JP2010012422A - Fluidized bed reactor and manufacturing method of vapor grown carbon fiber - Google Patents

Fluidized bed reactor and manufacturing method of vapor grown carbon fiber Download PDF

Info

Publication number
JP2010012422A
JP2010012422A JP2008175316A JP2008175316A JP2010012422A JP 2010012422 A JP2010012422 A JP 2010012422A JP 2008175316 A JP2008175316 A JP 2008175316A JP 2008175316 A JP2008175316 A JP 2008175316A JP 2010012422 A JP2010012422 A JP 2010012422A
Authority
JP
Japan
Prior art keywords
fluidized
carbon fiber
grown carbon
heating region
vapor grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008175316A
Other languages
Japanese (ja)
Inventor
Eiji Kanbara
英二 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2008175316A priority Critical patent/JP2010012422A/en
Publication of JP2010012422A publication Critical patent/JP2010012422A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Inorganic Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluidized bed reactor dispensing with a diffusion plate, or allowing installation of the diffusion plate at a low temperature part outside a heating region, and eliminating clogging and deterioration of the diffusion plate conventionally preventing a long term operation, and a manufacturing method of vapor grown carbon fiber providing a large amount of vapor grown carbon fiber inexpensively. <P>SOLUTION: The fluidized bed reactor has a fluidized part wherein particles fluidize together with gas to cause a contact reaction for forming a solid product, and a non-fluidized part substantially not fluidizing. The fluidized part is in the heating region, and a support part of the non-fluidized part is located outside the heating region. The manufacturing method of the vapor grown carbon fiber uses the reactor. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、化学反応に用いられる流動層反応装置に関し、詳しくは、分散板の目詰まりや劣化による運転停止がなく連続的に運転可能な流動層反応装置に関する。また、本発明は該流動層反応装置を用いた気相法炭素繊維の製造方法に関する。   The present invention relates to a fluidized bed reactor used for a chemical reaction, and more particularly to a fluidized bed reactor capable of continuous operation without being stopped due to clogging or deterioration of a dispersion plate. The present invention also relates to a method for producing vapor grown carbon fiber using the fluidized bed reactor.

一般に気体と固体、または液体と固体の反応操作、あるいは物理操作を行う装置には、大別して、回分式反応装置、固定層型反応装置、回転炉を含む移動層反応装置、気流層反応装置、流動層反応装置などが挙げられる。これらの反応装置はその反応原料や反応形態によって種々選定される。特に、ガス状の原料から固体状の触媒を用いて生成物を得る場合には、原料と触媒の接触効率が高く、完全混合流れを実現できる流動層反応装置が適している。   In general, apparatuses for performing a reaction operation of a gas and a solid, or a liquid and a solid, or a physical operation are roughly classified into a batch reaction apparatus, a fixed bed type reaction apparatus, a moving bed reaction apparatus including a rotary furnace, a gas bed reaction apparatus, Examples thereof include a fluidized bed reactor. These reaction apparatuses are variously selected depending on the reaction raw materials and reaction forms. In particular, when a product is obtained from a gaseous raw material using a solid catalyst, a fluidized bed reactor capable of realizing a complete mixed flow with high contact efficiency between the raw material and the catalyst is suitable.

一般的な流動層反応装置の一例を図3に示す。流動層反応装置30は、反応器31とヒーター32からなる。反応器31の下方には、上昇するガスを分散させる分散板33が設けられている。この分散板33上には触媒粒子及び反応生成物が流動する流動部34が設けられている。
原料のガスは配管35を通じて反応器31の下部から上部へと流れる。流動部34を構成する触媒粒子は、ヒーター32によって形成される加熱領域内に設置された分散板33に保持されながら、原料ガスの流れによって流動状態とされる。加熱領域内での原料ガスと触媒粒子との接触によって固体状の生成物が生成する場合、生成物は触媒粒子と混合状態で流動化するか、ガス流に同伴されて系外へと排出される。系内に滞留した生成物はなんらかの排出手段で、所定時間終了後、あるいは連続的に反応系内から排出される。
An example of a general fluidized bed reactor is shown in FIG. The fluidized bed reactor 30 includes a reactor 31 and a heater 32. A dispersion plate 33 for dispersing the rising gas is provided below the reactor 31. On the dispersion plate 33, a fluidizing part 34 through which catalyst particles and reaction products flow is provided.
The raw material gas flows from the lower part to the upper part of the reactor 31 through the pipe 35. The catalyst particles constituting the fluidizing part 34 are brought into a fluidized state by the flow of the raw material gas while being held by the dispersion plate 33 installed in the heating region formed by the heater 32. When a solid product is produced by contact between the source gas and the catalyst particles in the heating zone, the product is fluidized in a mixed state with the catalyst particles or is discharged out of the system along with the gas flow. The The product staying in the system is discharged from the reaction system by some discharging means after the predetermined time or continuously.

ここで、一般的に固体(触媒粒子)のガス中での挙動は、ガス線速度、ガスの密度、粘性、固体の密度および粒径などによって決定される。例えば、流動化開始速度をUfm、終端速度をUcとすると、実際のガス線速度(u)がUfm<u<Ucであれば固体はガス中で流動する。u<Ufmでは流動しない。また、u>Ucの時は、固体はガス流に同伴されて系外へ排出される。したがって、流動層反応装置においては、Ufm<u<Ucとなるように、ガス流速や固体粒子径などを調整することになる。   Here, in general, the behavior of a solid (catalyst particles) in a gas is determined by the gas linear velocity, gas density, viscosity, solid density, particle size, and the like. For example, if the fluidization start speed is Ufm and the end speed is Uc, the solid will flow in the gas if the actual gas linear velocity (u) is Ufm <u <Uc. It does not flow when u <Ufm. Further, when u> Uc, the solid is accompanied by the gas flow and discharged out of the system. Therefore, in the fluidized bed reactor, the gas flow rate, the solid particle diameter, and the like are adjusted so that Ufm <u <Uc.

このような流動層反応装置としては、古くは、石油気相流動接触分解法や、低オクタン価ナフサを改質する流動層式ハイドロフォーミング法や重質油から軽質油を得る流動コーキング法、ナフサの流動熱分解によるエチレンとプロピレンの製造などの石油化学工業における種々の反応に応用されている。   In the past, such fluidized bed reactors, such as petroleum gas-phase fluid catalytic cracking, fluidized bed hydroforming for reforming low octane naphtha, fluid coking to obtain light oil from heavy oil, naphtha It is applied to various reactions in the petrochemical industry such as ethylene and propylene production by fluid pyrolysis.

さらに、流動層燃焼ボイラー、廃棄物焼却炉としての流動層焼却炉、流動層を用いた触媒反応炉として、アクリロニトリル、無水マレイン酸、オレフィンの気相重合などに加え、近年では、流動層反応装置を利用したカーボンナノチューブの合成に関する研究例も多い。   Furthermore, as a fluidized bed combustion boiler, a fluidized bed incinerator as a waste incinerator, and a catalytic reactor using a fluidized bed, in addition to the gas phase polymerization of acrylonitrile, maleic anhydride, olefin, etc. There are also many examples of research on the synthesis of carbon nanotubes using styrene.

特許文献1には、有機物質のガス化装置として、装置の一部にテーパー部を設けることにより、触媒成分をそのテーパー部で滞留させながら、固体残渣を底部に滞留させて生成ガスを回収する方法が開示されている。また、特許文献2には、カーボンナノチューブなどの合成に流動層反応装置を用いることが開示されている。
特開2006−334535号公報 特開2008−56523号公報
In Patent Document 1, as a gasification device for an organic substance, by providing a tapered portion in a part of the device, a solid residue is retained at the bottom while the catalyst component is retained at the tapered portion, and the generated gas is recovered. A method is disclosed. Patent Document 2 discloses the use of a fluidized bed reactor for the synthesis of carbon nanotubes and the like.
JP 2006-334535 A JP 2008-56523 A

特許文献1のようにしてガス状の生成物を得る場合には、固体状物質の生成が顕著でないため、分散板の目詰まりなどの問題は顕著ではなかった。生成物が固体の場合には、流動状態を保ちながら生成物を効率よく回収するために様々な工夫がなされてきた。しかしながら、分散板の目詰まりや分散板の劣化の為、長期間の連続運転が困難であり、定期的に反応炉を停止して分散板を交換する必要があり、効率的ではなかった。特に、高温での反応が必要であったり、反応ガスに対する腐食性、反応性などのために、耐久性のある分散板材質の選定が困難であったりといった場合がある。このような場合には、比較的耐久性に優れた分散板を使用しても、定期的交換を余儀なくされていた。   In the case of obtaining a gaseous product as in Patent Document 1, since the production of a solid substance is not significant, problems such as clogging of the dispersion plate are not significant. When the product is a solid, various attempts have been made to efficiently recover the product while maintaining a fluid state. However, due to clogging of the dispersion plate and deterioration of the dispersion plate, continuous operation for a long time is difficult, and it is necessary to periodically stop the reactor and replace the dispersion plate, which is not efficient. In particular, there are cases where a reaction at a high temperature is required, and it is difficult to select a durable dispersion plate material due to the corrosiveness and reactivity to the reaction gas. In such a case, even if a dispersion plate having relatively excellent durability is used, periodic replacement is unavoidable.

特許文献2の実施例においては分散板として石英焼結板を使用しているが、長期の使用により石英焼結板も閉塞しやすいことが知られている。また、産業的に利用するためにスケールアップした場合、石英焼結板は大型化が困難なため金属材料を使用せざるを得なくなる。カーボンナノチューブの合成において、分散板に金属材料を用いるとその触媒作用で金属材料表面にカーボンナノチューブが生成し、分散板の目詰まりが顕著となるため、連続運転が困難で未だ実用化には至っていない。   In the example of Patent Document 2, a quartz sintered plate is used as the dispersion plate. However, it is known that the quartz sintered plate is likely to be blocked by long-term use. Further, when scaled up for industrial use, it is difficult to increase the size of the quartz sintered plate, and a metal material must be used. In the synthesis of carbon nanotubes, when a metal material is used for the dispersion plate, carbon nanotubes are generated on the surface of the metal material due to its catalytic action, and clogging of the dispersion plate becomes remarkable. Not in.

本発明は、上記の実情を鑑みてなされたものである。すなわち、本発明は、分散板を用いることが不要となるか、または分散板を加熱領域外の低温部に設置することが可能となり、従来は長期連続運転の妨げとなっていた分散板の目詰まりや劣化をなくすことができる流動層反応装置を提供することにある。また、本発明は、該製造装置を気相法炭素繊維の製造に用いることで、安価に大量の気相法炭素繊維を得ることができる気相法炭素繊維の製造方法を提供するものである。   The present invention has been made in view of the above circumstances. That is, according to the present invention, it is not necessary to use a dispersion plate, or it is possible to install the dispersion plate in a low-temperature part outside the heating region, which has been a hindrance to long-term continuous operation. An object of the present invention is to provide a fluidized bed reactor capable of eliminating clogging and deterioration. The present invention also provides a method for producing vapor-grown carbon fiber that can obtain a large amount of vapor-grown carbon fiber at low cost by using the production apparatus for producing vapor-grown carbon fiber. .

本発明者らは、上記目的を達成するために鋭意検討した結果、反応温度に加熱された加熱領域を、反応時に充填材料が流動状態で存在する領域(流動部)と、充填材料が実質的に流動しない領域(非流動部)とに分け、非流動部の支持部を加熱領域外に設けることで、分散板が不要になるか、または分散板を使用した場合でも従来のような目詰まりや劣化によって反応を停止させる必要がなくなり、長時間の連続反応が可能となることを見出し、本発明に想到した。   As a result of intensive studies to achieve the above object, the present inventors have found that the heated region heated to the reaction temperature is substantially equal to the region where the filler material is in a fluid state during the reaction (fluid portion) and the filler material is substantially By dividing it into a non-flowing area (non-flowing part) and providing a support part for the non-flowing part outside the heating area, there is no need for a dispersion plate, or even when a dispersion plate is used The present inventors have found that it is no longer necessary to stop the reaction due to deterioration or deterioration, and that a continuous reaction can be performed for a long time.

すなわち、本発明は下記を含む。
[1]粒子がガスとともに流動して接触反応し、固体状生成物を生成する流動部と、実質的に流動しない非流動部とを有し、前記流動部が加熱領域内にあり、前記非流動部の支持部が加熱領域外にある流動層反応装置である。
[2]前記非流動部の支持部が分散板である[1]に記載の流動層反応装置である。
[3]前記非流動部が前記固体状生成物を含む[1]または[2]に記載の流動層反応装置である。
[4]前記加熱領域外から前記加熱領域内に至る温度差でガス線速度が増加することで前記加熱領域内に非流動部と流動部とが形成されてなる[1]〜[3]のいずれかに記載の流動層反応装置である。
[5]前記流動部の反応器の最大断面積が前記加熱領域内の前記非流動部の反応器の最小断面積以下である[1]〜[4]のいずれかに記載の流動層反応装置である。
[6]前記非流動部の反応器の径が流動部へ向かって連続的に、または断続的に減少する[1]〜[4]のいずれかに記載の流動層反応装置である。
[7]生成物回収機構を有する[1]〜[6]のいずれかに記載の流動層反応装置である。
[8]触媒投入機構を有する[1]〜[7]のいずれかに記載の流動層反応装置である。
That is, the present invention includes the following.
[1] It has a fluidized part in which particles flow together with a gas and undergoes a contact reaction to produce a solid product, and a non-fluidized part that does not substantially flow, the fluidized part is in a heating region, This is a fluidized bed reactor in which the support part of the fluidized part is outside the heating region.
[2] The fluidized bed reactor according to [1], wherein the support part of the non-fluid part is a dispersion plate.
[3] The fluidized bed reactor according to [1] or [2], wherein the non-fluid part includes the solid product.
[4] The non-fluid part and the fluid part are formed in the heating region by increasing the gas linear velocity due to a temperature difference from the outside of the heating region to the inside of the heating region. A fluidized bed reactor according to any one of the above.
[5] The fluidized bed reactor according to any one of [1] to [4], wherein the maximum cross-sectional area of the reactor in the fluidized section is equal to or less than the minimum cross-sectional area of the reactor in the non-fluidized section in the heating region. It is.
[6] The fluidized bed reaction apparatus according to any one of [1] to [4], wherein the diameter of the reactor in the non-fluidized part decreases continuously or intermittently toward the fluidized part.
[7] The fluidized bed reactor according to any one of [1] to [6], having a product recovery mechanism.
[8] The fluidized bed reactor according to any one of [1] to [7], which has a catalyst charging mechanism.

[9][1]〜[8]のいずれかに記載の流動層反応装置において、前記粒子と前記ガスとを前記流動部で接触させる気相法炭素繊維の製造方法である。
[10]前記加熱領域の温度が400〜1300℃である[9]に記載の気相法炭素繊維の製造方法である。
[11]前記粒子がFe元素を含有する触媒であり、前記流動部に気相法炭素繊維を含む[9]または[10]に記載の気相法炭素繊維の製造方法である。
[12]前記加熱領域外から前記加熱領域内に至る温度差でガス線速度を増加させ前記加熱領域内に非流動部と流動部とを形成させる[9]〜[11]のいずれかに記載の気相法炭素繊維の製造方法である。
[13]前記流動部の反応器の最大断面積を、前記加熱領域内の前記非流動部の反応器の最小断面積以下とすることで、ガス線速度を変化させ前記非流動部と前記流動部とを形成させる[9]〜[11]のいずれかに記載の気相法炭素繊維の製造方法である。
[14]バッチ反応で所定時間反応させた後、前記流動部から気相法炭素繊維を回収する[9]〜[13]のいずれかに記載の気相法炭素繊維の製造方法である。
[15]前記粒子を連続的または断続的に投入しながら、前記流動部から気相法炭素繊維を連続的または断続的に回収する[9]〜[14]のいずれかに記載の気相法炭素繊維の製造方法である。
[9] The fluidized bed reaction apparatus according to any one of [1] to [8], wherein the particles and the gas are brought into contact with each other in the fluidized part.
[10] The method for producing vapor grown carbon fiber according to [9], wherein the temperature of the heating region is 400 to 1300 ° C.
[11] The method for producing vapor grown carbon fiber according to [9] or [10], wherein the particle is a catalyst containing Fe element, and the fluidized portion contains vapor grown carbon fiber.
[12] The gas linear velocity is increased by a temperature difference from the outside of the heating region to the inside of the heating region, and a non-flow portion and a fluid portion are formed in the heating region. It is a manufacturing method of vapor phase method carbon fiber.
[13] By setting the maximum cross-sectional area of the reactor in the flow section to be equal to or less than the minimum cross-sectional area of the reactor in the non-flow section in the heating region, the gas linear velocity is changed to change the non-flow section and the flow A vapor grown carbon fiber production method according to any one of [9] to [11].
[14] The method for producing a vapor grown carbon fiber according to any one of [9] to [13], wherein the vapor grown carbon fiber is recovered from the fluidized part after reacting for a predetermined time by a batch reaction.
[15] The gas phase method according to any one of [9] to [14], wherein the vapor phase carbon fiber is continuously or intermittently recovered from the fluidized part while the particles are continuously or intermittently charged. It is a manufacturing method of carbon fiber.

本発明の流動層反応装置によれば、分散板を用いることが不要となるか、または分散板を加熱領域外の低温部に設置することが可能となり、従来は長期連続運転の妨げとなっていた分散板の目詰まりや劣化をなくすことができる。また、本発明の気相法炭素繊維の製造方法によれば、安価に大量の気相法炭素繊維を製造することができる。   According to the fluidized bed reactor of the present invention, it is not necessary to use a dispersion plate, or it is possible to install the dispersion plate in a low temperature part outside the heating region, which has conventionally hindered long-term continuous operation. It is possible to eliminate clogging and deterioration of the dispersion plate. Moreover, according to the method for producing vapor grown carbon fiber of the present invention, a large amount of vapor grown carbon fiber can be produced at low cost.

[流動層反応装置]
図1に本発明の流動層反応装置の好ましい態様の一例を示す。
流動層反応装置10は、反応器11と反応器11の外周部に設けられたヒーター12とからなる。ヒーター12による加熱処理により、反応器11に加熱領域(ヒーター12のような加熱部が設けられている領域)が形成される。反応器11内には、反応時に非流動部13と流動部14とが形成される。非流動部13を構成する充填材料は、配管15を通じて下方から上方へ供給されるガスによっては、実質的には流動しない、すなわち、全く流動しないか振動する程度で固定化されている。また、流動部14は粒子などで構成されており、供給されるガスにより流動し、原料ガスとの接触反応を通して固体状生成物を生成する。
[Fluidized bed reactor]
FIG. 1 shows an example of a preferred embodiment of the fluidized bed reactor according to the present invention.
The fluidized bed reactor 10 includes a reactor 11 and a heater 12 provided on the outer periphery of the reactor 11. By the heat treatment by the heater 12, a heating region (a region in which a heating unit such as the heater 12 is provided) is formed in the reactor 11. A non-fluid part 13 and a fluid part 14 are formed in the reactor 11 during the reaction. The filling material constituting the non-fluid portion 13 is fixed to such an extent that it does not substantially flow, that is, does not flow or vibrates at all depending on the gas supplied from below to above through the pipe 15. Moreover, the fluidized part 14 is comprised with particle | grains etc., flows with the gas supplied, and produces | generates a solid-state product through a contact reaction with source gas.

図1に示すように、流動部14は加熱領域内にあり、非流動部13の支持部(下端部)は加熱領域外にある。かかる構成によれば、非流動部13の支持部は加熱領域外にあるので、従来のように分散板を加熱領域内に設けるよりも、受ける熱の影響をはるかに小さくすることができる。その結果、従来は長期連続運転の妨げとなっていた分散板の目詰まりや劣化をなくすことができる。   As shown in FIG. 1, the flow portion 14 is in the heating region, and the support portion (lower end portion) of the non-flow portion 13 is outside the heating region. According to such a configuration, since the support portion of the non-fluid portion 13 is outside the heating region, the influence of the received heat can be made much smaller than when the dispersion plate is provided in the heating region as in the prior art. As a result, it is possible to eliminate clogging and deterioration of the dispersion plate, which has been an obstacle to long-term continuous operation.

非流動部13が供給されるガスにより実質的に流動しないようにするには、充填材料の密度や粒子径などを適宜調整する。充填材料が粒子状物質の場合、当該粒子状物質は固体状生成物(反応生成物)を含むのがコンタミネーション抑制の観点から最も好ましい。また、非流動部の充填材料はその材料間の空隙が小さい方が、ガス流の乱れなどによって、流動部が非流動部に混入しにくいので好ましい。したがって、非流動部の充填材料は流動部の粒子と同程度の大きさであることが好ましく、少なくともその一部が同一であることがさらに好ましい。
なお、該粒子状物質が触媒粒子を含むと、非流動部で反応が進行するため好ましくない。
In order to prevent the non-fluid portion 13 from substantially flowing due to the supplied gas, the density and particle diameter of the filling material are adjusted as appropriate. When the filling material is a particulate substance, it is most preferable that the particulate substance contains a solid product (reaction product) from the viewpoint of suppressing contamination. Further, it is preferable that the filling material in the non-flowing portion has a small gap between the materials because the flowing portion is less likely to be mixed into the non-flowing portion due to gas flow disturbance or the like. Therefore, the filling material in the non-fluid part is preferably about the same size as the particles in the fluid part, and more preferably at least part of it is the same.
In addition, it is not preferable that the particulate matter contains catalyst particles because the reaction proceeds in the non-fluid part.

非流動部13は、図1に示すように加熱領域外まで存在している。非流動部13の支持部は一般の流動層反応装置で用いられるようなあらゆる種類の分散板16で保持することが可能である。分散板としては、例えば所定の孔が形成されガスを分散させるガス分散板などが挙げられる。分散板を加熱領域の外側に設置することで、熱による劣化や副反応、反応生成物による閉塞などの弊害を受けることなく、連続運転が可能となる。   The non-flow part 13 exists even outside the heating region as shown in FIG. The support part of the non-fluid part 13 can be held by any kind of dispersion plate 16 as used in a general fluidized bed reactor. Examples of the dispersion plate include a gas dispersion plate in which predetermined holes are formed and gas is dispersed. By disposing the dispersion plate outside the heating region, continuous operation can be performed without suffering from adverse effects such as deterioration due to heat, side reactions, and clogging due to reaction products.

非流動部13の支持部を保持する方法については、上述の分散板を用いる以外にも、その重量を保持できる構造であれば特に限定されない。単純な底板であってもよく、例えば、テーブルフィーダーやスクリューフィーダーなどの排出装置で保持することも可能である。この場合には、原料ガスなどは反応器11の非流動部13の側面などから、ノズルなどを設置して吹き込むことが好ましい。   About the method of hold | maintaining the support part of the non-fluid part 13, if it is a structure which can hold | maintain the weight other than using the above-mentioned dispersion plate, it will not specifically limit. A simple bottom plate may be used, and for example, it can be held by a discharge device such as a table feeder or a screw feeder. In this case, it is preferable that the raw material gas is blown from a side surface of the non-flow portion 13 of the reactor 11 by installing a nozzle or the like.

流動部14が供給されるガスにより流動されるようにするには、流動化されるような密度、粒子径の粒子を充填する。該粒子の少なくとも1種は触媒粒子であることが好ましく、他の1種は固体状生成物からなる粒子であることがさらに好ましく、触媒粒子と固体状生成物からなる粒子のみで構成されるのが最も好ましい。   In order for the fluidizing section 14 to be fluidized by the supplied gas, it is filled with particles having a density and particle diameter that can be fluidized. At least one of the particles is preferably a catalyst particle, and the other one is more preferably a particle made of a solid product, and is composed only of particles made of a catalyst particle and a solid product. Is most preferred.

非流動部13と流動部14とを設ける方法については特に限定されない。非流動部13のガス線速度を非流動部13の充填材料の流動化開始速度以下とし、流動部14のガス線速度を流動部14の粒子の流動化開始速度以上、終端速度以下とすればよい。このような非流動部13と流動部14を設ける好ましい例を下記(1)〜(4)に挙げる。   The method of providing the non-fluid part 13 and the fluid part 14 is not particularly limited. If the gas linear velocity of the non-fluid portion 13 is set to be equal to or lower than the fluidization start speed of the filling material of the non-fluid portion 13, and the gas linear velocity of the fluid portion 14 is set to be equal to or higher than the fluidization start speed of the particles of the fluid portion 14 and equal to or lower than the terminal velocity. Good. Preferred examples of providing such a non-fluid part 13 and a fluid part 14 are given in the following (1) to (4).

(1)第1の例
第1の例は、加熱領域の温度分布を利用する方法である。反応器の下方より導入された原料ガスは、加熱領域を通過することにより温度が上昇し、反応温度に到達する。その際、ガスの体積が膨張するため、ガス流速は温度上昇に伴って増加する。したがって、適切な密度と粒子径の充填材料(例えば、粉粒体)を反応器内に充填しておくと、加熱帯域のある領域から流動化を開始し、流動部と非流動部を形成させることができる。反応温度にあわせて、ガス流速、粉粒体の密度、粒子径を選定することによって、流動部と非流動部を所望の位置に設置することが可能となる。反応に供する原料ガスは予熱することが多いが、この場合はむしろ、予熱などの処理は行なわないで、反応器入り口温度と流動部の温度とでガス温度差が大きいほうが、ガス線速度差が大きくなるので好ましい場合もある。
(1) First Example The first example is a method that utilizes the temperature distribution in the heating region. The raw material gas introduced from below the reactor rises in temperature by passing through the heating region and reaches the reaction temperature. At this time, since the volume of the gas expands, the gas flow rate increases as the temperature rises. Therefore, when a reactor is filled with a packing material (for example, powder) having an appropriate density and particle size, fluidization starts from a region having a heating zone, and a fluidized portion and a non-fluidized portion are formed. be able to. By selecting the gas flow rate, the density of the granular material, and the particle diameter in accordance with the reaction temperature, the fluidized part and the non-fluidized part can be installed at desired positions. The raw material gas used for the reaction is often preheated. In this case, however, the preheating and other treatments are not performed, and the difference in gas linear velocity is larger when the gas temperature difference between the reactor inlet temperature and the fluidized part temperature is larger. Since it becomes large, it may be preferable.

(2)第2の例
第2の例は、流動部の反応器(流動部が形成される箇所)の最大断面積が加熱領域内の非流動部の反応器(非流動部が形成される箇所)の最小断面積以下としてガス流速を調整する方法が挙げられる。これにより、流動部の断面積が非流動部の断面積以下となる。そして、ガス流速が流動部で大きくなるため、非流動部では流動化開始速度以下のガス線速度となるように非流動部の径を決定し、流動部14の径は、流動化開始速度以上終端速度以下となるように決定すればよい。したがって、非流動部では反応器径は大きく、加熱領域の流動部から小さくなるような構造とすることが好ましい。
(2) Second Example In the second example, the maximum cross-sectional area of the reactor of the fluidized part (where the fluidized part is formed) is the reactor of the non-fluidized part in the heating region (the non-fluidized part is formed). A method of adjusting the gas flow rate to be equal to or less than the minimum cross-sectional area of the portion). Thereby, the cross-sectional area of the fluidized part becomes equal to or smaller than the cross-sectional area of the non-fluidized part. And since the gas flow rate becomes large in the fluidized part, the diameter of the non-fluidized part is determined so that the gas linear velocity is less than or equal to the fluidization start speed in the non-fluidized part. What is necessary is just to determine so that it may become below terminal speed. Therefore, it is preferable to have a structure in which the reactor diameter is large in the non-flow portion and smaller than the flow portion in the heating region.

上記構造としては、例えば、図1に示すように非流動部の反応器の断面積が流動部へ向かって連続的に減少するような形状(テーパ状)としてもよく、また、反応器の断面積が断続的に減少するような階段形状としてよい。断続的に減少するような階段形状とは、図2に示すように、非流動部23と流動部24との境界に段差がある形状をいう。
前述の第1の例では、ガス流速、粉粒体の選定などの制約が大きくなるので、第2の例のほうがより好ましい。
As the above structure, for example, as shown in FIG. 1, the cross-sectional area of the reactor in the non-flow portion may continuously decrease toward the flow portion (taper shape). It is good also as a staircase shape that an area reduces intermittently. The staircase shape that decreases intermittently refers to a shape having a step at the boundary between the non-flow portion 23 and the flow portion 24 as shown in FIG.
In the first example described above, restrictions such as the gas flow rate and selection of the granular material increase, so the second example is more preferable.

(3)第3の例
第3の例は、非流動部と流動部に充填する粉粒体の密度、粒子径を変えることで、ガス線速度は一定であっても、非流動部の流動化開始速度を流動部の流動化開始速度より大きくすることで、非流動部と流動部を形成するものである。
(3) Third Example The third example is the flow of the non-fluid part even if the gas linear velocity is constant by changing the density and particle diameter of the powder particles filling the non-fluid part and the fluid part. A non-fluid part and a fluid part are formed by making the fluidization start speed larger than the fluidization start speed of the fluid part.

なお、非流動部および流動部へ充填する粉粒体が固体状生成物でない場合には、製品(固体状生成物)へ粉粒体が混入する可能性がある。したがって、固体状生成物を造粒、圧密するなどして、その粒子径や密度を調整して非流動部および流動部のそれぞれに充填する粉粒体として使用するのが好ましい。   In addition, when the granular material with which a non-fluid part and a fluid part are filled is not a solid product, there is a possibility that the granular material is mixed into the product (solid product). Therefore, it is preferable to use the solid product as a granule that is filled in each of the non-fluid part and the fluid part by adjusting the particle diameter and density by granulating and compacting the product.

(4)第4の例
第4の例は、非流動部下部より、非流動部の流動化開始速度以下の線速度で原料ガスあるいは、流動化ガスを導入し、流動部でさらに流動化開始速度以上になるように反応ガスあるいは流動化ガスを、ノズルなどを介して導入するものである。当該例では、ガス導入部付近でガスの流れが乱れ、流動部と非流動部の境界が乱れることがあるが、そのような場合は、流動化ガスの流速を調整したり、ガス導入部の位置や数を調整したりすればよい。
(4) Fourth Example In the fourth example, the raw material gas or fluidized gas is introduced from the lower part of the non-fluidized part at a linear velocity equal to or lower than the fluidization start speed of the non-fluidized part, and further fluidization is started in the fluidized part. The reaction gas or fluidizing gas is introduced through a nozzle or the like so as to be higher than the speed. In this example, the gas flow is disturbed in the vicinity of the gas introduction part, and the boundary between the fluid part and the non-fluid part may be disturbed. In such a case, the flow rate of the fluidizing gas is adjusted, Adjust the position and number.

本発明の流動層反応装置は、流動部と非流動部を有し、非流動部の支持部が加熱領域外にある構成であれば、一般の流動層反応装置で用いられる様々な要素技術を用いることは当然可能である。そのような技術の一例としては、反応器上部にフリーボード部やサイクロンを設置することで、微粒部分を再循環させたりすることも当然可能である。
また、バッチ反応で所定時間反応させた後、流動部から固体状生成物(気相法炭素繊維など)を回収する生成物回収機構や、反応器内に断続的あるいは連続的に触媒を供給する触媒投入機構を設けてもよい。
If the fluidized bed reactor of the present invention has a fluidized part and a non-fluidized part, and the support part of the non-fluidized part is outside the heating region, various elemental techniques used in general fluidized bed reactors are used. It is naturally possible to use it. As an example of such a technique, it is of course possible to recirculate the fine particle part by installing a free board part or a cyclone in the upper part of the reactor.
In addition, after reacting for a predetermined time in a batch reaction, a catalyst is supplied intermittently or continuously into a product recovery mechanism for recovering a solid product (such as vapor-grown carbon fiber) from a fluidized part or a reactor. A catalyst charging mechanism may be provided.

本発明の流動層反応装置では、図1および図2に示すように、原料ガスは反応装置の下部から上部へ流通させるのが好ましい。上述のように、原料ガスの一部または全部を流動部へ導入することも当然可能である。反応の原料が固体または液体である場合には、あらかじめ、気化させるなどしてガス化させてから、原料ガスとして使用することが好ましい。   In the fluidized bed reactor of the present invention, as shown in FIGS. 1 and 2, the raw material gas is preferably circulated from the lower part to the upper part of the reactor. As described above, it is naturally possible to introduce part or all of the raw material gas into the fluidizing section. When the raw material for the reaction is solid or liquid, it is preferably used as a raw material gas after vaporizing it in advance.

本発明の流動層反応装置では、上記の原料ガスに加えて、ガス線速度を調整するために流動化ガスを併用することが可能である。流動化ガスとしては、反応に悪影響を与えなければ特に限定されず、あらゆる種類のガスが使用可能である。   In the fluidized bed reactor of the present invention, a fluidizing gas can be used in combination with the above raw material gas in order to adjust the gas linear velocity. The fluidizing gas is not particularly limited as long as it does not adversely affect the reaction, and any kind of gas can be used.

また、本発明の流動層反応装置は、流動部において流動状態で反応を行うものであれば、いかなる反応にも適用可能である。
但し、生成物がガス状物質の場合など、固体の生成が少ない場合には本発明を用いなくとも分散板の目詰まりなどの問題が発生しにくい。従って、反応生成物が固体であるのが好ましく、気相法炭素繊維の製造に用いることがより好ましい。
In addition, the fluidized bed reaction apparatus of the present invention can be applied to any reaction as long as the reaction is performed in a fluidized state in the fluidizing section.
However, problems such as clogging of the dispersion plate are unlikely to occur without using the present invention when the production of solids is small, such as when the product is a gaseous substance. Therefore, the reaction product is preferably a solid, and more preferably used for the production of vapor grown carbon fiber.

[気相法炭素繊維の製造方法]
本発明の気相法炭素繊維の製造方法は、既述の本発明の流動層反応装置において、粒子とガスとを流動部で接触させるものである。本発明においても流動層反応装置内の加熱領域外から加熱領域内に至る温度差でガス線速度を増加(変化)させ加熱領域内に非流動部と流動部とが形成させることが好ましい。これら非流動部および流動部の形成方法は、既述の第1〜第4の例を適用することができる。また、粒子とガスとの接触は、加熱領域の温度を400〜1300℃とし、気相法炭素繊維形成条件下で行うことが好ましい。さらに、非流動部の支持部の温度は、支持部に用いる分散板などと原料ガスの反応や劣化が生じなければ特に限定されない。好ましい温度範囲は用いる分散板の材質、形状や、原料ガスの種類濃度などによって異なるため、一概には決められないが、通常は300℃以下で、好ましくは200℃以下、さらに好ましく100℃以下である。
[Method of producing vapor grown carbon fiber]
The method for producing vapor-grown carbon fiber of the present invention is such that particles and gas are brought into contact with each other in a fluidized part in the fluidized bed reactor of the present invention described above. Also in the present invention, it is preferable that the gas linear velocity is increased (changed) by the temperature difference from the outside of the heating region to the inside of the heating region in the fluidized bed reactor so that the non-fluid part and the fluid part are formed in the heating area. The above-described first to fourth examples can be applied to the forming method of the non-fluid part and the fluid part. Further, the contact between the particles and the gas is preferably carried out under conditions of vapor grown carbon fiber formation with the temperature of the heating region being 400 to 1300 ° C. Furthermore, the temperature of the support part of the non-flowing part is not particularly limited as long as the dispersion plate used for the support part and the raw material gas do not react or deteriorate. Since the preferred temperature range varies depending on the material and shape of the dispersion plate used, the type concentration of the raw material gas, etc., it cannot be generally determined, but is usually 300 ° C. or lower, preferably 200 ° C. or lower, more preferably 100 ° C. or lower. is there.

非流動部のガス線速度は0.1m/sec以下が好ましく、0.05m/sec以下がより好ましく、0.02m/sec以下がさらに好ましい。また、流動部のガス線速度は0.05m/sec以上が好ましく、0.10m/sec以上がより好ましく、0.15m/sec以上がさらに好ましい。   The gas linear velocity in the non-fluid part is preferably 0.1 m / sec or less, more preferably 0.05 m / sec or less, and further preferably 0.02 m / sec or less. Further, the gas linear velocity in the fluidized portion is preferably 0.05 m / sec or more, more preferably 0.10 m / sec or more, and further preferably 0.15 m / sec or more.

ここで、反応生成物の流動化範囲(流動化開始速度〜終端速度)は、触媒の流動化範囲と少なくともその一部が同一であることが好ましい。反応生成物の終端速度が触媒の終端速度よりも小さいと反応中に生成した生成物が連続的に排出させることができるのでより好ましい場合もあるが、これにより、充分な滞留時間が取れない場合もあるので、この場合には、反応生成物の終端速度は触媒の終端速度と同等であることが好ましい。   Here, the fluidization range of the reaction product (fluidization start speed to termination speed) is preferably at least partially the same as the fluidization range of the catalyst. If the terminal rate of the reaction product is smaller than the terminal rate of the catalyst, the product generated during the reaction can be discharged continuously, which may be more preferable, but this does not allow sufficient residence time. In this case, it is preferable that the termination rate of the reaction product is equal to the termination rate of the catalyst.

上記粒子はFe元素を含有する触媒であることが好ましく、また、流動部には気相法炭素繊維を含むことが好ましい。   The particles are preferably a catalyst containing Fe element, and the fluidized part preferably contains vapor grown carbon fiber.

上記触媒としては、気相法炭素繊維の生成を促進するものであれば、特に制約はないが、一般的にはFe,Co,Niなどの遷移金属元素を含むことが好ましく、Fe元素を含有することがより好ましい。さらに、担体に上記金属を担持した担持触媒であることが好ましい。
また、他の遷移金属元素を助触媒として含有していることが好ましい。このような助触媒元素としては、Mo,W,Cr,V,Mn,Tiなどが好ましく、MoとV、MoとCr,WとV、WとCrなど2種以上の組み合わせがさらに好ましい。
The catalyst is not particularly limited as long as it promotes the formation of vapor grown carbon fiber, but generally contains a transition metal element such as Fe, Co, Ni, etc., and contains an Fe element. More preferably. Furthermore, a supported catalyst having the above metal supported on a carrier is preferable.
Moreover, it is preferable to contain other transition metal elements as a promoter. As such a promoter element, Mo, W, Cr, V, Mn, Ti and the like are preferable, and combinations of two or more such as Mo and V, Mo and Cr, W and V, and W and Cr are more preferable.

これらの触媒は、その前駆体粒子や、金属、合金粒子として使用することも可能であるが、担体に担持するのが好ましい。触媒担体としては、公知のあらゆる化合物が使用可能であるが、反応条件下で安定な無機物が好ましい。このような好ましい無機担体としては、アルミナ、シリカ、チタニア、シリカチタニア、マグネシア、スピネルなどが挙げられる。   These catalysts can be used as precursor particles, metal or alloy particles, but are preferably supported on a carrier. As the catalyst carrier, any known compound can be used, but an inorganic substance that is stable under the reaction conditions is preferable. Examples of such a preferable inorganic carrier include alumina, silica, titania, silica titania, magnesia, spinel and the like.

触媒粒子および担持触媒粒子は反応条件下で、流動状態にあることが望ましいため、その粒子径は1〜1000μmが好ましく、10〜500μmがより好ましい。触媒粒子および担持触媒粒子の粒子径は、触媒調整条件や触媒調整に使用する触媒前駆体化合物や触媒担体を適切に調整することで、好ましい範囲に調整することも可能であるが、触媒調製後に、粉砕、解砕、分級処理をすることで、所望の粒度範囲に調整するのが特に好ましい。   Since it is desirable that the catalyst particles and the supported catalyst particles are in a fluid state under the reaction conditions, the particle diameter is preferably 1 to 1000 μm, more preferably 10 to 500 μm. The particle size of the catalyst particles and the supported catalyst particles can be adjusted to a preferred range by appropriately adjusting the catalyst adjustment conditions and the catalyst precursor compound and catalyst carrier used for catalyst adjustment. It is particularly preferable to adjust to a desired particle size range by pulverizing, crushing, and classifying.

原料としての上記ガスは、メタン、エタン、エチレン、プロピレン、ベンゼン、トルエンなど気相法炭素繊維の合成に使用することができるあらゆる炭素化合物が使用可能で、これらをキャリアガスなどで希釈したものを反応ガスとして使用することが可能である。   The above gas as a raw material can be any carbon compound that can be used for the synthesis of vapor grown carbon fiber such as methane, ethane, ethylene, propylene, benzene, toluene, and those diluted with a carrier gas. It can be used as a reaction gas.

非流動部には、充填材料として気相法炭素繊維自身を使用することが好ましい。流動部は担持触媒だけで構成することも可能であるが、気相法炭素繊維の合成においては、合成時の体積膨張が大きいため、流動部にも気相法炭素繊維を含有しているほうが、体積膨張を緩和でき、反応炉の閉塞などを生じにくいので好ましい。   In the non-flow portion, it is preferable to use vapor grown carbon fiber itself as a filling material. Although it is possible to configure the fluidized part only with the supported catalyst, in the synthesis of vapor grown carbon fiber, since the volume expansion during synthesis is large, the fluidized part should also contain vapor grown carbon fiber. It is preferable because volume expansion can be relaxed and the reactor is hardly blocked.

担持触媒はあらかじめ、流動部に充填する気相法炭素繊維と同時に反応器内に充填することも可能であるが、反応装置に触媒投入機構を設置し、断続的あるいは連続的に触媒を供給することも可能である。   The supported catalyst can be filled in the reactor at the same time as the vapor grown carbon fiber filled in the fluidized part in advance, but a catalyst charging mechanism is installed in the reactor to supply the catalyst intermittently or continuously. It is also possible.

固体状生成物(気相法炭素繊維など)は所定の反応時間経過後に回収することが可能である。この場合には、流動部のみを回収してもいいし、流動部と非流動部を同時に回収することも可能である。反応中のガス流の乱れなどにより、流動部が非流動部に混合される場合もあるので、非流動部の一部も含めて回収するのがより好ましい。   Solid products (such as vapor grown carbon fibers) can be recovered after a predetermined reaction time. In this case, only the fluidized part may be recovered, or the fluidized part and the non-fluidized part may be recovered simultaneously. Since the fluidized part may be mixed with the non-fluidized part due to turbulence of the gas flow during the reaction, it is more preferable to collect the part including the non-fluidized part.

また、生成物を反応中に連続的に回収することも可能である。この場合には、反応の進行により体積が膨張するので、反応器内の粉体高さを一定になる様に固体状生成物を連続的に回収するのがより好ましい。   It is also possible to recover the product continuously during the reaction. In this case, since the volume expands as the reaction proceeds, it is more preferable to continuously recover the solid product so that the powder height in the reactor becomes constant.

本発明の製造方法により得られる気相法炭素繊維は、粒子(例えば、触媒)とガス(例えば、原料ガス)の接触が効率よく行われるため、単位触媒あたりの気相法炭素繊維(例えば、カーボンナノチューブ)の生成量が多い。さらに、気相法炭素繊維を流動部および非流動部に充填する粉粒体として使用することで、コンタミネーションが抑制されるため、高純度の気相法炭素繊維が得られやすいという特徴を有する。本発明において得られる気相法炭素繊維中の金属不純物量は、通常10重量%以下で、好ましくは5重量%以下、さらに好ましくは3重量%以下、最も好ましくは1.5重量%以下である。   Since the vapor grown carbon fiber obtained by the production method of the present invention is efficiently contacted with particles (for example, catalyst) and gas (for example, raw material gas), the vapor grown carbon fiber per unit catalyst (for example, A large amount of carbon nanotubes is generated. Furthermore, since the contamination is suppressed by using the vapor grown carbon fiber as a powder body that fills the fluidized portion and the non-fluidized portion, it has a feature that a high purity vapor grown carbon fiber is easily obtained. . The amount of metal impurities in the vapor grown carbon fiber obtained in the present invention is usually 10% by weight or less, preferably 5% by weight or less, more preferably 3% by weight or less, and most preferably 1.5% by weight or less. .

以下に本発明について代表的な例を示し、さらに具体的に説明する。なお、本発明はこれらに何等制限されるものではない。   The present invention will be described in more detail below with typical examples. Note that the present invention is not limited to these.

(担持触媒の調製)
硝酸鉄(III)九水和物(和光純薬製特級試薬)1.8質量部をメタノール1.5質量部に溶解した。次いで、メタバナジン酸アンモニウム(関東化学製特級試薬)0.05質量部、七モリブデン酸アンモニウム(和光純薬工業製特級試薬)0.075質量部を溶解し触媒調製液を得た。市販のガンマアルミナ(住友化学製AKP−G015)1質量部に触媒調製液を滴下混練し、ペースト状の混合物を得た。ペースト状の混合物は100℃の真空乾燥機で4時間乾燥させた後、乳鉢で粉砕後45μm〜250μmに分級し触媒を調製した。
(Preparation of supported catalyst)
1.8 parts by mass of iron (III) nitrate nonahydrate (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 1.5 parts by mass of methanol. Next, 0.05 parts by mass of ammonium metavanadate (special grade reagent manufactured by Kanto Chemical) and 0.075 parts by mass of ammonium heptamolybdate (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved to obtain a catalyst preparation solution. The catalyst preparation liquid was dropped and kneaded into 1 part by mass of commercially available gamma alumina (AKP-G015 manufactured by Sumitomo Chemical Co., Ltd.) to obtain a paste-like mixture. The paste-like mixture was dried with a vacuum dryer at 100 ° C. for 4 hours, pulverized with a mortar and classified to 45 μm to 250 μm to prepare a catalyst.

(比較例1)
図4に示した流動層反応装置を用い、下記のようにして気相法炭素繊維を製造した。
まず、反応器41としては30mmφの石英製反応管(長さ110cm)を用い、分散板43としてステンレス製の325メッシュの網を、ヒーター42としての電気炉(高さ40cm)の中心部に位置するように反応管内に設置した。反応管のうち電気炉の加熱部で覆われた箇所が加熱により加熱領域を形成する(実施例1も同様)。分散板43上には気相法炭素繊維10gと触媒0.5gを充填し流動部44を設けた。
(Comparative Example 1)
Using the fluidized bed reactor shown in FIG. 4, vapor grown carbon fiber was produced as follows.
First, a 30 mmφ quartz reaction tube (length 110 cm) is used as the reactor 41, and a stainless steel 325 mesh net is positioned as the dispersion plate 43 at the center of the electric furnace (height 40 cm) as the heater 42. It was installed in the reaction tube. A portion of the reaction tube covered with the heating portion of the electric furnace forms a heating region by heating (the same applies to Example 1). On the dispersion plate 43, 10 g of vapor grown carbon fiber and 0.5 g of catalyst were filled and a fluidized portion 44 was provided.

この状態で、マスフローコントローラ45aで1500ml/minに調整した窒素ガスを流しながら、電気炉を690℃まで昇温させた。その後、窒素ガスの供給を止めて、マスフローコントローラ45bおよび45cで、それぞれ900ml/minに調整したエチレンガスおよび水素ガスを流通させて60分間反応を行った。反応中は良好な流動状態を示した。その時の流動部高さは20cmであった。反応終了後、反応ガスを窒素ガス1500ml/minに切り替え、反応炉を冷却し、気相法炭素繊維を回収した。気相法炭素繊維の回収量は22gであった。
回収した気相法炭素繊維の金属不純物量を下記のようにして測定したところ、1.8質量%であった。また、反応後の分散板上には気相法炭素繊維が大量に付着していた。分散板を取り出し、手でたわませたところ、簡単に破損したことから、比較例1は長期連続運転には向かないことがわかった。
In this state, the electric furnace was heated to 690 ° C. while flowing nitrogen gas adjusted to 1500 ml / min by the mass flow controller 45a. Thereafter, the supply of nitrogen gas was stopped, and ethylene gas and hydrogen gas adjusted to 900 ml / min were circulated by the mass flow controllers 45b and 45c, respectively, and the reaction was performed for 60 minutes. A good flow state was shown during the reaction. The fluidized part height at that time was 20 cm. After completion of the reaction, the reaction gas was switched to 1500 ml / min of nitrogen gas, the reaction furnace was cooled, and vapor grown carbon fiber was recovered. The recovered amount of vapor grown carbon fiber was 22 g.
It was 1.8 mass% when the metal impurity amount of the collect | recovered vapor grown carbon fiber was measured as follows. In addition, a large amount of vapor grown carbon fiber adhered to the dispersion plate after the reaction. When the dispersion plate was taken out and bent by hand, it was easily broken, so it was found that Comparative Example 1 was not suitable for long-term continuous operation.

なお、上記不純物量は、CCD多元素同時型ICP発光分光分析装置(VARIAN社製:VISTA−PRO)を用い、高周波出力1200W、測定時間5秒間で行った。詳細には、気相法炭素繊維0.1gを石英製ビーカーに精秤し、硫硝酸分解を行った。冷却後50mlに定容した。この溶液を適宜希釈し、ICP−AES(Atomic Emission Spectrometer)にて各元素の定量を行った。   The amount of impurities was measured using a CCD multi-element simultaneous ICP emission spectroscopic analyzer (manufactured by VARIAN: VISTA-PRO) with a high-frequency output of 1200 W and a measurement time of 5 seconds. Specifically, 0.1 g of vapor grown carbon fiber was precisely weighed in a quartz beaker and subjected to sulfur nitrate decomposition. After cooling, the volume was adjusted to 50 ml. This solution was appropriately diluted, and each element was quantified by ICP-AES (Atomic Emission Spectrometer).

(実施例1)
図2に示した流動層反応装置を用い、下記のようにして気相法炭素繊維を製造した。
まず、反応器21として直径30mmφの石英反応管(長さ40cm)と直径50mmφの石英製反応管(長さ70cm)とを接合したものを用いた。直径50mmφの石英製反応管側を非流動部23とし、直径30mmφの石英反応管側を流動部24とし、非流動部と流動部の境界をヒーター22(高さ40cm)の中心部分に設置し、ヒーター22の下端から15cmの部分に分散板26として、ステンレス製の325メッシュの網を設置した。非流動部には、比較例1で作製した気相法炭素繊維100gを充填し、流動部には同気相法炭素繊維2.5gと担持触媒0.5gを充填した。
Example 1
Using the fluidized bed reactor shown in FIG. 2, vapor grown carbon fiber was produced as follows.
First, as the reactor 21, a quartz reaction tube (length 40 cm) having a diameter of 30 mmφ and a quartz reaction tube (length 70 cm) having a diameter of 50 mmφ were used. The quartz reaction tube side with a diameter of 50 mmφ is the non-flow portion 23, the quartz reaction tube side with a diameter of 30 mmφ is the flow portion 24, and the boundary between the non-flow portion and the flow portion is set at the center of the heater 22 (height 40 cm). A stainless steel 325 mesh net was installed as a dispersion plate 26 at a portion 15 cm from the lower end of the heater 22. The non-fluid part was filled with 100 g of the vapor grown carbon fiber prepared in Comparative Example 1, and the fluidized part was filled with 2.5 g of the vapor grown carbon fiber and 0.5 g of the supported catalyst.

この状態で、マスフローコントローラ25aで1500ml/minに調整した窒素ガスを流しながら、電気炉を690℃まで昇温させた。その後、窒素ガスの供給を止めて、マスフローコントローラ25bおよび25cで、それぞれ900ml/minに調整したエチレンガスおよび水素ガスを流通させて、反応を行った。なお、分散板26部分の温度は約45℃であった。   In this state, the electric furnace was heated to 690 ° C. while flowing nitrogen gas adjusted to 1500 ml / min by the mass flow controller 25a. Thereafter, the supply of nitrogen gas was stopped, and the reaction was carried out by flowing ethylene gas and hydrogen gas adjusted to 900 ml / min with the mass flow controllers 25b and 25c, respectively. The temperature of the dispersion plate 26 was about 45 ° C.

非流動部では粉体の流動は確認されなかったが、流動部では気相法炭素繊維と触媒が激しく流動していた。そのまま60分間反応を行なったところ、流動部の高さは約20cmで、非流動部との境目から激しく流動していた。反応後、反応ガスを窒素ガス1500ml/minに切り替え反応炉を冷却し、気相法炭素繊維を回収した。回収された気相法炭素繊維は120gであった。回収した気相法炭素繊維の金属不純物量を比較例1と同様にして測定し、初期に導入した気相法炭素繊維中の不純物量から本反応で生成した気相法炭素繊維の金属不純物量を算出したところ合計1.2質量%であった。
反応後の分散板上に気相法炭素繊維の付着はなく、手でたわませても破損することはなく、長期連続運転が可能であることがわかった。
Although no powder flow was confirmed in the non-fluid part, the vapor grown carbon fiber and the catalyst were vigorously flowing in the fluid part. When the reaction was carried out for 60 minutes as it was, the height of the fluidized part was about 20 cm, and it flowed violently from the boundary with the non-fluidized part. After the reaction, the reaction gas was switched to 1500 ml / min of nitrogen gas, the reaction furnace was cooled, and vapor grown carbon fiber was recovered. The recovered vapor grown carbon fiber was 120 g. The amount of metal impurities in the recovered vapor grown carbon fiber was measured in the same manner as in Comparative Example 1, and the amount of metal impurities in the vapor grown carbon fiber produced in this reaction from the amount of impurities in the initially introduced vapor grown carbon fiber. Was calculated to be 1.2% by mass in total.
It was found that there was no adhesion of vapor grown carbon fiber on the dispersion plate after the reaction, and there was no damage even if it was bent by hand, and long-term continuous operation was possible.

本発明の流動層反応装置の一態様を示す概略構成図である。It is a schematic block diagram which shows the one aspect | mode of the fluidized bed reaction apparatus of this invention. 本発明の流動層反応装置の一態様を示す概略構成図である。It is a schematic block diagram which shows the one aspect | mode of the fluidized bed reaction apparatus of this invention. 従来の流動層反応装置の一態様を示す概略構成図である。It is a schematic block diagram which shows the one aspect | mode of the conventional fluidized bed reaction apparatus. 比較例で用いた流動層反応装置を示す概略構成図である。It is a schematic block diagram which shows the fluidized bed reaction apparatus used by the comparative example.

符号の説明Explanation of symbols

10,20・・・流動層反応装置
11,21・・・反応器
12,22・・・ヒーター
13,23・・・非流動部
14,24・・・流動部
15,25・・・配管
16,26・・・支持板
DESCRIPTION OF SYMBOLS 10,20 ... Fluidized bed reactor 11,21 ... Reactor 12,22 ... Heater 13,23 ... Non-flow part 14,24 ... Flow part 15,25 ... Pipe 16 , 26 ... Support plate

Claims (15)

粒子がガスとともに流動して接触反応し、固体状生成物を生成する流動部と、実質的に流動しない非流動部とを有し、
前記流動部が加熱領域内にあり、前記非流動部の支持部が加熱領域外にある流動層反応装置。
The particles flow together with the gas to contact and react to form a solid product, and a non-flowing portion that does not substantially flow,
The fluidized bed reaction apparatus, wherein the fluidized part is in a heating region, and the support part of the non-fluidized part is outside the heating region.
前記非流動部の支持部が分散板である請求項1に記載の流動層反応装置。   The fluidized bed reactor according to claim 1, wherein the support part of the non-fluid part is a dispersion plate. 前記非流動部が前記固体状生成物を含む請求項1または2に記載の流動層反応装置。   The fluidized bed reaction apparatus according to claim 1 or 2, wherein the non-fluid part includes the solid product. 前記加熱領域外から前記加熱領域内に至る温度差でガス線速度が増加することで前記加熱領域内に非流動部と流動部とが形成されてなる請求項1〜3のいずれか1項に記載の流動層反応装置。   The non-fluid part and the fluid part are formed in the heating region by increasing the gas linear velocity due to a temperature difference from the outside of the heating region to the inside of the heating region. The fluidized bed reactor described. 前記流動部の反応器の最大断面積が前記加熱領域内の前記非流動部の反応器の最小断面積以下である請求項1〜4のいずれか1項に記載の流動層反応装置。   The fluidized bed reactor according to any one of claims 1 to 4, wherein a maximum cross-sectional area of the reactor in the fluidized part is equal to or less than a minimum cross-sectional area of the reactor in the non-fluidized part in the heating region. 前記非流動部の反応器の径が流動部へ向かって連続的に、または断続的に減少する請求項1〜4のいずれか1項に記載の流動層反応装置。   The fluidized bed reaction apparatus according to any one of claims 1 to 4, wherein the diameter of the reactor in the non-fluid part decreases continuously or intermittently toward the fluid part. 生成物回収機構を有する請求項1〜6のいずれか1項に記載の流動層反応装置。   The fluidized bed reactor according to any one of claims 1 to 6, which has a product recovery mechanism. 触媒投入機構を有する請求項1〜7のいずれか1項に記載の流動層反応装置。   The fluidized bed reactor according to any one of claims 1 to 7, which has a catalyst charging mechanism. 請求項1〜8のいずれか1項に記載の流動層反応装置中で、前記粒子と前記ガスとを前記流動部で接触させる気相法炭素繊維の製造方法。   The manufacturing method of the vapor grown carbon fiber which makes the said particle | grains and the said gas contact in the fluidized part in the fluidized bed reaction apparatus of any one of Claims 1-8. 前記加熱領域の温度が400〜1300℃である請求項9に記載の気相法炭素繊維の製造方法。   The method for producing vapor grown carbon fiber according to claim 9, wherein the temperature of the heating region is 400 to 1300 ° C. 前記粒子がFe元素を含有する触媒であり、前記流動部に気相法炭素繊維を含む請求項9または10に記載の気相法炭素繊維の製造方法。   The method for producing vapor grown carbon fiber according to claim 9 or 10, wherein the particles are a catalyst containing Fe element, and the fluidized portion contains vapor grown carbon fiber. 前記加熱領域外から前記加熱領域内に至る温度差でガス線速度を増加させ前記加熱領域内に非流動部と流動部とを形成させる請求項9〜11のいずれか1項に記載の気相法炭素繊維の製造方法。   The gas phase according to any one of claims 9 to 11, wherein a gas linear velocity is increased by a temperature difference from the outside of the heating region to the inside of the heating region to form a non-fluid part and a fluid part in the heating region. A method for producing carbon fiber. 前記流動部の反応器の最大断面積を、前記加熱領域内の前記非流動部の反応器の最小断面積以下とすることで、ガス線速度を変化させ前記非流動部と前記流動部とを形成させる請求項9〜11のいずれか1項に記載の気相法炭素繊維の製造方法。   By making the maximum cross-sectional area of the reactor of the fluidized part not more than the minimum cross-sectional area of the reactor of the non-fluidized part in the heating region, the gas linear velocity is changed and the non-fluidized part and the fluidized part are The method for producing vapor grown carbon fiber according to any one of claims 9 to 11, which is formed. バッチ反応で所定時間反応させた後、前記流動部から気相法炭素繊維を回収する請求項9〜13のいずれか1項に記載の気相法炭素繊維の製造方法。   The method for producing vapor grown carbon fiber according to any one of claims 9 to 13, wherein the vapor grown carbon fiber is recovered from the fluidized part after reacting for a predetermined time in a batch reaction. 前記粒子を連続的または断続的に投入しながら、前記流動部から気相法炭素繊維を連続的または断続的に回収する請求項9〜14のいずれか1項に記載の気相法炭素繊維の製造方法。   The vapor grown carbon fiber according to any one of claims 9 to 14, wherein the vapor grown carbon fiber is continuously or intermittently recovered from the fluidized part while the particles are continuously or intermittently charged. Production method.
JP2008175316A 2008-07-04 2008-07-04 Fluidized bed reactor and manufacturing method of vapor grown carbon fiber Pending JP2010012422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008175316A JP2010012422A (en) 2008-07-04 2008-07-04 Fluidized bed reactor and manufacturing method of vapor grown carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008175316A JP2010012422A (en) 2008-07-04 2008-07-04 Fluidized bed reactor and manufacturing method of vapor grown carbon fiber

Publications (1)

Publication Number Publication Date
JP2010012422A true JP2010012422A (en) 2010-01-21

Family

ID=41699065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008175316A Pending JP2010012422A (en) 2008-07-04 2008-07-04 Fluidized bed reactor and manufacturing method of vapor grown carbon fiber

Country Status (1)

Country Link
JP (1) JP2010012422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014125418A (en) * 2012-12-27 2014-07-07 Mitsubishi Materials Corp Apparatus and method for producing carbon nanofiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014125418A (en) * 2012-12-27 2014-07-07 Mitsubishi Materials Corp Apparatus and method for producing carbon nanofiber

Similar Documents

Publication Publication Date Title
US7947245B2 (en) Method for producing nanocarbon and catalytic reaction device for producing nanocarbon
KR101460373B1 (en) Method for the production of carbon nanotubes in a fluidized bed
CN106622044B (en) Ammoxidation reactor and nitrile compound preparation method
JP6508602B2 (en) METHOD FOR PRODUCING CARBON NANOSTRUCTURE, CARBON NANOSTRUCTURE PRODUCED BY THE SAME, AND COMPOSITE MATERIAL COMPRISING THE SAME
KR20120098834A (en) Gas phase reaction method
US11161806B2 (en) Process for producing compound
KR101800309B1 (en) Fluidized bed reactor and process for preparing carbon nanostructures using same
JP2010012422A (en) Fluidized bed reactor and manufacturing method of vapor grown carbon fiber
KR101771290B1 (en) Manufacturing device for carbon nanostructures and process for preparing carbon nanostructures by using same
KR102095517B1 (en) Fluidiizing bed reactor with temperature controller and process for preparing carbon nanostructures using same
JP7352692B2 (en) Method for producing unsaturated nitrile
KR102000899B1 (en) Method for producing unsaturated nitrile
KR101834612B1 (en) process for Preparing carbon nanostructures and carbon nanostructures prepared by same
CN117730133A (en) Reactor and method for producing carbonaceous material
KR101783512B1 (en) Fluidized bed reactor and process for preparing carbon nanostructures using same
JP2020083832A (en) Unsaturated nitrile production method
KR20150130045A (en) Fluidized bed reactor and process for preparing carbon nanostructures using same
WO2023276677A1 (en) Hydrogen producing device and hydrogen producing method
KR101773653B1 (en) Fluidized bed reactor and process for preparing carbon nanostructures using same
KR101741298B1 (en) Preparation of carbon nanostructures
RU2357796C2 (en) Method and reactor for realisation of gas-phase chemical processes by aerosol nanocatalysis
KR20230083719A (en) Method and apparatus for manufacturing hydrogen and carbon product using fluidized reactor comprising activation-pretreated catalyst
KR20140146731A (en) Fluidized bed reactor and preparatio of carbon nanostructures using same
KR20140129643A (en) Fluidized bed reactor and process for manufacturing carbon nanostructures using same