結晶性のカルシウムアルミネート類や、CaOとAl成分を主成分とする非晶質の化合物が挙げられる。CaO/Alモル比が0.75未満では充分な強度発現性が得られない。また、逆に、CaO/Alモル比が1.5を超えると充分な流動性や可使時間が得られない。
The rapid-hardening material of the present invention contains calcium aluminate and anhydrous gypsum.
The calcium aluminate of the present invention is a general term for compounds mainly composed of CaO and Al 2 O 3 . In the present invention, calcium aluminate having a CaO / Al 2 O 3 molar ratio of 0.75 to 1.5 is used. Calcium Examples of aluminate, for example, CaO · 2Al 2 O 3, CaO · Al 2 O 3, 12CaO · 7Al 2 O 3, 11CaO · 7Al 2 O 3 · CaF 2, 3CaO · 3Al 2 O 3 · CaSO And crystalline calcium aluminates represented by 4 and the like, and amorphous compounds mainly composed of CaO and Al 2 O 3 components. If the CaO / Al 2 O 3 molar ratio is less than 0.75, sufficient strength development cannot be obtained. Conversely, if the CaO / Al 2 O 3 molar ratio exceeds 1.5, sufficient fluidity and pot life cannot be obtained.

カルシウムアルミネートを得る方法としては、CaO原料とAl原料をロータリーキルンや電気炉等によって熱処理して得る方法が挙げられる。カルシウムアルミネートを製造する際のCaO原料としては、例えば、石灰石や貝殻等の炭酸カルシウム、消石灰などの水酸化カルシウム、あるいは生石灰などの酸化カルシウムを挙げることができる。また、Al原料としては、例えば、ボーキサイトやアルミ残灰と呼ばれる産業副産物のほか、アルミ粉などが挙げられる。
カルシウムアルミネートを工業的に得る場合、不純物が含まれることがある。その具体例としては、例えば、SiO、Fe、MgO、TiO、MnO、NaO、KO、LiO、S、P、およびF等が挙げられる。これらの不純物の存在は本発明の目的を実質的に阻害しない範囲では特に問題とはならない。具体的には、これらの不純物の合計が10%以下の範囲では特に問題とはならない。
また、化合物としては、4CaO・Al・Fe、6CaO・2Al・Fe、6CaO・Al・2Feなどのカルシウムアルミノフェライト、2CaO・FeやCaO・Feなどのカルシウムフェライト、ゲーレナイト2CaO・Al・SiO、アノーサイトCaO・Al・2SiOなどのカルシウムアルミノシリケート、メルビナイト3CaO・MgO・2SiO、アケルマナイト2CaO・MgO・2SiO、モンチセライトCaO・MgO・SiOなどのカルシウムマグネシウムシリケート、トライカルシウムシリケート3CaO・SiO、ダイカルシウムシリケート2CaO・SiO、ランキナイト3CaO・2SiO、ワラストナイトCaO・SiOなどのカルシウムシリケート、カルシウムチタネートCaO・TiO、遊離石灰、リューサイト(KO、NaO)・Al・SiO等を含む場合がある。本発明ではこれらの結晶質または非晶質が混在していても良い。
本発明のカルシウムアルミネート系化合物の粒度は、特に限定されるものではないが、通常、ブレーン比表面積値で3000〜9000cm/gの範囲にあり、4000〜8000cm/g程度のものがより好ましい。3000cm/g未満では強度発現性が充分でない場合があり、9000cm/gを超えるようなものは流動性や可使時間の確保が困難になる場合がある。
Examples of a method for obtaining calcium aluminate include a method in which a CaO raw material and an Al 2 O 3 raw material are heat-treated with a rotary kiln or an electric furnace. Examples of the CaO raw material for producing calcium aluminate include calcium carbonate such as limestone and shells, calcium hydroxide such as slaked lime, and calcium oxide such as quick lime. Examples of the Al 2 O 3 raw material include aluminum by-products in addition to industrial by-products called bauxite and aluminum residue ash.
When calcium aluminate is obtained industrially, impurities may be contained. Specific examples thereof, SiO 2, Fe 2 O 3 , MgO, TiO 2, MnO, Na 2 O, K 2 O, Li 2 O, S, like P 2 O 5, and F or the like. The presence of these impurities is not particularly problematic as long as the object of the present invention is not substantially impaired. Specifically, there is no particular problem if the total of these impurities is in the range of 10% or less.
The compound, calcium alumino ferrite etc. 4CaO · Al 2 O 3 · Fe 2 O 3, 6CaO · 2Al 2 O 3 · Fe 2 O 3, 6CaO · Al 2 O 3 · 2Fe 2 O 3, 2CaO · Fe 2 O 3 and calcium ferrite, such CaO · Fe 2 O 3, gehlenite 2CaO · Al 2 O 3 · SiO 2, calcium aluminosilicate, such as anorthite CaO · Al 2 O 3 · 2SiO 2, Merubinaito 3CaO · MgO · 2SiO 2 , Akerumanaito 2CaO · MgO · 2SiO 2, calcium magnesium silicate, such as Monte celite CaO · MgO · SiO 2, tri-calcium silicate 3CaO · SiO 2, dicalcium silicate 2CaO · SiO 2, rankinite night 3CaO · 2SiO And it may include calcium silicate such as Wollastonite CaO · SiO 2, calcium titanate CaO · TiO 2, free lime, leucite (K 2 O, Na 2 O ) a · Al 2 O 3 · SiO 2 or the like. In the present invention, these crystalline or amorphous materials may be mixed.
The particle size of the calcium aluminate compound of the present invention is not particularly limited, but is usually in the range of 3000 to 9000 cm 2 / g in terms of Blaine specific surface area, and more preferably about 4000 to 8000 cm 2 / g. preferable. If it is less than 3000 cm 2 / g, strength development may not be sufficient, and if it exceeds 9000 cm 2 / g, it may be difficult to ensure fluidity and pot life.

本発明で使用する無水セッコウとは、特に限定されるものではないが、II型の無水セッコウを使用することが好ましく、中でもpHが4.5以下の酸性無水セッコウを利用することが、可使時間の確保のしやすさと、その後の強度増進が良好なことから好ましい。ここで、無水セッコウのpHとは、純水100ccに無水セッコウ1gを入れて撹拌した際の上澄液のpHを意味する。
無水セッコウの粒度は、ブレーン比表面積で3000〜9000cm/gが好ましく、4000〜8000cm/gがより好ましい。3000cm/g未満では強度発現性が充分でない場合があり、9000cm/gを超えるようなものは流動性が悪くなる場合がある。
The anhydrous gypsum used in the present invention is not particularly limited, but it is preferable to use type II anhydrous gypsum, and it is possible to use acidic anhydrous gypsum having a pH of 4.5 or less. This is preferable because it is easy to secure time and the subsequent strength enhancement is good. Here, the pH of anhydrous gypsum means the pH of the supernatant when 1 g of anhydrous gypsum is added to 100 cc of pure water and stirred.
The particle size of the anhydrous gypsum is preferably 3000~9000cm 2 / g in Blaine specific surface area, 4000~8000cm 2 / g is more preferable. If it is less than 3000 cm 2 / g, strength developability may not be sufficient, and if it exceeds 9000 cm 2 / g, fluidity may deteriorate.

本発明の急硬材中のカルシウムアルミネートと無水セッコウの比率は、質量比で3/1〜5/4であることが好ましい。この範囲を超えてカルシウムアルミネートの比率が大きくなると、可使時間の確保が困難になる場合があり、無水セッコウの比率が大きくなると短時間での強度発現性が充分でない場合がある。
本発明の急硬材の使用量は、急硬材とセメントの割合が質量比で2/5〜1/1、すなわち、セメント100質量部に対して40〜100質量部が好ましく、50〜90質量部がより好ましい。40質量部未満では短時間での強度発現性が充分でない場合があり、100質量部を超えると可使時間の確保が困難になる場合がある。
The ratio of calcium aluminate to anhydrous gypsum in the rapid-hardening material of the present invention is preferably 3/1 to 5/4 in mass ratio. If the calcium aluminate ratio exceeds this range, it may be difficult to ensure the pot life, and if the anhydrous gypsum ratio increases, the strength development in a short time may not be sufficient.
The used amount of the rapid-hardening material of the present invention is such that the ratio of the rapid-hardening material and the cement is 2/5 to 1/1 by mass ratio, that is, 40 to 100 parts by weight with respect to 100 parts by weight of cement, preferably 50 to 90. Part by mass is more preferable. If it is less than 40 parts by mass, strength development in a short time may not be sufficient, and if it exceeds 100 parts by mass, it may be difficult to ensure the pot life.

本発明で使用する細骨材は、クラックの分散性の点で最大粒子径0.8mm以下が好ましく、特に0.4mm以下が好ましい。種類としては、珪砂、炭酸カルシウムを主成分とする石灰石粉砕物(石灰石微粉末)、フライアッシュが挙げられる。これらの一種又は二種以上の使用も可能である。また、材料特性に影響のない範囲で、シリカフューム、高炉スラグ微粉末に代表されるスラグ類、フェロクロム骨材、ガーネットに代表される重量骨材、ベントナイト、ヘクトライト、カオリン、ケイ藻土、セピオライト、アタパルジャイトなどの粘土鉱物、γ−C2Sなども使用することができる。
本発明の細骨材の使用量は、セメントおよび急硬材からなる結合材(以下、「結合材」という。)100質量部に対して150質量部以下が好ましく、50〜100質量部がより好ましい。150質量部を超えるとクラックの分散性が低下するおそれがある。
The fine aggregate used in the present invention preferably has a maximum particle diameter of 0.8 mm or less, particularly preferably 0.4 mm or less, from the viewpoint of crack dispersibility. Examples of the type include quartz sand, limestone pulverized material (limestone fine powder) mainly composed of calcium carbonate, and fly ash. One or more of these can be used. In addition, silica fume, slag represented by blast furnace slag fine powder, ferrochrome aggregate, heavy aggregate represented by garnet, bentonite, hectorite, kaolin, diatomaceous earth, sepiolite, Clay minerals such as attapulgite, γ-C2S, and the like can also be used.
The amount of the fine aggregate used in the present invention is preferably 150 parts by mass or less, more preferably 50 to 100 parts by mass with respect to 100 parts by mass of a binder (hereinafter referred to as “binding material”) made of cement and a rapid hardening material. preferable. If it exceeds 150 parts by mass, the dispersibility of cracks may be reduced.

本発明で使用する炭酸リチウムは、カルシウムアルミネートの硬化を促進し、短時間での強度発現性を向上する役割を担う。炭酸リチウム以外のリチウム塩もカルシウムアルミネートの硬化を促進することは知られているが、炭酸リチウム以外のリチウム塩を使用すると、まず流動化することができず、また、可使時間も確保できない。
本発明の炭酸リチウムの使用量は、結合材100質量部に対して0.5〜3質量部が好ましく、0.7〜2.5質量部がより好ましい。0.5質量部未満では短時間での強度発現性が充分でない場合があり、3質量部を超えると可使時間の確保が困難になる場合がある。
The lithium carbonate used in the present invention plays a role of promoting hardening of calcium aluminate and improving strength development in a short time. Lithium salts other than lithium carbonate are known to promote the hardening of calcium aluminate, but if lithium salts other than lithium carbonate are used, they cannot be fluidized first and the pot life cannot be secured. .
0.5-3 mass parts is preferable with respect to 100 mass parts of binders, and, as for the usage-amount of the lithium carbonate of this invention, 0.7-2.5 mass parts is more preferable. If the amount is less than 0.5 parts by mass, strength development in a short time may not be sufficient, and if it exceeds 3 parts by mass, it may be difficult to ensure the pot life.

本発明の凝結遅延剤は、有機酸とリチウム以外のアルカリ金属炭酸塩を含有する。
炭酸リチウム以外のアルカリ炭酸塩は、流動化および可使時間の確保に重要な役割を果たす。アルカリ炭酸塩は特に限定されるものではないが、その具体例としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、重炭酸ナトリウム、重炭酸カリウム、重炭酸アンモニウムなどが挙げられる。
有機酸は、炭酸塩とともに流動化および可使時間の確保に重要な役割を果たす。有機酸は特に限定されるものではないが、その具体例としては、例えば、クエン酸、酒石酸、リンゴ酸、グルコン酸、コハク酸などのオキシカルボン酸およびそれらのナトリウム、カリウム、カルシウム、マグネシウム、アンモニウム、アルミニウム等の塩などが挙げられる。中でも、クエン酸やその塩が好ましい。本発明では、これらのうちの1種または2種以上を併用できる。
本発明の凝結遅延剤の使用量は、結合材100質量部に対して0.5〜3質量部が好ましく、0.7〜2.5質量部がより好ましい。0.5質量部未満では可使時間の確保が充分でない場合があり、3質量部を超えると凝結遅延が過剰となり、短時間での強度発現性に悪影響をおよぼす可能性がある。
The setting retarder of the present invention contains an organic acid and an alkali metal carbonate other than lithium.
Alkaline carbonates other than lithium carbonate play an important role in fluidization and securing pot life. The alkali carbonate is not particularly limited, and specific examples thereof include sodium carbonate, potassium carbonate, ammonium carbonate, sodium bicarbonate, potassium bicarbonate, ammonium bicarbonate and the like.
Organic acids play an important role in securing fluidization and pot life with carbonates. The organic acid is not particularly limited, but specific examples thereof include, for example, oxycarboxylic acids such as citric acid, tartaric acid, malic acid, gluconic acid, succinic acid, and their sodium, potassium, calcium, magnesium, ammonium And salts of aluminum and the like. Of these, citric acid and its salts are preferred. In the present invention, one or more of these can be used in combination.
0.5-3 mass parts is preferable with respect to 100 mass parts of binders, and, as for the usage-amount of the setting retarder of this invention, 0.7-2.5 mass parts is more preferable. If the amount is less than 0.5 parts by mass, the pot life may not be sufficiently secured. If the amount exceeds 3 parts by mass, the setting delay becomes excessive, which may adversely affect strength development in a short time.

本発明で使用する流動化剤は、モルタルの練り混ぜを容易にし、各材料の分散を助けるとともに練りあがったモルタルの流動性を付与する役割を担う。流動化剤は特に限定されるものではないが、その具体例としては、例えば、ナフタレン系としては、エヌエムビー社製商品名「レオビルドSP−9シリーズ」、花王社製商品名「マイティ2000シリーズ」、および日本製紙社製商品名「サンフローHS−100」等が挙げられる。また、メラミン系としては、日本シーカ社製商品名「シーカメント1000シリーズ」や日本製紙社製商品名「サンフローHS−40」などが挙げられる。さらに、アミノスルホン酸系としては、フローリック社製商品名「FP−200シリーズ」などが挙げられる。ポリカルボン酸系としては、エヌエムビー社製商品名「レオビルドSP−8シリーズ」、グレースケミカルズ社製商品名「ダーレックススーパー100PHX」、および竹本油脂社製商品名「チューポールHP−8シリーズ」や「チューポールHP−11シリーズ」等が挙げられる。本発明ではこれら流動化剤のうちの一種又は二種以上が使用可能である。
上記の流動化剤には粉末状のものも存在する。具体的には、ポリアルキルアリルスルホン酸塩の縮合物としては、第一工業製薬社製商品名「セルフロー110P」や出光石油化学社製商品名「IPC」などが、また、ナフタレンスルホン酸塩の縮合物としては、花王社製商品名「マイティ100」や三洋化成工業社製商品名「三洋レベロンP」などが、メラミン系のものとしては、シーカ社製「シーカメントFF」などが、さらに、ポリカルボン酸系としては、例えば、三菱化学社製商品名「クインフロー750」、花王社製商品名「CAD9000P」、およびBASFポゾリス社製商品名「CASTAMENT FW10」等が挙げられる。
流動化剤の使用量は、結合材100質量部に対して、固形分換算で3〜7質量部が好ましく、4〜6質量部がより好ましい。3質量部未満では、流動性が充分でなく、7質量部を超えると材料分離を起す場合がある。
The fluidizing agent used in the present invention plays a role of facilitating kneading of the mortar, assisting the dispersion of each material and imparting the fluidity of the kneaded mortar. Although the fluidizing agent is not particularly limited, specific examples thereof include, for example, naphthalene-based products, a product name “Leo Build SP-9 Series” manufactured by NMB, a product name “Mighty 2000 Series” manufactured by Kao Corporation, And Nippon Paper Industries' product name “Sunflow HS-100”. Moreover, as a melamine type | system | group, Nippon Seika Co., Ltd. brand name "Sea Kament 1000 series", Nippon Paper Industries Co., Ltd. brand name "Sunflow HS-40", etc. are mentioned. Furthermore, as an aminosulfonic acid type | system | group, the product name "FP-200 series" by Floric etc. are mentioned. Examples of polycarboxylic acid-based products include the product name “Leobuild SP-8 Series” manufactured by NMB, the product name “Darlex Super 100PHX” manufactured by Grace Chemicals, and the product names “Tupol HP-8 Series” manufactured by Takemoto Yushi Co., Ltd. And “Tupole HP-11 series”. In the present invention, one or more of these fluidizing agents can be used.
Some of the above fluidizing agents are in powder form. Specifically, examples of the polyalkylallyl sulfonate condensate include the product name “Cellflow 110P” manufactured by Daiichi Kogyo Seiyaku Co., Ltd. and the product name “IPC” manufactured by Idemitsu Petrochemical Co., Ltd. Condensates include Kao's trade name “Mighty 100” and Sanyo Chemical Industries' trade name “Sanyo Reberon P”, and melamine-based products include “Sikament FF” made by Sika. Examples of carboxylic acid-based products include trade name “Quinflow 750” manufactured by Mitsubishi Chemical Corporation, trade name “CAD9000P” manufactured by Kao Corporation, and trade name “CASTAMENT FW10” manufactured by BASF Pozzolith.
The amount of the fluidizing agent used is preferably 3 to 7 parts by mass and more preferably 4 to 6 parts by mass in terms of solid content with respect to 100 parts by mass of the binder. If it is less than 3 parts by mass, the fluidity is not sufficient, and if it exceeds 7 parts by mass, material separation may occur.

本発明で使用する窒素ガス発泡物質は、モルタルが硬化するまでの沈下を防止する役割を担う。本発明の急硬性のPVA短繊維配合モルタルは、硬化時間が短いため、一般に利用されているアルミニウム粉末や炭素物質等のガス発泡物質では、充分な沈下防止効果が得られない。窒素ガス発泡物質は、セメントが水と共に練混ぜた際に生成するアルカリとの反応により、窒素ガスを発生する化合物を含有するもので、一酸化炭素、二酸化炭素、およびアンモニア等のガスを副生してもよい。
窒素ガス発泡物質は、本発明の急硬性のPVA短繊維配合モルタルを、躯体と一体化させるために、また、まだ固まらない状態のモルタルが沈下や収縮するのを抑止するために、さらには、乾燥状態に置かれた際のひび割れ抵抗性を向上させるために使用できるものであれば特に限定されるものではない。
その具体例としては、アゾ化合物、ニトロソ化合物、およびヒドラジン誘導体からなる群から選ばれた一種又は二種以上が使用可能であり、例えば、アゾ化合物としては、アゾジカルボンアミドやアゾビスイソブチルニトリルなどが挙げられ、ニトロソ化合物としては、N、N’−ジニトロペンタメチレンテトラミンなどが挙げられ、ヒドラジン誘導体としては、4、4’−オキシビスやヒドラジンカルボンアミドが挙げられ、本発明では、これらの一種又は二種以上が使用可能である。
窒素ガス発泡物質の使用量は特に限定されるものではないが、通常、結合材100部質量部に対して、0.005〜1質量部が好ましく、0.01〜0.5質量部がより好ましい。0.005質量部未満では充分な初期膨張効果を付与することができなくなるおそれがあり、1質量部を超えると強度発現性が悪くなるおそれがある。
The nitrogen gas foaming material used in the present invention plays a role of preventing settlement until the mortar is cured. The rapid-hardening PVA short fiber-containing mortar of the present invention has a short curing time, so that a sufficient anti-sagging effect cannot be obtained with a commonly used gas foaming material such as an aluminum powder or a carbon material. Nitrogen gas foaming substances contain compounds that generate nitrogen gas by reaction with the alkali generated when cement is mixed with water. By-products such as carbon monoxide, carbon dioxide, and ammonia are produced as by-products. May be.
The nitrogen gas foaming material is used to integrate the rapid-hardening PVA short fiber-containing mortar of the present invention with the casing, and to prevent the mortar that has not yet solidified from sinking or shrinking. There is no particular limitation as long as it can be used to improve crack resistance when placed in a dry state.
Specific examples thereof include one or more selected from the group consisting of azo compounds, nitroso compounds, and hydrazine derivatives. Examples of the azo compounds include azodicarbonamide and azobisisobutylnitrile. Examples of the nitroso compound include N, N′-dinitropentamethylenetetramine, and examples of the hydrazine derivative include 4,4′-oxybis and hydrazinecarbonamide. In the present invention, one or two of these are used. More than species can be used.
Although the usage-amount of a nitrogen gas foaming substance is not specifically limited, Usually, 0.005-1 mass part is preferable with respect to 100 mass parts of binders, and 0.01-0.5 mass part is more. preferable. If the amount is less than 0.005 parts by mass, a sufficient initial expansion effect may not be provided. If the amount exceeds 1 part by mass, the strength development may be deteriorated.

本発明で使用する増粘剤は、モルタルに適度な粘性を付与し、PVA短繊維の分散性を良好にするものであり、通常市販されているものが使用できる。たとえば、メチルセルロース、ヒドロキシプロピルセルロース、メチルエチルセルロースなどのセルロースエーテル系増粘剤、グアーガム、デュータンガム、ウエランガムなどのバイオサッカライド系増粘剤、ポリアクリル酸塩、ポリビニルアルコール等の合成高分子類などが挙げられる。
増粘剤の使用量は、結合材100質量部に対して、0.01〜1質量部が好ましく、0.05〜0.5質量部がより好ましい。0.01質量部未満では、粘性が付与できずPVA短繊維の分散性が悪くなるおそれがあり、1質量部を超えると粘性が強くなりすぎ施工性に支障をきたすおそれがある。
The thickener used in the present invention imparts an appropriate viscosity to the mortar and makes the dispersibility of the PVA short fibers good, and commercially available ones can be used. Examples include cellulose ether thickeners such as methylcellulose, hydroxypropylcellulose, and methylethylcellulose, biosaccharide thickeners such as guar gum, detan gum, and welan gum, and synthetic polymers such as polyacrylate and polyvinyl alcohol. .
0.01-1 mass part is preferable with respect to 100 mass parts of binders, and, as for the usage-amount of a thickener, 0.05-0.5 mass part is more preferable. If the amount is less than 0.01 parts by mass, viscosity cannot be imparted and the dispersibility of the PVA short fibers may be deteriorated. If the amount exceeds 1 part by mass, the viscosity may be too strong and the workability may be hindered.

本発明で使用する短繊維はPVA繊維であり、繊維径が0.05mm以下、繊維長が5〜20mm、繊維引張強度が1500MPa〜2400MPaである性質のものが使用される。
繊維径が0.05mmを超えると、繊維が均一に分散することができずに多数のクラックが発生し難い。
繊維の長さが5mm未満であると練混ぜ時において、繊維がだまになりやすく均一に分散することができずに多数のクラックが発生し難い。20mmを超えた場合でも、同様に練混ぜ時において、繊維がだまになりやすく均一に分散することができずに、上記繊維配合量では多数のクラックが発生しなくなる場合があり、また、ポンプで圧送するときに圧送性が悪くなる。
繊維引張強度が1500MPa未満であると1%以上の引張ひずみが得られず、多数のクラックが発生し難く、2400MPaを超えても、効果が頭打ちとなる。
本発明において、PVA短繊維添加量は、セメントと、急硬材と、炭酸リチウムと、凝結遅延剤と、流動化剤と、窒素ガス発泡物質と、増粘剤を含有するモルタル(細骨材を含有する場合には、細骨材を含むモルタル)に対して、1〜5体積%とするが、1〜3体積%が好ましい。1体積%未満では、多数のクラックが発生し難く、3体積%を越えても効果が頭打ちとなる。
The short fiber used in the present invention is a PVA fiber having a fiber diameter of 0.05 mm or less, a fiber length of 5 to 20 mm, and a fiber tensile strength of 1500 to 2400 MPa.
If the fiber diameter exceeds 0.05 mm, the fibers cannot be uniformly dispersed and a large number of cracks are difficult to occur.
If the length of the fiber is less than 5 mm, the fibers tend to be fooled and cannot be uniformly dispersed during kneading, and many cracks are unlikely to occur. Even when it exceeds 20 mm, the fibers tend to be fooled and cannot be uniformly dispersed during mixing, and a large number of cracks may not occur with the above-mentioned fiber blending amount. The pumpability deteriorates when pumping.
If the fiber tensile strength is less than 1500 MPa, a tensile strain of 1% or more cannot be obtained, and a large number of cracks hardly occur, and even if the tensile strength exceeds 2400 MPa, the effect reaches a peak.
In the present invention, the addition amount of PVA short fibers is mortar (fine aggregate) containing cement, rapid hardening material, lithium carbonate, setting retarder, fluidizing agent, nitrogen gas foaming substance, and thickener. In the case of containing mortar containing fine aggregate), it is preferably 1 to 5% by volume, but preferably 1 to 3% by volume. If it is less than 1% by volume, many cracks hardly occur, and even if it exceeds 3% by volume, the effect reaches its peak.

引張ひずみとは、材齢28日の硬化体の引張試験で得られる応力−歪曲線において、最大引張応力値での歪量(%)をいう。実際には、材齢28日での引張試験(例えば、実施例に示すように断面30mm×13mmの試験体を80mmの試験区間で引張試験を行う)における引張歪に代表される。この引張ひずみが1.0%以上であることは、載荷方向(応力方向)とほぼ直角方向に多数クラックが発生するクラック分散型の破壊現象が生じていることを意味する。PVA繊維の性質とPVA繊維以外のマトリックスの性質をうまく組み合わせることで引張ひずみ1%以上を達成できる。
本発明のPVA繊維を配合するマトリックスは、水結合材比(W/B)30〜50%、細骨材と結合材との質量比(S/B)が1.5以下、細骨材の最大粒子径が0.8mmであることが好ましい。
水結合材比が30%未満では、この繊維にとってはマトリックスの弾性係数と破壊じん性が高くなって多数のクラックが発生せず、1%以上の引張ひずみが発生しない場合がある。50%を超えると圧縮強度が小さくなる。
細骨材と結合材との質量比が1.5を超えると、この繊維にとってはマトリックスの弾性係数と破壊じん性が高くなって多数のクラックが発生せず、1%以上の引張ひずみが発生しない場合がある。細骨材の最大粒子径が0.8mmを超えると、同様に多数のクラックが発生せず、1%以上の引張ひずみが発生しない場合がある。
The tensile strain refers to a strain amount (%) at the maximum tensile stress value in a stress-strain curve obtained by a tensile test of a cured product with a material age of 28 days. Actually, it is represented by a tensile strain in a tensile test at a material age of 28 days (for example, a test specimen having a cross section of 30 mm × 13 mm is subjected to a tensile test in an 80 mm test section as shown in Examples). That the tensile strain is 1.0% or more means that a crack dispersion type fracture phenomenon in which many cracks are generated in a direction substantially perpendicular to the loading direction (stress direction). A tensile strain of 1% or more can be achieved by well combining the properties of the PVA fibers and the properties of the matrix other than the PVA fibers.
The matrix blended with the PVA fiber of the present invention has a water binder ratio (W / B) of 30 to 50%, a mass ratio of fine aggregate to binder (S / B) of 1.5 or less, The maximum particle size is preferably 0.8 mm.
If the water binder ratio is less than 30%, the elastic modulus and fracture toughness of the matrix are high for this fiber, so that a large number of cracks do not occur and a tensile strain of 1% or more may not occur. When it exceeds 50%, the compressive strength becomes small.
If the mass ratio of fine aggregate to binder exceeds 1.5, the elastic modulus and fracture toughness of the matrix will increase for this fiber, and numerous cracks will not occur, and a tensile strain of 1% or more will occur. May not. If the maximum particle size of the fine aggregate exceeds 0.8 mm, a large number of cracks are not generated in the same manner, and a tensile strain of 1% or more may not be generated.

本発明の急硬性のPVA短繊維配合モルタルには、更なる短時間強度発現性の向上を目的に、硫酸カリウム、ミョウバン類および水酸化カルシウム等を配合することも可能である。
本発明では、目的とする性能に害を及ぼさない範囲で、一般に市販されているセメント混和剤が使用できる。たとえば、防凍剤、抗菌剤、保水剤、AE剤、起泡剤、発泡剤、撥水剤、防錆剤、保水剤、水和熱低減剤、エフロレッセンス防止剤、ポリマー混和剤などが使用できる。
The rapid-hardening PVA short fiber blended mortar of the present invention can be blended with potassium sulfate, alums, calcium hydroxide, and the like for the purpose of further improving strength development in a short time.
In the present invention, a commercially available cement admixture can be used as long as the target performance is not adversely affected. For example, antifreezing agents, antibacterial agents, water retention agents, AE agents, foaming agents, foaming agents, water repellents, rust preventives, water retention agents, heat of hydration reduction, efflorescence prevention agents, polymer admixtures, etc. can be used. .

本発明において、各材料の混合方法は特に限定されるものではなく、それぞれの材料を施工時に混合しても良いし、あらかじめ一部を、あるいは全部を混合しておいても差し支えない。
粉体の混合装置としては、既存のいかなる装置も使用可能であり、例えば、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ、およびナウタミキサ等の使用が可能である。
モルタルの練り混ぜに使用できるミキサとしては、底部が球状曲面形状を持つボールを有するモルタルミキサ、オムニミキサ、パン型ミキサ、パン型で自転する羽根を有するダマカットミキサ、コンクリートの練り混ぜで使用する二軸ミキサーなどがある。
本発明では、施工後の材料の表面に、エマルジョン系の皮膜養生剤、シラン系あるいはケイ酸塩系の含浸剤、エポキシやアクリル樹脂に代表される樹脂系表面被覆材などを塗布することも可能である。
以下、実施例にて詳細に説明する。
In the present invention, the mixing method of each material is not particularly limited, and the respective materials may be mixed at the time of construction, or a part or all of them may be mixed in advance.
Any existing apparatus can be used as the powder mixing apparatus. For example, a tilting mixer, an omni mixer, a Henschel mixer, a V-type mixer, and a Nauta mixer can be used.
Mixers that can be used for mortar mixing include mortar mixers that have balls with a spherical curved bottom, omni mixers, pan-type mixers, dama-cut mixers with blades that rotate in a pan-type, and two types of mixers that are used for concrete mixing. There are shaft mixers.
In the present invention, it is also possible to apply an emulsion-based film curing agent, a silane-based or silicate-based impregnating agent, a resin-based surface coating material typified by epoxy or acrylic resin, etc. to the surface of the material after construction. It is.
Hereinafter, the embodiment will be described in detail.

各種のカルシウムアルミネートを使用し、表1に示す割合で無水セッコウと混合して急硬材を作製した。セメント100質量部に対して、急硬材80質量部、細骨材aを130質量部、炭酸リチウムを2質量部、凝結遅延剤αを2質量部、流動化剤を9質量部、窒素ガス発泡物質イを0.09質量部、増粘剤を0.2質量部、PVA短繊維(1)をモルタル1mに対して2体積%となる量を加え、水量をセメントと急硬材からなる結合材×50%としてモルタルを調整した。モルタルの流動性、繊維の分散性、可使時間、圧縮強さ、引張ひずみ、クラック分散性を測定した。結果を表1に併記する。 Various calcium aluminates were used and mixed with anhydrous gypsum in the proportions shown in Table 1 to prepare a hardened material. 80 parts by mass of hardwood, 130 parts by mass of fine aggregate a, 2 parts by mass of lithium carbonate, 2 parts by mass of setting retarder α, 9 parts by mass of fluidizing agent, 100 parts by mass of cement, nitrogen gas Add 0.09 parts by mass of foaming substance A, 0.2 parts by mass of thickener, and 2% by volume of PVA short fiber (1) with respect to 1 m 3 of mortar. The mortar was adjusted as a binder x 50%. Mortar fluidity, fiber dispersibility, pot life, compressive strength, tensile strain, and crack dispersibility were measured. The results are also shown in Table 1.

(使用材料)
セメント:普通ポルトランドセメント 市販品
カルシウムアルミネートA:CaO/Alモル比0.75、結晶質、CaO・AlとCaO・2Alを主成分とする。ブレーン比表面積5000cm/g
カルシウムアルミネートB:CaO/Alモル比1.00、結晶質、CaO・Alを主成分とする。ブレーン比表面積5000cm/g
カルシウムアルミネートC:CaO/Alモル比1.50、結晶質、CaO・Alと12CaO・7Al、を主成分とする。ブレーン比表面積5000cm/g
カルシウムアルミネートD:CaO/Alモル比1.00、非晶質、カルシウムアルミネートBに試薬1級のシリカを5%添加して、1650℃で溶融後、急冷して合成。ブレーン比表面積5000cm/g
カルシウムアルミネートE:CaO/Alモル比1.50、非晶質、カルシウムアルミネートCに試薬1級のシリカを3%添加して、1650℃で溶融後、急冷して合成。ブレーン比表面積5000cm/g
無水セッコウ:II型無水セッコウ、pH3.0。ブレーン比表面積5000cm/g
細骨材a:フライアッシュと石灰石粉砕物の1:1混合物、平均粒径0.025mm、フライアッシュは碧南火力製JISII種品、石灰石粉砕物は鋼管鉱業社製石灰石微粉末
炭酸リチウム:試薬1級
凝結遅延剤α:試薬1級の酒石酸25質量部と試薬1級の炭酸カリウム75質量部の混合物
流動化剤:BASFポゾリス社製、ポリカルボン酸系、粉末
窒素ガス発泡物質イ:アゾジカルボンアミド、市販品
増粘剤:デュータンガム、バイオサッカライド系増粘剤、市販品
PVA短繊維(1):クラレ社製、繊維径0.04mm、繊維長12mm、繊維引張強度1650MPa
(Materials used)
Cement: Ordinary Portland cement Commercially available calcium aluminate A: CaO / Al 2 O 3 molar ratio 0.75, crystalline, CaO · Al 2 O 3 and CaO · 2Al 2 O 3 are the main components. Blaine specific surface area 5000 cm 2 / g
Calcium aluminate B: CaO / Al 2 O 3 molar ratio 1.00, crystalline, CaO · Al 2 O 3 is the main component. Blaine specific surface area 5000 cm 2 / g
The main component is calcium aluminate C: CaO / Al 2 O 3 molar ratio 1.50, crystalline, CaO · Al 2 O 3 and 12CaO · 7Al 2 O 3 . Blaine specific surface area 5000 cm 2 / g
Calcium aluminate D: CaO / Al 2 O 3 molar ratio 1.00, amorphous, 5% of reagent grade silica added to calcium aluminate B, melted at 1650 ° C., and then rapidly cooled to synthesize. Blaine specific surface area 5000 cm 2 / g
Calcium aluminate E: CaO / Al 2 O 3 molar ratio 1.50, amorphous, 3% reagent grade silica added to calcium aluminate C, melted at 1650 ° C., and then rapidly cooled to synthesize. Blaine specific surface area 5000 cm 2 / g
Anhydrous gypsum: type II anhydrous gypsum, pH 3.0. Blaine specific surface area 5000 cm 2 / g
Fine aggregate a: 1: 1 mixture of fly ash and limestone pulverized product, mean particle size 0.025 mm, fly ash is JISII type manufactured by Shonan Thermal Power Co., Ltd., limestone pulverized product is limestone fine powder lithium carbonate manufactured by Steel Pipe Mining Co., Ltd .: Reagent 1 Class setting retarder α: Mixture of 25 parts by mass of reagent grade 1 tartaric acid and 75 parts by mass of reagent grade 1 potassium carbonate Fluidizing agent: BASF Pozzolith, polycarboxylic acid type, powdered nitrogen gas foaming substance A: azodicarbonamide , Commercial Thickener: Dutan Gum, Biosaccharide Thickener, Commercial PVA Short Fiber (1): Kuraray, Fiber Diameter 0.04mm, Fiber Length 12mm, Fiber Tensile Strength 1650MPa

(試験方法)
流動性:JIS R 5201に準拠した。ただし、15回打撃は与えず、静置でのフローを測定した。
繊維の分散性:フロー測定の際、判定した。フローの先端まで繊維が行き届いていたら○、フローの先端まで繊維が行き届かず、中心部付近に多く残っていたら×とした。
可使時間:JIS A 1147に準拠した。プロクター貫入抵抗値の終結時間を可使時間とした。
圧縮強さ:JIS R 5201に準拠した。材齢3時間。
引張ひずみ:土木学会 コンクリートライブラリー127「複数微細ひび割れ型繊維補強セメント複合材料設計・施工指針(案)」強度試験用供試体の作り方および一軸直接引張試験方法に準拠した。材齢28日。
クラック分散性:直接引張試験を実施したときに微細なクラックが複数入れば分散性は良いことになる。従って、引張ひずみが1.0%以上あれば○、そうでなければ×とした。
(Test method)
Fluidity: Conforms to JIS R 5201. However, no impact was applied 15 times, and the static flow was measured.
Fiber dispersibility: Determined during flow measurement. When the fiber reached the tip of the flow, ○, and when the fiber did not reach the tip of the flow and remained in the vicinity of the center, it was marked as x.
Pot life: Conforms to JIS A 1147. The closing time of the Proctor penetration resistance value was defined as the pot life.
Compressive strength: Conforms to JIS R 5201. Age 3 hours.
Tensile Strain: Japan Society of Civil Engineers Concrete Library 127 “Multiple Microcracked Fiber Reinforced Cement Composite Design / Construction Guidelines (Draft)” The strength test specimen was made and the uniaxial direct tensile test method. Age 28 days.
Crack dispersibility: If a plurality of fine cracks are formed when a direct tensile test is performed, the dispersibility is good. Therefore, if the tensile strain is 1.0% or more, it is evaluated as ◯, and otherwise, it is evaluated as ×.

Figure 2010013301
Figure 2010013301

表1より、CaO/Alモル比0.75〜1.5のカルシウムアルミネート(CA)と、無水セッコウを含有する急硬材を使用した場合、充分な流動性や可使時間があり強度発現性に優れたモルタルが得られることが分かる(実験No.1-1〜No.1-5)。また、急硬材中のCAと無水セッコウの比率が質量比で4/1になりCAの量が多くなると可使時間がやや短くなり(実験No.1-6)、前記の比率が1/1になり無水セッコウの量が多くなると短時間での強度発現性が充分でない場合がある(実験No.1-7)ので、前記の比率は3/1〜5/4が好ましい。 According to Table 1, when using a calcium aluminate (CA) with a CaO / Al 2 O 3 molar ratio of 0.75 to 1.5 and a quick-hardened material containing anhydrous gypsum, sufficient fluidity and pot life It can be seen that mortar with excellent strength development is obtained (Experiment No. 1-1 to No. 1-5). In addition, when the ratio of CA to anhydrous gypsum in the hardened material becomes 4/1 by mass ratio and the amount of CA increases, the pot life becomes slightly shorter (Experiment No. 1-6). When the amount of anhydrous gypsum increases to 1 and strength development in a short time may not be sufficient (Experiment No. 1-7), the ratio is preferably 3/1 to 5/4.

カルシウムアルミネートB100質量部に、無水セッコウ65質量部を添加し、混合して急硬材を作製した。セメント100質量部に対して、急硬材の配合割合を表2に示すように変化したこと以外は実施例1と同様に行った。結果を表2に併記する。   To 100 parts by mass of calcium aluminate B, 65 parts by mass of anhydrous gypsum was added and mixed to prepare a hardened material. The same procedure as in Example 1 was carried out except that the blending ratio of the rapid hardening material was changed as shown in Table 2 with respect to 100 parts by mass of cement. The results are also shown in Table 2.

Figure 2010013301
Figure 2010013301

表2より、急硬材を含有させた場合、繊維の分散性が良く、強度発現性に優れたモルタルが得られる(実験No.2-2〜No.2-7)が、急硬材を含有させない比較例のモルタルでは、繊維の分散性が悪くなり、また、短時間での強度発現性が得られないことが分かる(実験No.2-1)。強度発現性や可使時間からみて、急硬材の使用量は、セメント100質量部に対して40〜100質量部が好ましく、50〜90質量部がより好ましい(実験No.2-2〜No.2-6)。   From Table 2, when a hardened material is included, a mortar having good fiber dispersibility and excellent strength development can be obtained (Experiment No.2-2 to No.2-7). It can be seen that in the mortar of the comparative example which is not contained, the dispersibility of the fiber is deteriorated and the strength development property in a short time cannot be obtained (Experiment No. 2-1). From the standpoint of strength development and pot life, the amount of the hardened material used is preferably 40 to 100 parts by weight, more preferably 50 to 90 parts by weight with respect to 100 parts by weight of cement (Experiment No. 2-2 to No. .2-6).

カルシウムアルミネートB100質量部に、無水セッコウ65質量部を添加し、混合して急硬材を作製した。セメント100質量部に対して、急硬材80質量部を加え、表3に示すように細骨材を変化したこと以外は実施例1と同様に行った。結果を表3に併記する。   To 100 parts by mass of calcium aluminate B, 65 parts by mass of anhydrous gypsum was added and mixed to prepare a hardened material. The same procedure as in Example 1 was performed except that 80 parts by mass of a hardened material was added to 100 parts by mass of cement and the fine aggregate was changed as shown in Table 3. The results are also shown in Table 3.

(使用材料)
細骨材b:フライアッシュ、碧南火力製JISII種品、平均粒径0.022mm、最大粒子径0.1mm
細骨材c:石灰石微粉末、鋼管鉱業社製、平均粒径0.028mm、最大粒子径0.11mm
細骨材d:珪砂、市販品、平均粒径0.15mm、最大粒子径0.38mm
細骨材e:細骨材Dと細骨材Bの1:1混合物(質量比)
(Materials used)
Fine aggregate b: fly ash, Shonan Thermal Power JIS II type, average particle size 0.022 mm, maximum particle size 0.1 mm
Fine aggregate c: fine limestone powder, manufactured by Steel Pipe Mining Co., Ltd., average particle size 0.028 mm, maximum particle size 0.11 mm
Fine aggregate d: quartz sand, commercial product, average particle size 0.15 mm, maximum particle size 0.38 mm
Fine aggregate e: 1: 1 mixture of fine aggregate D and fine aggregate B (mass ratio)

Figure 2010013301
Figure 2010013301

表3より、最大粒子径0.8mm以下の細骨材を、セメントおよび急硬材からなる結合材100質量部に対して50超〜150質量部含有させた場合、繊維の分散性が良く、引張ひずみが1.0%以上を示し、クラック分散性に優れたモルタルが得られることが分かる(実験No.2-4、No.3-3〜3-8)。細骨材の含有量が、結合材100質量部に対して50質量部以下(0を含む)の場合には、繊維の分散性は充分でないが、引張ひずみは大きく、クラック分散性は優れている(実験No.3-1、No.3-2)。   From Table 3, when fine aggregate having a maximum particle diameter of 0.8 mm or less is contained in an amount of more than 50 to 150 parts by mass with respect to 100 parts by mass of a cement and a rapid hardening material, the dispersibility of the fibers is good. It can be seen that a mortar having a tensile strain of 1.0% or more and having excellent crack dispersibility can be obtained (Experiment No. 2-4, No. 3-3 to 3-8). When the fine aggregate content is 50 parts by mass or less (including 0) with respect to 100 parts by mass of the binder, the dispersibility of the fibers is not sufficient, but the tensile strain is large and the crack dispersibility is excellent. (Experiment No.3-1, No.3-2).

カルシウムアルミネートB100質量部に、無水セッコウ65質量部を添加し、混合して急硬材を作製した。セメント100質量部に対して、急硬材80質量部を加え、表4に示すように炭酸リチウムを変化したこと以外は実施例1と同様に行った。結果を表4に併記する。   To 100 parts by mass of calcium aluminate B, 65 parts by mass of anhydrous gypsum was added and mixed to prepare a hardened material. The same procedure as in Example 1 was performed except that 80 parts by mass of a hardened material was added to 100 parts by mass of cement, and lithium carbonate was changed as shown in Table 4. The results are also shown in Table 4.

Figure 2010013301
Figure 2010013301

表4より、炭酸リチウムを含有させた場合、強度発現性に優れたモルタルが得られる(実験No.4-2〜No.4-6、No.2-4)が、炭酸リチウムを含有させない比較例のモルタルでは、短時間での強度発現性が得られないことが分かる(実験No.4-1)。炭酸リチウムは、使用量が多すぎると可使時間が短くなる(実験No.4-6)ので、結合材100質量部に対して3質量部以下が好ましい。   From Table 4, when lithium carbonate is contained, mortars with excellent strength development can be obtained (Experiment No.4-2 to No.4-6, No.2-4), but no lithium carbonate is contained. It can be seen that in the example mortar, strength development cannot be obtained in a short time (Experiment No. 4-1). When the amount of lithium carbonate used is too large, the pot life is shortened (Experiment No. 4-6). Therefore, 3 parts by mass or less is preferable with respect to 100 parts by mass of the binder.

カルシウムアルミネートB100質量部に、無水セッコウ65質量部を添加し、混合して急硬材を作製した。セメント100質量部に対して、急硬材80質量部を加え、表5に示すように凝結遅延剤を変化したこと以外は実施例1と同様に行った。結果を表5に併記する。   To 100 parts by mass of calcium aluminate B, 65 parts by mass of anhydrous gypsum was added and mixed to prepare a hardened material. The same procedure as in Example 1 was performed except that 80 parts by mass of a hardened material was added to 100 parts by mass of cement and the setting retarder was changed as shown in Table 5. The results are also shown in Table 5.

(使用材料)
凝結遅延剤β:試薬1級のクエン酸25質量部と試薬1級の炭酸カリウム75質量部の混合物。
凝結遅延剤γ:試薬1級のクエン酸20質量部と試薬1級のグルコン酸ナトリウム10質量部と試薬1級の炭酸カリウム70質量部の混合物。
(Materials used)
Setting retarder β: a mixture of 25 parts by mass of reagent grade 1 citric acid and 75 parts by mass of reagent grade 1 potassium carbonate.
Setting retarder γ: a mixture of 20 parts by mass of reagent grade 1 citric acid, 10 parts by mass of reagent grade 1 sodium gluconate and 70 parts by mass of reagent grade 1 potassium carbonate.

Figure 2010013301
Figure 2010013301

表5より、凝結遅延剤を含有させた場合、充分な流動性や可使時間があるモルタルが得られる(実験No.5-2〜No.5-7、No.2-4)が、凝結遅延剤を含有させない比較例のモルタルでは、充分な可使時間が得られないことが分かる(実験No.5-1)。   From Table 5, when setting retarder is included, mortar with sufficient fluidity and pot life can be obtained (Experiment No.5-2 to No.5-7, No.2-4). It can be seen that sufficient pot life cannot be obtained with the comparative mortar containing no retarder (Experiment No. 5-1).

カルシウムアルミネートB100質量部に、無水セッコウ65質量部を添加し、混合して急硬材を作製した。セメント100質量部に対して、急硬材80質量部を加え、表6に示すように流動化剤を変化したこと以外は実施例1と同様に行った。結果を表6に併記する。   To 100 parts by mass of calcium aluminate B, 65 parts by mass of anhydrous gypsum was added and mixed to prepare a hardened material. The same procedure as in Example 1 was performed except that 80 parts by mass of a hardened material was added to 100 parts by mass of cement and the fluidizing agent was changed as shown in Table 6. The results are also shown in Table 6.

Figure 2010013301
Figure 2010013301

表6より、流動化剤を含有させた場合、充分な流動性があるモルタルが得られる(実験No.6-2〜No.6-6、No.2-4)が、流動化剤を含有させない比較例のモルタルでは、充分な流動性が得られないことが分かる(実験No.6-1)。流動化剤は、使用量が多すぎると繊維の分散性に悪影響を及ぼす(実験No.6-6)ので、結合材100質量部に対して7質量部以下が好ましい。   From Table 6, when a fluidizing agent is included, mortar with sufficient fluidity is obtained (Experiment No.6-2 to No.6-6, No.2-4), but the fluidizing agent is contained. It turns out that sufficient fluidity cannot be obtained with the mortar of the comparative example which is not allowed to be obtained (Experiment No. 6-1). When the amount of the fluidizing agent used is too large, the dispersibility of the fiber is adversely affected (Experiment No. 6-6). Therefore, the amount is preferably 7 parts by mass or less with respect to 100 parts by mass of the binder.

カルシウムアルミネートB100質量部に、無水セッコウ65質量部を添加し、混合して急硬材を作製した。セメント100質量部に対して、急硬材80質量部を加え、表7に示すように窒素ガス発泡物質を変化し、初期膨張率を測定したこと以外は実施例1と同様に行った。結果を表7に併記する。   To 100 parts by mass of calcium aluminate B, 65 parts by mass of anhydrous gypsum was added and mixed to prepare a hardened material. The same procedure as in Example 1 was performed except that 80 parts by mass of a hardened material was added to 100 parts by mass of cement, the nitrogen gas foaming substance was changed as shown in Table 7, and the initial expansion coefficient was measured. The results are also shown in Table 7.

(使用材料)
窒素ガス発泡物質ロ:主成分4、4’−オキシビス、市販品
窒素ガス発泡物質ハ:主成分N、N’−ジニトロソメンタメチレンテトラミン、市販品
アルミ粉:アルミニウム粉末、市販品
(Materials used)
Nitrogen gas foaming material b: main component 4, 4′-oxybis, commercially available nitrogen gas foaming material c: main component N, N′-dinitrosomentamethylenetetramine, commercial product aluminum powder: aluminum powder, commercial product

(試験方法)
初期膨張率:φ5×10cmの型枠に練混ぜたモルタルを型詰し光センサーにて打設直後から材齢3時間までの鉛直方向の長さ変化率を測定、表中の−は収縮側、+は膨張側
(Test method)
Initial expansion coefficient: Mortar kneaded in a mold of φ5 × 10 cm is mold-molded, and the length change rate in the vertical direction is measured immediately after placement with a light sensor until the age of 3 hours. , + Is the expansion side

Figure 2010013301
Figure 2010013301

表7より、窒素ガス発泡物質を含有させた場合、初期膨張効果の優れたモルタルが得られる(実験No.7-2〜No.7-8、No.2-4)が、窒素ガス発泡物質を含有させない比較例のモルタル、発泡物質としてアルミ粉を含有させた比較例のモルタルでは、充分な初期膨張が得られないことが分かる(実験No.7-1、No.7-9)。窒素ガス発泡物質は、使用量が多すぎると短時間での強度発現性に悪影響を及ぼす(実験No.7-6)ので、結合材100質量部に対して1質量部以下が好ましい。   From Table 7, when nitrogen gas foaming material is contained, mortar with excellent initial expansion effect is obtained (Experiment No.7-2 to No.7-8, No.2-4). It can be seen that sufficient initial expansion cannot be obtained with the mortar of the comparative example that does not contain the mortar and the mortar of the comparative example that contains the aluminum powder as the foaming substance (Experiment No. 7-1, No. 7-9). If the amount of the nitrogen gas foaming material used is too large, it will adversely affect the strength development in a short time (Experiment No. 7-6). Therefore, the amount is preferably 1 part by mass or less with respect to 100 parts by mass of the binder.

カルシウムアルミネートB100質量部に、無水セッコウ65質量部を添加し、混合して急硬材を作製した。セメント100質量部に対して、急硬材80質量部を加え、表8に示すように増粘剤を変化したこと以外は実施例1と同様に行った。結果を表8に併記する。   To 100 parts by mass of calcium aluminate B, 65 parts by mass of anhydrous gypsum was added and mixed to prepare a hardened material. The same procedure as in Example 1 was performed except that 80 parts by mass of a hardened material was added to 100 parts by mass of cement and the thickener was changed as shown in Table 8. The results are also shown in Table 8.

Figure 2010013301
Figure 2010013301

表8より、増粘剤を含有させた場合、繊維の分散性の優れたモルタルが得られる(実験No.8-2〜No.8-6、No.2-4)が、増粘剤を含有させない比較例のモルタルでは、繊維の分散性が悪いことが分かる(実験No.8-1)。増粘剤は、使用量が多すぎると短時間での強度発現性に悪影響を及ぼす(実験No.8-6)ので、結合材100質量部に対して1質量部以下が好ましい。   From Table 8, when a thickener is contained, mortars with excellent fiber dispersibility can be obtained (Experiment No.8-2 to No.8-6, No.2-4). It turns out that the dispersibility of a fiber is bad in the mortar of the comparative example which is not contained (Experiment No. 8-1). If the amount of the thickener used is too large, it will adversely affect the strength development in a short time (Experiment No. 8-6). Therefore, the amount is preferably 1 part by mass or less with respect to 100 parts by mass of the binder.

カルシウムアルミネートB100質量部に、無水セッコウ65質量部を添加し、混合して急硬材を作製した。セメント100質量部に対して、急硬材80質量部を加え、モルタル1mに対して表9に示すようにPVA短繊維の種類と添加量を変化したこと以外は実施例1と同様に行った。結果を表9に併記する。 To 100 parts by mass of calcium aluminate B, 65 parts by mass of anhydrous gypsum was added and mixed to prepare a hardened material. The same procedure as in Example 1 was performed except that 80 parts by mass of a hardened material was added to 100 parts by mass of cement, and the type and amount of PVA short fibers were changed as shown in Table 9 with respect to 1 m 3 of mortar. It was. The results are also shown in Table 9.

(使用材料)
PVA短繊維(1):クラレ社製、繊維径0.04mm、繊維長12mm、繊維引張強度1650MPaPVA短繊維(2):繊維径0.014mm、繊維長12mm、繊維引張強度1650MPa
PVA短繊維(3):繊維径0.04mm、繊維長12mm、繊維引張強度2000MPa
PVA短繊維(4):繊維径0.04mm、繊維長6mm、繊維引張強度1650MPa
PVA短繊維(5):繊維径0.04mm、繊維長18mm、繊維引張強度1650MPa
PVA短繊維(6):繊維径0.04mm、繊維長12mm、繊維引張強度1200MPa
PVA短繊維(7):繊維径0.04mm、繊維長12mm、繊維引張強度2200MPa
PVA短繊維(8):繊維径0.014mm、繊維長4mm、繊維引張強度1650MPa
PVA短繊維(9):繊維径0.04mm、繊維長25mm、繊維引張強度1650MPa
(Materials used)
PVA short fiber (1): manufactured by Kuraray Co., Ltd., fiber diameter 0.04 mm, fiber length 12 mm, fiber tensile strength 1650 MPa PVA short fiber (2): fiber diameter 0.014 mm, fiber length 12 mm, fiber tensile strength 1650 MPa
PVA short fiber (3): fiber diameter 0.04 mm, fiber length 12 mm, fiber tensile strength 2000 MPa
PVA short fiber (4): fiber diameter 0.04 mm, fiber length 6 mm, fiber tensile strength 1650 MPa
PVA short fiber (5): fiber diameter 0.04 mm, fiber length 18 mm, fiber tensile strength 1650 MPa
PVA short fiber (6): fiber diameter 0.04 mm, fiber length 12 mm, fiber tensile strength 1200 MPa
PVA short fiber (7): fiber diameter 0.04 mm, fiber length 12 mm, fiber tensile strength 2200 MPa
PVA short fiber (8): fiber diameter 0.014 mm, fiber length 4 mm, fiber tensile strength 1650 MPa
PVA short fiber (9): fiber diameter 0.04 mm, fiber length 25 mm, fiber tensile strength 1650 MPa

Figure 2010013301
Figure 2010013301

表9より、繊維径が0.05mm以下、繊維長が5〜20mm、繊維引張強度が1500MPa〜2400MPaであるPVA短繊維を含有させた場合、引張ひずみが1.0%以上を示し、クラック分散性に優れたモルタルが得られる(実験No.9-2〜No.9-8、No.9-10、No.2-4)が、PVA短繊維を含有させない比較例のモルタル、繊維引張強度が1500MPa未満のPVA短繊維や繊維長が5mm未満であるPVA短繊維を含有させた比較例のモルタルは、引張ひずみが1.0%未満であり、クラック分散性が悪いことが分かる(実験No.9-1、No.9-9、No.9-11)。PVA短繊維は、使用量を多くしても効果が頭打ちになる(実験No.9-4)ので、3体積%以下が好ましい。   From Table 9, when a PVA short fiber having a fiber diameter of 0.05 mm or less, a fiber length of 5 to 20 mm, and a fiber tensile strength of 1500 MPa to 2400 MPa is contained, the tensile strain is 1.0% or more, and crack dispersion Mortar with excellent properties (Experiment No.9-2 to No.9-8, No.9-10, No.2-4), but mortar and fiber tensile strength of comparative example not containing PVA short fiber It is understood that the mortar of the comparative example containing PVA short fibers having a fiber length of less than 1500 MPa or PVA having a fiber length of less than 5 mm has a tensile strain of less than 1.0% and poor crack dispersibility (Experiment No. .9-1, No.9-9, No.9-11). Since the effect of PVA short fibers reaches a peak even when the amount used is increased (Experiment No. 9-4), 3% by volume or less is preferable.

カルシウムアルミネートB100質量部に、無水セッコウ65質量部を添加し、混合して急硬材を作製した。セメント100質量部に対して、急硬材80質量部を加え、表10に示すように水を変化したこと以外は実施例1と同様に行った。結果を表10に併記する。   To 100 parts by mass of calcium aluminate B, 65 parts by mass of anhydrous gypsum was added and mixed to prepare a hardened material. The same procedure as in Example 1 was performed except that 80 parts by mass of a hardened material was added to 100 parts by mass of cement, and water was changed as shown in Table 10. The results are also shown in Table 10.

Figure 2010013301
Figure 2010013301

表10より、本発明のPVA短繊維配合モルタルを用いて、水結合材比30〜50%で練り混ぜると、材齢3時間の圧縮強さが20N/mm以上で、材齢28日の硬化体の引張試験において引張ひずみが1.0%以上を示す高靭性FRC材料が得られることが分かる(実験No.10-1、No.2-4)。 From Table 10, using the PVA short fiber blended mortar of the present invention, when kneaded at a water binder ratio of 30 to 50%, the compressive strength at a material age of 3 hours is 20 N / mm 2 or more, and the material age is 28 days. It can be seen that a high toughness FRC material having a tensile strain of 1.0% or more in a tensile test of the cured body can be obtained (Experiment No. 10-1, No. 2-4).

本発明の急硬性のPVA短繊維配合モルタルは、流動性に優れ、充分な可使時間を確保でき、モルタルが硬化するまでの沈下がなく、材齢3時間で20N/mm以上の圧縮強度を発現する。したがって、急硬性を付与した1.0%以上の引張ひずみを示すひび割れ分散型の高靭性FRC材料となり、変形性能が求められる高速道路等の変形追従性が求められる連結部の緊急補修等に適する。 The rapid-setting PVA short fiber blended mortar of the present invention has excellent fluidity, can secure a sufficient pot life, has no settling until the mortar is cured, and has a compressive strength of 20 N / mm 2 or more at a material age of 3 hours. Is expressed. Therefore, it becomes a crack-dispersion type high toughness FRC material that exhibits a tensile strain of 1.0% or more with imparted rapid hardening, and is suitable for emergency repair of a connecting portion that requires deformation followability such as a highway that requires deformation performance. .

Claims (13)

セメントと、急硬材と、炭酸リチウムと、凝結遅延剤と、流動化剤と、窒素ガス発泡物質と、増粘剤を含有してなるモルタルに対して、繊維径が0.05mm以下で、繊維長が5〜20mmで、かつ、繊維引張強度が1500MPa〜2400MPaのPVA短繊維を1〜5体積%配合したことを特徴とする急硬性のPVA短繊維配合モルタル。   For a mortar containing cement, rapid hardening material, lithium carbonate, setting retarder, fluidizing agent, nitrogen gas foaming material, and thickener, the fiber diameter is 0.05 mm or less, A rapid-hardening PVA short fiber blended mortar characterized by blending 1 to 5% by volume of PVA short fibers having a fiber length of 5 to 20 mm and a fiber tensile strength of 1500 to 2400 MPa. 急硬材とセメントの割合が質量比で2/5〜1/1であることを特徴とする請求項1記載の急硬性のPVA短繊維配合モルタル。   The rapid hardening PVA short fiber-containing mortar according to claim 1, wherein the ratio of the rapid hardening material and the cement is 2/5 to 1/1 by mass ratio. 前記急硬材が、CaO/Alモル比0.75〜1.5のカルシウムアルミネートと、無水セッコウを含有することを特徴とする請求項1又は2記載の急硬性のPVA短繊維配合モルタル。 The rapid hardwood, calcium aluminate CaO / Al 2 O 3 molar ratio 0.75 to 1.5, PVA short fibers rapid hardening according to claim 1 or 2, characterized in that it contains anhydrous gypsum Formulated mortar. 前記急硬材中のカルシウムアルミネートと無水セッコウとの比率が、質量比で3/1〜5/4であることを特徴とする請求項1〜3のいずれか1項記載の急硬性のPVA短繊維配合モルタル。   The rapid hardening PVA according to any one of claims 1 to 3, wherein a ratio of calcium aluminate to anhydrous gypsum in the rapid hardening material is 3/1 to 5/4 in mass ratio. Short fiber mortar. 最大粒子径0.8mm以下の細骨材を含有してなり、かつ、細骨材と、セメントおよび急硬材からなる結合材との質量比(S/B)が1.5以下である請求項1〜4のいずれか1項記載の急硬性のPVA短繊維配合モルタル。   A fine aggregate having a maximum particle diameter of 0.8 mm or less, and a mass ratio (S / B) of the fine aggregate to a binder composed of cement and a hardened material is 1.5 or less. Item 5. The rapid-setting PVA short fiber-containing mortar according to any one of items 1 to 4. 前記最大粒子径0.8mm以下の細骨材が、珪砂、石灰石微粉末、フライアッシュ、高炉スラグ微粉末、シリカフュームから選ばれる一種又は二種以上であることを特徴とする請求項5記載の急硬性のPVA短繊維配合モルタル。   The sudden aggregate according to claim 5, wherein the fine aggregate having a maximum particle size of 0.8 mm or less is one or more selected from silica sand, fine limestone powder, fly ash, fine blast furnace slag powder, and silica fume. Hard PVA short fiber blended mortar. 前記炭酸リチウムが、前記結合材100質量部に対して0.5〜3質量部であることを特徴とする請求項1〜6のいずれか1項記載の急硬性のPVA短繊維配合モルタル。   The hardened PVA short fiber-containing mortar according to any one of claims 1 to 6, wherein the lithium carbonate is 0.5 to 3 parts by mass with respect to 100 parts by mass of the binder. 前記凝結遅延剤が、有機酸とリチウム以外のアルカリ金属炭酸塩を含有し、かつ、前記結合材100質量部に対して0.5〜3質量部であることを特徴とする請求項1〜7のいずれか1項記載の急硬性のPVA短繊維配合モルタル。   The said setting retarder contains alkali metal carbonates other than an organic acid and lithium, and is 0.5-3 mass parts with respect to 100 mass parts of said binders, The 1-7 characterized by the above-mentioned. The rapid hardening PVA short fiber combination mortar of any one of these. 前記流動化剤が、前記結合材100質量部に対して3〜7質量部であることを特徴とする請求項1〜8のいずれか1項記載の急硬性のPVA短繊維配合モルタル。   The rapid hardening PVA short fiber-containing mortar according to any one of claims 1 to 8, wherein the fluidizing agent is 3 to 7 parts by mass with respect to 100 parts by mass of the binder. 前記窒素ガス発泡物質が、アゾ化合物、ニトロソ化合物、およびヒドラジン誘導体からなる群から選ばれた少なくとも一種である請求項1〜9のいずれか1項記載の急硬性のPVA短繊維配合モルタル。   The rapid-hardening PVA short fiber-containing mortar according to any one of claims 1 to 9, wherein the nitrogen gas foaming substance is at least one selected from the group consisting of an azo compound, a nitroso compound, and a hydrazine derivative. 前記窒素ガス発泡物質が、前記結合材100質量部に対して0.005〜1質量部であることを特徴とする請求項1〜10のいずれか1項記載の急硬性のPVA短繊維配合モルタル。   The rapid hardening PVA short fiber-containing mortar according to any one of claims 1 to 10, wherein the nitrogen gas foaming material is 0.005 to 1 part by mass with respect to 100 parts by mass of the binder. . 前記増粘剤が、前記結合材100質量部に対して0.01〜1質量部であることを特徴とする請求項1〜11のいずれか1項記載の急硬性のPVA短繊維配合モルタル。   The rapid-hardening PVA short fiber-containing mortar according to any one of claims 1 to 11, wherein the thickener is 0.01 to 1 part by mass with respect to 100 parts by mass of the binder. 請求項1〜12のいずれか1項記載の急硬性のPVA短繊維配合モルタルを用いて、水結合材比(W/B)30〜50%で練り混ぜて得られる、材齢3時間の圧縮強度が20N/mm以上で、材齢28日の硬化体の引張試験において引張ひずみが1.0%以上を示すことを特徴とする急硬性の高靭性FRC材料。 Compression of 3 hours of age obtained by kneading with a water-hardening material ratio (W / B) of 30 to 50% using the rapid hardening PVA short fiber-containing mortar according to any one of claims 1 to 12. A rapid-hardening, high-toughness FRC material having a strength of 20 N / mm 2 or more and a tensile strain of 1.0% or more in a tensile test of a cured product of 28 days of age.
JP2008172803A 2008-07-01 2008-07-01 Quick-hardening PVA short fiber-containing mortar and quick-hardening high-toughness FRC material using the same Active JP5160977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008172803A JP5160977B2 (en) 2008-07-01 2008-07-01 Quick-hardening PVA short fiber-containing mortar and quick-hardening high-toughness FRC material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008172803A JP5160977B2 (en) 2008-07-01 2008-07-01 Quick-hardening PVA short fiber-containing mortar and quick-hardening high-toughness FRC material using the same

Publications (2)

Publication Number Publication Date
JP2010013301A true JP2010013301A (en) 2010-01-21
JP5160977B2 JP5160977B2 (en) 2013-03-13

Family

ID=41699780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008172803A Active JP5160977B2 (en) 2008-07-01 2008-07-01 Quick-hardening PVA short fiber-containing mortar and quick-hardening high-toughness FRC material using the same

Country Status (1)

Country Link
JP (1) JP5160977B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013091982A (en) * 2011-10-26 2013-05-16 Kajima Corp Repair method of road floor slab
WO2013077378A1 (en) * 2011-11-24 2013-05-30 電気化学工業株式会社 Quick-hardening cement
JP2016220637A (en) * 2015-06-01 2016-12-28 デンカ株式会社 Weed control sheet and weed control method
JP2018044355A (en) * 2016-09-14 2018-03-22 デンカ株式会社 Weed-proof sheet and weed-proof method using the same
JP2019104645A (en) * 2017-12-12 2019-06-27 デンカ株式会社 Lightweight cavity filler and cavity filling method using the same
JP2021530418A (en) * 2018-07-06 2021-11-11 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se Compositions for fluid refractory materials
JP2022186934A (en) * 2018-07-30 2022-12-15 太平洋マテリアル株式会社 grout mortar

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238605A (en) * 2004-02-26 2005-09-08 Kajima Corp High toughness frc material manufacturing method
WO2006133855A2 (en) * 2005-06-14 2006-12-21 Construction Research & Technology Gmbh Method of delivery of agents providing freezing and thawing resistance to cementitious compositions
JP2007197268A (en) * 2006-01-27 2007-08-09 Denki Kagaku Kogyo Kk Ultra-quick hardening/highly flowable cement composition, and mortar or concrete using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238605A (en) * 2004-02-26 2005-09-08 Kajima Corp High toughness frc material manufacturing method
WO2006133855A2 (en) * 2005-06-14 2006-12-21 Construction Research & Technology Gmbh Method of delivery of agents providing freezing and thawing resistance to cementitious compositions
JP2007197268A (en) * 2006-01-27 2007-08-09 Denki Kagaku Kogyo Kk Ultra-quick hardening/highly flowable cement composition, and mortar or concrete using same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013091982A (en) * 2011-10-26 2013-05-16 Kajima Corp Repair method of road floor slab
WO2013077378A1 (en) * 2011-11-24 2013-05-30 電気化学工業株式会社 Quick-hardening cement
JPWO2013077378A1 (en) * 2011-11-24 2015-04-27 電気化学工業株式会社 Rapid hardening cement
JP2016220637A (en) * 2015-06-01 2016-12-28 デンカ株式会社 Weed control sheet and weed control method
JP2018044355A (en) * 2016-09-14 2018-03-22 デンカ株式会社 Weed-proof sheet and weed-proof method using the same
JP2019104645A (en) * 2017-12-12 2019-06-27 デンカ株式会社 Lightweight cavity filler and cavity filling method using the same
JP2021530418A (en) * 2018-07-06 2021-11-11 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se Compositions for fluid refractory materials
JP7315595B2 (en) 2018-07-06 2023-07-26 ビーエーエスエフ ソシエタス・ヨーロピア Composition for flowable refractory material
JP2022186934A (en) * 2018-07-30 2022-12-15 太平洋マテリアル株式会社 grout mortar
JP7394194B2 (en) 2018-07-30 2023-12-07 太平洋マテリアル株式会社 grout mortar

Also Published As

Publication number Publication date
JP5160977B2 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
JP5080714B2 (en) Cement composition
JP3844457B2 (en) Cement admixture and cement composition
JP4860279B2 (en) Ultra-fast-hardening / high-fluidity cement composition and mortar or concrete using the same
JP5160977B2 (en) Quick-hardening PVA short fiber-containing mortar and quick-hardening high-toughness FRC material using the same
JP5818579B2 (en) Neutralization suppression type early strong cement composition
JP2013091982A (en) Repair method of road floor slab
JP5113496B2 (en) Ultrafast cement composition, superhard mortar or concrete composition, and ultrafast grout mortar
JP5110789B2 (en) Ultra-fast-hardening / high-fluidity cement composition and mortar or concrete using the same
WO2003016234A1 (en) Cement admixture, cement composition, and method for suppressing carbonation using the same
JP4290628B2 (en) Ultrafast cement composition, superhard mortar composition, and ultrafast grout mortar
JP2007320835A (en) Extra-quick hardening cement composition, extra-quick hardening cement concrete composition, and extra-quick hardening cement concrete
JP6284432B2 (en) High flow lightweight mortar composition and high flow lightweight mortar using the same
JP4860278B2 (en) Ultra-fast-hardening / high-fluidity cement composition and mortar or concrete using the same
JP2023049713A (en) Cement admixture, quick curing mortar concrete material, quick curing mortar concrete composition, and cured body
JP2008308348A (en) Low heat generation type high strength concrete and hardened concrete article using it
JP4209381B2 (en) Cement composition
JP4201265B2 (en) Ultra-fast hardening / high flow mortar composition and super fast hardening / high flow mortar composition
WO2022230605A1 (en) Grout material, grout mortar composition, and cured body
JPH11302047A (en) Expansive material composition and expansive cement composition
JP2007186372A (en) Explosive fracture-resistant cement hardened body and method for producing the same
JP6985548B1 (en) Repair mortar material, repair mortar composition and cured product
KR102620465B1 (en) Eco-friendly concrete composition
JP2003192410A (en) Cement admixture, cement composition and cement concrete obtained by using the same
JP2023028441A (en) Grout material, grout mortar composition and cured body
JP2005082440A (en) Quick hardening cement admixture, cement composition, and mortar composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121213

R150 Certificate of patent or registration of utility model

Ref document number: 5160977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250