JP2010012578A - Manufacturing method for silicon substrate - Google Patents

Manufacturing method for silicon substrate Download PDF

Info

Publication number
JP2010012578A
JP2010012578A JP2008176653A JP2008176653A JP2010012578A JP 2010012578 A JP2010012578 A JP 2010012578A JP 2008176653 A JP2008176653 A JP 2008176653A JP 2008176653 A JP2008176653 A JP 2008176653A JP 2010012578 A JP2010012578 A JP 2010012578A
Authority
JP
Japan
Prior art keywords
silicon substrate
hole
drill
rpm
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008176653A
Other languages
Japanese (ja)
Inventor
Hiroki Watanabe
弘樹 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2008176653A priority Critical patent/JP2010012578A/en
Publication of JP2010012578A publication Critical patent/JP2010012578A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate

Abstract

<P>PROBLEM TO BE SOLVED: To develop a simple through-hole formation technique which can alternate a conventional through-hole formation technique and has high productivity since it is necessary that a device such as a dry-etching method and a laser method uses an expensive through-hole formation technique with low productivity when forming a through-hole for a penetration electrode on a silicon substrate. <P>SOLUTION: In a manufacturing method for a silicon substrate for forming the through-hole or a non-through-hole by a drill while locally cooling the silicon substrate, the number of rotation of the drill is a range of 8,000-50,000 rpm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、シリコンからなる半導体素子基板の製造方法に関わり、特に半導体素子を3次元高密度実装するために必要な貫通穴をシリコンウエハーに形成する方法に関する。   The present invention relates to a method of manufacturing a semiconductor element substrate made of silicon, and more particularly to a method of forming through holes necessary for three-dimensional high-density mounting of semiconductor elements in a silicon wafer.

半導体装置の集積密度を向上させ高速で信号処理をすることは不可欠不断の要請である。このためには、半導体チップを微細化し高速で動作するようにするとともに、半導体チップ自体を高密度で実装する技術の開発も必要である。   It is an indispensable demand to improve the integration density of semiconductor devices and perform signal processing at high speed. For this purpose, it is necessary to develop a technique for miniaturizing a semiconductor chip to operate at high speed and mounting the semiconductor chip itself at a high density.

高密度実装技術の一つとして、プラスチック基板あるいはセラミック基板上に、複数の半導体チップを薄い絶縁性基板を介して複数段積層する方式が知られている。積み重ねられた半導体チップ間の電気接続は、一般には半導体チップの外周部に形成された接続用パッド同士をワイヤーボンディングすることで図られ、最後に全体を樹脂でモールド成形することで半導体装置製品となる。しかし、ワイヤーボンディング法では、接続用パッドが半導体チップの周辺部にしか配設できずその数が制限されることや、ワイヤー線のインダクタンスなどの問題から高速信号を高密度で伝送することにはあまり向いていない。   As one of high-density mounting techniques, a system is known in which a plurality of semiconductor chips are stacked on a plastic substrate or a ceramic substrate through a thin insulating substrate. The electrical connection between the stacked semiconductor chips is generally achieved by wire bonding the connection pads formed on the outer periphery of the semiconductor chip, and finally the whole is molded with a resin to form a semiconductor device product. Become. However, in the wire bonding method, the connection pads can be arranged only at the periphery of the semiconductor chip and the number of pads is limited, and high-speed signals can be transmitted at high density due to problems such as wire line inductance. Not very suitable.

また、半導体チップを積層する点で上記に類似の方法として、絶縁性の中間基板としてシリコン基板を用い、該基板の表面から裏面に貫通する電極を形成しこれを上下の半導体チップの接続用電極とする技術が開示されている(例えば、特許文献1参照)。この積層形態では、半導体チップとシリコン基板が同じ材質のため、半導体チップとシリコン基板の接続部分で発生する熱応力が、半導体チップとプラスチック基板間に比べ、少ないため信頼性の高い接合が可能であって、また配線距離も短くできるという特長がある。   Also, as a method similar to the above in that the semiconductor chips are stacked, a silicon substrate is used as the insulating intermediate substrate, and an electrode penetrating from the front surface to the back surface of the substrate is formed, and this is connected to the upper and lower semiconductor chip connection electrodes. (For example, refer to Patent Document 1). In this stacked configuration, the semiconductor chip and the silicon substrate are made of the same material, so the thermal stress generated at the connection between the semiconductor chip and the silicon substrate is less than that between the semiconductor chip and the plastic substrate, so that highly reliable bonding is possible. The wiring distance can be shortened.

さらに、進んだ技術として、上記の中間基板を省いて半導体チップ自体に直接貫通電極を形成して、この貫通電極同士を上下に接続する技術が開示されている(例えば、特許文献2参照)。ここでは、各々の半導体チップには、その表面に2次元的な集積回路とチップを貫く貫通電極とが併置して形成されている。貫通電極は裏面に一部が露出するように形成され、この突出部が別の半導体チップ表面に形成された貫通電極パッドと接合し、これを繰り返すことで全体として3次元半導体集積回路が得られる。かかる技術は、最下段の貫通電極を多層配線基板の電極パッドと接続し最後にパッケージングすることで、配線長の短い理想的な半導体装置が得られるという点で優れている。   Further, as an advanced technique, a technique is disclosed in which the intermediate substrate is omitted and a through electrode is directly formed on the semiconductor chip itself, and the through electrodes are connected to each other vertically (see, for example, Patent Document 2). Here, in each semiconductor chip, a two-dimensional integrated circuit and a through electrode penetrating the chip are formed side by side on the surface. The through electrode is formed such that a part of the through electrode is exposed on the back surface, and this protruding portion is joined to a through electrode pad formed on the surface of another semiconductor chip, and a three-dimensional semiconductor integrated circuit is obtained as a whole by repeating this. . This technique is excellent in that an ideal semiconductor device having a short wiring length can be obtained by connecting the bottom through electrode to the electrode pad of the multilayer wiring board and finally packaging.

なお、シリコン基板に貫通電極用の穴を形成した後は、化学蒸着法により穴の内側壁に酸化シリコン等の絶縁膜を形成する。その後、無電界めっき法によりシード層を形成し、このシード層を陰極として内側壁に銅、アルミ等の金属皮膜を設け貫通電極とするのが一般的である。また穴内部をダマシン法により金属で充填し、裏面からエッチングによりシリコンを除去して金属部分の頭だしを行い貫通電極とすることも行われている。
特開平5−144978号公報 特開2003−17558号公報
In addition, after forming the through-hole for the through-hole in the silicon substrate, an insulating film such as silicon oxide is formed on the inner wall of the hole by chemical vapor deposition. Thereafter, a seed layer is generally formed by an electroless plating method, and this seed layer is used as a cathode, and a metal film such as copper or aluminum is provided on the inner side wall to form a through electrode. In addition, the inside of a hole is filled with metal by a damascene method, and silicon is removed from the back surface by etching to cue the metal portion to form a through electrode.
JP-A-5-144978 JP 2003-17558 A

貫通する電極を上記シリコン基板に形成する前に、上下に貫通する穴をシリコン基板に形成することが必要である。貫通穴の一つの形成方法はドライエッチング工法である。これは先ず、シリコン基板上に定法のフォトリソグラフィー法により、貫通部に対応する箇
所に開口を有するレジストパターンをシリコン基板上に形成し、開口部のシリコンをSF6などのフロン系ガスを用いたドライエッチングにより垂直方向に除去していく方法である。
Before forming a penetrating electrode in the silicon substrate, it is necessary to form a hole penetrating vertically in the silicon substrate. One method for forming the through hole is a dry etching method. First, a resist pattern having an opening at a location corresponding to the penetrating portion is formed on the silicon substrate by a regular photolithography method on the silicon substrate, and the silicon in the opening portion is made of a fluorocarbon gas such as SF 6 . This is a method of removing in the vertical direction by dry etching.

しかし、この方法においては、穴を深くエッチングする場合にはレジスト層が一層では足りず、無機材料からなるハードマスクを追加するなど多層化処理を必要とする場合が多い。また、いくら垂直方向にエッチングが進むといっても側壁方向にもエッチングが入るため、側壁の保護とエッチングとを交互に繰り返すボッシュプロセスを採用する必要があるなど、加工に非常に長時間を要するという問題もある。   However, in this method, when a hole is etched deeply, a single resist layer is not sufficient, and a multi-layer process such as adding a hard mask made of an inorganic material is often required. In addition, even if etching proceeds in the vertical direction, etching also enters in the side wall direction, so it is necessary to employ a Bosch process that alternately repeats protection and etching of the side wall, which requires a very long time for processing. There is also a problem.

さらに、危険なフロンガスを使用するため、ドライエッチング装置は構造が非常に複雑で、メンテナンスが容易に行えず、維持管理に多大の費用がかかるという問題もある。また、ドライエッチングを行う方法は、装置の仕様上加工できる基板のサイズが限定されるという問題もある。   In addition, since a dangerous chlorofluorocarbon gas is used, the dry etching apparatus has a very complicated structure, cannot be easily maintained, and requires a large amount of maintenance. In addition, the dry etching method has a problem that the size of the substrate that can be processed is limited due to the specifications of the apparatus.

別の方法としてレーザ工法があるが、YAGレーザ光を所望の位置にスポット照射してシリコンを溶融除去するため、加工部周辺にドロスや溶解粉が再付着する問題がある。さらに、レーザ装置が高額であり生産性も低いというドライエッチング法と同じ問題を抱えている。   There is a laser method as another method. However, since silicon is melted and removed by irradiating a YAG laser beam at a desired position, there is a problem that dross and dissolved powder are reattached around the processed portion. Furthermore, it has the same problem as the dry etching method that the laser apparatus is expensive and the productivity is low.

そこで、本発明の課題は、ドライエッチング法やレーザ法のような装置が高価で生産性の低い貫通穴形成技術に代わる、簡便で生産性の高い貫通穴形成技術を用いたシリコン基板の製造方法を提供することである。   Accordingly, an object of the present invention is to provide a method for manufacturing a silicon substrate using a through hole forming technique that is simple and high in productivity, instead of an expensive and low productivity through hole forming technique in which an apparatus such as a dry etching method or a laser method is expensive. Is to provide.

本発明は、上記の問題を鑑みてなされたもので、請求項1の発明は、シリコン基板とドリルとの当接部位を局所冷却しつつ、回転するドリルにてシリコン基板に貫通穴もしくは非貫通穴を形成することを特徴とするシリコン基板の製造方法としたものである。   The present invention has been made in view of the above problems. The invention of claim 1 is directed to a through-hole or non-penetration in a silicon substrate with a rotating drill while locally cooling a contact portion between the silicon substrate and the drill. A method for manufacturing a silicon substrate is characterized in that a hole is formed.

本発明の製造方法では、シリコン基板を冷却しつつドリルを行うことで、回転するドリルがシリコン基板と接することで生じる摩擦熱の発生が抑えられるため、シリコンが溶解しその溶融物が穴開口部と穴側壁に再凝固して付着することがない。そのため垂直形状性に優れた貫通穴が形成される。   In the manufacturing method of the present invention, by performing the drill while cooling the silicon substrate, the generation of frictional heat caused by the rotating drill coming into contact with the silicon substrate is suppressed, so that the silicon melts and the melted portion becomes the hole opening. It does not re-solidify and adhere to the hole sidewall. Therefore, a through hole having excellent vertical shape is formed.

請求項2の発明は、前記ドリルの回転数が8,000rpmから50,000rpmの範囲であることを特徴とする請求項1記載のシリコン基板の製造方法としたものである。   The invention according to claim 2 is the method for producing a silicon substrate according to claim 1, wherein the number of rotations of the drill is in the range of 8,000 rpm to 50,000 rpm.

かかる範囲にドリルの回転数を設定すると、裏面開口部に欠けやクラックが発生することを抑止できる。そのため、シリコン基板の裏面側に形成した開口部において、欠けやクラックにより開口径が拡大することを抑えられる。
請求項3の発明は、前記シリコン基板を基板載置用基盤上に載置し、前記基板載置用基盤を冷却媒体により冷却することで局所冷却を行うことを特徴とする請求項1又は請求項2に記載のシリコン基板の製造方法としたものである。
請求項4の発明は、前記局所冷却が、冷却水をシリコン基板とドリルとの当接部位に吹き付けることでなされることを特徴とする請求項1又は請求項2に記載のシリコン基板の製造方法としたものである。
If the number of rotations of the drill is set within such a range, it is possible to suppress the occurrence of chipping or cracking in the back surface opening. Therefore, it is possible to suppress the opening diameter from being enlarged due to the chipping or cracking in the opening formed on the back surface side of the silicon substrate.
The invention according to claim 3 is characterized in that the silicon substrate is placed on a substrate mounting base, and the substrate mounting base is cooled by a cooling medium to perform local cooling. Item 3. A method for manufacturing a silicon substrate according to Item 2.
The invention according to claim 4 is characterized in that the local cooling is performed by spraying cooling water onto a contact portion between the silicon substrate and the drill. It is what.

請求項5の発明は、前記局所冷却が、液体窒素をシリコン基板とドリルとの当接部位に吹き付けることでなされることを特徴とする請求項1又は請求項2に記載のシリコン基板の製造方法としたものである。   The invention according to claim 5 is characterized in that the local cooling is performed by spraying liquid nitrogen onto a contact portion between the silicon substrate and the drill. It is what.

本発明によれば、以上に記載したような作用を有するから、生産性が低く高コストなドライエッチング法やレーザ法を使用することなしに、ドリルで搾穴するというきわめて簡便な機械的手段によりシリコン基板に貫通穴もしくは非貫通穴を形成できるシリコン基板の製造方法とすることができる。特に、同じ機械的手段に属する金型を用いたうち抜き法よりも、ドリル工法の方がシリコン基板に搾穴する深さの調整が容易であるので、非貫通孔の形成に向いているということが挙げられる。   According to the present invention, since it has the operation described above, it is possible to use a very simple mechanical means of drilling without using a dry etching method or a laser method with low productivity and high cost. It can be set as the manufacturing method of the silicon substrate which can form a through-hole or a non-through-hole in a silicon substrate. In particular, the drilling method is easier to adjust the depth of squeezing holes in the silicon substrate than the punching method using molds belonging to the same mechanical means, so it is suitable for forming non-through holes. Can be mentioned.

ドリル工法は、シリコン基板のような単結晶基板に貫通穴を搾穴する技術としては、裏面開口部の拡大及び内側壁の破損を生じ好ましくないと考えられてきたが、本発明者は局所冷却しつつ適切な回転数でドリル加工をすることにより、形状崩れと溶融物の固着のない側壁を有する実用可能な貫通穴及び非貫通穴を機械的に形成できることを見出した。
以下、そのことにつき実施の態様に即して説明する。
The drill method has been considered unfavorable as a technique for squeezing through-holes in a single crystal substrate such as a silicon substrate, resulting in enlargement of the back opening and damage to the inner wall. However, it was found that by drilling at an appropriate number of rotations, a practical through hole and a non-through hole having a side wall free from shape collapse and melt adhesion can be mechanically formed.
Hereinafter, this will be described in accordance with an embodiment.

先ず、厚み300μm、直径6インチのシリコンウエハーとNC型ドリル加工装置を用意した。ドリル加工装置は基板載置用の基盤を有し、基盤上にシリコンウエハーを載置した。この時、シリコンウエハーの基盤への固定は吸引チャック方式で行った。なお、固定は、静電チャック方式あるいはシリコンウエハ上に磁石を置き、基盤への磁石の引きつける力で行うことであっても構わない。   First, a silicon wafer having a thickness of 300 μm and a diameter of 6 inches and an NC drilling apparatus were prepared. The drilling apparatus had a substrate mounting base, and a silicon wafer was mounted on the base. At this time, the silicon wafer was fixed to the substrate by a suction chuck method. The fixing may be performed by an electrostatic chuck method or by placing a magnet on a silicon wafer and attracting the magnet to the substrate.

先端部形状が尖状で径が50μmのドリルを用い、シリコンウエハに搾穴を行った。搾穴の際にドリルの回転数(rpm)を、2、000rpm、5、000rpm、8、000rpm、10、000rpm、20、000rpm、50、000rpm、100、000rpmと変えて搾穴を行った。   Using a drill with a pointed tip and a diameter of 50 μm, the silicon wafer was squeezed. During the squeezing, the number of rotations (rpm) of the drill was changed to 2,000 rpm, 5,000 rpm, 8,000 rpm, 10,000 rpm, 20,000 rpm, 50,000 rpm, 100,000 rpm, and squeezing was performed.

なお、搾穴に際しては、上述したようにドリルの回転数を変える他に、ドリルとシリコンウエハとの当接部位への冷却の有無により貫通穴の形状を観察した。
初めに、液体窒素吹きかけによる局所冷却を行わずに、上記の条件でシリコン基板にドリル加工を行い、シリコン基板に貫通穴を形成した。その結果、ドリルの回転数が、2、000rpm、5、000rpmの低速回転では、シリコンウェハに割れが生じた。一方、ドリルの回転数が50、000rpm、100、000rpmと高速回転になると、ドリルが貫通した段階で、シリコンウエハの裏面で穴の形状に崩れが生じた。なお、ドリルの先端形状を変更したドリル刃にて同様な搾穴を行ったが、先端形状の相違による穴の形状に相違は見られなかった。総じて、局所冷却を行わずに搾穴を行った場合は、シリコン基板の貫通穴の開口部の縁、及び、貫通穴の側壁にシリコンが溶融し再凝結したものが付着しており、形状は良好とは言い難いものであった。
In addition, when squeezing holes, in addition to changing the rotation speed of the drill as described above, the shape of the through hole was observed depending on whether or not the contact portion between the drill and the silicon wafer was cooled.
First, without performing local cooling by spraying liquid nitrogen, a drilling process was performed on the silicon substrate under the above conditions to form a through hole in the silicon substrate. As a result, the silicon wafer was cracked when the drill was rotated at a low speed of 2,000 rpm and 5,000 rpm. On the other hand, when the number of rotations of the drill reached high speeds of 50,000 rpm and 100,000 rpm, the shape of the hole collapsed on the back surface of the silicon wafer when the drill penetrated. In addition, although the same squeezing hole was performed with the drill blade which changed the front-end | tip shape of a drill, the difference in the shape of the hole by the difference in front-end | tip shape was not seen. In general, when squeezing holes without local cooling, silicon melts and re-condenses on the edge of the through hole of the silicon substrate and the side wall of the through hole, and the shape is It was hard to say good.

次に、回転するドリルがシリコン基板と当接する部位に液体窒素を吹きかけて冷却を行いながら、上記と同一条件にて、シリコン基板にドリル加工を行い、シリコン基板に貫通穴を形成した。この場合は、いずれも、貫通穴にシリコン凝固物の付着はほとんど見出されなかった。   Next, the silicon substrate was drilled under the same conditions as described above while cooling by blowing liquid nitrogen to the portion where the rotating drill was in contact with the silicon substrate, thereby forming a through hole in the silicon substrate. In this case, almost no adhesion of silicon coagulum was found in the through holes.

表1に、液体窒素吹きかけによる局所冷却を行いつつ径50μmのドリルで搾穴形成した場合の貫通穴周辺の観察結果を改めてまとめて示した。形状がドリルの回転数に依存することが明らかである。また図1(a)、(b)に径50μmのドリルで搾穴形成した貫通穴の表面又は裏面からの写真を示すが、局所冷却を行い、ドリルの回転数が8、000rpm、10、000rpm、20、000rpm、50、000rpm、の場合は十分実用に耐える形状となった。なお、貫通穴周辺に微細なバリ等の発生が見られたが、かか
るバリ等は軽くエッチングすることで除去整形することができる程度の、問題の無い微小なものであった。なお、図1(c)は局所冷却を行い、ドリル回転数が100,000rpmと高速にして穿穴した場合に、穴を裏面側から見た際の正面写真であり、底崩れが発生している。同図1(d)は局所冷却を伴わずに穿穴を行った場合の写真を示し、穴の縁に溶融が生じている。
Table 1 collectively shows the observation results around the through-holes when the squeezed holes were formed with a drill having a diameter of 50 μm while performing local cooling by spraying liquid nitrogen. It is clear that the shape depends on the number of rotations of the drill. Moreover, although the photograph from the surface or the back surface of the through-hole formed with the 50 μm diameter drill is shown in FIGS. 1 (a) and (b), local cooling is performed and the number of revolutions of the drill is 8,000 rpm, 10,000 rpm. , 20,000 rpm, and 50,000 rpm, the shape was sufficiently practical. Although fine burrs and the like were observed around the through-holes, the burrs and the like were minute ones having no problem that can be removed and shaped by light etching. In addition, FIG.1 (c) is a front view at the time of seeing a hole from the back side, when local cooling is carried out and drilling is carried out at a high rotational speed of 100,000 rpm. Yes. FIG. 1 (d) shows a photograph when a hole is made without local cooling, and melting occurs at the edge of the hole.

本発明になる局所冷却下のドリル加工でシリコン基板に搾穴した場合の写真。(a)上面視と上面斜視図、(b)裏面正面視、(c)局所冷却でドリル回転数が100、000rpmの場合の搾穴部の正面視写真、(d)局所冷却がない場合の搾穴部正面視写真。The photograph at the time of squeezing a hole in a silicon substrate by drilling under local cooling according to the present invention. (A) Top view and top perspective view, (b) Rear front view, (c) Front view photograph of the squeezed hole when the drill rotation speed is 100,000 rpm, (d) When there is no local cooling Squeezed hole front view photograph.

Claims (5)

シリコン基板とドリルとの当接部位を局所冷却しつつ、回転するドリルにてシリコン基板に貫通穴もしくは非貫通穴を形成することを特徴とするシリコン基板の製造方法。   A method for manufacturing a silicon substrate, comprising forming a through hole or a non-through hole in a silicon substrate with a rotating drill while locally cooling a contact portion between the silicon substrate and the drill. 前記ドリルの回転数が8,000rpmから50,000rpmの範囲であることを特徴とする請求項1記載のシリコン基板の製造方法。   2. The method of manufacturing a silicon substrate according to claim 1, wherein the number of revolutions of the drill is in the range of 8,000 rpm to 50,000 rpm. 前記シリコン基板を基板載置用基盤上に載置し、前記基板載置用基盤を冷却媒体により冷却することで局所冷却を行うことを特徴とする請求項1又は請求項2に記載のシリコン基板の製造方法。 The silicon substrate according to claim 1 or 2, wherein the silicon substrate is placed on a substrate mounting base, and the substrate mounting base is cooled by a cooling medium to perform local cooling. Manufacturing method. 前記局所冷却が、冷却水をシリコン基板とドリルとの当接部位に吹き付けることでなされることを特徴とする請求項1又は請求項2に記載のシリコン基板の製造方法。 3. The method for manufacturing a silicon substrate according to claim 1, wherein the local cooling is performed by spraying cooling water on a contact portion between the silicon substrate and the drill. 前記局所冷却が、液体窒素をシリコン基板とドリルとの当接部位に吹き付けることでなされることを特徴とする請求項1又は請求項2に記載のシリコン基板の製造方法。 The method for manufacturing a silicon substrate according to claim 1, wherein the local cooling is performed by spraying liquid nitrogen onto a contact portion between the silicon substrate and a drill.
JP2008176653A 2008-07-07 2008-07-07 Manufacturing method for silicon substrate Pending JP2010012578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008176653A JP2010012578A (en) 2008-07-07 2008-07-07 Manufacturing method for silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008176653A JP2010012578A (en) 2008-07-07 2008-07-07 Manufacturing method for silicon substrate

Publications (1)

Publication Number Publication Date
JP2010012578A true JP2010012578A (en) 2010-01-21

Family

ID=41699191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008176653A Pending JP2010012578A (en) 2008-07-07 2008-07-07 Manufacturing method for silicon substrate

Country Status (1)

Country Link
JP (1) JP2010012578A (en)

Similar Documents

Publication Publication Date Title
US6878901B2 (en) Laser micromachining and electrical structures formed thereby
JP6249548B2 (en) Multilayer microelectronic package having sidewall conductor and method of manufacturing the same
JP3660294B2 (en) Manufacturing method of semiconductor device
US9305793B2 (en) Wafer processing method
TWI769254B (en) Ceramic-metal substrate with low amorphous phase
JP2010537403A (en) Interconnecting elements having posts formed by plating
JP2010251676A (en) Trench substrate and method of manufacturing the same
JP2005183548A (en) Board and method for manufacturing the same
JP5085787B2 (en) Device mounting structure manufacturing method
KR101117573B1 (en) Fabrication Method of Through Silicon Via using Hybrid process
JP2006032419A (en) Laser processing method for wafer
JP6557953B2 (en) Structure and manufacturing method thereof
US11367666B2 (en) Clip, lead frame, and substrate used in semiconductor package having engraved pattern formed thereon and the semiconductor package comprising the same
WO2011048858A1 (en) Device mounting structure and device mounting method
US9478472B2 (en) Substrate components for packaging IC chips and electronic device packages of the same
JP2010012578A (en) Manufacturing method for silicon substrate
JP6261104B1 (en) Method for manufacturing printed circuit board
JP4452846B2 (en) Metal-ceramic bonding substrate and manufacturing method thereof
KR102119142B1 (en) Method for fabriating Wafer Level Package&#39;s Carrier using lead frame
JP2009267295A (en) Method of manufacturing silicon substrate
CN107611081A (en) Semiconductor structure and its manufacture method
JP2006287085A (en) Method for manufacturing wiring substrate
JP2009111433A (en) Manufacturing method of semiconductor substrate with penetrating electrode, and manufacturing method of semiconductor device with penetrating electrode
WO2019225273A1 (en) Method for manufacturing circuit board
JP2016213422A (en) Printed wiring board and manufacturing method of the same