JP2010012384A - Apparatus and method for producing biomass-liquefied organic material, and apparatus and method for producing polymer composite material - Google Patents

Apparatus and method for producing biomass-liquefied organic material, and apparatus and method for producing polymer composite material Download PDF

Info

Publication number
JP2010012384A
JP2010012384A JP2008172917A JP2008172917A JP2010012384A JP 2010012384 A JP2010012384 A JP 2010012384A JP 2008172917 A JP2008172917 A JP 2008172917A JP 2008172917 A JP2008172917 A JP 2008172917A JP 2010012384 A JP2010012384 A JP 2010012384A
Authority
JP
Japan
Prior art keywords
biomass
organic solvent
manufacturing apparatus
kneading
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008172917A
Other languages
Japanese (ja)
Inventor
Takashi Ono
孝 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGRI FUTURE JOETSU CO Ltd
Original Assignee
AGRI FUTURE JOETSU CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGRI FUTURE JOETSU CO Ltd filed Critical AGRI FUTURE JOETSU CO Ltd
Priority to JP2008172917A priority Critical patent/JP2010012384A/en
Publication of JP2010012384A publication Critical patent/JP2010012384A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/845Venting, degassing or removing evaporated components in devices with rotary stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/842Removing liquids in liquid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/763Vent constructions, e.g. venting means avoiding melt escape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/404Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders the screws having non-intermeshing parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/68Barrels or cylinders
    • B29C48/682Barrels or cylinders for twin screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/765Venting, drying means; Degassing means in the extruder apparatus
    • B29C48/766Venting, drying means; Degassing means in the extruder apparatus in screw extruders
    • B29C48/767Venting, drying means; Degassing means in the extruder apparatus in screw extruders through a degassing opening of a barrel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for producing a biomass-liquefied organic material which is obtained by pulverizing biomass into highly-fine and uniform particles, dispersing the fine and uniform particles in an organic solvent or a synthetic polymer and decreasing the residual water content and which has excellent quality, and to provide a technique for producing a polymer composite material. <P>SOLUTION: An apparatus for producing the biomass-liquefied organic material is provided with: a first feeding means (20) for feeding an organic solvent-mixed suspension liquid into a biomass-pulverized material; a kneading means (30) for kneading the fed suspension liquid in a hermetically sealed state at preset temperature to obtain a kneaded material in which biomass is uniformly dispersed; a volatilizing means (40) for exposing the kneaded material to the atmosphere of the preset pressure lower than the saturated vapor pressure (Pz) at the preset temperature (Tz) to volatilize the moisture content; and a taking-out means (60) for taking out the dehydrated kneaded material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、バイオマスを有機溶媒中に微細に分散させた懸濁体、及びバイオマスを合成高分子に微細に分散させた複合体に関連する技術分野に属し、特にそのような材料の製造装置及びその製造方法に関するものである。   The present invention belongs to a technical field related to a suspension in which biomass is finely dispersed in an organic solvent, and a composite in which biomass is finely dispersed in a synthetic polymer. It relates to the manufacturing method.

ここで、バイオマス(生物資源)とは、太陽のエネルギーによって、成長する動物や植物のうち再生可能な有機性資源を指す。
具体的には、リグノセルロース又はセルロースを主成分とする草木質系バイオマス(木材工業およびパルプ工業等の廃棄物である間伐材・建築解体材等、農業廃棄物である稲ワラ・さやガラ・籾ガラ等)、アミロース又はアミロペクチンを主成分とするデンプン質系バイオマス(米、小麦、とうもろこし、馬鈴薯、甘藷、タピオカ等)、甲殻類動物に由来するキチン(又はキトサン)質系バイオマス(蟹ガラ、蝦ガラ等)が挙げられる。
さらには、食品加工の過程で排出される、酒かす、コーヒーかす、ジュースの搾りかす等のたんぱく質成分を多く含む食品廃棄物も挙げられる。
Here, the biomass (biological resource) refers to an organic resource that can be regenerated among animals and plants that grow by solar energy.
Specifically, lignocellulose or plant-based biomass mainly composed of cellulose (such as thinning and building demolition materials such as wood industry and pulp industry) , Etc.), starchy biomass mainly composed of amylose or amylopectin (rice, wheat, corn, potato, sweet potato, tapioca, etc.), chitin (or chitosan) based biomass derived from crustacean animals Gala etc.).
Furthermore, the food waste which contains many protein components, such as liquor grounds, coffee grounds, and juice pomace discharged | emitted in the process of food processing, is also mentioned.

現在、これらバイオマスに由来する成分と合成高分子とを複合化させることにより、化石資源から生産される合成高分子の使用量を低減させ地球環境の保全に貢献したり、従来にない新機能を発現したりする高分子複合材料を創出する研究が進められている。そのような高分子複合材料にあっては、合成高分子の母相にバイオマスの成分をいかにして微細にかつ均一に分散させるかが重要な検討課題となっている。
また、嵩高くかつ腐敗が進行しやすいバイオマスを微細化して溶媒に懸濁させることにより、減容しかつ安定して長期保存する技術の検討がなされている。
Currently, by combining these biomass-derived components and synthetic polymers, the amount of synthetic polymers produced from fossil resources can be reduced, contributing to the preservation of the global environment, Research is underway to create polymer composite materials that can be expressed. In such a polymer composite material, how to finely and uniformly disperse the components of the biomass in the matrix of the synthetic polymer is an important examination subject.
Further, a technique for reducing the volume and stably storing for a long period of time has been studied by refining a bulky and easily rotted biomass and suspending it in a solvent.

しかし、バイオマスは、分子間の強固な水素結合に基づく高い結晶性を有するとともに三次元架橋等の高次構造を有している。また機械的に粉砕された場合であってもバイオマスの粉末は凝集しやすい性質を有している。このため、バイオマスを合成高分子の固相中や有機溶媒中に微細にかつ均一に分散させることは一般に容易でない。   However, biomass has high crystallinity based on strong hydrogen bonds between molecules and has a higher-order structure such as three-dimensional crosslinking. Moreover, even when mechanically pulverized, the biomass powder has a property of easily agglomerating. For this reason, it is generally not easy to finely and uniformly disperse biomass in a solid phase of a synthetic polymer or in an organic solvent.

前記した課題に対する従来技術として、前記デンプン質系バイオマスにあっては、これに含水処理を行った後に、合成高分子の主剤とともに加熱混練することにより、デンプン質を糊化(α化)させ合成高分子の固相中に微細に均一に分散させる技術が公知となっている(例えば、特許文献1)。
また、草木質系バイオマスやキチン質系バイオマスにあっては、高圧ホモゲナイザー等を用いて、これらバイオマスを水溶媒中で微細化し均質な懸濁液を作製する技術が知られている。そして、この懸濁液を、合成高分子の主剤とともに加熱混練することにより、バイオマスを合成高分子の固相中に微細に均一に分散させる技術が公知となっている(例えば、特許文献2)。
As a conventional technique for the above-mentioned problem, the starchy biomass is synthesized by subjecting the starchy starch to gelatinization (alpha) by heating and kneading it together with the main component of the synthetic polymer after performing a hydrous treatment on the biomass. A technique for finely and uniformly dispersing in a solid phase of a polymer is known (for example, Patent Document 1).
In the case of grassy biomass and chitinous biomass, a technique is known in which a high-pressure homogenizer or the like is used to refine these biomasses in an aqueous solvent to produce a homogeneous suspension. And the technique of disperse | distributing biomass finely uniformly in the solid phase of a synthetic polymer by heat kneading this suspension with the main ingredient of a synthetic polymer is known (for example, patent document 2). .

特開2006−21502号公報JP 2006-21502 A 特開2006−289164号公報JP 2006-289164 A

しかし、以上述べた従来技術では、バイオマスを合成高分子と共に混練して微細化及び均一分散させた後、混練体から水分を揮発させる脱水工程を経ても、脱水が不十分となり品質が低下する問題があった。このために、極力この残留水分を少なくしたバイオマスの懸濁体及び複合体の創生が望まれるが、バイオマスの構成物質は一般に親水性が高く、脱水度を向上させることは困難である。
また作成したバイオマスの懸濁体は、成分の腐敗が水溶媒中において進行し易く、保存安定性に欠く問題があった。
However, in the above-described conventional technology, after the biomass is kneaded with the synthetic polymer and refined and uniformly dispersed, the dehydration process is insufficient and the quality is deteriorated even after the dehydration process of volatilizing water from the kneaded body. was there. For this reason, it is desired to create a biomass suspension and composite with as little residual moisture as possible. However, the constituents of biomass are generally highly hydrophilic and it is difficult to improve the degree of dehydration.
In addition, the prepared biomass suspension has a problem that the decay of components easily proceeds in an aqueous solvent and lacks storage stability.

本発明は、前記した問題を解決することを課題とし、バイオマスを高度に微細化、均一化させて有機溶媒又は合成高分子に分散させるとともに、残留水分を低減させて品質の優れるバイオマス有機液状化物、及び高分子複合材料を製造する技術を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems, and to make biomass highly refined and homogenized to disperse it in an organic solvent or a synthetic polymer, and to reduce residual moisture and to improve the quality of the organic liquefied biomass And a technique for producing a polymer composite material.

前記課題を解決するために本発明は、バイオマス有機液状化物の製造装置において、バイオマスの粉砕物及び有機溶媒を投入する第1投入手段と、投入された前記粉砕物及び有機溶媒を密閉状態で設定温度にて混練しバイオマスが微細に分散した混練体にする混練手段と、前記混練体を前記設定温度における飽和蒸気圧よりも低圧に設定した雰囲気に晒し含まれる水分を揮発させる揮発手段と、脱水されて前記バイオマスが均質に微細に分散した状態の前記混練体を取り出す取出手段とを、備えることを特徴とする。   In order to solve the above-mentioned problems, the present invention provides a biomass organic liquefaction production apparatus, wherein a first charging means for charging a pulverized biomass and an organic solvent, and the charged pulverized material and the organic solvent are set in a sealed state. A kneading means for kneading at a temperature to form a kneaded body in which biomass is finely dispersed, a volatilizing means for exposing the kneaded body to an atmosphere set at a pressure lower than the saturated vapor pressure at the set temperature, and volatilizing water contained therein, and dehydration And a take-out means for taking out the kneaded body in a state where the biomass is homogeneously and finely dispersed.

このような手段から構成される本発明は、公知の方法で予め粉砕されたバイオマスを出発原料として用いることとなる。そして、密閉空間においてバイオマスの粉砕物、この粉砕物に含まれる水分、及び有機溶媒が混練されることによりバイオマスの微細化が進むとミクロレベルでの均一化が進行し流動性も向上する。この過程において、有機溶媒がバイオマスの分子構造に取り込まれると、吸着していた水分が離脱して溶媒中に取り込まれ、揮発手段における水分の揮発が促進される。これにより、バイオマス成分は再凝集することが抑制され、均質に微細に分散したバイオマス有機液状化物の状態が安定的に維持される。   In the present invention constituted by such means, biomass previously pulverized by a known method is used as a starting material. And when the refinement | miniaturization of biomass progresses by knead | mixing the pulverized material of a biomass, the water | moisture content contained in this pulverized material, and the organic solvent in sealed space, the homogenization in a micro level will progress and fluidity | liquidity will also improve. In this process, when the organic solvent is taken into the molecular structure of the biomass, the adsorbed water is released and taken into the solvent, and the volatilization of the water in the volatilization means is promoted. Thereby, it is suppressed that a biomass component re-agglomerates, and the state of the biomass organic liquefied material dispersed homogeneously and finely is maintained stably.

さらに本発明の高分子複合材料の製造装置は、本発明の製造装置において、合成高分子の単体又は前駆体を投入する第2投入手段を設け、前記混練手段は、投入された前記合成高分子を、蒸気圧が水よりも高く任意の割合で水に可溶する前記有機溶媒及び前記粉砕物とともに混練し、前記揮発手段は、前記混練体から前記水分とともに前記有機溶媒も揮発させ、取出手段は、脱水されて前記バイオマスが前記合成高分子に均質に微細に分散した状態の前記混練体を取り出すことを特徴とする。   Furthermore, the polymer composite material manufacturing apparatus of the present invention is provided with a second charging means for charging a single or precursor of a synthetic polymer in the manufacturing apparatus of the present invention, and the kneading means is configured to supply the synthetic polymer that has been charged. Is vaporized together with the organic solvent which has a higher vapor pressure than water and is soluble in water at an arbitrary ratio, and the pulverized product, and the volatilizing means volatilizes the organic solvent together with the moisture from the kneaded body, and takes out the organic solvent. Is characterized in that the kneaded body in a state where it is dehydrated and the biomass is homogeneously and finely dispersed in the synthetic polymer is taken out.

このような手段から本発明が構成されることにより、まず合成高分子とバイオマスの粉砕物と、有機溶媒とがマクロレベルで均一に混合するとともに、設定温度により合成高分子が流動化するとミクロレベルでの均一化が進行する。この過程において、バイオマスが固有に含む水分は有機溶媒に溶解することになる。そして、前記した性質を有する有機溶媒と水との混合液の蒸気圧は一般に水単体の蒸気圧よりも高くなるために、バイオマスに含まれる水分は有機溶媒とともに高効率で揮発手段において除去されることになる。これにより、再凝集することなくバイオマス成分は微細に分散し、品質の優れた高分子複合材料が得られる。   By constructing the present invention from such means, first, the synthetic polymer, the pulverized biomass and the organic solvent are uniformly mixed at a macro level, and when the synthetic polymer is fluidized at a set temperature, the micro level The homogenization progresses. In this process, the moisture inherently contained in the biomass is dissolved in the organic solvent. And since the vapor pressure of the mixture of the organic solvent having the above-described properties and water is generally higher than the vapor pressure of water alone, the moisture contained in the biomass is removed together with the organic solvent with high efficiency by the volatilization means. It will be. Thereby, the biomass component is finely dispersed without being re-agglomerated, and a high-quality polymer composite material can be obtained.

本発明により、バイオマスを高度に微細化、均一化させて有機溶媒又は合成高分子の固相に分散させるとともに、残留水分を低減させて安定で品質の優れるバイオマス有機液状化物、及び高分子複合材料を製造する技術が提供される。   According to the present invention, biomass is highly refined and homogenized and dispersed in a solid phase of an organic solvent or a synthetic polymer, and residual organic matter is reduced, and a stable and excellent quality biomass organic liquefied material, and a polymer composite material Techniques for manufacturing are provided.

以下本発明の実施の形態について図面を参照しつつ説明する。
(バイオマス有機液状化物の製造装置の説明)
図1(a)は本発明に係るバイオマス有機液状化物の製造装置10A(以下、単に「有機液状化装置10A」という)の実施形態を示す縦断面図である。
この有機液状化装置10Aは、水溶媒中でバイオマスを粉砕させた粉砕物に有機溶媒を混入した懸濁体を投入する第1投入手段20と、投入された前記懸濁体を密閉状態で設定温度にて混練しバイオマスが微細に分散した混練体にする混練手段30A(30)と、混練体を設定温度Tz(図4(a)参照)における飽和蒸気圧Pzよりも低圧(Pa又はPb)に設定した雰囲気に晒し含まれる水分を揮発させる揮発手段40と、脱水されて前記バイオマスが均質に微細に分散した状態の前記混練体を取り出す取出手段60と、から構成されている。
このような有機液状化装置10Aは、原料の投入工程、混練工程、混練体の取出工程がそれぞれ順繰りに繰り返され断続的にバイオマス有機液状化物を製造するバッチ式の製造装置である。
Embodiments of the present invention will be described below with reference to the drawings.
(Description of biomass organic liquefaction manufacturing equipment)
FIG. 1 (a) is a longitudinal sectional view showing an embodiment of a biomass organic liquefaction production apparatus 10A (hereinafter simply referred to as “organic liquefaction apparatus 10A”) according to the present invention.
This organic liquefaction apparatus 10A has a first charging means 20 for charging a suspension obtained by mixing an organic solvent into a pulverized product obtained by pulverizing biomass in an aqueous solvent, and the charged suspension is set in a sealed state. The kneading means 30A (30) which kneads at a temperature to make a kneaded body in which the biomass is finely dispersed, and the kneaded body has a lower pressure (Pa or Pb) than the saturated vapor pressure Pz at the set temperature Tz (see FIG. 4A). The volatilizing means 40 that volatilizes the moisture contained in the atmosphere set to 1 and the take-out means 60 for taking out the kneaded body that has been dehydrated and in which the biomass is uniformly and finely dispersed.
Such an organic liquefaction apparatus 10A is a batch-type production apparatus that intermittently produces a biomass organic liquefied product by sequentially repeating a raw material charging process, a kneading process, and a kneaded body taking process.

ここで、水溶媒中でバイオマスを粉砕させる方法としては、前記した特許文献2に挙げられるような高圧ホモゲナイザーを用いてバイオマスを水中で物理的に粉砕させる場合の他、化学的な処理、微生物による処理を行うことにより形成させる方法もとり得る。
このように、水溶媒中でバイオマスを機械的、化学的又は微生物的に粉砕又は微細化させた後に有機溶媒を混入した懸濁体を液溜23に貯蔵する。なお、有機溶媒の混入をする前に、濾過法や遠心分離法などの公知の方法で、予め大雑把に水分を除去してから有機溶媒を混入(に置換)してもよい。
Here, as a method of pulverizing biomass in an aqueous solvent, in addition to the case where the biomass is physically pulverized in water using a high-pressure homogenizer such as that described in Patent Document 2, chemical treatment, depending on microorganisms A method of forming by processing can also be used.
As described above, the biomass is mechanically, chemically, or microbially pulverized or refined in an aqueous solvent, and then the suspension mixed with the organic solvent is stored in the liquid reservoir 23. In addition, before mixing the organic solvent, the organic solvent may be mixed (replaced) after roughly removing water in advance by a known method such as filtration or centrifugation.

また、バイオマスの粉砕物は、第1投入手段20に投入される前のいずれかの時点において、アルカリ水溶液への浸漬、アルカリ金属塩の添加又は急速凍結の中から選ばれる一以上の膨潤処理がなされることが望ましい。これにより、混練段階におけるバイオマスの微細化が促進されることになる。   In addition, the pulverized biomass may be subjected to one or more swelling treatments selected from immersion in an alkaline aqueous solution, addition of an alkali metal salt, or rapid freezing at any time before being input to the first input means 20. It is desirable to be made. Thereby, refinement | miniaturization of the biomass in a kneading | mixing stage is accelerated | stimulated.

混入する有機溶媒としては、特に限定はないが、リグノセルロース又はセルロースを主成分とする草木質系バイオマスに対しては、メタノール、エタノール、プロパノール、ブタノール等のアルコール類が好適であり、アルコール炭素鎖数の増加に伴い可溶化が促進されることが知られている。特に、触媒を用いることにより、その可溶化が促進される。
また有機液状化装置10Aに用いられる有機溶媒は、後記する高分子複合材料の製造装置10Bに用いられる有機溶媒とは異なり、蒸気圧が水よりも高い場合に限定されず、蒸気圧の低い難揮発性のものであってもよい。またこの有機溶媒は、任意の割合で水に可溶な性質を有する場合に限定されず、不溶な性質を有するものであってもよい。
The organic solvent to be mixed is not particularly limited, but alcohols such as methanol, ethanol, propanol, and butanol are suitable for lignocellulose or a herbaceous biomass mainly composed of cellulose, and an alcohol carbon chain. It is known that solubilization is promoted as the number increases. In particular, the solubilization is promoted by using a catalyst.
In addition, the organic solvent used in the organic liquefaction apparatus 10A is not limited to the case where the vapor pressure is higher than water, unlike the organic solvent used in the polymer composite material production apparatus 10B described later. It may be volatile. Moreover, this organic solvent is not limited to the case where it has a property soluble in water in an arbitrary ratio, and may have an insoluble property.

バイオマスが有機溶媒に可溶化したバイオマス有機液状化物は、有機溶媒が一価アルコールを主とする場合、さらに、イソシアネートと反応させることにより、ウレタン様樹脂を得ることができ、発泡体、接着剤として好適に用いることができる。
また、バイオマスがリグニンを含有し、有機溶媒がフェノール類である場合、このバイオマス有機液状化物は、酸触媒を添加した時にはノボラック様樹脂を得ることができ、さらに、セルロース系バイオマスと硬化剤を混合することにより耐熱性に優れた成形材料として用いることができる。アルカリ触媒を添加した時には、レゾール様樹脂を得ることができ、シェルモールド用に好適に用いることができる。
さらに、バイオマスが草本類又は/及び藻類であって、メタノール又は/及びエタノールが有機溶媒である場合、このバイオマス有機液状化物は、液体燃料に好適に用いることができる。この時、界面活性剤を添加すると、さらに好適に用いることができる。また、これら液体燃料には、バイオマスの割合を証明する手段を付与して流通させると、二酸化炭素の排出削減量の換算にも用いることができる。
Biomass liquefied biomass in which biomass is solubilized in an organic solvent can obtain a urethane-like resin by reacting with an isocyanate when the organic solvent is mainly a monohydric alcohol, as a foam or an adhesive. It can be used suitably.
In addition, when the biomass contains lignin and the organic solvent is phenols, this biomass organic liquefaction product can obtain a novolak-like resin when an acid catalyst is added, and further, a cellulose-based biomass and a curing agent are mixed. By doing so, it can be used as a molding material having excellent heat resistance. When an alkali catalyst is added, a resol-like resin can be obtained and can be suitably used for a shell mold.
Further, when the biomass is a herb or / and algae and methanol or / and ethanol is an organic solvent, the biomass organic liquefaction can be suitably used for a liquid fuel. At this time, if a surfactant is added, it can be used more suitably. In addition, when these liquid fuels are distributed with a means for proving the biomass ratio, they can also be used for conversion of carbon dioxide emission reduction.

第1投入手段20は、バイオマスの粉砕物、水及び有機溶媒が混合した懸濁液が充填されている液溜23と、この液溜23から懸濁液を混練手段30に向けて注入する駆動力を与えるモータ22と、この注入される懸濁液の逆流を防止する逆止弁24と、シリンダ31に注入される懸濁液の注入量を調節する絞り弁25とから構成されている。
この第1投入手段20が懸濁液を投入する時点は、有機液状化装置10Aが混練動作を開始する最初の時点に限定されず、混練動作の途中ですることも可能である。
また第1投入手段20の構成は、バイオマスの粉砕物及び前記有機溶媒が予め混合されている前記したような懸濁液を投入する構成に限定されず、この粉砕物及び有機溶媒をそれぞれ別々に投入する構成をとることも可能である。また、バイオマスの粉砕物は、前記したような水溶媒や他の溶媒で前記バイオマスを湿式粉砕させたものに限定されず、公知の乾式粉砕を採用して得ることもできる。
The first charging means 20 is a liquid reservoir 23 filled with a suspension obtained by mixing a pulverized biomass, water and an organic solvent, and a drive for injecting the suspension from the liquid reservoir 23 toward the kneading means 30. The motor 22 is provided with a force, the check valve 24 prevents the backflow of the injected suspension, and the throttle valve 25 adjusts the amount of suspension injected into the cylinder 31.
The time when the first charging means 20 charges the suspension is not limited to the first time when the organic liquefying apparatus 10A starts the kneading operation, and can be in the middle of the kneading operation.
Further, the configuration of the first charging means 20 is not limited to the configuration in which the pulverized biomass and the organic solvent are mixed in advance, and the pulverized product and the organic solvent are separately added. It is also possible to adopt a configuration for input. Further, the pulverized product of biomass is not limited to those obtained by wet pulverization of the biomass with an aqueous solvent or other solvent as described above, and can also be obtained by employing a known dry pulverization.

混練手段30A(30)は、駆動手段(図示せず)と、内部に密閉空間を有するケーシング31と、この密閉空間において回転するロータ32とを含んだ構成である。また図1(a)〜(c)に示される断面は、ロータ32の回転軸に直交する断面であって、その長手方向に沿って異なる(それぞれ第1投入手段20、揮発手段40、取出手段60を含む)混練手段30Aの断面図を示している。
混練手段30Aは、第1投入手段20から投入された懸濁液(バイオマスの粉砕物、水及び有機溶媒の混合物)を、設定した混練温度で撹拌して混練するものである。このように混練手段30A(30)は、バイオマスの粉砕物、水及び有機溶媒が混合した懸濁液を混練し、さらに微細化しかつ均一化させて、揮発手段40で混練体から水分を選択的(優先的)に除去してから取出手段60を開いて取り出す。
The kneading means 30A (30) includes a drive means (not shown), a casing 31 having a sealed space inside, and a rotor 32 that rotates in the sealed space. The cross sections shown in FIGS. 1A to 1C are cross sections orthogonal to the rotation axis of the rotor 32, and are different along the longitudinal direction (first input means 20, volatilization means 40, and extraction means, respectively). A cross-sectional view of the kneading means 30A (including 60) is shown.
The kneading means 30A is for kneading the suspension (mixture of biomass, mixture of water and organic solvent) charged from the first charging means 20 with stirring at a set kneading temperature. In this way, the kneading means 30A (30) kneads the suspension of the pulverized biomass, water and organic solvent mixed, further refines and homogenizes them, and the volatilization means 40 selectively selects moisture from the kneaded body. After removal (priority), the take-out means 60 is opened and taken out.

ロータ32は、密閉空間にされ混練温度に設定されたケーシング31の密閉空間Wで回転し懸濁体を混練するものである。このロータ32は、図3中、互いに回転方向が逆方向である二つの回転体が、第1投入手段20からの投入物を巻き込むようにかつ取出手段60へ混練体を押し出すように回転するものが例示されているが、このような実施形態に限定されるものでなく公知のものを適用することができる。   The rotor 32 rotates in the sealed space W of the casing 31 that is set in a sealed space and set to the kneading temperature, and kneads the suspension. 3, the rotor 32 is rotated so that two rotating bodies whose rotation directions are opposite to each other in FIG. 3 entrain the input material from the first input means 20 and push out the kneaded material to the extraction means 60. However, the present invention is not limited to such an embodiment, and known ones can be applied.

揮発手段40は、図1(b)に示されるように、絞り弁41と、濾過板42と、外装室43と、圧力計44とから構成されている。そして、揮発手段40は、ケーシング31に穿設された密閉空間Wの開口に設けられ、密閉空間Wの圧力を調節し、この調節された圧力により混練体の脱水を実行するものである。   As shown in FIG. 1B, the volatilizing means 40 includes a throttle valve 41, a filter plate 42, an exterior chamber 43, and a pressure gauge 44. The volatilizing means 40 is provided at the opening of the sealed space W formed in the casing 31, and adjusts the pressure of the sealed space W, and executes dehydration of the kneaded body with the adjusted pressure.

濾過板42は、ケーシング31の密閉空間W及び外部を隔てるとともに混練体に含まれる溶質成分の通過を遮断して溶媒成分を選択的に濾過するものである。このような濾過板42の構成としては、板面に多数の孔を設けられ、その板面がケーシング31の内壁面に沿って固定されるものが挙げられる。
外装室43は、濾過板42を介して密閉空間Wに連通する気化空間Vが形成されるとともに絞り弁41が設けられている。この外装室43は、有底の容体がその開口とケーシング31に設けた開口とを略一致するように、濾過板42を当接しながらケーシング31に固定されている。この外装室43は、気化空間Vを大気から遮断するとともに、濾過板42により濾過された水分をこの気化空間Vにおいて気化させるものである。
The filter plate 42 separates the sealed space W of the casing 31 and the outside and selectively filters the solvent component by blocking the passage of the solute component contained in the kneaded body. Such a configuration of the filter plate 42 includes a plate surface provided with a large number of holes, and the plate surface is fixed along the inner wall surface of the casing 31.
The exterior chamber 43 is formed with a vaporization space V communicating with the sealed space W through the filter plate 42 and provided with a throttle valve 41. The exterior chamber 43 is fixed to the casing 31 while contacting the filter plate 42 so that the bottomed container substantially coincides with the opening provided in the casing 31. The exterior chamber 43 blocks the vaporization space V from the atmosphere and vaporizes the water filtered by the filter plate 42 in the vaporization space V.

絞り弁41は、圧力計44の計測値を参照しつつ気化空間Vの気圧を調節し、連通する密閉空間Wの圧力を設定するものである。この絞り弁41を完全に閉塞すれば気化空間Vの気圧は、設定温度における飽和蒸気圧に設定され、絞り弁41を完全に開放すれば大気圧に設定されることになる。そして絞り弁41の開度を調整することにより、気化空間Vから大気に放出される蒸気に流動抵抗を可変して付与し、気化空間Vの圧力を大気圧よりも高く設定温度の飽和蒸気圧よりも低い任意の圧力に設定するものである。さらに引圧手段51(図2(a)参照)に接続して気化空間Vの気圧を大気圧以下に設定することができる。
なお揮発手段40は、図1(b)に示されるような濾過板42及び外装室43を設けずに、密閉空間Wの一部を気化空間Vとみなしてケーシング31に直接絞り弁41を設ける構成も取り得る。
The throttle valve 41 adjusts the atmospheric pressure of the vaporization space V while referring to the measurement value of the pressure gauge 44, and sets the pressure of the closed space W that communicates. If the throttle valve 41 is completely closed, the atmospheric pressure in the vaporization space V is set to the saturated vapor pressure at the set temperature, and if the throttle valve 41 is fully opened, it is set to atmospheric pressure. Then, by adjusting the opening of the throttle valve 41, the flow resistance is imparted to the vapor released from the vaporization space V to the atmosphere in a variable manner, and the vapor pressure of the vaporization space V is set to a saturated vapor pressure higher than the atmospheric pressure and at a set temperature. Is set to an arbitrary lower pressure. Furthermore, it can connect to the suction means 51 (refer Fig.2 (a)), and can set the atmospheric pressure of the vaporization space V below atmospheric pressure.
The volatilizing means 40 does not provide the filter plate 42 and the exterior chamber 43 as shown in FIG. 1B, and regards a part of the sealed space W as the vaporizing space V and directly provides the throttle valve 41 in the casing 31. A configuration is also possible.

ここで、図4の各温度における飽和蒸気圧のグラフを参照して、有機溶媒として難揮発溶媒を用いた場合における、第1揮発手段40の動作説明をする。この難揮発溶媒の飽和蒸気圧はグラフにおいて破線で示されており、水は太線で示されている。
そして、混練温度Tzに設定されており、圧力計44が圧力値Pbを示すように絞り弁41が調整されているとする。すると、この温度Tzにおける気化空間Vの圧力値Pbは、水の蒸気圧よりも小さく、難揮発溶媒の蒸気圧よりも高いことになる。よって、第1揮発手段40からは、難揮発溶媒よりも水分のほうが選択的に揮発していくこととなり、混練体の脱水が促進されることとなる。
Here, the operation of the first volatilization means 40 in the case where a hardly volatile solvent is used as the organic solvent will be described with reference to the graph of the saturated vapor pressure at each temperature in FIG. The saturated vapor pressure of the hardly volatile solvent is indicated by a broken line in the graph, and water is indicated by a thick line.
The kneading temperature Tz is set, and the throttle valve 41 is adjusted so that the pressure gauge 44 indicates the pressure value Pb. Then, the pressure value Pb of the vaporization space V at the temperature Tz is smaller than the vapor pressure of water and higher than the vapor pressure of the hardly volatile solvent. Therefore, from the 1st volatilization means 40, a water | moisture content will volatilize selectively rather than a hardly volatile solvent, and spin-drying | dehydration of a kneaded body will be accelerated | stimulated.

次に、有機溶媒として易揮発溶媒を用いた場合における、第1揮発手段40の動作説明をする。ここで、図5は、易揮発溶媒の代表をエタノールとして、水/エタノールの気液平衡状態を示すグラフである。このグラフに示されるように、エタノール濃度の小さい水/エタノール溶液では、エタノールが優先的に揮発してしまう。しかし、エタノール濃度が大きくなるに従い、蒸気の組成は混合液の組成に近づくとともに、共沸点(エタノール濃度90mol%)を超えたところで、逆転して水分の方が優先的に揮発することになる。
よって、有機溶媒として易揮発溶媒を用いる場合は、最終的な有機溶媒の組成よりも多く有機溶剤を配合するとともに、混練途中においても適宜、有機溶媒を追加投入する必要がある場合がある。望ましくは、共沸点を超える液体組成となるように有機溶媒を配合させるとよい。
また、バイオマスが可溶化した後に、過剰な水分と有機溶媒を揮発させ、回収することができる。
Next, the operation of the first volatilization means 40 when an easily volatile solvent is used as the organic solvent will be described. Here, FIG. 5 is a graph showing a water / ethanol vapor-liquid equilibrium state where a representative volatile solvent is ethanol. As shown in this graph, ethanol is preferentially volatilized in a water / ethanol solution having a low ethanol concentration. However, as the ethanol concentration increases, the composition of the vapor approaches the composition of the mixed solution, and at the point where the azeotropic point (ethanol concentration 90 mol%) is exceeded, the water is preferentially volatilized.
Therefore, when an easily volatile solvent is used as the organic solvent, it may be necessary to add more organic solvent than the final composition of the organic solvent and to add additional organic solvent as needed during kneading. Desirably, an organic solvent is blended so as to have a liquid composition exceeding the azeotropic point.
Further, after the biomass is solubilized, excess water and organic solvent can be volatilized and recovered.

(高分子複合材料の製造装置の説明)
次に図2に示す断面図を参照して、本発明に係る高分子複合材料の製造装置10B(以下、単に「複合材製造装置10B」という)の実施形態を説明する。この複合材製造装置10Bは、図1に例示されるバッチ式装置とは異なり、原料の投入工程、混練工程、混練体の取出工程がそれぞれ寸断されることなく同時に進行し連続的に高分子複合材料を製造する連続式装置である。
(Description of polymer composite material manufacturing equipment)
Next, an embodiment of a polymer composite material manufacturing apparatus 10B (hereinafter simply referred to as “composite material manufacturing apparatus 10B”) according to the present invention will be described with reference to a cross-sectional view shown in FIG. Unlike the batch type apparatus illustrated in FIG. 1, the composite material manufacturing apparatus 10 </ b> B is a continuous polymer composite in which the raw material charging process, the kneading process, and the kneading body extraction process proceed simultaneously without being interrupted. It is a continuous device for producing materials.

この複合材製造装置10Bは、第1投入手段20と、第2投入手段21と、混練手段30B(30)と、第1揮発手段40と、第2揮発手段50と、取出手段60と、搾液手段70と、第1凝縮手段80と、第2凝縮手段90とから構成されている。
このように製造装置10が構成されることにより、第1投入手段20及び第2投入手段21により水分及び有機溶媒を含む高分子複合材料の原料(合成高分子、バイオマス)が投入されると、これらは、シリンダ31の内部で軸回転するスクリュー32により混練されるとともに、搾液手段70、第1揮発手段40及び第2揮発手段50により脱水処理されて、溶融した高分子複合材料中に微細化したバイオマスが均一に分散した混練体が取出手段60から取り出されることになる。
The composite material manufacturing apparatus 10B includes a first input unit 20, a second input unit 21, a kneading unit 30B (30), a first volatilizing unit 40, a second volatilizing unit 50, an extraction unit 60, a squeezing unit, The liquid means 70, the first condensing means 80, and the second condensing means 90 are configured.
When the manufacturing apparatus 10 is configured in this way, when the raw material of the polymer composite material (synthetic polymer, biomass) containing moisture and the organic solvent is input by the first input unit 20 and the second input unit 21, These are kneaded by the screw 32 rotating in the cylinder 31 and dehydrated by the squeezing means 70, the first volatilizing means 40, and the second volatilizing means 50, and finely mixed in the molten polymer composite material. The kneaded body in which the converted biomass is uniformly dispersed is taken out from the take-out means 60.

この複合材製造装置10Bにより、バイオマスがセルロースであって、高圧ホモゲナイザーで微粉砕した場合、ミクロフィブリル化したセルロースと合成高分子のナノコンポジットを得ることができる。
また、合成高分子の前駆体を投入する場合は、適宜、重合開始剤を添加することなどにより、微細化したセルロースに前記前駆体がグラフト重合し、さらに、そこから高分子化する。これにより、合成高分子にミクロフィブリル化したセルロースがグラフトしたナノコンポジットを得ることができる。
なお、セルロース系バイオマスの発酵残渣を用いた場合も、容易にナノコンポジットを得ることができる。
さらに、バイオマスが解繊された繊維状である場合、剛性が高く衝撃強度に優れたバイオマス繊維強化複合材料を好適に得ることができる。
With this composite material manufacturing apparatus 10B, when the biomass is cellulose and finely pulverized with a high-pressure homogenizer, microfibrillated cellulose and synthetic polymer nanocomposites can be obtained.
In addition, when a precursor of a synthetic polymer is added, the precursor is graft-polymerized to fine cellulose by appropriately adding a polymerization initiator, and further polymerized therefrom. Thereby, a nanocomposite obtained by grafting microfibrillated cellulose onto a synthetic polymer can be obtained.
In addition, a nanocomposite can be easily obtained also when the fermentation residue of a cellulose biomass is used.
Furthermore, when the biomass is a fibrillated fiber, a biomass fiber reinforced composite material having high rigidity and excellent impact strength can be suitably obtained.

このような複合材製造装置10Bにより、合成高分子及びバイオマスを複合化させた高分子複合材料を連続的に生産することができる。
以下において、図1においてすでに説明した構成と機能が共通する構成については、同一の符号を付して説明を省略する。
With such a composite material manufacturing apparatus 10B, a polymer composite material obtained by combining a synthetic polymer and biomass can be continuously produced.
In the following, components having the same functions as those already described with reference to FIG.

ここで、第1投入手段20は、バイオマスの粉砕物、水及び有機溶媒の混合物からなる懸濁液を混練手段30Bに投入するものである。
複合材製造装置10Bに使用される有機溶媒は、前記した有機液状化装置10Aの場合と異なり、蒸気圧が水よりも高く任意の割合で水に可溶な性質を有するものに限定され、具体的には、メタノール、エタノール、1−プロパノール、2−プロパノールをあげることができる。
Here, the first charging means 20 charges a kneading means 30B with a suspension composed of a pulverized biomass, a mixture of water and an organic solvent.
Unlike the organic liquefaction apparatus 10A described above, the organic solvent used in the composite material manufacturing apparatus 10B is limited to a solvent having a vapor pressure higher than water and soluble in water at an arbitrary ratio. Specifically, methanol, ethanol, 1-propanol, and 2-propanol can be mentioned.

この第1投入手段20は、それよりも上流に位置する第2投入手段21から投入された合成高分子が加圧状態となっているので、バイオマスの粉砕物がむらなく一定比率で混練体に投入されるために懸濁体を加圧して投入する。そして、有機溶媒は、懸濁体に含まれる水分、つまりバイオマスの粉砕の際に人為的に加えられたものの他、元来バイオマスそのものに固有に含まれる水分とともに、最終的に取り除かれることになる。   In this first charging means 20, since the synthetic polymer charged from the second charging means 21 located upstream thereof is in a pressurized state, the pulverized biomass is uniformly distributed in the kneaded body at a constant ratio. The suspension is pressurized and charged for charging. The organic solvent is finally removed together with moisture contained in the suspension, that is, artificially added when the biomass is pulverized, and moisture inherently contained in the biomass itself. .

第2投入手段21は、合成高分子の単体又は前駆体をシリンダ31の内部に投入するものである。ここで投入される合成高分子としては、加熱により溶融する熱可塑性樹脂や、加熱により硬化する熱硬化性樹脂のいずれも採用することができる。
なお、採用される熱硬化性高分子において、投入時点(重合反応前)における単量体は、低分子量化合物であるために、液体、固体、半固体の性状を取り得る。
また、投入される合成高分子は、製造される高分子複合材料を構成する樹脂単体に限定されるものでなく、この樹脂単体の化学合成前段階の前駆体である場合も含まれる。
なお、合成高分子の単体又は前駆体は、水溶性の性質を具備していると、合成高分子の母相中に分散するバイオマスの均質性向上に寄与する。
The second charging means 21 is for charging a synthetic polymer alone or precursor into the cylinder 31. As the synthetic polymer introduced here, any of a thermoplastic resin that melts by heating and a thermosetting resin that cures by heating can be employed.
In the thermosetting polymer employed, since the monomer at the time of introduction (before the polymerization reaction) is a low molecular weight compound, it can take liquid, solid, or semi-solid properties.
Further, the synthetic polymer to be added is not limited to the resin simple substance constituting the polymer composite material to be produced, and includes a case where it is a precursor of the resin simple substance before chemical synthesis.
In addition, if the synthetic polymer simple substance or precursor has water-soluble properties, it contributes to improving the homogeneity of biomass dispersed in the matrix of the synthetic polymer.

混練手段30(30B)は、シリンダ31と、スクリュー32とから構成され、密閉状態で合成高分子及び懸濁体(バイオマスの粉砕物、水及び有機溶媒の混合物)を設定温度にて混練し混練体にするものである。   The kneading means 30 (30B) is composed of a cylinder 31 and a screw 32, and kneaded by kneading a synthetic polymer and a suspension (a mixture of pulverized biomass, water and an organic solvent) at a set temperature in a sealed state. It ’s what you make.

スクリュー32は、回転駆動手段34に一端が接続して、その軸周りに螺旋状のフライト33が形成されており、シリンダ31の内部で軸回転するとこのフライト33が圧力を付与して混練体を上流側から下流側に押し出すものである。
なお図2においてスクリュー32は、一本のみ表示されているが、製造装置10は、このような一軸のものに限定されるものではなく、二本以上のスクリュー32が並列して構成される多軸のものである場合も含まれる。
One end of the screw 32 is connected to the rotation driving means 34, and a spiral flight 33 is formed around the axis of the screw 32. When the shaft 32 rotates inside the cylinder 31, the flight 33 applies pressure to the kneaded body. It pushes from the upstream side to the downstream side.
In FIG. 2, only one screw 32 is shown, but the manufacturing apparatus 10 is not limited to such a uniaxial one, and many screws 32 are arranged in parallel. The case of an axis is also included.

多軸のスクリュー32の配置例としては、これらスクリューが配置される密閉空間を断面視で円筒形状とし、この円筒形状の厚さに直径を略一致させた複数のスクリューを密閉空間に、周回するように断面視で数珠繋りに配置したものが挙げられる。
このような多軸のスクリュー32が、数珠繋りに配置した構成によれば、揮発手段40,50をこのスクリュー32の群の周囲に複数設けることができ、混練体を気化空間Vに効率よく晒すことにより脱水性能が向上する。
As an example of the arrangement of the multiaxial screws 32, the sealed space in which these screws are arranged is formed into a cylindrical shape in a cross-sectional view, and a plurality of screws whose diameters are substantially matched to the thickness of the cylindrical shape are circulated in the sealed space. Thus, the one arranged in a rosary manner in a cross-sectional view is mentioned.
According to such a configuration in which such multi-axial screws 32 are arranged in a daisy chain, a plurality of volatilizing means 40, 50 can be provided around the group of the screws 32, and the kneaded body can be efficiently provided in the vaporization space V. Dehydration performance is improved by exposure.

シリンダ31は、上流側から、第2投入手段21が設けられる合成高分子投入区間A2と、第1投入手段20が設けられる懸濁液投入区間A1と、搾液手段70が設けられる搾液区間Bと、合成高分子及び懸濁液を加熱混練する加熱混練区間Cと、第1揮発手段40が設けられる第1揮発区間D1と、第2揮発手段50が設けられる第2揮発区間D2と、脱水された混練体を再加圧する再加圧区間Eと、最下流に設けられる取出手段60とから構成されている。   The cylinder 31 includes, from the upstream side, a synthetic polymer charging section A2 in which the second charging means 21 is provided, a suspension charging section A1 in which the first charging means 20 is provided, and a squeezing section in which the squeezing means 70 is provided. B, a heating and kneading section C for heating and kneading the synthetic polymer and the suspension, a first volatilization section D1 in which the first volatilization means 40 is provided, and a second volatilization section D2 in which the second volatilization means 50 is provided, The re-pressurizing section E for re-pressurizing the dehydrated kneaded body and the take-out means 60 provided on the most downstream side are configured.

懸濁液投入区間A1は、水分及び有機溶剤の液体成分を多く含む流動性の高い状態で、投入された合成高分子の錠剤、バイオマスの粉砕物、水分、有機溶剤を、大雑把に均一化させる。この過程において、バイオマスが固有に含む水分は、有機溶媒と可溶化することになる。   In the suspension charging section A1, in a state of high fluidity containing a large amount of water and liquid components of organic solvent, the charged synthetic polymer tablets, pulverized biomass, water, and organic solvent are roughly made uniform. . In this process, the moisture inherently contained in the biomass is solubilized with the organic solvent.

搾液区間Bは、図2(a)に示されるように、スクリュー32の軸径が上流から下流にいくに従って太くなるように形成されている。このような構成をスクリュー32がとることにより、混練体は上流から下流に進むに従い加圧されることとなり、搾液手段70により液体成分(可溶化した水分及び有機溶媒)が除去される。そして、この液体成分が取り除かれて混練体の容積が減少しても、この混練体に付与される圧力は維持されることになる。
また、搾液区間Bは、図2(b)に示されるように、スクリュー32のフライト33のピッチが上流から下流にいくに従って狭くなるように形成されてもよい。フライト33のピッチが狭く変化すると混練体に付与される圧力は増大し、逆にピッチが広く変化すると混練体に付与される圧力は減少することになる。このような構成をスクリュー32がとることにより、軸径を変化させた場合と同様の効果が得られる。
As shown in FIG. 2A, the squeezed section B is formed so that the shaft diameter of the screw 32 increases as it goes from upstream to downstream. When the screw 32 takes such a configuration, the kneaded body is pressurized as it proceeds from upstream to downstream, and the liquid components (solubilized water and organic solvent) are removed by the squeezing means 70. And even if this liquid component is removed and the volume of the kneaded body is reduced, the pressure applied to the kneaded body is maintained.
Moreover, as shown in FIG.2 (b), the expression area B may be formed so that the pitch of the flight 33 of the screw 32 may become narrow as it goes downstream. When the pitch of the flight 33 changes narrowly, the pressure applied to the kneaded body increases. Conversely, when the pitch changes widely, the pressure applied to the kneaded body decreases. When the screw 32 takes such a configuration, the same effect as that obtained when the shaft diameter is changed can be obtained.

ここで、搾液手段70は、図3(a)に示されるように、液溜空間Uに溜まった液体を外部に放出する開閉弁71と、シリンダ31の内部と外部とを隔てるとともに混練体に含まれる水分及び有機溶媒を板面に設けられる多数の孔により選択的に濾過する濾過板72と、液溜空間Uを形成する外装室73と、濾過板72に設けられている孔の開度を調整して水分及び有機溶媒の通過量の調整を行う開口調節手段75と、から構成されている。   Here, as shown in FIG. 3A, the squeezing means 70 separates the opening / closing valve 71 that discharges the liquid accumulated in the liquid reservoir space U from the outside of the cylinder 31, and the kneaded body. A filter plate 72 that selectively filters the moisture and organic solvent contained in the plate surface through a number of holes provided in the plate surface, an exterior chamber 73 that forms a liquid storage space U, and openings in the filter plate 72 are opened. And an opening adjusting means 75 for adjusting the degree of passage of moisture and organic solvent by adjusting the degree.

このように構成される搾液手段70は、軸径又はフライト33のピッチが変化するスクリュー32によって、混練体を加圧して含まれる有機溶媒及び水分を搾り出すものである。そして搾液手段70は、開口調節手段75を適宜調節して搾り出す有機溶媒及び水分を調整し、下流の加熱混練区間Cに送られる混練体の粘性を最適化し、バイオマスの微細化及び均一分散を促進させる。
また混練体に含まれる有機溶媒及び水の全てを下流の揮発手段40,50で除去しようとすると、混合液を気化させるのにエネルギーを多く消費することになる。しかし、搾液手段70で事前に混合液を液体のまま除去できればエネルギーの消費を低減することができる。
The squeezing means 70 configured as described above is for squeezing the organic solvent and water contained by pressurizing the kneaded body with the screw 32 whose shaft diameter or pitch of the flight 33 changes. The squeezing means 70 adjusts the organic solvent and moisture to be squeezed by adjusting the opening adjusting means 75 as appropriate, optimizes the viscosity of the kneaded body sent to the downstream heating and kneading section C, and refines and uniformly disperses the biomass. To promote.
Further, if all the organic solvent and water contained in the kneaded body are removed by the downstream volatilization means 40 and 50, a large amount of energy is consumed to vaporize the mixed liquid. However, if the liquid mixture 70 can be removed in advance by the squeezing means 70, energy consumption can be reduced.

加熱混練区間Cは、合成高分子及びバイオマス等を、合成高分子が流動化する温度で混練する区間である。これによりバイオマスは、混練体中で微細化するとともに、溶融した合成高分子のマトリックス中に均一に分散することになる。   The heating and kneading section C is a section in which the synthetic polymer and biomass are kneaded at a temperature at which the synthetic polymer is fluidized. As a result, the biomass is refined in the kneaded body and is uniformly dispersed in the molten synthetic polymer matrix.

第1揮発区間D1は、第1揮発手段40(図1(b)適宜参照)が設けられており、スクリュー32から付与される圧力により混練体は、濾過板42に押し付けられて、含まれる水分及び有機溶媒が選択的にこの濾過板42を通過して気化空間Vに溜まる。
この気化空間Vに溜まった水分及び有機溶媒の温度は混練温度Tzと同じであるところ(図4(a)参照)、その飽和蒸気圧Pzより低い圧力Paに設定されている気化空間Vにおいて、この溜まった混合液は揮発することになる。この揮発した混合液(蒸気)は絞り弁41を通過して大気に放出されることになる。
The first volatilization section D1 is provided with first volatilization means 40 (refer to FIG. 1 (b) as appropriate), and the kneaded body is pressed against the filter plate 42 by the pressure applied from the screw 32, and the contained moisture. The organic solvent selectively passes through the filter plate 42 and accumulates in the vaporization space V.
In the vaporization space V set to a pressure Pa lower than the saturated vapor pressure Pz, the temperature of the water and the organic solvent accumulated in the vaporization space V is the same as the kneading temperature Tz (see FIG. 4A). This accumulated liquid mixture will volatilize. The volatilized liquid mixture (steam) passes through the throttle valve 41 and is released to the atmosphere.

上流側の第1揮発手段40aでは、設定温度Tzにおける蒸気圧Pzと設定圧力Paとの差圧が小さいために、混練体の揮発が急激にすすむことはなく、含水量が低減した状態となって混練されながら下流側の第1揮発手段40bに押し出される。
次の第1揮発手段40bにおいても、同様に、飽和蒸気圧Pzより低い圧力Pbに設定されている気化空間Vにおいて溜まった水分は気化して大気に放出されることになる。
これにより、沸点よりも高い設定温度において、水と有機溶媒の混合液が急激に揮発することが抑制されるために、分散したバイオマスの再凝集を防止することができる。
In the first volatile means 40a on the upstream side, since the differential pressure between the vapor pressure Pz and the set pressure Pa at the set temperature Tz is small, the kneaded body does not volatilize rapidly, and the water content is reduced. Then, it is pushed out to the first volatilization means 40b on the downstream side while being kneaded.
Similarly, in the next first volatilization means 40b, the water accumulated in the vaporization space V set to a pressure Pb lower than the saturated vapor pressure Pz is vaporized and released to the atmosphere.
Thereby, since it is suppressed that the liquid mixture of water and an organic solvent volatilizes rapidly at the preset temperature higher than a boiling point, re-aggregation of the dispersed biomass can be prevented.

ここで、図4(a)は、各温度における水の飽和蒸気圧を太線で、この水に対して任意の割合で相溶し蒸気圧が高い有機溶媒の代表としてエタノールの飽和蒸気圧を細線で示している。
そして図4(b)は、大気圧P0における水−エタノールの各組成における沸点を示している。このように、水よりも蒸気圧が高く(沸点が低く)任意の割合で水に可溶な有機溶媒を、水に相溶させた混合液は、図4(a)の一点鎖線で示されるように水よりも蒸気圧が高く(沸点が低く)なるのが一般的である。よって、このような有機溶媒が媒介することにより、バイオマスに含まれる水分は、有機溶媒とともに系外に排出することが容易になる。
Here, FIG. 4 (a) shows the saturated vapor pressure of water at each temperature with a thick line, and the saturated vapor pressure of ethanol as a representative of an organic solvent that is compatible with this water at an arbitrary ratio and has a high vapor pressure. Is shown.
And FIG.4 (b) has shown the boiling point in each composition of water-ethanol in atmospheric pressure P0. As described above, a mixed liquid in which an organic solvent that has a higher vapor pressure (lower boiling point) than water and is soluble in water at an arbitrary ratio is shown by a one-dot chain line in FIG. In general, the vapor pressure is higher (boiling point is lower) than water. Therefore, when such an organic solvent mediates, moisture contained in the biomass can be easily discharged out of the system together with the organic solvent.

ところで、図5の各組成における水−エタノールの気液平衡曲線に示されるように、共沸点以下のエタノール濃度の混合液においては、含まれるエタノールが優先的に揮発することになる。このために、図2に示すように、複数(図では二つ)の第1揮発手段40を軸に沿って配列した場合、下流に行くに従って、エタノール濃度が低下していくことになる。つまり、エタノール濃度の低下に従って、混合液の飽和蒸気圧も下降していくことになるので、第1揮発手段40の設定圧力も下流に行くに従って小さく設定する必要がある。   By the way, as shown in the water-ethanol vapor-liquid equilibrium curve in each composition of FIG. 5, in the mixed solution having an ethanol concentration equal to or lower than the azeotropic point, the contained ethanol preferentially volatilizes. Therefore, as shown in FIG. 2, when a plurality (two in the figure) of the first volatilizing means 40 are arranged along the axis, the ethanol concentration decreases as going downstream. That is, as the ethanol concentration decreases, the saturated vapor pressure of the mixed liquid also decreases, so the set pressure of the first volatilizing means 40 needs to be set smaller as it goes downstream.

このような設定圧力Pa,Pbで脱水処理されることにより、混練体は、含水量を急激ではなく徐々に低減させながら、さらに混練されることになる。これにより、混練体中で微細化して分散したバイオマスは、再凝集することが抑制されつつさらに、微細化、分散化が進行することとなる。   By performing dehydration treatment at such set pressures Pa and Pb, the kneaded body is further kneaded while gradually reducing the water content, not abruptly. Thereby, the refined and dispersed biomass in the kneaded body is further refined and dispersed while suppressing reaggregation.

第1凝縮手段80は、図6(a)に示されるように第1揮発手段40に繋がる導入路82が設けられている容体81と、図6(b)に示されるようにこの容体81と同心状に配置され導入路82から導入された蒸気がこの容体81の内側面に沿って旋回するように案内する内円筒83と、この内円筒83の内側に中心軸にそった流路を区画する内区画壁84と、容体81の底部に溜まった液体を外部に排出する取出口88とを備えている。このように構成されることにより第1凝縮手段80は、導入した蒸気が、容体81の内側面に沿って旋回した後にその中心軸に沿って流動するように流路が構成されるために、有機溶媒及び水の混合液の蒸気を流動させて冷却させる流路を長くとれて高効率で液体に凝縮することが可能で、低圧損でかつ低容積に構成されることになる。   The first condensing unit 80 includes a container 81 provided with an introduction path 82 connected to the first volatilizing unit 40 as shown in FIG. 6A, and the container 81 as shown in FIG. 6B. An inner cylinder 83 that guides the steam introduced concentrically and introduced from the introduction path 82 to swirl along the inner side surface of the container 81, and a flow path along the central axis inside the inner cylinder 83 is defined. And an outlet 88 for discharging the liquid accumulated on the bottom of the container 81 to the outside. Since the first condensing means 80 is configured in this way, the flow path is configured so that the introduced steam flows along the central axis thereof after swirling along the inner surface of the container 81. The flow path for cooling by flowing the vapor of the mixture of the organic solvent and water can be long and can be condensed into the liquid with high efficiency, and is configured with a low pressure loss and a low volume.

さらに第1凝縮手段80は、容体81の端部には排出路85が設けられ、この容体81の内部で凝縮されなかった蒸気を通過させる。そして、この排出路85は、その外周が冷却管86を通過する冷媒により冷却されている。また排出路85は、その流路が繰り返しくびれ形状を有していることにより、通過する蒸気が圧縮・膨張を繰り返すことにより冷却されて液滴に変化し、排出路85の内壁に付着するか最終的にはフィルタ87により捕捉されることになる。これにより、揮発した有機溶媒が大気中に飛散して環境を汚染することが防止されるとともに、揮発した有機溶媒を回収して懸濁体の製造に再利用できる。
なお図示略とするが、内円筒83及び内区画壁84には、これを冷却するための冷媒が流れる流路が設けられている場合がある。
Further, the first condensing means 80 is provided with a discharge path 85 at the end of the container 81, and allows the vapor not condensed inside the container 81 to pass through. The discharge path 85 is cooled by a refrigerant whose outer periphery passes through the cooling pipe 86. In addition, since the discharge channel 85 has a constricted shape, the vapor passing therethrough is cooled by being repeatedly compressed and expanded to change into droplets and adhere to the inner wall of the discharge channel 85. Eventually, it will be captured by the filter 87. As a result, the volatilized organic solvent is prevented from being scattered in the atmosphere and contaminating the environment, and the volatilized organic solvent can be recovered and reused for manufacturing the suspension.
Although not shown, the inner cylinder 83 and the inner partition wall 84 may be provided with a flow path through which a coolant for cooling the inner cylinder 83 and the inner partition wall 84 flows.

図2に戻って説明を続ける。
第2揮発区間D2は、引圧手段51が接続される第2揮発手段50が設けられており、大気圧よりも低圧に設定した雰囲気に混練体を晒して含まれる水を有機溶媒とともに揮発させるものである。
この第2揮発手段50の構成は、第1揮発手段40と同じ構成で、絞り弁41の出口が引圧手段51に開放されているか大気開放されているかの違いである。
このような大気圧よりも低い設定圧力Pc(図4(a)参照)で脱水処理されることにより、混練体に含まれる水分の除去が促進されるとともに、取出手段60から取り出され大気圧に晒された直後に残留水分が気化して混練体の内部に気泡を形成するのを防止できる。
Returning to FIG. 2, the description will be continued.
The second volatilization section D2 is provided with a second volatilization unit 50 to which the suction unit 51 is connected, and volatilizes the water contained in the atmosphere together with the organic solvent by exposing the kneaded body to an atmosphere set to a pressure lower than the atmospheric pressure. Is.
The configuration of the second volatilization unit 50 is the same as that of the first volatilization unit 40, and is different in that the outlet of the throttle valve 41 is opened to the pressure-pickup unit 51 or open to the atmosphere.
By performing the dehydration process at a set pressure Pc (see FIG. 4A) lower than the atmospheric pressure, the removal of moisture contained in the kneaded body is promoted and the atmospheric pressure is taken out from the take-out means 60. It is possible to prevent the residual moisture from evaporating immediately after being exposed and forming bubbles inside the kneaded body.

第2凝縮手段90は、図7に示されるように、第2揮発手段50からの排気が導入される導入路92と、この導入路92を冷却して排気中に含まれる蒸気を凝縮させる冷媒が通過する冷却管93と、引圧手段51により大気圧よりも低圧に保持されるとともに凝縮液を誘導して蓄積させる液溜槽94と、この液溜槽94を冷却する冷却槽95とから構成されている。
このように構成される第1凝縮手段80は、第2揮発手段50で揮発させた成分を、液化した後に取出口96から回収し、大気放出せずに再利用することを可能にするものである。
As shown in FIG. 7, the second condensing unit 90 includes an introduction path 92 into which exhaust from the second volatilization unit 50 is introduced, and a refrigerant that cools the introduction path 92 and condenses the vapor contained in the exhaust. A cooling pipe 93 through which the liquid is passed, a liquid reservoir tank 94 that is held at a pressure lower than the atmospheric pressure by the suction means 51 and that induces and accumulates condensate, and a cooling tank 95 that cools the liquid reservoir tank 94. ing.
The first condensing means 80 configured as described above allows the components volatilized by the second volatilizing means 50 to be collected from the outlet 96 after being liquefied and reused without being released into the atmosphere. is there.

図2に戻って説明を続ける。
再加圧区間Eは、脱水処理の終了した混練体を継続して混練するとともに、再加圧して取出手段60から取り出されるに必要な圧力を付与する部位である。
つまりスクリュー32は、再加圧区間Dにおいて、その軸径が太径になるかフライト33のピッチを狭くするかして脱水された混練体を再加圧されて取出手段60から取り出せるようにする。
これにより、バイオマスが微細に分散している高分子複合材料の溶融体が取出手段60から取り出されることになる。
なお、この高分子複合材料の混練体は、取出手段60に設けられ小さな穴が十数ヶ所空いているダイ(図示略)を通って、束状に放出される。さらに、冷却バスを通過して凝固した後にペレタイザー(図示略)に引込まれ米粒状のペレットにカットされる。
Returning to FIG. 2, the description will be continued.
The re-pressurization section E is a portion that continuously kneads the kneaded body after the dehydration process and applies a pressure necessary for re-pressurization and taking out from the take-out means 60.
That is, in the repressurizing section D, the screw 32 is repressurized so that the shaft diameter becomes larger or the pitch of the flights 33 is narrowed so that the dehydrated kneaded body can be taken out from the takeout means 60. .
As a result, the polymer composite material in which the biomass is finely dispersed is taken out from the take-out means 60.
The kneaded body of the polymer composite material is discharged in a bundle through a die (not shown) provided in the take-out means 60 and having dozens of small holes. Further, after solidifying through the cooling bath, it is drawn into a pelletizer (not shown) and cut into rice granular pellets.

以上の説明において、バイオマス有機液状化物の製造装置10Aとして、バッチ式の製造装置を示し、高分子複合材料の製造装置10Bとして連続式の製造装置を例示した。しかし、これらに限定されるものではなく、前記したバッチ式の製造装置10Aに合成高分子を投入する第2投入手段21を設けて高分子複合材料の製造装置とすることも、前記した連続式の製造装置10Bから第2投入手段21を外してバイオマス有機液状化物の製造装置とすることもできる。
また、既存の装置を用いて、必要な工程を適宜分担し、組み合わせることにより、バイオマス有機液状化物、合成高分子とバイオマスとを複合化させた高分子複合材料といったバイオマス含有組成物を製造することができる。
In the above description, the batch type manufacturing apparatus is shown as the biomass organic liquefied product manufacturing apparatus 10A, and the continuous manufacturing apparatus is exemplified as the polymer composite material manufacturing apparatus 10B. However, the present invention is not limited to these, and the above-described continuous-type production apparatus may be configured by providing the above-described batch-type production apparatus 10A with the second introduction means 21 for introducing the synthetic polymer into the polymer composite material production apparatus. It is also possible to remove the second charging means 21 from the manufacturing apparatus 10B and make a biomass organic liquefied product manufacturing apparatus.
In addition, using existing equipment, necessary processes are appropriately shared and combined to produce a biomass-containing composition such as a biomass organic liquefied material or a polymer composite material obtained by combining a synthetic polymer and biomass. Can do.

本発明に係るバイオマスの有機液状化装置の実施形態を示す断面図であり、(a)(b)(c)はそれぞれ異なる断面を示している。It is sectional drawing which shows embodiment of the organic liquefaction apparatus of the biomass which concerns on this invention, (a) (b) (c) has each shown a different cross section. (a)は本発明に係る高分子複合材料の製造装置の実施形態を示す縦断面図であり、(b)はこの実施形態の変形例を示す縦断面図である。(A) is a longitudinal cross-sectional view which shows embodiment of the manufacturing apparatus of the polymer composite material which concerns on this invention, (b) is a longitudinal cross-sectional view which shows the modification of this embodiment. (a)は本発明に適用される搾液手段の実施形態を示す縦断面図であり、(b)は開口調節手段の動作を説明する部分拡大図である。(A) is a longitudinal cross-sectional view which shows embodiment of the squeezing means applied to this invention, (b) is the elements on larger scale explaining operation | movement of an opening adjustment means. (a)は温度に対する水、エタノール、エタノール水溶液、及び難揮発性溶液の飽和蒸気圧を示すグラフであり、(b)は1気圧におけるエタノール水溶液の任意組成に対する沸点を示すグラフである。(A) is a graph which shows the saturated vapor pressure of water, ethanol, ethanol aqueous solution, and a hardly-volatile solution with respect to temperature, (b) is a graph which shows the boiling point with respect to the arbitrary compositions of the ethanol aqueous solution in 1 atmosphere. エタノール水溶液の気液平衡曲線を示すグラフである。It is a graph which shows the vapor-liquid equilibrium curve of ethanol aqueous solution. (a)は本発明に適用される第1凝縮手段の縦断面図であり、(b)は水平断面図である。(A) is a longitudinal cross-sectional view of the 1st condensing means applied to this invention, (b) is a horizontal sectional view. 本発明に適用される第2凝縮手段の縦断面図である。It is a longitudinal cross-sectional view of the 2nd condensing means applied to this invention.

符号の説明Explanation of symbols

10A 有機液状化装置(バイオマス有機液状化物の製造装置(製造装置))
10B 複合材製造装置(高分子複合材料の製造装置(製造装置))
20 第1投入手段
21 第2投入手段
25,24 絞り弁
30,30A,30B 混練手段
33 フライト
40,40a,40b 第1揮発手段
42,72 濾過板
43,73 外装室
44 圧力計
50 第2揮発手段
51 引圧手段
60 取出手段
70 搾液手段
75 開口調節手段
80 第1凝縮手段
81 容体
90 第2凝縮手段
U 液溜空間
V 気化空間
W 密閉空間
10A Organic Liquefaction Equipment (Biomass Organic Liquefaction Production Equipment (Production Equipment))
10B Composite material manufacturing equipment (Polymer composite material manufacturing equipment (manufacturing equipment))
20 First input means 21 Second input means 25, 24 Throttle valve 30, 30A, 30B Kneading means 33 Flight 40, 40a, 40b First volatilization means 42, 72 Filter plate 43, 73 Exterior chamber 44 Pressure gauge 50 Second volatilization Means 51 Pulling means 60 Extraction means 70 Squeezing means 75 Opening adjustment means 80 First condensing means 81 Container 90 Second condensing means U Liquid storage space V Vaporization space W Sealed space

Claims (14)

バイオマスの粉砕物及び有機溶媒を投入する第1投入手段と、
投入された前記粉砕物及び有機溶媒を密閉状態で設定温度にて混練し前記バイオマスが微細に分散した混練体にする混練手段と、
前記混練体を前記設定温度における飽和蒸気圧よりも低圧に設定した雰囲気に晒し含まれる水分を揮発させる揮発手段と、
脱水されて前記バイオマスが均質に微細に分散した状態の前記混練体を取り出す取出手段とを、備えることを特徴とするバイオマス有機液状化物の製造装置。
A first charging means for charging a pulverized biomass and an organic solvent;
A kneading means for kneading the charged pulverized product and organic solvent at a set temperature in a sealed state to form a kneaded body in which the biomass is finely dispersed;
Volatilizing means for volatilizing water contained by exposing the kneaded body to an atmosphere set to a pressure lower than the saturated vapor pressure at the set temperature;
An apparatus for producing a biomass organic liquefied product, comprising: a take-out means for taking out the kneaded body in a state where the biomass is uniformly and finely dispersed after being dehydrated.
請求項1に記載の製造装置において、
合成高分子の単体又は前駆体を投入する第2投入手段を設け、
前記混練手段は、投入された前記合成高分子を、蒸気圧が水よりも高く任意の割合で水に可溶する前記有機溶媒及び前記粉砕物とともに混練し、
前記揮発手段は、前記混練体から前記水分とともに前記有機溶媒も揮発させ、
取出手段は、脱水されて前記バイオマスが前記合成高分子に均質に微細に分散した状態の前記混練体を取り出すことを特徴とする高分子複合材料の製造装置。
The manufacturing apparatus according to claim 1,
Providing a second charging means for charging a single or precursor synthetic polymer;
The kneading means kneads the charged synthetic polymer together with the organic solvent having a vapor pressure higher than water and soluble in water at an arbitrary ratio and the pulverized product,
The volatilizing means volatilizes the organic solvent together with the moisture from the kneaded body,
The take-out means takes out the kneaded body in a state where the biomass is dehydrated and the biomass is uniformly and finely dispersed in the synthetic polymer.
請求項1又は請求項2に記載の製造装置において、
前記粉砕物は、水溶媒中で前記バイオマスを粉砕させたものであることを特徴とする製造装置。
In the manufacturing apparatus according to claim 1 or 2,
The pulverized product is a product obtained by pulverizing the biomass in an aqueous solvent.
請求項1から請求項3のいずれか1項に記載の製造装置において、
前記粉砕物及び前記有機溶媒は予め混合され懸濁体の状態で前記第1投入手段に投入されることを特徴とする製造装置。
In the manufacturing apparatus of any one of Claims 1-3,
The pulverized product and the organic solvent are mixed in advance and charged into the first charging means in a suspended state.
請求項1から請求項4のいずれか1項に記載の製造装置において、
単数又は複数設けられている前記揮発手段のうち少なくとも1つは、
前記雰囲気を、前記設定温度における飽和蒸気圧よりも低圧でかつ大気圧よりも高圧に設定する絞り弁を有する第1揮発手段であることを特徴とする製造装置。
In the manufacturing apparatus according to any one of claims 1 to 4,
At least one of the volatile means provided in a singular or plural number is:
A manufacturing apparatus comprising: a first volatilizing unit having a throttle valve that sets the atmosphere to a pressure lower than a saturated vapor pressure at the set temperature and higher than an atmospheric pressure.
請求項5に記載の製造装置において、
複数設けられている前記揮発手段のうち少なくとも1つは、
前記雰囲気を、大気圧よりも低圧に設定する引圧手段を有する第2揮発手段であることを特徴とする製造装置。
The manufacturing apparatus according to claim 5, wherein
At least one of the plurality of volatilization means provided is:
2. A manufacturing apparatus comprising: a second volatilizing unit having a pulling unit that sets the atmosphere to a pressure lower than the atmospheric pressure.
請求項1から請求項6のいずれか1項に記載の製造装置において、
前記混練手段は、
前記第1投入手段が上流側に設けられ前記取出手段が下流側に設けられているシリンダと、
前記シリンダの内部で軸回転し前記混練体を前記上流側から前記下流側に押し出すスクリューとを、有することを特徴とする製造装置。
In the manufacturing apparatus according to any one of claims 1 to 6,
The kneading means includes
A cylinder in which the first input means is provided on the upstream side and the take-out means is provided on the downstream side;
And a screw for rotating the shaft inside the cylinder to push the kneaded body from the upstream side to the downstream side.
請求項7に記載の製造装置において、
前記揮発手段で処理される前の前記混練体を加圧して前記有機溶媒及び水分を搾り出す搾液手段を有することを特徴とする製造装置。
The manufacturing apparatus according to claim 7, wherein
A manufacturing apparatus comprising a squeezing means that pressurizes the kneaded body before being treated by the volatilizing means to squeeze out the organic solvent and moisture.
請求項1から請求項8のいずれか1項に記載の製造装置において、
前記揮発手段は、揮発させた前記有機溶媒及び水の蒸気を液体に凝縮させる凝縮手段に接続していることを特徴とする製造装置。
The manufacturing apparatus according to any one of claims 1 to 8,
The said volatilization means is connected to the condensation means to condense the vaporized said organic solvent and water vapor | steam into a liquid, The manufacturing apparatus characterized by the above-mentioned.
バイオマスの粉砕物及び有機溶媒を投入する第1投入段階と、
投入された前記粉砕物及び有機溶媒を密閉状態で設定温度にて混練し前記バイオマスが微細に分散した混練体にする混練段階と、
前記混練体を前記設定温度における飽和蒸気圧よりも低圧に設定した雰囲気に晒し含まれる水分を揮発させる揮発段階と、
脱水されて前記バイオマスが均質に微細に分散した状態の前記混練体を取り出す取出段階とを、備えることを特徴とするバイオマス有機液状化物の製造方法。
A first charging stage for charging a pulverized biomass and an organic solvent;
A kneading step of kneading the charged pulverized product and the organic solvent in a sealed state at a set temperature to form a kneaded body in which the biomass is finely dispersed;
A volatilization stage in which the kneaded body is exposed to an atmosphere set to a pressure lower than the saturated vapor pressure at the set temperature to volatilize the contained water;
A method for producing a biomass organic liquefied product, comprising: taking out the kneaded body that has been dehydrated and in which the biomass is uniformly and finely dispersed.
請求項10に記載の製造方法において、
前記混練段階よりも前に合成高分子の単体又は前駆体を投入する第2投入段階を含め、
前記混練段階は、投入された前記合成高分子を、蒸気圧が水よりも高く任意の割合で水に可溶する前記有機溶媒及び前記粉砕物とともに混練し、
前記揮発段階は、前記混練体から前記水分とともに前記有機溶媒も揮発させ、
取出段階は、脱水されて前記バイオマスが前記合成高分子に均質に分散した状態の前記混練体を取り出すことを特徴とする高分子複合材料の製造方法。
In the manufacturing method of Claim 10,
Including a second charging step of charging the single or precursor of the synthetic polymer before the kneading step,
In the kneading step, the charged synthetic polymer is kneaded with the organic solvent having a vapor pressure higher than water and soluble in water at an arbitrary ratio and the pulverized product,
The volatilization stage volatilizes the organic solvent together with the moisture from the kneaded body,
In the extraction step, the kneaded body in a state in which the biomass is dehydrated and homogeneously dispersed in the synthetic polymer is extracted.
請求項10又は請求項11に記載の製造方法において、
前記第1投入段階よりも前に、水溶媒中で前記バイオマスを粉砕し前記粉砕物とする粉砕化工程を含むことを特徴とする製造方法。
In the manufacturing method of Claim 10 or Claim 11,
A manufacturing method comprising a pulverization step of pulverizing the biomass in an aqueous solvent to form the pulverized product before the first charging step.
請求項10から請求項12のいずれか1項に記載の製造方法において、
前記第1投入段階よりも前に、前記粉砕物及び前記有機溶媒を予め混合し懸濁体にする懸濁化工程を含むことを特徴とする製造方法。
In the manufacturing method according to any one of claims 10 to 12,
Prior to the first charging step, the production method includes a suspending step in which the pulverized product and the organic solvent are mixed in advance to form a suspension.
請求項10から請求項13のいずれか1項に記載の製造方法により得られるバイオマスが微細に分散したバイオマス含有組成物。   A biomass-containing composition in which biomass obtained by the production method according to claim 10 is finely dispersed.
JP2008172917A 2008-07-02 2008-07-02 Apparatus and method for producing biomass-liquefied organic material, and apparatus and method for producing polymer composite material Pending JP2010012384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008172917A JP2010012384A (en) 2008-07-02 2008-07-02 Apparatus and method for producing biomass-liquefied organic material, and apparatus and method for producing polymer composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008172917A JP2010012384A (en) 2008-07-02 2008-07-02 Apparatus and method for producing biomass-liquefied organic material, and apparatus and method for producing polymer composite material

Publications (1)

Publication Number Publication Date
JP2010012384A true JP2010012384A (en) 2010-01-21

Family

ID=41699032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008172917A Pending JP2010012384A (en) 2008-07-02 2008-07-02 Apparatus and method for producing biomass-liquefied organic material, and apparatus and method for producing polymer composite material

Country Status (1)

Country Link
JP (1) JP2010012384A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051349A (en) * 2007-05-01 2011-03-17 Agri Future Joetsu Co Ltd Manufacturing apparatus for polymeric composite material and manufacturing method for the same
JP2011099013A (en) * 2009-11-04 2011-05-19 Agri Future Joetsu Co Ltd Method for producing composite of natural organic substance and synthetic organic substance
WO2015098946A1 (en) * 2013-12-25 2015-07-02 加藤 進 Lignocellulose biomass treatment device, treatment method, treated product, and saccharification method
WO2016199923A1 (en) * 2015-06-11 2016-12-15 出光興産株式会社 Thermoplastic resin composition and method for producing thermoplastic resin composition
EP3653311A4 (en) * 2017-07-13 2021-04-14 Your Energy Development Co. Ltd. Organic matter multistage utilization device and organic matter multistage utilization method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051349A (en) * 2007-05-01 2011-03-17 Agri Future Joetsu Co Ltd Manufacturing apparatus for polymeric composite material and manufacturing method for the same
JP2011099013A (en) * 2009-11-04 2011-05-19 Agri Future Joetsu Co Ltd Method for producing composite of natural organic substance and synthetic organic substance
WO2015098946A1 (en) * 2013-12-25 2015-07-02 加藤 進 Lignocellulose biomass treatment device, treatment method, treated product, and saccharification method
JPWO2015098946A1 (en) * 2013-12-25 2017-03-23 加藤 進 Lignocellulosic biomass processing apparatus, processing method, processed product and saccharification method
WO2016199923A1 (en) * 2015-06-11 2016-12-15 出光興産株式会社 Thermoplastic resin composition and method for producing thermoplastic resin composition
JP2017002206A (en) * 2015-06-11 2017-01-05 出光興産株式会社 Thermoplastic resin composition and production method therefor
EP3653311A4 (en) * 2017-07-13 2021-04-14 Your Energy Development Co. Ltd. Organic matter multistage utilization device and organic matter multistage utilization method

Similar Documents

Publication Publication Date Title
US7717364B2 (en) Apparatus for the separation and treatment of solid biomass
JP2010012384A (en) Apparatus and method for producing biomass-liquefied organic material, and apparatus and method for producing polymer composite material
TWI409273B (en) Concentrated acid processing section, concentrated acid processing method, plant resource phase-separating system conversion apparatus and conversion method
JP4660528B2 (en) Polymer composite material manufacturing apparatus and manufacturing method thereof
CN109316461B (en) Lignin wall material microcapsule based on Pickering emulsion interface crosslinking, preparation method and application in drug carrier
Ajdary et al. Selective laser sintering of lignin-based composites
CN1142184C (en) Method for producing cellulose suspension
JP4371373B2 (en) MANUFACTURING METHOD FOR WOOD-BASED MOLDED BODY AND WOOD-BASED MOLDED BODY
KR20210054503A (en) Method for producing lignin particles
CN1796624A (en) Method for producing cellulose fiber
Almashhadani et al. Nanocrystalline cellulose isolation via acid hydrolysis from non-woody biomass: Importance of hydrolysis parameters
US11492752B2 (en) Method and device for treating biomass
US20150158752A1 (en) Methods for treating biosolids sludge with cavitation
KR20100018504A (en) Polymer composite material, apparatus for producing the same and method of producing the same
CA2762523A1 (en) Process for producing non-crystalline cellulose
KR20120077991A (en) Pretreatment system and method for manufacturing substrate for ethanol fermentation from cellulose biomass
CN101974161A (en) Method for dissolving and quickly hydrolyzing lignocellulose biomass as well as device and application thereof
CA3044485A1 (en) Production of lignin particles
CN1532208A (en) Method for producing cellulose molding plant component extracting deivce, and method for producing cellulose acetate
Sangtarashani et al. Lignocellulosic hydrogel from recycled old corrugated container resources using ionic liquid as a green solvent
DE102011010980A1 (en) Method and device for crushing and drying moisture-containing material, in particular wood
WO2013076960A1 (en) Biomass powder derived from oil palm and production method therefor, and biomass-composite molded body and production method therefor
US20220389659A1 (en) Microfibrillated cellulose-loaded foam, method of producing such foam and use of such a foam
JP2010046565A (en) Method and apparatus for extracting organic component
CN109996921B (en) Method for impregnating biomass and device for impregnating biomass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110628

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20121030