WO2013076960A1 - Biomass powder derived from oil palm and production method therefor, and biomass-composite molded body and production method therefor - Google Patents

Biomass powder derived from oil palm and production method therefor, and biomass-composite molded body and production method therefor Download PDF

Info

Publication number
WO2013076960A1
WO2013076960A1 PCT/JP2012/007427 JP2012007427W WO2013076960A1 WO 2013076960 A1 WO2013076960 A1 WO 2013076960A1 JP 2012007427 W JP2012007427 W JP 2012007427W WO 2013076960 A1 WO2013076960 A1 WO 2013076960A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
biomass powder
molded body
oil palm
powder
Prior art date
Application number
PCT/JP2012/007427
Other languages
French (fr)
Japanese (ja)
Inventor
治男 西田
義人 安藤
永田 浩一
義人 白井
スビアン カルプチャーミー
ノルディン ノール イダ アマリナ アーマド
アリフィン ヒダヤ ビンティ
モハド アリ ハッサン
Original Assignee
国立大学法人九州工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州工業大学 filed Critical 国立大学法人九州工業大学
Priority to JP2013545787A priority Critical patent/JP5946226B2/en
Publication of WO2013076960A1 publication Critical patent/WO2013076960A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N1/00Pretreatment of moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/28Moulding or pressing characterised by using extrusion presses
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • C10L5/10Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders
    • C10L5/14Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders with organic binders
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • C10L5/442Wood or forestry waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2250/00Structural features of fuel components or fuel compositions, either in solid, liquid or gaseous state
    • C10L2250/04Additive or component is a polymer
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2250/00Structural features of fuel components or fuel compositions, either in solid, liquid or gaseous state
    • C10L2250/06Particle, bubble or droplet size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/32Molding or moulds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a technology for utilizing biomass derived from oil palm that is abundant in tropical regions and insufficiently used.
  • Oil palm oil is collected from mesocarp and endocarp. Since the amount of fats and oils obtained per planted area is one of the best among plants, it is cultivated on a large scale by plantation farming methods in tropical regions, especially Malaysia and Indonesia.
  • the mature palm oil consists of a single trunk (trunk) and reaches a height of 20m.
  • the foliage is called Frond and has a feather shape of about 3 to 5 meters long.
  • the fruit of oil palm is called a fresh fruit bunch (hereinafter abbreviated as FFB), and one FFB is a collection of about 200 eggs.
  • the weight is about 40-50kg per cell.
  • Each fruit of FFB consists of a fleshy mesocarp with a lot of oil and a single fruit shell that is also rich in oil.
  • the mesocarp portion after squeezing the oil from the berries is rich in cellulose fiber and is called mesocarp fiber (hereinafter abbreviated as MF).
  • MF mesocarp fiber
  • EFB empty fruit bunch
  • the biomass discharged from the plantation is enormous, and it is said that annual emissions of over 10 million tons of each of Frond, MF, and EFB.
  • These biomass are reused in plantation and palm oil production processes.
  • front is spread on the base of oil palm and used as fertilizer, and MF is used as fuel for palm oil mills.
  • MF is used as fuel for palm oil mills.
  • frontal and MF are rich in high-quality cellulose fibers, the use of these enormous amounts of biomass is limited.
  • a method of using MF and front a method of collecting pulp and organic acid-modified lignin by digesting MF and front in the presence of acid (see Patent Document 1), and thermosetting a fiber mat mainly composed of palm fiber After adhering with a functional resin, a heat insulating material for interiors obtained by compression molding (see Patent Document 2), a compression molded body such as a pallet or a tray (see Patent Document 3), and further MF is radiation and / or high-pressure steam. Only a method of using it as a feed after being sterilized in the presence (see Patent Document 4) is disclosed.
  • EFB derived from the same oil palm fruit is converted to biomass ethanol (see Patent Document 5), heat insulating wall structure (see Patent Document 6), molded board (Patent Document), in addition to the same method of use as MF and Frond. 7) and other industrial product materials.
  • Biomass is usually composed of cellulose, hemicellulose, and lignin. Among these main components, hemicellulose is easily decomposed at the lowest temperature (see Non-Patent Document 2), and generates volatile substances such as acetic acid and formic acid. This decomposition of hemicellulose has a peak in the temperature range of 180 to 320 ° C., and overlaps with the melt molding temperature of general thermoplastics. Therefore, when the biomass and the thermoplastic are blended and heated to around 200 ° C., the hemicellulose component is decomposed and a specific odor is emitted.
  • JP 2006-112004 A Japanese Patent Laid-Open No. 10-138210 Special table 2008-502517 JP 09-168367 A JP 2009-125050 A Japanese Patent Laid-Open No. 10-183797 Japanese Patent Laid-Open No. 06-285819 Special Table 2004-209462 Special table 2010-090487 JP 2005-218425 A JP 2000-006116 A
  • the first problem to be solved is that conventional oil palm-derived biomass has a high moisture content, has a heterogeneous composition and shape, and is difficult to use as it is as an industrial fiber material. is there.
  • the second problem to be solved is that it is difficult to make fine powder when the oil palm-derived biomass and the resin are combined, and the characteristics of the thermoplastic resin are reduced due to the generation of odor components accompanying thermal decomposition. It is difficult to make use of melt injection molding and extrusion molding.
  • the biomass powder derived from oil palm according to the present invention does not have a peak in the temperature range of 180 to 320 ° C. in the differential curve of thermogravimetry, has a peak in the temperature range of 300 to 400 ° C., and is 50% by mass or more.
  • the major axis is in the range of 1 to 500 ⁇ m.
  • the oil palm-derived biomass powder according to the present invention is preferably characterized in that the raw material is a fibrous residue (MF) after squeezing oil from the mesocarp of oil palm.
  • MF fibrous residue
  • the oil palm-derived biomass powder according to the present invention is preferably characterized in that the raw material is a fiber residue (front fiber) after squeezing the sugar component from the oil palm stems and leaves.
  • the oil palm-derived biomass powder according to the present invention is preferably characterized in that the raw material is an empty bunch after removing the fruit from the oil palm fruit.
  • the method for producing biomass powder according to the present invention is the method for producing biomass powder described above, characterized in that the raw material is treated with steam at 170 to 250 ° C. for 10 minutes to 6 hours and then pulverized. To do.
  • the biomass composite molded body according to the present invention is formed by molding a composition containing the biomass powder and a thermoplastic resin or a prepolymer of a thermosetting resin in a mass ratio of 5:95 to 80:20. .
  • the method for producing a biomass composite molded body according to the present invention is characterized in that a biomass composite molded body is obtained by melt molding.
  • the method for producing a biomass composite molded body according to the present invention is characterized by molding by an injection molding method or an extrusion molding method.
  • the biomass powder according to the present invention has 50% by mass or more in the range of the major axis of 1 to 500 ⁇ m, it can be used as a physically homogeneous industrial fiber material.
  • the mixture with a thermoplastic resin can be applied to a molding method capable of obtaining a complicated molded body such as injection molding or extrusion molding.
  • the biomass powder does not have a peak in the temperature range of 180 to 320 ° C. and has a peak in the temperature range of 300 to 400 ° C. in the differential curve of thermogravimetry, It is possible to reduce the amount of the odor component generated by the decomposition of the hemicellulose component.
  • the biomass powder manufacturing method according to the present invention can suitably obtain the biomass powder according to the present invention.
  • the biomass composite molded body according to the present invention is obtained by molding a composition containing a fibrous biomass powder and a thermoplastic resin in a mass ratio of 5:95 to 80:20. An excellent composite molded body can be suitably obtained.
  • the method for producing a biomass composite molded body according to the present invention can suitably obtain the biomass composite molded body according to the present invention.
  • FIG. 1 is an optical micrograph of the mesocarp fiber powder produced in biomass powder production Example 2.
  • FIG. 2 is a long diameter size distribution diagram of the mesocarp fiber powder produced in biomass powder production Example 2.
  • FIG. 3 a is a thermogravimetric reduction curve (TG) of the mesocarp fiber powder produced in biomass powder production Examples 1 and 2 and Comparative Example 1.
  • FIG. 3 b is a thermogravimetric decrease derivative curve (DTG) of the mesocarp fiber powder produced in biomass powder production Examples 1 and 2 and Comparative Example 1.
  • FIG. 4 is an optical micrograph of the foliage fiber powder produced in biomass powder production Example 3.
  • FIG. 5 is a major axis size distribution diagram of the foliage fiber powder produced in biomass powder production Example 3.
  • FIG. 6 a is a thermogravimetric reduction curve (TG) of the foliage fiber powder produced in biomass powder production Example 3 and Comparative Example 2.
  • FIG. 6 b is a thermogravimetric decrease derivative curve (DTG) of the foliage fiber powder produced in biomass powder production Example 3 and Comparative Example 2.
  • Oil palm (Elaeis) is a collective term for plants classified into the genus Acapulaceae, 2 of Guinea oil palm (Elaeis guineensis) native to West Africa and America oil palm (Elaeis oleifera) native to the tropical region of Central and South America.
  • the seed is known.
  • the type of oil palm to be used is not limited.
  • the oil palm means a total consisting of a trunk (trunk), foliage (Frond), fruit (FFB), mesocarp (mesocarp), fruit shell (shell),
  • MF which is a component rich in cellulose fiber after squeezing oil from mesocarp, and fiber front fiber after squeezing sugar component, and empty bunch after removing fruit from fruit (EFB) ) Is suitable as a raw material for the biomass powder of the present embodiment.
  • Oil palm-derived biomass consists of cellulose, hemicellulose, and lignin as its main components.
  • Hemicellulose plays the role of an adhesive that binds cellulose and lignin or cellulose.
  • the biomass powder of the present embodiment is chemically a mixture of cellulose, lignin and hemicellulose as main components, and further includes a mixture of silica fine particles as other trace components.
  • the biomass powder of the present embodiment does not have a peak in the temperature range of 180 to 320 ° C. and has a peak in the temperature range of 300 to 400 ° C. in the differential curve of thermogravimetry.
  • the differential curve of thermogravimetry is measured by mechanically differentiating the thermogravimetric curve measured at 10 ° C / min in nitrogen using a differential thermal gravimetric analyzer (Differential Thermal Gravimetrical Analyzer). Can do.
  • the peak in the temperature range of 180 to 320 ° C. is based on the decomposition of hemicellulose, and the biomass powder of the present embodiment has substantially no peak in this temperature range.
  • the biomass powder does not contain hemicellulose or that the hemicellulose content is below the detection limit of the differential thermogravimetry apparatus.
  • the peak in the temperature range of 300 to 400 ° C. is based on the decomposition of cellulose, and the fact that the biomass powder has a peak in this temperature range indicates that the biomass powder contains cellulose. That is, the biomass powder of the present embodiment is rich in the cellulose component, and the hemicellulose component is not detected by the measurement method.
  • the biomass powder of the present embodiment has a short fiber shape.
  • 50% by mass or more is in the range of the major axis of 1 to 500 ⁇ m.
  • the major axis means the major axis diameter of the short fibrous particles.
  • the mass ratio of the particles having a major axis in the range of 1 to 500 ⁇ m is assumed to be the same as the mass ratio by assuming that the shape of the short fiber biomass powder particles is an ellipsoid and the specific gravity is constant. From the measurement of the major axis diameter a and the minor axis diameter b by microscopic observation, it can be obtained by measuring the major axis and mass of the measurement particles according to the following formula.
  • is the circumference ratio.
  • the approximate value of the mass ratio of particles having a major axis in the range of 1 to 500 ⁇ m can also be easily obtained by a sieving method.
  • the biomass powder is preferably 80% by mass or more, and more preferably 90% by mass or more, in the above-mentioned major axis range.
  • the biomass powder preferably has a major axis of the above-mentioned content of powder in the range of 10 to 250 ⁇ m, more preferably in the range of 50 ⁇ m to 150 ⁇ m.
  • the melt fluidity may be hindered during melt molding of the thermoplastic resin.
  • the content of the biomass powder in the range of 1 ⁇ m to 500 ⁇ m is less than 50% by mass, the fluidity of the mixture is inhibited when the biomass powder is mixed with a resin and heated and melt-molded. May get stuck inside the screw.
  • the biomass powder contains particles having a major axis of less than 1 ⁇ m and the number of extremely small powders increases, handling becomes difficult.
  • the content of biomass powder in the range from 1 ⁇ m sieve to 500 ⁇ m sieve is 90% by mass or more, more preferably 95% by mass or more. Is desirable.
  • the biomass powder of the present embodiment described above can be used as a physically homogeneous industrial fiber material.
  • the mixture with a thermoplastic resin can be applied to a molding method capable of obtaining a complicated molded body such as injection molding or extrusion molding.
  • the biomass powder does not have a peak in the temperature range of 180 to 320 ° C. and has a peak in the temperature range of 300 to 400 ° C. in the differential curve of thermogravimetry, It is possible to reduce the amount of the odor component generated by the decomposition of the hemicellulose component.
  • a raw material derived from oil palm is treated with steam at 170 to 250 ° C. for 10 minutes to 6 hours, and then pulverized to a desired size.
  • the raw material derived from oil palm is itself a biomass, but is referred to as a raw material in order to distinguish it from the obtained biomass powder of the present embodiment.
  • Treatment means bringing steam heated to 170 to 250 ° C. into contact with biomass.
  • the temperature is less than 170 ° C.
  • the steam treatment effect that is, the degree of decomposition of the low-temperature decomposition component mainly composed of hemicellulose in the raw material is small, and the treatment takes a long time.
  • 170 ° C. is a reverse transition temperature, and therefore, a drying treatment can be simultaneously performed above that temperature.
  • the temperature exceeds 250 ° C., decomposition of the raw material tends to proceed more than necessary and carbonization tends to occur, which is not preferable.
  • the heating steam treatment temperature is more preferably in the range of 190 to 240 ° C., further preferably 200 to 230 ° C.
  • the water vapor at 170 to 250 ° C. is water vapor in the temperature range of 170 to 250 ° C. in the pressure range from the saturation pressure to the normal pressure.
  • Such steam includes atmospheric superheated steam and pressurized saturated steam. Normal pressure superheated steam is different from pressurized saturated steam obtained by heating in a constant volume state, and is obtained by further heating 100 ° C steam in a state where it can expand, Say.
  • pressurized saturated steam is that it is pressurized, so (1) the water molecule concentration in the steam is high, the reaction is fast and can be processed in a short time, and (2) the steam is in the pressure vessel during the reaction. Since it is held and not released, the utilization efficiency of water vapor is high.
  • the merit of normal pressure superheated steam is that the pressure is normal pressure, (1) when using a reaction vessel, for example, the pressure resistance of the vessel is unnecessary, and (2) scale-up is easy. Further, (3) the component decomposed and removed by the atmospheric superheated steam is discharged on the steam flow, and therefore, for example, when using a reaction vessel, the decomposition vaporized product is not liquefied and retained in the reaction vessel.
  • pressurized saturated steam and atmospheric superheated steam have different merits as described above. Therefore, according to other conditions (processing amount, processing time, discharge conditions of decomposition products, etc.) It can be selected between pressurized saturation and normal pressure overheating. In the case of treating a large amount of biomass, a normal pressure superheated steam treatment and a steam treatment under slightly pressurized conditions using a pressure damper are more preferable treatment methods. Furthermore, when carrying out drying of biomass at the same time, a normal pressure superheated steam treatment at a reverse transition temperature (170 ° C.) or higher is a more preferable treatment method.
  • Heated steam treatment can be performed by placing a raw material derived from oil palm in a reaction vessel and introducing water vapor into the reaction vessel.
  • the raw material is cut into dimensions that can be accommodated in the reaction vessel. If a large-sized normal pressure reaction vessel is used, the cutting of the raw material is substantially unnecessary.
  • the heating steam treatment may adopt a method in which biomass is placed on a continuous conveyor and moved and sprayed with atmospheric superheated steam. In this case, cutting of the raw material is substantially unnecessary, and continuous Processing efficiency is high by processing.
  • the method in which the heated steam treatment is performed by spraying heated steam in a rotary kiln in which case the contact between the raw material and the steam becomes more uniform, and further, the raw material is crushed and crushed simultaneously in the apparatus. Since it can also be performed, processing efficiency is high.
  • the heating steam treatment time varies depending on whether pressurized saturated steam or normal pressure steam is used, and at what temperature the treatment temperature is used. In the case of using pressurized saturated steam, it is preferably selected in the range of 30 minutes to 4 hours including the pressurization temperature raising and pressure reduction temperature lowering processes. On the other hand, when normal pressure superheated steam is used, the reaction progress is slower than that of pressurized saturated steam, but since a pressure increasing / decreasing process is unnecessary, it is preferably selected in the range of 30 minutes to 7 hours. Among these, the net steam treatment time is 10 minutes to 3 hours when using pressurized saturated steam, 30 minutes to 6 hours when using atmospheric superheated steam, and more preferably 1 to 3 hours. .
  • the raw material derived from the oil palm after the heat treatment can be easily pulverized because the easily degradable hemicellulose is preferentially decomposed and a part thereof is removed as a volatile component.
  • the crushing and pulverization performed as necessary before pulverization can be performed using an appropriate apparatus. At this time, a two-stage process in which fine pulverization is performed after coarse pulverization may be performed.
  • an apparatus used for pulverization a generally known crushing and pulverizing apparatus can be used. Examples of suitably used crushing apparatuses include, for example, hammer mill, cutter mill, pin mill, crusher mill, ball mill, rod mill, bar mill, disk mill, blade mill, vibration mill, and a combination of these individual methods. Is the method.
  • the biomass powder immediately after pulverization can be used as it is as the biomass powder of the present embodiment, but it is preferable to control the particle size distribution by classification operation in order to develop more advanced characteristics.
  • a generally known classification method can be used without any limitation.
  • suitable classification methods include sieve classification, airflow classification, vortex centrifugal classification, electrostatic separation classification, and the like, and various loads such as ultrasonic waves, longitudinal and transverse vibrations, and the like.
  • suitable classification methods include sieve classification, airflow classification, vortex centrifugal classification, electrostatic separation classification, and the like, and various loads such as ultrasonic waves, longitudinal and transverse vibrations, and the like.
  • a vibration classifier, a cyclone, an air classifier, a rotary drum type electrostatic separator, and the like are suitable classifiers.
  • the biomass powder of this Embodiment can be suitably obtained using these apparatuses.
  • the method for producing biomass powder according to the present embodiment described above is substantially safe and simple without any chemical treatment operation using alkaline or acidic substances and without post-treatment of the used chemical substances.
  • the biomass powder of the present embodiment can be suitably obtained.
  • the biomass composite molded body of the present embodiment is formed by mixing (1) biomass powder of the present embodiment and (2) a prepolymer of a thermoplastic resin or a thermosetting resin and melt-molding it.
  • the ratio of the biomass powder is less than 5, the effect of adding the biomass powder is not clearly expressed.
  • the ratio exceeding 80 it is easy to cause the fall of the mechanical strength of a biomass composite molded object.
  • thermoplastic resin can be used without any limitation as long as it can be combined with biomass powder.
  • suitable thermoplastic resins include polyolefins such as polyethylene and polypropylene; polystyrene, acrylonitrile-butadiene-styrene (ABS) resin, acrylonitrile-styrene (AS) resin, methyl methacrylate-butadiene-styrene (MBS) resin Styrenic resins such as: Aromatic polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polylactic acid, polycaprolactone, poly (3-hydroxybutyric acid), polytetramethylglycolide, polyglycolic acid, etc. Examples include aliphatic polyesters.
  • polyolefins are particularly preferable from the viewpoint of ease of molding. These thermoplastic resins may be used alone or in combination of two or more.
  • thermosetting resin In addition to the thermoplastic resin, a thermoplastic prepolymer of a thermosetting resin can be used.
  • Typical prepolymers of thermosetting resins include prepolymers such as epoxy resins, unsaturated polyester resins, silane-crosslinked polyethylene, alkyd resins, melamine resins, polyurethane, and crosslinked rubber.
  • prepolymers such as epoxy resins, polyurethanes, and unsaturated polyester resins are preferable because they can be easily combined with the biomass powder according to the present invention.
  • a known method can be used without any limitation as long as the biomass powder and the thermoplastic resin are mixed and melt-molded as long as the biomass powder can be uniformly dispersed in the thermoplastic resin.
  • a melt kneading method in which a thermoplastic resin is melted by heat and kneaded while applying shear stress to the biomass powder, a solution in which the thermoplastic resin is dissolved in a solvent, and the biomass powder is added and dispersed, and then the solvent is vaporized and removed.
  • a mixing method a calender molding method in which a thermoplastic resin is softened on a heated roll, a biomass powder is added thereon, and kneaded while being pressed by a hot roll.
  • the melt-kneading method is most preferable in terms of efficiency and versatility.
  • melt-kneading method examples include an injection molding method using an injection molding machine, an extrusion molding method using an extrusion molding machine, and a blow molding method using a blow molding machine.
  • a vacuum molding method using a vacuum molding machine, a compression molding method using a compression molding machine, or the like is preferably used.
  • the injection molding method and the extrusion molding method are more preferably used from the viewpoints of versatility and expandability.
  • Injection molding is a method of obtaining a molded product by injecting and injecting a heat-melted material into a mold cavity, and cooling and solidifying the material. Through the parts called sprue and runner, The mold cavity is filled with a molten biomass-containing resin melt.
  • a thermoplastic resin excellent in fluidity is selected when performing injection molding that requires melt fluidity.
  • Extrusion molding is a molding method in which a material melted and mixed by shear stress and heat generated by the rotation of a screw in a heated cylinder is cooled and solidified while being extruded from a die extrusion port at a constant speed. Since high fluidity like injection molding is not required, a high-molecular weight thermoplastic resin having a high viscosity so as not to be deformed after being extruded from the extrusion port is selected. Furthermore, in extrusion molding, kneading with a screw is effectively performed. There are various screw shapes and directions of rotation, which can be selected according to the purpose of use. In the production of the biomass composite molded body of the present invention, in order to further increase the kneading degree, kneading with a biaxial co-rotating screw is a more preferable method.
  • a biomass composite molded body for example, when a biomass composite molded body is molded using an injection molding machine, high melt fluidity is required, and before filling into a mold, a screen is used. Insoluble substances having a large size are collected through the filter, so that it is more effective that the biomass powder is distributed more in the relatively small particle size.
  • a biomass composite molded body is molded using extrusion molding, a biomass powder containing a long fibrous component is oriented and flows in a molten thermoplastic resin. Therefore, as a result, a composite molded body containing an oriented fibrous biomass powder is obtained, which is an embodiment of a suitable production method in which an improvement in mechanical properties due to fiber reinforcement is easily expressed.
  • the biomass powder according to the present embodiment is obtained by reducing in advance the hemicellulose component that is easily decomposed by steam treatment, it is effective to generate odor accompanying decomposition during melt molding with the thermoplastic resin. Has been reduced. Further, in order to eliminate odor, it is possible to selectively exclude volatile products from a vent installed in a cylinder of a melt molding machine during melt molding, which is one of preferred embodiments.
  • thermosetting resin prepolymer instead of the thermoplastic resin
  • the above-described production method can be used.
  • the biomass powder and the thermosetting resin prepolymer, and if necessary, a curing agent are used.
  • a biomass composite molded article having excellent mechanical strength can be obtained by melt-molding the mixed composition under conditions where the curing reaction does not proceed, and then curing the mixture by stimulation such as heating, water vapor, or light irradiation.
  • the biomass composite molded body excellent in melt moldability and mechanical properties can be efficiently obtained by the method for producing a biomass composite molded body of the present embodiment described above.
  • the biomass composite molded body obtained by the method for manufacturing a biomass composite molded body according to the present embodiment is used as a synthetic wood material for various housing and building materials, and for various melting of home appliance / IT equipment parts and automobile interior parts. It can use suitably for the use of a molding.
  • Examples 1 and 2 for producing biomass powder derived from oil palm, Comparative Example 1 [Production method and size of biomass powder obtained] 300g of mesocarp fiber (fiber residue after oil is squeezed from oil palm mesocarp) is put into a superheated steam treatment device manufactured by Naomoto Kogyo Co., Ltd. with the following specifications, and atmospheric pressure superheated steam under the conditions shown in Table 1 below Processed. The treated mesocarp fiber was taken out and pulverized at 7000 rpm using the following pulverizer. The pulverization time was the time when the pulverization of the input sample was completed, and was about 10 minutes in Example 1 and about 5 minutes in Example 2.
  • the mesocarp fibers of Examples 1 and 2 are easily pulverized by subjecting the mesocarp fibers to superheated steam treatment. Further, it was found that the pulverization time was shorter in Example 2 having a higher steam treatment temperature than in Example 1 having a lower steam treatment temperature. From the results in Table 1, the size of the mesocarp fiber powder measured by microscopic observation in Example 1 tends to be smaller than that in Example 2, which is a result of pulverization time being twice as long. In all cases, the major axis of the particles was 100% within 1 to 500 ⁇ m. In addition, the moisture content was 5 to 7%, and it was possible to produce a composite molded body described below without any drying process.
  • FIG. 1 shows an optical micrograph of the crushed mesocarp fiber powder of Example 2. It can be seen that short fibers of various lengths are widely distributed.
  • FIG. 2 shows a long diameter size distribution diagram of the mesocarp fiber powder obtained in Example 2, as an example of a histogram in which the long diameter size range is divided more finely than that in Table 1.
  • thermogravimetric changes with a thermogravimetric analyzer In order to confirm the composition change of the mesocarp fiber powder subjected to the atmospheric pressure superheated steam treatment, a biomass powder sample was taken in an aluminum pan, and 10 ° C under a nitrogen stream of 50 mL / min using a TG / DTA6200 manufactured by Seiko Instruments Inc. Thermogravimetric analysis was performed at a rate of temperature increase of 1 minute.
  • the thermogravimetric decrease curves (TG) of the samples obtained in the biomass powder production Examples 1 and 2 are shown in FIG. 3a, and their differential curves (DTG) FIG. 3b, respectively.
  • the untreated mesocarp fiber of Biomass powder production comparative example 1 has a thermogravimetric decrease curve (TG) (shown together in FIG. 3a) and its differential curve (DTG) (shown together in FIG. 3b) as 180 to Both a peak based on the decomposition of hemicellulose in the temperature range of 320 ° C. and a peak based on the decomposition of cellulose in the temperature range of 300 to 400 ° C. were shown.
  • Example 1 for producing composite molded bodies using oil palm-derived biomass powder, Comparative Example 1
  • Biomass powder production The mesocarp fiber powder produced in Examples 1 and 2 was sieved using a 100-mesh (mesh size 150 ⁇ m) sieve using a mini sieve shaker MVSI manufactured by AS ONE Corporation.
  • the obtained mesodermal fiber powder and polypropylene (PP: Novatec PP FY-6 manufactured by Nippon Polypropylene Co., Ltd.) having a major axis of 10 to 150 ⁇ m were respectively obtained as shown in Table 2 below.
  • any of composite molded body production examples 1 to 4 and comparative example 1 the melt-kneaded product of mesocarp fiber powder and polypropylene charged from the hopper was extruded as a strand from the die in about 3 minutes. The molding condition was good and no clogging occurred.
  • the obtained strand-like composite molded body was pelletized, and a test piece for bending test was produced at 210 ° C. using an IMC-18D1 type simple injection molding machine manufactured by Imoto Seisakusho.
  • the size of the produced test piece is 30 mm in length, 5.1 mm in width, and 2.1 mm in thickness.
  • the bending test was performed at a head speed of 10 mm / min according to JIS K 7171. From the obtained results, the bending strength and the flexural modulus were obtained and listed in Table 2.
  • Example 3 for producing biomass powder derived from oil palm, Comparative Example 2 [Production method and size of biomass powder obtained]
  • Table 3 below shows 50 g of foliage fiber (fiber residue after squeezing sugar components from oil palm foliage) using a superheated steam treatment apparatus in the same manner as the mesocarp fiber of biomass powder production Example 1. Under normal conditions, atmospheric pressure superheated steam treatment was performed. The treated foliage fiber was taken out and finely pulverized at 7000 rpm using a pulverizer manufactured by Nara Machinery Co., Ltd. The pulverization time was the time when the pulverization of the input sample was completed, and was about 7 minutes in the biomass powder production example 3. The crushed sample was confirmed for particle size distribution by microscopic observation and water content by a moisture measuring device.
  • the foliage fiber of biomass powder production example 3 was easily pulverized by subjecting the foliage fiber to superheated steam treatment, and the particle size was 100% within 1 to 500 ⁇ m.
  • the foliage fiber of Comparative Example 2 for producing biomass powder that was not subjected to atmospheric pressure superheated steam treatment the strength of the foliage fiber was so large that it was impossible to crush all even after crushing for 20 minutes.
  • the biomass powder size distribution data obtained by microscopic observation in Comparative Example 2 was omitted.
  • FIG. 4 shows an optical micrograph of the pulverized foliage fiber powder of Example 3. It can be seen that short fibers of various lengths are widely distributed.
  • FIG. 5 shows a histogram of the major axis size distribution of the foliage fiber powder obtained in Example 3.
  • thermogravimetric decrease curve (TG) of the sample obtained in biomass powder production Example 3 is shown in FIG. 6a, and its differential curve (DTG) FIG. 6b, respectively.
  • Example 2 The sample after the steam treatment of Example 2 did not have a decomposition peak in the temperature range of 180 to 320 ° C., and showed a peak based on the decomposition of cellulose in the temperature range of 300 to 400 ° C.
  • the untreated foliage fibers of Biomass Powder Production Comparative Example 2 have a thermogravimetric decrease curve (TG) (shown together in FIG. 6a) and its differential curve (DTG) (shown together in FIG. 6b). Both a peak based on the decomposition of the low temperature decomposable lignin component and the hemicellulose component and a peak based on the decomposition of cellulose in the temperature range of 300 to 400 ° C were shown in the temperature range of ° C. These results indicate that the hemicellulose component and the low-temperature degradable lignin component in the foliage fiber tissue were preferentially decomposed and removed by the superheated steam treatment.
  • Example 5 for producing composite molded bodies using oil palm-derived biomass powder, Comparative Example 2
  • the stalk and leaf fiber powder produced in biomass powder production Example 3 was sieved using a 100-mesh (mesh size 150 ⁇ m) sieve using a mini sieve shaker MVSI manufactured by AS ONE Corporation.
  • a strand-shaped composite molded body was produced.
  • melt-kneading conditions for compounding with polypropylene were as follows: hopper lower temperature 65 ° C., barrel temperature 190 ° C., die temperature 190 ° C., screw rotation speed 14 rpm.
  • a molded article was similarly produced using polypropylene alone.
  • the melt-kneaded material of the foliage fiber powder and polypropylene charged from the hopper was extruded as a strand from the die in about 3 minutes. The molding condition was good and no clogging occurred.
  • the obtained strand-shaped composite molded body was pelletized, and a test piece for a bending test was created at 210 ° C. using an IMC-18D1 type simple injection molding machine manufactured by Imoto Seisakusho.
  • the size of the prepared test piece is 30 mm long, 5.1 mm wide, and 2.1 mm thick.
  • the bending test was performed at a head speed of 10 mm / min according to JIS K 7171. From the obtained results, the bending strength and the flexural modulus were obtained and listed in Table 4.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Forests & Forestry (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Processing Of Solid Wastes (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)

Abstract

Provided are a biomass powder derived from oil palm that is suitable as a homogeneous fibrous raw material for industrial use, and a composite molded body using said biomass powder that exhibits superior mechanical properties. On a differential curve representing thermal weight reduction, the biomass powder derived from oil palm does not have a peak in the temperature range of 180-320°C and does have a peak in the temperature range of 300-400°C. 50 mass% or more of the biomass powder has a major axis length in the range of 1-500 µm. The biomass-composite molded body is made by molding a composition containing the biomass powder and a prepolymer of a thermoplastic resin or a thermosetting resin at a mass ratio of 5:95-80:20.

Description

アブラヤシ由来のバイオマス粉末およびその製造方法ならびにバイオマス複合成形体およびその製造方法Oil palm derived biomass powder and method for producing the same, biomass composite molded body and method for producing the same
 本発明は、熱帯地域において豊富に存在しかつ利用が不十分であるアブラヤシ由来のバイオマスの利用技術に関する。 The present invention relates to a technology for utilizing biomass derived from oil palm that is abundant in tropical regions and insufficiently used.
 アブラヤシは、中果皮と内果皮から油脂が採取される。作付け単位面積当たり得られる油脂の量は植物中屈指であるため、熱帯地域、とりわけマレーシアとインドネシアにおいて、プランテーション農法により大規模に栽培されている。アブラヤシの成木は単一の幹(トランク)からなり、高さ20mに達する。茎葉はフロンドと呼ばれ、羽状で長さ3~5mほどのものが、年間に若木では約30枚、樹齢10年以上の木では約20枚が新しく生える。アブラヤシの果実はフレッシュフルーツバンチ(以下、FFBと略記する)と呼ばれ、1房のFFBは鶏卵大の小果が200個ほど集まったものである。重さは1房あたり40-50kgほどになる。
 FFBの個々の小果は油分の多い多肉質の中果皮(メソカープ)と、同じく油分に富んだ1つの果実殻(シェル)から構成される。小果から油分を絞り取った後の中果皮部分はセルロース繊維質に富みメソカープファイバー(以下、MFと略記する)と呼ばれる。また、小果を取り去った後の空房をエンプティーフルーツバンチ(以下、EFBと略記する)という。
Oil palm oil is collected from mesocarp and endocarp. Since the amount of fats and oils obtained per planted area is one of the best among plants, it is cultivated on a large scale by plantation farming methods in tropical regions, especially Malaysia and Indonesia. The mature palm oil consists of a single trunk (trunk) and reaches a height of 20m. The foliage is called Frond and has a feather shape of about 3 to 5 meters long. About 30 young trees grow and about 20 new trees grow 10 years or older per year. The fruit of oil palm is called a fresh fruit bunch (hereinafter abbreviated as FFB), and one FFB is a collection of about 200 eggs. The weight is about 40-50kg per cell.
Each fruit of FFB consists of a fleshy mesocarp with a lot of oil and a single fruit shell that is also rich in oil. The mesocarp portion after squeezing the oil from the berries is rich in cellulose fiber and is called mesocarp fiber (hereinafter abbreviated as MF). Moreover, the empty bunch after removing the berries is referred to as an empty fruit bunch (hereinafter abbreviated as EFB).
 プランテーションから排出されるバイオマスは膨大であり、フロンド、MF、およびEFBともに年間排出量はそれぞれ1千万トン以上といわれている。これらのバイオマスはプランテーションやパーム油の製造プロセスで再利用されており、たとえば、フロンドはアブラヤシの根元に敷き詰められ肥料として用いられ、またMFはパーム油の搾油工場の燃料として用いられている。フロンドやMFは上質のセルロース繊維質に富むにもかかわらず、これら膨大な量のバイオマスの利用は限定的である。 The biomass discharged from the plantation is enormous, and it is said that annual emissions of over 10 million tons of each of Frond, MF, and EFB. These biomass are reused in plantation and palm oil production processes. For example, front is spread on the base of oil palm and used as fertilizer, and MF is used as fuel for palm oil mills. Although frontal and MF are rich in high-quality cellulose fibers, the use of these enormous amounts of biomass is limited.
 たとえばMFやフロンドの利用方法として、MFやフロンドを酸の存在下に蒸解してパルプ及び有機酸変性リグニンを採取する方法(特許文献1参照)、ヤシ繊維を主成分とする繊維マットを熱硬化性樹脂で接着させた後、圧縮成形により得られる内装用の断熱材(特許文献2参照)、パレットやトレイ等の圧縮成形体(特許文献3参照)、さらにMFを放射線及び/又は高圧蒸気の存在下で殺菌処理した後に飼料として用いる方法(特許文献4参照)などが開示されているにすぎない。
 また、同じアブラヤシ果実由来のEFBは、MFやフロンドと同様の利用方法の他に、バイオマスエタノールへの転換(特許文献5参照)、断熱壁体構造(特許文献6参照)、成形ボード(特許文献7参照)などの工業製品素材として利用されている。
For example, as a method of using MF and front, a method of collecting pulp and organic acid-modified lignin by digesting MF and front in the presence of acid (see Patent Document 1), and thermosetting a fiber mat mainly composed of palm fiber After adhering with a functional resin, a heat insulating material for interiors obtained by compression molding (see Patent Document 2), a compression molded body such as a pallet or a tray (see Patent Document 3), and further MF is radiation and / or high-pressure steam. Only a method of using it as a feed after being sterilized in the presence (see Patent Document 4) is disclosed.
In addition, EFB derived from the same oil palm fruit is converted to biomass ethanol (see Patent Document 5), heat insulating wall structure (see Patent Document 6), molded board (Patent Document), in addition to the same method of use as MF and Frond. 7) and other industrial product materials.
 フロンド、MFおよびEFBを工業用繊維質素材として利用しようとする場合、幾つかの問題点がある。たとえば、大量の水分を含有すること、組成や形状が不均質であること、および加熱時に臭気成分が揮発してくることなどである。
 これらの問題を解決することで、これら膨大な量のバイオマスをより付加価値の高い工業用繊維質素材として有効利用することが可能となる。
There are several problems when using front, MF and EFB as industrial fiber materials. For example, it contains a large amount of water, the composition and shape are inhomogeneous, and the odor component volatilizes during heating.
By solving these problems, it is possible to effectively use these enormous amounts of biomass as industrial fiber materials with higher added value.
 アブラヤシ由来のバイオマスから効率的に脱水乾燥する方法として、120~300℃の油中にて、その温度における油の飽和蒸気圧以上の加圧下で処理する方法が開示されている(特許文献8参照)。しかしこの技術はバイオマスを燃料化するための方法であり、工業用素材とするにはさらに脱油プロセスが必要となるため好適な乾燥方法ではない。 As a method for efficiently dehydrating and drying from biomass derived from oil palm, there is disclosed a method of treating in oil at 120 to 300 ° C. under a pressure higher than the saturated vapor pressure of the oil at that temperature (see Patent Document 8). ). However, this technique is a method for converting biomass into fuel, and it is not a suitable drying method because it requires a deoiling process to make it an industrial material.
 不均質な組成や形状をより均質なものとするには、化学的に成分を分離するかあるいは微細に粉砕・混合して物理的に均質なものとする方法がある。
 化学的な方法としては、たとえば、EFBの場合、苛性ソーダ等を用いた蒸解が用いられる(特許文献9参照)。化学的処理によって成分を分離した場合、黒液と呼ばれるリグニン成分が溶解した廃液が排出され、その処理がまた課題となっている。物理的な均質化方法としては、茎葉の中の小葉のような柔らかい成分を機械的に微粉砕し、凍結乾燥等の方法で乾燥させて食品へ応用する技術が開示されている(特許文献10参照)。しかし、EFBのような繊維質のバイオマスは、その強固な繊維組織のために機械的な方法での破砕・粉砕は容易ではない。
 ところで、竹繊維を用いたグリーンコンポジット開発についてのものであるが、竹繊維の取出し方法として、孟宗竹を多数回繰り返して爆砕処理して長繊維を得、その後ミキサーで解繊し竹単繊維を得る方法や、爆砕処理にさらにアルカリ処理を組み合わせて竹繊維を得る方法が開示されている。そして、これらの方法で得られる竹繊維の予備成形体をホットプレス処理することにより、得られるコンポジットの強度向上が図れるとされている(非特許文献1参照)。
 しかし、竹の組織構造とアブラヤシの組織構造は、大きく異なるため、この竹についての技術をアブラヤシに適用したときに所望の効果が得られるかどうかは定かではない。
In order to make the heterogeneous composition and shape more uniform, there are methods of chemically separating the components or finely pulverizing and mixing them to make them physically homogeneous.
As a chemical method, for example, in the case of EFB, cooking using caustic soda or the like is used (see Patent Document 9). When components are separated by chemical treatment, a waste liquid in which a lignin component called black liquor is dissolved is discharged, and the treatment is also a problem. As a physical homogenization method, a technique in which a soft component such as a leaflet in a foliage is mechanically pulverized and dried by a method such as freeze-drying is disclosed (Patent Document 10). reference). However, fibrous biomass such as EFB is not easily crushed and pulverized by a mechanical method because of its strong fiber structure.
By the way, it is about green composite development using bamboo fiber, but as a method of taking out bamboo fiber, scorpion bamboo is repeatedly pulverized many times to obtain long fiber, and then fibrillated with a mixer to obtain bamboo single fiber A method and a method of obtaining bamboo fiber by combining an alkali treatment with an explosion treatment are disclosed. And it is supposed that the strength improvement of the composite obtained can be aimed at by carrying out the hot press process of the preform of the bamboo fiber obtained by these methods (refer nonpatent literature 1).
However, since the structure of bamboo and the structure of oil palm are greatly different, it is unclear whether a desired effect can be obtained when this bamboo technique is applied to oil palm.
 アブラヤシ由来のバイオマスを加熱した際に発生する特有の臭気は、熱分解・気化した成分に基づくものである。バイオマスは、通常、セルロース、ヘミセルロース、およびリグニンからなっており、これらの主成分の内、ヘミセルロースが最も低温で分解しやすく(非特許文献2参照)、酢酸や蟻酸などの揮発物質を発生する。このヘミセルロースの分解は180~320℃の温度範囲にピークがあり、一般的な熱可塑性プラスチックの溶融成形温度と重なる。従って、バイオマスと熱可塑性プラスチックとをブレンドして、200℃付近まで加熱すると、ヘミセルロース成分が分解し、特有の臭気を発する。 The unique odor that is generated when oil-derived biomass is heated is based on pyrolyzed and vaporized components. Biomass is usually composed of cellulose, hemicellulose, and lignin. Among these main components, hemicellulose is easily decomposed at the lowest temperature (see Non-Patent Document 2), and generates volatile substances such as acetic acid and formic acid. This decomposition of hemicellulose has a peak in the temperature range of 180 to 320 ° C., and overlaps with the melt molding temperature of general thermoplastics. Therefore, when the biomass and the thermoplastic are blended and heated to around 200 ° C., the hemicellulose component is decomposed and a specific odor is emitted.
 なお、アブラヤシ由来のバイオマスを、特に均質処理することなく、透湿度が良好で強度の大きい繊維板として利用する方法として、EFBの繊維成分である直径100~600μm、長さ5~30cmの屈曲性と剛性の高い素材を解繊し、熱硬化性樹脂を接着剤成分として加えて、100~200℃の温度範囲で圧縮成形する方法が開示されている(特許文献11参照)。しかし、この方法では、複雑な形状の成形体を効率的に得ることが難しい。 In addition, as a method of utilizing oil palm-derived biomass as a fiberboard having good moisture permeability and high strength without particularly homogenizing, flexibility of EFB fiber component of 100 to 600 μm in diameter and 5 to 30 cm in length A method is disclosed in which a highly rigid material is defibrated, a thermosetting resin is added as an adhesive component, and compression molding is performed in a temperature range of 100 to 200 ° C. (see Patent Document 11). However, with this method, it is difficult to efficiently obtain a molded body having a complicated shape.
特開2006-112004号公報JP 2006-112004 A 特開平10-138210号公報Japanese Patent Laid-Open No. 10-138210 特表2008-502517号公報Special table 2008-502517 特開平09-168367号公報JP 09-168367 A 特開2009-125050号公報JP 2009-125050 A 特開平10-183797号公報Japanese Patent Laid-Open No. 10-183797 特開平06-285819号公報Japanese Patent Laid-Open No. 06-285819 特表2004-209462号公報Special Table 2004-209462 特表2010-090487号公報Special table 2010-090487 特開2005-218425号公報JP 2005-218425 A 特開2000-006116号公報JP 2000-006116 A
 解決しようとする第一の問題点は、従来のアブラヤシ由来のバイオマスが高い含水率を示し、不均質な組成や形状を有しており、そのままでは工業用繊維質素材として用いるのは難しい点である。 The first problem to be solved is that conventional oil palm-derived biomass has a high moisture content, has a heterogeneous composition and shape, and is difficult to use as it is as an industrial fiber material. is there.
 また、解決しようとする第二の問題点は、アブラヤシ由来のバイオマスと樹脂との複合化に際し、微細な粉末化が難しく、かつ熱分解に伴う臭気成分の発生のため、熱可塑性樹脂の特性を活かした溶融射出成型や押出成形が難しい点である。 In addition, the second problem to be solved is that it is difficult to make fine powder when the oil palm-derived biomass and the resin are combined, and the characteristics of the thermoplastic resin are reduced due to the generation of odor components accompanying thermal decomposition. It is difficult to make use of melt injection molding and extrusion molding.
 本発明に係るアブラヤシ由来のバイオマス粉末は、熱重量減少の微分曲線において、180~320℃の温度範囲にピークを有さず、300~400℃の温度範囲にピークを有し、50質量%以上が長径1~500μmの範囲にある。 The biomass powder derived from oil palm according to the present invention does not have a peak in the temperature range of 180 to 320 ° C. in the differential curve of thermogravimetry, has a peak in the temperature range of 300 to 400 ° C., and is 50% by mass or more. The major axis is in the range of 1 to 500 μm.
 また、本発明に係るアブラヤシ由来のバイオマス粉末は、好ましくは、アブラヤシの中果皮から油分を絞り取った後の繊維質残滓(MF)を原料とすることを特徴とする。 The oil palm-derived biomass powder according to the present invention is preferably characterized in that the raw material is a fibrous residue (MF) after squeezing oil from the mesocarp of oil palm.
 また、本発明に係るアブラヤシ由来のバイオマス粉末は、好ましくは、アブラヤシの茎葉から糖成分を絞り取った後の繊維質残滓(フロンドファイバー)を原料とすることを特徴とする。 Also, the oil palm-derived biomass powder according to the present invention is preferably characterized in that the raw material is a fiber residue (front fiber) after squeezing the sugar component from the oil palm stems and leaves.
 また、本発明に係るアブラヤシ由来のバイオマス粉末は、好ましくは、アブラヤシの果実から小果を取り去った後の空房を原料とすることを特徴とする。 Also, the oil palm-derived biomass powder according to the present invention is preferably characterized in that the raw material is an empty bunch after removing the fruit from the oil palm fruit.
 また、本発明に係るバイオマス粉末の製造方法は、上記のバイオマス粉末の製造方法であって、原料を170~250℃の水蒸気を用いて10分~6時間処理した後に、粉砕することを特徴とする。 The method for producing biomass powder according to the present invention is the method for producing biomass powder described above, characterized in that the raw material is treated with steam at 170 to 250 ° C. for 10 minutes to 6 hours and then pulverized. To do.
 また、本発明に係るバイオマス複合成形体は、上記のバイオマス粉末と熱可塑性樹脂または熱硬化性樹脂のプレポリマーとを5:95~80:20の質量比で含有する組成物を成形してなる。 The biomass composite molded body according to the present invention is formed by molding a composition containing the biomass powder and a thermoplastic resin or a prepolymer of a thermosetting resin in a mass ratio of 5:95 to 80:20. .
 また、本発明に係るバイオマス複合成形体の製造方法は、溶融成形してバイオマス複合成形体を得ることを特徴とする。 Also, the method for producing a biomass composite molded body according to the present invention is characterized in that a biomass composite molded body is obtained by melt molding.
 また、本発明に係るバイオマス複合成形体の製造方法は、射出成形法または押出成形法で成形することを特徴とする。 Further, the method for producing a biomass composite molded body according to the present invention is characterized by molding by an injection molding method or an extrusion molding method.
 本発明に係るバイオマス粉末は、50質量%以上が長径1~500μmの範囲にあるため、物理的に均質な工業用繊維質素材として利用することが可能である。また、熱可塑性樹脂との混合物を射出成型や押出成形のような複雑な成形体を得ることが可能な成形方法に適用することができる。このとき、バイオマス粉末が熱重量減少の微分曲線において、180~320℃の温度範囲にピークを有さず、300~400℃の温度範囲にピークを有するため、成形体を得る際に、バイオマス中のヘミセルロース成分が分解することで発生する臭気成分の量を低減することができる。
 また、本発明に係るバイオマス粉末の製造方法は、本発明に係るバイオマス粉末を好適に得ることができる。
 また、本発明に係るバイオマス複合成形体は、繊維質のバイオマス粉末と熱可塑性樹脂とを5:95~80:20の質量比で含有する組成物を成形したものであるため、機械的物性に優れた複合成形体を好適に得ることができる。
 また、本発明に係るバイオマス複合成形体の製造方法は、本発明に係るバイオマス複合成形体を好適に得ることができる。
Since the biomass powder according to the present invention has 50% by mass or more in the range of the major axis of 1 to 500 μm, it can be used as a physically homogeneous industrial fiber material. Moreover, the mixture with a thermoplastic resin can be applied to a molding method capable of obtaining a complicated molded body such as injection molding or extrusion molding. At this time, since the biomass powder does not have a peak in the temperature range of 180 to 320 ° C. and has a peak in the temperature range of 300 to 400 ° C. in the differential curve of thermogravimetry, It is possible to reduce the amount of the odor component generated by the decomposition of the hemicellulose component.
Moreover, the biomass powder manufacturing method according to the present invention can suitably obtain the biomass powder according to the present invention.
In addition, the biomass composite molded body according to the present invention is obtained by molding a composition containing a fibrous biomass powder and a thermoplastic resin in a mass ratio of 5:95 to 80:20. An excellent composite molded body can be suitably obtained.
In addition, the method for producing a biomass composite molded body according to the present invention can suitably obtain the biomass composite molded body according to the present invention.
図1は、バイオマス粉末作製実施例2で作製した中果皮繊維粉末の光学顕微鏡写真である。FIG. 1 is an optical micrograph of the mesocarp fiber powder produced in biomass powder production Example 2. 図2は、バイオマス粉末作製実施例2で作製した中果皮繊維粉末の長径サイズ分布図である。FIG. 2 is a long diameter size distribution diagram of the mesocarp fiber powder produced in biomass powder production Example 2. 図3aは、バイオマス粉末作製実施例1、2および比較例1で作製した中果皮繊維粉末の熱重量減少曲線(TG)である。FIG. 3 a is a thermogravimetric reduction curve (TG) of the mesocarp fiber powder produced in biomass powder production Examples 1 and 2 and Comparative Example 1. 図3bは、バイオマス粉末作製実施例1、2および比較例1で作製した中果皮繊維粉末の熱重量減少微分曲線(DTG)である。FIG. 3 b is a thermogravimetric decrease derivative curve (DTG) of the mesocarp fiber powder produced in biomass powder production Examples 1 and 2 and Comparative Example 1. 図4は、バイオマス粉末作製実施例3で作製した茎葉繊維粉末の光学顕微鏡写真である。FIG. 4 is an optical micrograph of the foliage fiber powder produced in biomass powder production Example 3. 図5は、バイオマス粉末作製実施例3で作製した茎葉繊維粉末の長径サイズ分布図である。FIG. 5 is a major axis size distribution diagram of the foliage fiber powder produced in biomass powder production Example 3. 図6aは、バイオマス粉末作製実施例3および比較例2で作製した茎葉繊維粉末の熱重量減少曲線(TG)である。FIG. 6 a is a thermogravimetric reduction curve (TG) of the foliage fiber powder produced in biomass powder production Example 3 and Comparative Example 2. 図6bは、バイオマス粉末作製実施例3および比較例2で作製した茎葉繊維粉末の熱重量減少微分曲線(DTG)である。FIG. 6 b is a thermogravimetric decrease derivative curve (DTG) of the foliage fiber powder produced in biomass powder production Example 3 and Comparative Example 2.
 本発明の実施の形態(以下、本実施の形態という。)について、以下に説明する。
 アブラヤシ(oil palm, Elaeis)は、ヤシ科アブラヤシ属に分類される植物の総称であり、西アフリカを原産とするギニアアブラヤシ(Elaeis guineensis)と、中南米の熱帯域原産のアメリカアブラヤシ(Elaeis oleifera)の2種が知られている。本発明の実施の形態において、用いるアブラヤシの種類を限定するものではない。
 また、本発明の実施の形態において、アブラヤシとは幹(トランク)、茎葉(フロンド)、果実(FFB)、中果皮(メソカープ)、果実殻(シェル)からなる総体的なものを意味するが、とりわけ、中果皮から油分を絞り取った後のセルロース繊維質が豊富な成分であるMFと糖成分を絞り取った後の繊維質のフロンドファイバー、および果実から小果を取り去った後の空房(EFB)が本実施の形態のバイオマス粉末の原料として好適である。
An embodiment of the present invention (hereinafter referred to as the present embodiment) will be described below.
Oil palm (Elaeis) is a collective term for plants classified into the genus Acapulaceae, 2 of Guinea oil palm (Elaeis guineensis) native to West Africa and America oil palm (Elaeis oleifera) native to the tropical region of Central and South America. The seed is known. In the embodiment of the present invention, the type of oil palm to be used is not limited.
Further, in the embodiment of the present invention, the oil palm means a total consisting of a trunk (trunk), foliage (Frond), fruit (FFB), mesocarp (mesocarp), fruit shell (shell), In particular, MF, which is a component rich in cellulose fiber after squeezing oil from mesocarp, and fiber front fiber after squeezing sugar component, and empty bunch after removing fruit from fruit (EFB) ) Is suitable as a raw material for the biomass powder of the present embodiment.
 アブラヤシ由来のバイオマスは、その主要な構成成分として、セルロース、ヘミセルロースおよびリグニンからなる。
 ヘミセルロースはセルロースとリグニン、あるいはセルロース同士を結合させる接着剤の役割を担っている。このヘミセルロースは、たとえば、バイオマス粉末を樹脂にブレンドして高温で成形した際、分解生成物が揮発し、ブレンド体の物性を低下させるのみならず、作業環境の悪化を引き起こす。
 本実施の形態のバイオマス粉末は、化学的には、主要成分としてのセルロースとリグニン、ヘミセルロースの混合物であり、さらにその他の微量成分としてのシリカ微粒子などの混合も含まれる。
Oil palm-derived biomass consists of cellulose, hemicellulose, and lignin as its main components.
Hemicellulose plays the role of an adhesive that binds cellulose and lignin or cellulose. For example, when the biomass powder is blended with a resin and molded at a high temperature, the hemicellulose not only degrades the physical properties of the blend but also causes deterioration of the working environment.
The biomass powder of the present embodiment is chemically a mixture of cellulose, lignin and hemicellulose as main components, and further includes a mixture of silica fine particles as other trace components.
 本実施の形態のバイオマス粉末は、熱重量減少の微分曲線において、180~320℃の温度範囲にピークを有さず、300~400℃の温度範囲にピークを有する。熱重量減少の微分曲線は、示差熱重量測定装置(Differential Thermal Gravimetrical Analyzer)を用いて窒素中で10℃/分の昇温速度で測定した熱重量曲線を機械的に微分することで測定することができる。
 熱重量減少の微分曲線において、180~320℃の温度範囲のピークは、ヘミセルロースの分解に基づくものであり、本実施の形態のバイオマス粉末がこの温度範囲に実質的にピークを有さないということは、バイオマス粉末がヘミセルロースを含まないか、あるいはヘミセルロース含量が示差熱重量測定装置の検出限界以下であることを意味する。300~400℃の温度範囲のピークは、セルロースの分解に基づくものであり、バイオマス粉末がこの温度範囲にピークを有するということは、バイオマス粉末がセルロースを含むことを示している。
 すなわち、本実施の形態のバイオマス粉末は、セルロース成分に富み、ヘミセルロース成分が上記測定方法によっては検出されない。
The biomass powder of the present embodiment does not have a peak in the temperature range of 180 to 320 ° C. and has a peak in the temperature range of 300 to 400 ° C. in the differential curve of thermogravimetry. The differential curve of thermogravimetry is measured by mechanically differentiating the thermogravimetric curve measured at 10 ° C / min in nitrogen using a differential thermal gravimetric analyzer (Differential Thermal Gravimetrical Analyzer). Can do.
In the differential curve of thermogravimetry, the peak in the temperature range of 180 to 320 ° C. is based on the decomposition of hemicellulose, and the biomass powder of the present embodiment has substantially no peak in this temperature range. Means that the biomass powder does not contain hemicellulose or that the hemicellulose content is below the detection limit of the differential thermogravimetry apparatus. The peak in the temperature range of 300 to 400 ° C. is based on the decomposition of cellulose, and the fact that the biomass powder has a peak in this temperature range indicates that the biomass powder contains cellulose.
That is, the biomass powder of the present embodiment is rich in the cellulose component, and the hemicellulose component is not detected by the measurement method.
 本実施の形態のバイオマス粉末は、形状が短繊維状である。
 本実施の形態のバイオマス粉末は、50質量%以上が長径1~500μmの範囲にある。ここで長径とは、短繊維状粒子の長軸径をいう。長径1~500μmの範囲の粒子の質量比率は、短繊維状のバイオマス粉末の粒子の形状を楕円体と見做しかつ比重を一定と見做して体積Vの比率を質量の比率と同一として、顕微鏡観察により、長軸径aと短軸径bの測定から、下記式により測定粒子の長径と質量を計測することで得ることができる。ここで、πは円周率である。
 体積V=4πab/3
 なお、長径1~500μmの範囲の粒子の質量比率の概略値は、篩い分け法により簡便に得ることもできる。
 バイオマス粉末は、上記の長径範囲の粉末が、80質量%以上あることが好ましく、90質量%以上あることがより好ましい。また、バイオマス粉末は、上記の含有量の粉末の長径が10~250μmの範囲にあることが好ましく、50μm~150μmの範囲にあることがより好ましい。
 バイオマス粉末が長径が500μmを超える粒子を含む場合、熱可塑性樹脂との複合材の原料として用いるときに、熱可塑性樹脂の溶融成形時に溶融流動性を阻害する恐れがある。このとき、さらに、1μm~500μmの範囲にあるバイオマス粉末の含有量が50質量%を下回ると、バイオマス粉末を樹脂と混合して加熱溶融成形する際に、混合物の流動性を阻害し、成形機のスクリュー内部で詰まってしまう場合がある。一方、バイオマス粉末が長径1μmを下回る粒子を含み、極めて小さい粉末が多くなると、取り扱いが容易ではなくなる。とりわけ、溶融した樹脂複合体の流動性を要求する射出成型においては、1μm篩上~500μm篩下の範囲にあるバイオマス粉末の含有量が90質量%以上、さらに好ましくは95重量%以上であることが望ましい。
The biomass powder of the present embodiment has a short fiber shape.
In the biomass powder of the present embodiment, 50% by mass or more is in the range of the major axis of 1 to 500 μm. Here, the major axis means the major axis diameter of the short fibrous particles. The mass ratio of the particles having a major axis in the range of 1 to 500 μm is assumed to be the same as the mass ratio by assuming that the shape of the short fiber biomass powder particles is an ellipsoid and the specific gravity is constant. From the measurement of the major axis diameter a and the minor axis diameter b by microscopic observation, it can be obtained by measuring the major axis and mass of the measurement particles according to the following formula. Here, π is the circumference ratio.
Volume V = 4πab 2/3
The approximate value of the mass ratio of particles having a major axis in the range of 1 to 500 μm can also be easily obtained by a sieving method.
The biomass powder is preferably 80% by mass or more, and more preferably 90% by mass or more, in the above-mentioned major axis range. The biomass powder preferably has a major axis of the above-mentioned content of powder in the range of 10 to 250 μm, more preferably in the range of 50 μm to 150 μm.
When the biomass powder contains particles having a major axis exceeding 500 μm, when used as a raw material for a composite material with a thermoplastic resin, the melt fluidity may be hindered during melt molding of the thermoplastic resin. At this time, if the content of the biomass powder in the range of 1 μm to 500 μm is less than 50% by mass, the fluidity of the mixture is inhibited when the biomass powder is mixed with a resin and heated and melt-molded. May get stuck inside the screw. On the other hand, when the biomass powder contains particles having a major axis of less than 1 μm and the number of extremely small powders increases, handling becomes difficult. In particular, in the injection molding that requires fluidity of the molten resin composite, the content of biomass powder in the range from 1 μm sieve to 500 μm sieve is 90% by mass or more, more preferably 95% by mass or more. Is desirable.
 以上説明した本実施の形態のバイオマス粉末は、物理的に均質な工業用繊維質素材として利用することが可能である。また、熱可塑性樹脂との混合物を射出成型や押出成形のような複雑な成形体を得ることが可能な成形方法に適用することができる。このとき、バイオマス粉末が熱重量減少の微分曲線において、180~320℃の温度範囲にピークを有さず、300~400℃の温度範囲にピークを有するため、成形体を得る際に、バイオマス中のヘミセルロース成分が分解することで発生する臭気成分の量を低減することができる。 The biomass powder of the present embodiment described above can be used as a physically homogeneous industrial fiber material. Moreover, the mixture with a thermoplastic resin can be applied to a molding method capable of obtaining a complicated molded body such as injection molding or extrusion molding. At this time, since the biomass powder does not have a peak in the temperature range of 180 to 320 ° C. and has a peak in the temperature range of 300 to 400 ° C. in the differential curve of thermogravimetry, It is possible to reduce the amount of the odor component generated by the decomposition of the hemicellulose component.
 つぎに、本実施の形態のバイオマス粉末を好適に得ることができる本実施の形態のバイオマス粉末の製造方法について説明する。
 本実施の形態のバイオマス粉末の製造方法は、アブラヤシ由来の原料を170~250℃の水蒸気を用いて10分~6時間処理した後に、所望のサイズにまで粉砕する。ここで、アブラヤシ由来の原料はそれ自体バイオマスであるが、得られる本実施の形態のバイオマス粉末と区別するために、原料と呼ぶ。
Below, the manufacturing method of the biomass powder of this Embodiment which can obtain the biomass powder of this Embodiment suitably is demonstrated.
In the method for producing biomass powder according to the present embodiment, a raw material derived from oil palm is treated with steam at 170 to 250 ° C. for 10 minutes to 6 hours, and then pulverized to a desired size. Here, the raw material derived from oil palm is itself a biomass, but is referred to as a raw material in order to distinguish it from the obtained biomass powder of the present embodiment.
 処理とは、170~250℃に加熱された水蒸気をバイオマスに接触させることである。170℃未満では、水蒸気処理効果、すなわち、原料中のヘミセルロースを主体とする低温分解成分の分解の程度が小さく、処理に長時間を要する。さらに、後段で述べるように170℃は逆転移温度であるため、その温度以上では乾燥処理も同時に実施可能である。一方、250℃を超える温度では、原料の分解が必要以上に進行しやすく、炭化が起こりやすくなってしまうので好ましくない。加熱水蒸気処理温度としては、より好ましくは190~240℃、さらに好ましくは、200~230℃の範囲である。 Treatment means bringing steam heated to 170 to 250 ° C. into contact with biomass. When the temperature is less than 170 ° C., the steam treatment effect, that is, the degree of decomposition of the low-temperature decomposition component mainly composed of hemicellulose in the raw material is small, and the treatment takes a long time. Furthermore, as will be described later, 170 ° C. is a reverse transition temperature, and therefore, a drying treatment can be simultaneously performed above that temperature. On the other hand, when the temperature exceeds 250 ° C., decomposition of the raw material tends to proceed more than necessary and carbonization tends to occur, which is not preferable. The heating steam treatment temperature is more preferably in the range of 190 to 240 ° C., further preferably 200 to 230 ° C.
 ここで170~250℃の水蒸気とは、飽和圧力から常圧の圧力範囲で170~250℃の温度範囲にある水蒸気である。このような水蒸気には、常圧過熱水蒸気と加圧飽和水蒸気がある。常圧過熱水蒸気とは、定容積状態で加熱して得られる加圧飽和水蒸気と異なり、膨張できる状態で100℃の水蒸気をさらに加熱して得られる、標準気圧下で100℃以上の過熱水蒸気をいう。 Here, the water vapor at 170 to 250 ° C. is water vapor in the temperature range of 170 to 250 ° C. in the pressure range from the saturation pressure to the normal pressure. Such steam includes atmospheric superheated steam and pressurized saturated steam. Normal pressure superheated steam is different from pressurized saturated steam obtained by heating in a constant volume state, and is obtained by further heating 100 ° C steam in a state where it can expand, Say.
 加圧飽和水蒸気のメリットは、加圧であるため、(1)水蒸気中の水分子濃度が高く、反応が速く短時間で処理が可能、(2)水蒸気が、反応の間、圧力容器中に保持され放出されないので、水蒸気の利用効率が高いなどの点である。一方、常圧過熱水蒸気のメリットは、圧力が常圧であるため、(1)たとえば反応容器を用いる場合、容器の耐圧が不要であり、(2)スケールアップが容易であるという点である。また、(3)常圧過熱水蒸気によって分解除去される成分が、水蒸気流に乗って排出されるため、たとえばば反応容器を用いる場合、反応容器内で分解気化物が液化滞留しない点である。さらに、(4)170℃の水の逆転移温度以上では、乾燥空気以上に処理物の乾燥速度が速くなるため、処理後の生成物の乾燥工程が不要という点である。
 加圧飽和水蒸気と常圧過熱水蒸気は、双方ともに上記したような異なるメリットを有しているため、その他の条件(処理量、処理時間、分解生成物の排出条件など)に合わせて、適宜、加圧飽和~常圧過熱の間で選択することができる。バイオマスを大量に処理する場合には、常圧過熱水蒸気処理および圧力ダンパーを用いた微加圧条件下での水蒸気処理がより好ましい処理方法である。さらに、バイオマスの乾燥を同時に実施する場合には、逆転移温度(170℃)以上での常圧過熱水蒸気処理がより好適な処理方法である。
The advantage of pressurized saturated steam is that it is pressurized, so (1) the water molecule concentration in the steam is high, the reaction is fast and can be processed in a short time, and (2) the steam is in the pressure vessel during the reaction. Since it is held and not released, the utilization efficiency of water vapor is high. On the other hand, the merit of normal pressure superheated steam is that the pressure is normal pressure, (1) when using a reaction vessel, for example, the pressure resistance of the vessel is unnecessary, and (2) scale-up is easy. Further, (3) the component decomposed and removed by the atmospheric superheated steam is discharged on the steam flow, and therefore, for example, when using a reaction vessel, the decomposition vaporized product is not liquefied and retained in the reaction vessel. Furthermore, (4) at a temperature higher than the reverse transition temperature of water at 170 ° C., the drying rate of the processed product is faster than that of dry air, so that a drying step for the product after processing is unnecessary.
Both pressurized saturated steam and atmospheric superheated steam have different merits as described above. Therefore, according to other conditions (processing amount, processing time, discharge conditions of decomposition products, etc.) It can be selected between pressurized saturation and normal pressure overheating. In the case of treating a large amount of biomass, a normal pressure superheated steam treatment and a steam treatment under slightly pressurized conditions using a pressure damper are more preferable treatment methods. Furthermore, when carrying out drying of biomass at the same time, a normal pressure superheated steam treatment at a reverse transition temperature (170 ° C.) or higher is a more preferable treatment method.
 加熱水蒸気処理は、反応容器内にアブラヤシ由来の原料を配置し、反応容器中に水蒸気を導入して行うことができる。この場合、原料を反応容器の内部に収容できる寸法に切って用いる。なお、大型の常圧反応容器を用いれば、原料の裁断は実質的にほとんど不要になる。また、加熱水蒸気処理は、連続コンベアー上にバイオマスを乗せて移動させ、常圧過熱水蒸気を吹き付けて行う方式を採用してもよく、この場合、原料の裁断は実質的に不要となり、また、連続処理により処理効率が高い。さらに、加熱水蒸気処理が、ロータリーキルン内で加熱水蒸気を吹き付けて行う方式を採用してもよく、この場合、原料と水蒸気との接触がより均一となり、さらに、原料の破砕および粉砕を装置内で同時に行うこともできるため、処理効率が高い。 Heated steam treatment can be performed by placing a raw material derived from oil palm in a reaction vessel and introducing water vapor into the reaction vessel. In this case, the raw material is cut into dimensions that can be accommodated in the reaction vessel. If a large-sized normal pressure reaction vessel is used, the cutting of the raw material is substantially unnecessary. Further, the heating steam treatment may adopt a method in which biomass is placed on a continuous conveyor and moved and sprayed with atmospheric superheated steam. In this case, cutting of the raw material is substantially unnecessary, and continuous Processing efficiency is high by processing. Furthermore, the method in which the heated steam treatment is performed by spraying heated steam in a rotary kiln, in which case the contact between the raw material and the steam becomes more uniform, and further, the raw material is crushed and crushed simultaneously in the apparatus. Since it can also be performed, processing efficiency is high.
 加熱水蒸気処理の時間は、加圧飽和水蒸気と常圧加熱水蒸気のどちらを使うか、また処理温度を何℃で行うかによって異なる。加圧飽和水蒸気を用いる場合、好ましくは、加圧昇温と減圧降温プロセスを含めて30分~4時間の範囲で選択する。一方、常圧過熱水蒸気を用いる場合、反応進行は加圧飽和水蒸気に比べて遅いが、圧力の昇降プロセスが不要であるため、好ましくは、30分~7時間の範囲で選択する。この中で、正味の水蒸気処理時間としては、加圧飽和水蒸気を用いる場合で10分~3時間、常圧過熱水蒸気を用いる場合で30分~6時間、より好ましくは、1~3時間である。 The heating steam treatment time varies depending on whether pressurized saturated steam or normal pressure steam is used, and at what temperature the treatment temperature is used. In the case of using pressurized saturated steam, it is preferably selected in the range of 30 minutes to 4 hours including the pressurization temperature raising and pressure reduction temperature lowering processes. On the other hand, when normal pressure superheated steam is used, the reaction progress is slower than that of pressurized saturated steam, but since a pressure increasing / decreasing process is unnecessary, it is preferably selected in the range of 30 minutes to 7 hours. Among these, the net steam treatment time is 10 minutes to 3 hours when using pressurized saturated steam, 30 minutes to 6 hours when using atmospheric superheated steam, and more preferably 1 to 3 hours. .
 加熱処理後のアブラヤシ由来の原料は、易分解性のヘミセルロースが優先的に分解し、揮発分としてその一部が除去されているため、容易に粉砕することができる。粉砕前に必要に応じて行う破砕および粉砕は、適宜の装置を用いて行うことができる。また、このとき、粗粉砕後に微粉砕を行う2段処理を行ってもよい。粉砕に用いる装置としては、一般公知の破砕およびび粉砕装置が使用可能である。好適に用いられる粉砕装置を例示すれば、たとえばば、ハンマーミル、カッターミル、ピンミル、クラッシャーミル、ボールミル、ロッドミル、バーミル、ディスクミル、ブレードミル、振動ミル、およびこれらの個々の方法を組み合わせた粉砕方法である。 The raw material derived from the oil palm after the heat treatment can be easily pulverized because the easily degradable hemicellulose is preferentially decomposed and a part thereof is removed as a volatile component. The crushing and pulverization performed as necessary before pulverization can be performed using an appropriate apparatus. At this time, a two-stage process in which fine pulverization is performed after coarse pulverization may be performed. As an apparatus used for pulverization, a generally known crushing and pulverizing apparatus can be used. Examples of suitably used crushing apparatuses include, for example, hammer mill, cutter mill, pin mill, crusher mill, ball mill, rod mill, bar mill, disk mill, blade mill, vibration mill, and a combination of these individual methods. Is the method.
 粉砕された直後のバイオマス粉末は、そのままでも本実施の形態のバイオマス粉末として使用できるが、より高度な特性を発現させるために、分級操作によって、粒度分布を制御することが好適である。分級操作に用いられる方法としては、一般公知の分級方法が何ら制限なく使用できる。好適に用いられる分級方法を例示すれば、たとえばば、篩分級、気流式分級、渦遠心式分級、静電分離型分級などであり、これらに超音波や縦および横振動などの負荷を様々に組み合わせた分級方法がある。具体的には、振動篩い装置、サイクロン、風力分級装置、および回転ドラム型静電分離装置などが好適な分級装置である。これらの装置を用いて、本実施の形態のバイオマス粉末を好適に得ることができる。 The biomass powder immediately after pulverization can be used as it is as the biomass powder of the present embodiment, but it is preferable to control the particle size distribution by classification operation in order to develop more advanced characteristics. As a method used for the classification operation, a generally known classification method can be used without any limitation. Examples of suitable classification methods include sieve classification, airflow classification, vortex centrifugal classification, electrostatic separation classification, and the like, and various loads such as ultrasonic waves, longitudinal and transverse vibrations, and the like. There are combined classification methods. Specifically, a vibration classifier, a cyclone, an air classifier, a rotary drum type electrostatic separator, and the like are suitable classifiers. The biomass powder of this Embodiment can be suitably obtained using these apparatuses.
 以上説明した本実施の形態のバイオマス粉末の製造方法は、アルカリ性や酸性物質を使った化学的な処理操作を実質的に伴わず、また、使用した化学物質を後処理することなく、安全で簡易な方法で本実施の形態のバイオマス粉末を好適に得ることができる。 The method for producing biomass powder according to the present embodiment described above is substantially safe and simple without any chemical treatment operation using alkaline or acidic substances and without post-treatment of the used chemical substances. By this method, the biomass powder of the present embodiment can be suitably obtained.
 つぎに、本実施の形態のバイオマス複合成形体について説明する。
 本実施の形態のバイオマス複合成形体は、本実施の形態の(1)バイオマス粉末と(2)熱可塑性樹脂または熱硬化性樹脂のプレポリマーを混合し溶融成形する。バイオマス粉末と熱可塑性樹脂または熱硬化性樹脂のプレポリマーの質量比は、バイオマス粉末:熱可塑性樹脂または熱硬化性樹脂のプレポリマー=5:95~80:20であり、好ましくは、10:90~60:40、より好ましくは20:80~55:45である。バイオマス粉末の比率が5未満では、バイオマス粉末の添加効果が明確には発現しない。また、80を超える割合では、バイオマス複合成形体の機械的強度の低下をまねきやすい。
Next, the biomass composite molded body of the present embodiment will be described.
The biomass composite molded body of the present embodiment is formed by mixing (1) biomass powder of the present embodiment and (2) a prepolymer of a thermoplastic resin or a thermosetting resin and melt-molding it. The mass ratio of the biomass powder and the prepolymer of thermoplastic resin or thermosetting resin is biomass powder: prepolymer of thermoplastic resin or thermosetting resin = 5: 95 to 80:20, preferably 10:90. 60:40, more preferably 20:80 to 55:45. When the ratio of the biomass powder is less than 5, the effect of adding the biomass powder is not clearly expressed. Moreover, in the ratio exceeding 80, it is easy to cause the fall of the mechanical strength of a biomass composite molded object.
 熱可塑性樹脂は、バイオマス粉末と複合化が可能なものあれば何ら制限なく用いることが可能である。好適に用いられる熱可塑性樹脂を例示すると、ポリエチレンやポリプロピレンなどのポリオレフィン類;ポリスチレンやアクリロニトニル-ブタジエン-スチレン(ABS)樹脂、アクリロニトニル-スチレン(AS)樹脂、メタクリル酸メチル-ブタジエン-スチレン(MBS)樹脂などのスチレン系樹脂類;ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)などの芳香族ポリエステル類;ポリ乳酸やポリカプロラクトン、ポリ(3-ヒドロキシ酪酸)、ポリテトラメチルグリコリド、ポリグリコール酸などの脂肪族ポリエステル類等を挙げることができる。これらの熱可塑性樹脂の中でも、成形の容易さの観点から、ポリオレフィン類が特に好適である。これらの熱可塑性樹脂は、単独で用いてもよく、あるいは2種以上を混合して用いてもよい。 The thermoplastic resin can be used without any limitation as long as it can be combined with biomass powder. Examples of suitable thermoplastic resins include polyolefins such as polyethylene and polypropylene; polystyrene, acrylonitrile-butadiene-styrene (ABS) resin, acrylonitrile-styrene (AS) resin, methyl methacrylate-butadiene-styrene (MBS) resin Styrenic resins such as: Aromatic polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polylactic acid, polycaprolactone, poly (3-hydroxybutyric acid), polytetramethylglycolide, polyglycolic acid, etc. Examples include aliphatic polyesters. Among these thermoplastic resins, polyolefins are particularly preferable from the viewpoint of ease of molding. These thermoplastic resins may be used alone or in combination of two or more.
 熱可塑性樹脂以外にも、熱可塑性である熱硬化性樹脂のプレポリマーを用いることができる。代表的な熱硬化性樹脂のプレポリマーとしては、エポキシ樹脂、不飽和ポリエステル樹脂、シラン架橋ポリエチレン、アルキッド樹脂、メラミン樹脂、ポリウレタン、架橋ゴムなどのプレポリマーである。これらの熱硬化性樹脂のプレポリマーの中でも、本発明に係るバイオマス粉末との複合化の容易さなどから、エポキシ樹脂、ポリウレタン、不飽和ポリエステル樹脂などのプレポリマーが好適である。 In addition to the thermoplastic resin, a thermoplastic prepolymer of a thermosetting resin can be used. Typical prepolymers of thermosetting resins include prepolymers such as epoxy resins, unsaturated polyester resins, silane-crosslinked polyethylene, alkyd resins, melamine resins, polyurethane, and crosslinked rubber. Among these prepolymers of thermosetting resins, prepolymers such as epoxy resins, polyurethanes, and unsaturated polyester resins are preferable because they can be easily combined with the biomass powder according to the present invention.
 バイオマス粉末と熱可塑性樹脂を配合し溶融成形する方法は、バイオマス粉末を熱可塑性樹脂中に均一に分散させることのできる方法であれば、公知の方法を何ら制限なく利用することができる。
 たとえば、熱可塑性樹脂を熱溶融させて、バイオマス粉末にせん断応力をかけながら練り込む溶融混練法、熱可塑性樹脂を溶剤に溶解し、バイオマス粉末を加えて分散させた後に、溶剤を気化除去する溶液混合法、熱したロール上で熱可塑性樹脂を柔らかくし、その上にバイオマス粉末を添加し、熱ロールによって圧着しながら練り込むカレンダー成型法などがある。これらの複合化の方法の中でも、効率性と汎用性の点で溶融混練法が最も好適である。
A known method can be used without any limitation as long as the biomass powder and the thermoplastic resin are mixed and melt-molded as long as the biomass powder can be uniformly dispersed in the thermoplastic resin.
For example, a melt kneading method in which a thermoplastic resin is melted by heat and kneaded while applying shear stress to the biomass powder, a solution in which the thermoplastic resin is dissolved in a solvent, and the biomass powder is added and dispersed, and then the solvent is vaporized and removed. There are a mixing method, a calender molding method in which a thermoplastic resin is softened on a heated roll, a biomass powder is added thereon, and kneaded while being pressed by a hot roll. Among these compounding methods, the melt-kneading method is most preferable in terms of efficiency and versatility.
 溶融混練法としては、具体的には、射出成型機を用いた射出成型法、押出成形機を用いた押出成形法、ブロー成型機を用いたブロー成形法等があり、さらに押出成形法によって作製したシート状成形体を用い、真空成型機を用いた真空成型法や圧縮成型機を用いた圧縮成型法等が好適に用いられる。これらの成形法の中でも、汎用性と拡張性等の点から、射出成型法と押出成形法がより好適に用いられる。 Specific examples of the melt-kneading method include an injection molding method using an injection molding machine, an extrusion molding method using an extrusion molding machine, and a blow molding method using a blow molding machine. Using the formed sheet-shaped body, a vacuum molding method using a vacuum molding machine, a compression molding method using a compression molding machine, or the like is preferably used. Among these molding methods, the injection molding method and the extrusion molding method are more preferably used from the viewpoints of versatility and expandability.
 射出成形とは、加熱溶融させた材料を金型キャビティー内に射出注入し、冷却・固化させることとによって、成形品を得る方法であり、スプルーおよびランナーと呼ばれる部分を通って、成形体の金型キャビティー内に溶融したバイオマス含有樹脂溶融物が充填される。ここで、バイオマス粉末は溶融しないので、溶融流動性を必要とする射出成型を実施する際には、流動性に優れた熱可塑性樹脂が選択される。 Injection molding is a method of obtaining a molded product by injecting and injecting a heat-melted material into a mold cavity, and cooling and solidifying the material. Through the parts called sprue and runner, The mold cavity is filled with a molten biomass-containing resin melt. Here, since the biomass powder does not melt, a thermoplastic resin excellent in fluidity is selected when performing injection molding that requires melt fluidity.
 押出成形とは、加熱されたシリンダーの中でスクリューの回転に伴うせん断応力と発熱により溶融・混合させた材料をダイスの押出口から一定速度で押し出しながら冷却固化させる成形法である。射出成型のような高い流動性は必要としないので、押出口から押し出された後、変形しないような粘性の高い高分子量の熱可塑性樹脂が選択される。さらに、押出成形においては、スクリューによる混練が効果的に行われる。スクリューの形状および回転方向は様々にあり、用途目的に応じて選択可能である。本発明のバイオマス複合成形体の製造においては、より混練度を高めるために、二軸同方向回転スクリューによる混練がより好適な方法である。 Extrusion molding is a molding method in which a material melted and mixed by shear stress and heat generated by the rotation of a screw in a heated cylinder is cooled and solidified while being extruded from a die extrusion port at a constant speed. Since high fluidity like injection molding is not required, a high-molecular weight thermoplastic resin having a high viscosity so as not to be deformed after being extruded from the extrusion port is selected. Furthermore, in extrusion molding, kneading with a screw is effectively performed. There are various screw shapes and directions of rotation, which can be selected according to the purpose of use. In the production of the biomass composite molded body of the present invention, in order to further increase the kneading degree, kneading with a biaxial co-rotating screw is a more preferable method.
 本実施の形態のバイオマス複合成形体の製造方法において、たとえば、射出成型機を用いてバイオマス複合成形体を成形する場合、高い溶融流動性が要求され、また、金型内に充填する前にスクリーンを通してサイズの大きい不溶物を濾取するため、バイオマス粉末の粒度が比較的小さい方に多く分布している方が有効である。一方、押出成形を用いてバイオマス複合成形体を成形する場合、長い繊維状の成分を含むバイオマス粉末は、溶融した熱可塑性樹脂の中で配向して流動する。そのため、結果として配向した繊維状のバイオマス粉末を含む複合成形体が得られ、繊維強化による機械的物性の向上が発現しやすく好適な製造方法の態様である。 In the method for producing a biomass composite molded body according to the present embodiment, for example, when a biomass composite molded body is molded using an injection molding machine, high melt fluidity is required, and before filling into a mold, a screen is used. Insoluble substances having a large size are collected through the filter, so that it is more effective that the biomass powder is distributed more in the relatively small particle size. On the other hand, when a biomass composite molded body is molded using extrusion molding, a biomass powder containing a long fibrous component is oriented and flows in a molten thermoplastic resin. Therefore, as a result, a composite molded body containing an oriented fibrous biomass powder is obtained, which is an embodiment of a suitable production method in which an improvement in mechanical properties due to fiber reinforcement is easily expressed.
 また、本実施の形態に係るバイオマス粉末は、水蒸気処理によって分解しやすいヘミセルロース成分を予め減量したものであるため、熱可塑性樹脂との溶融成型複合化の際に分解に伴う臭気の発生が効果的に低減されている。さらに、臭気を排除するには、溶融成形の際に、溶融成形機のシリンダーに設置されたベントから、揮発生成物を選択的に排除することも可能であり、好ましい態様の一つである。 In addition, since the biomass powder according to the present embodiment is obtained by reducing in advance the hemicellulose component that is easily decomposed by steam treatment, it is effective to generate odor accompanying decomposition during melt molding with the thermoplastic resin. Has been reduced. Further, in order to eliminate odor, it is possible to selectively exclude volatile products from a vent installed in a cylinder of a melt molding machine during melt molding, which is one of preferred embodiments.
 熱可塑性樹脂に代えて熱硬化性樹脂のプレポリマーを用いる場合も上記した製造方法を用いることができるが、このとき、バイオマス粉末と熱硬化性樹脂のプレポリマー、および必要に応じて硬化剤を混合した組成物を硬化反応が進行しない条件で溶融成型し、その後、加熱や水蒸気、光照射などの刺激により硬化させることで、機械的強度に優れたバイオマス複合成形体を得ることができる。 In the case of using a thermosetting resin prepolymer instead of the thermoplastic resin, the above-described production method can be used. At this time, the biomass powder and the thermosetting resin prepolymer, and if necessary, a curing agent are used. A biomass composite molded article having excellent mechanical strength can be obtained by melt-molding the mixed composition under conditions where the curing reaction does not proceed, and then curing the mixture by stimulation such as heating, water vapor, or light irradiation.
 以上説明した本実施の形態のバイオマス複合成形体の製造方法によって、溶融成型性と機械的性質に優れたバイオマス複合成形体を効率的に得ることができる。本実施の形態のバイオマス複合成形体の製造方法によって得られるバイオマス複合成形体は、合成木質素材として各種住宅建築資材類に、また、家電・IT機器類の各種部品や自動車内装品等の各種溶融成型体の用途に好適に用いることができる。 The biomass composite molded body excellent in melt moldability and mechanical properties can be efficiently obtained by the method for producing a biomass composite molded body of the present embodiment described above. The biomass composite molded body obtained by the method for manufacturing a biomass composite molded body according to the present embodiment is used as a synthetic wood material for various housing and building materials, and for various melting of home appliance / IT equipment parts and automobile interior parts. It can use suitably for the use of a molding.
 以下、本発明を実施例により具体的に説明するが、これらの実施例は何ら本発明の範囲を制限するものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, these examples do not limit the scope of the present invention.
(アブラヤシ由来のバイオマス粉末作製の実施例1~2、比較例1)
 [作製方法および得られるバイオマス粉末のサイズ等]
 中果皮繊維(アブラヤシの中果皮から油分を絞り取った後の繊維質残滓)300gを以下の仕様の直本工業社製過熱水蒸気処理装置に入れ、下表1に示した条件で常圧過熱水蒸気処理を行った。処理した中果皮繊維を取り出し、下記の粉砕装置を用いて7000rpmで微粉砕を行った。粉砕時間は、投入サンプルの粉砕が完了した時間とし、実施例1で約10分、実施例2で約5分であった。
 粉砕したサンプルは、顕微鏡観察により粒度分布(サイズ分布)を測定した。また、水分測定装置により水分含有量を確認した。結果を表1に併記した。なお比較例1として、常圧過熱水蒸気処理をしていない中果皮繊維粉末(バイオマス粉末)についても、同じ装置を用いて微粉砕試験を試みた。
 熱水蒸気処理装置の仕様:
   蒸気発生部: ヒーター容量 6.3 kW
          換算蒸発量  9.45 kg/h
          最高使用圧力 0.11 MPa
   処理槽:   ヒーター容量 8 kW
          庫内寸法   W 590 x D 385
                 x H 555 mm
 粉砕装置の仕様: 奈良機械製作所製 自由粉砕機M-2型
 水分測定装置の仕様: 島津製作所製水分計(MOC-120H)
(Examples 1 and 2 for producing biomass powder derived from oil palm, Comparative Example 1)
[Production method and size of biomass powder obtained]
300g of mesocarp fiber (fiber residue after oil is squeezed from oil palm mesocarp) is put into a superheated steam treatment device manufactured by Naomoto Kogyo Co., Ltd. with the following specifications, and atmospheric pressure superheated steam under the conditions shown in Table 1 below Processed. The treated mesocarp fiber was taken out and pulverized at 7000 rpm using the following pulverizer. The pulverization time was the time when the pulverization of the input sample was completed, and was about 10 minutes in Example 1 and about 5 minutes in Example 2.
The crushed sample was measured for particle size distribution (size distribution) by microscopic observation. Further, the water content was confirmed by a moisture measuring device. The results are also shown in Table 1. As Comparative Example 1, a pulverization test was attempted using the same apparatus for mesocarp fiber powder (biomass powder) that was not subjected to atmospheric pressure superheated steam treatment.
Specifications of thermal steam processing equipment:
Steam generating part: Heater capacity 6.3 kW
Equivalent evaporation 9.45 kg / h
Maximum working pressure 0.11 MPa
Treatment tank: Heater capacity 8 kW
Inside dimensions W 590 x D 385
x H 555 mm
Crusher specifications: Nara Machinery Seisakusho M-2 type moisture analyzer specifications: Shimadzu moisture meter (MOC-120H)
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1の結果から、中果皮繊維を過熱水蒸気処理することによって、実施例1、2の中果皮繊維は容易に粉砕されていることがわかる。また、水蒸気処理温度の低い実施例1よりも水蒸気処理温度の高い実施例2の方が、粉砕時間が短くて済むことがわかった。表1の結果から、実施例2よりも実施例1の方が顕微鏡観察により測定した中果皮繊維粉末のサイズが小さい傾向にあるが、これは、粉砕時間が2倍長かった結果である。また、いずれの場合も粒子の長径が1~500μm内に100%存在した。しかも、その水分率は5~7%であり、そのまま乾燥工程なしに、以下に説明する複合成形体の作製が可能であった。一方、常圧過熱水蒸気処理をしていない比較例1の中果皮繊維粉末については、中果皮繊維の強度が大きいため、粉砕を20分継続しても全てを粉砕するのは不可能だった。
 図1に実施例2の粉砕された中果皮繊維粉末の光学顕微鏡写真を示す。様々の長さの短繊維が広く分布していることがわかる。また、図2に、長径サイズ範囲を表1のものよりも細かく区分けしたヒストグラムの一例として、実施例2で得られた中果皮繊維粉末の長径サイズ分布図を示す。
From the results of Table 1, it can be seen that the mesocarp fibers of Examples 1 and 2 are easily pulverized by subjecting the mesocarp fibers to superheated steam treatment. Further, it was found that the pulverization time was shorter in Example 2 having a higher steam treatment temperature than in Example 1 having a lower steam treatment temperature. From the results in Table 1, the size of the mesocarp fiber powder measured by microscopic observation in Example 1 tends to be smaller than that in Example 2, which is a result of pulverization time being twice as long. In all cases, the major axis of the particles was 100% within 1 to 500 μm. In addition, the moisture content was 5 to 7%, and it was possible to produce a composite molded body described below without any drying process. On the other hand, with respect to the mesocarp fiber powder of Comparative Example 1 that was not subjected to atmospheric pressure superheated steam treatment, the strength of the mesocarp fiber was so large that it was impossible to pulverize all even if pulverization was continued for 20 minutes.
FIG. 1 shows an optical micrograph of the crushed mesocarp fiber powder of Example 2. It can be seen that short fibers of various lengths are widely distributed. In addition, FIG. 2 shows a long diameter size distribution diagram of the mesocarp fiber powder obtained in Example 2, as an example of a histogram in which the long diameter size range is divided more finely than that in Table 1.
 [熱重量分析計による熱重量変化の分析]
 常圧過熱水蒸気処理を行った中果皮繊維粉末の組成変化を確認するために、バイオマス粉末サンプルをアルミニウムパンに取り、セイコーインスツルメンツ社製TG/DTA6200を用いて50mL/分の窒素気流下、10℃/分の昇温速度で熱重量分析を行った。
 バイオマス粉末作製実施例1、2で得られたサンプルの熱重量減少曲線(TG)を図3aに、およびその微分曲線(DTG)図3bにそれぞれを示す。実施例1、2の水蒸気処理後のサンプルは、180~320℃の温度範囲においてヘミセルロースの分解に基づくピークを有さず、300~400℃の温度範囲にセルロースの分解に基づくピークを示した。一方、バイオマス粉末作製比較例1の無処理の中果皮繊維は、熱重量減少曲線(TG)(図3aに併記)とその微分曲線(DTG)(図3bに併記)を示すように、180~320℃の温度範囲にヘミセルロースの分解に基づくピークと300~400℃の温度範囲にセルロースの分解に基づくピークの双方を示した。
 これらの結果は、過熱水蒸気処理によって、中果皮繊維組織の中のヘミセルロース成分が優先的に分解除去されたことを示している。
[Analysis of thermogravimetric changes with a thermogravimetric analyzer]
In order to confirm the composition change of the mesocarp fiber powder subjected to the atmospheric pressure superheated steam treatment, a biomass powder sample was taken in an aluminum pan, and 10 ° C under a nitrogen stream of 50 mL / min using a TG / DTA6200 manufactured by Seiko Instruments Inc. Thermogravimetric analysis was performed at a rate of temperature increase of 1 minute.
The thermogravimetric decrease curves (TG) of the samples obtained in the biomass powder production Examples 1 and 2 are shown in FIG. 3a, and their differential curves (DTG) FIG. 3b, respectively. The samples after the steam treatment in Examples 1 and 2 did not have a peak due to the decomposition of hemicellulose in the temperature range of 180 to 320 ° C., and showed a peak due to the decomposition of cellulose in the temperature range of 300 to 400 ° C. On the other hand, the untreated mesocarp fiber of Biomass powder production comparative example 1 has a thermogravimetric decrease curve (TG) (shown together in FIG. 3a) and its differential curve (DTG) (shown together in FIG. 3b) as 180 to Both a peak based on the decomposition of hemicellulose in the temperature range of 320 ° C. and a peak based on the decomposition of cellulose in the temperature range of 300 to 400 ° C. were shown.
These results indicate that the hemicellulose component in the mesocarp fiber tissue was preferentially decomposed and removed by the superheated steam treatment.
(アブラヤシ由来のバイオマス粉末を用いた複合成形体作製の実施例1~4、比較例1)
 バイオマス粉末作製実施例1、2で作製した中果皮繊維粉末を、アズワン株式会社製ミニ篩振とう機MVSIを使って、100メッシュ(目開き150μm)の篩を用いて篩いわけを行った。得られた長径10~150μmの中果皮繊維粉末とポリプロピレン(PP:日本ポリプロピレン株式会社製ノバテックPP FY-6)を、下表2に示したように、それぞれ中果皮繊維粉末:ポリプロピレン=20:80および50:50(重量比)で混合し、これを井本製作所製ベント付2軸混練押出機160B型(同方向回転2軸スクリュー、スクリュー直径:20mm、L/D:25、ベント口数:1)を用いて溶融混練し、ストランド状の複合成形体を作製した。ポリプロピレンとの複合化の溶融混練条件は、ホッパー下温度65℃、バレル内温度190℃、ダイス温度190℃、スクリュー回転数14rpmで行った。比較例1として、ポリプロピレン単独で同様に成形体を作製した。
 複合成形体作製実施例1~4および比較例1のいずれの場合も、ホッパーから投入された中果皮繊維粉末とポリプロピレンとの溶融混練物は、約3分でダイスよりストランドとし押し出された。成形状況は良好であり、目詰まりなどは一切起こらなかった。
(Examples 1 to 4 for producing composite molded bodies using oil palm-derived biomass powder, Comparative Example 1)
Biomass powder production The mesocarp fiber powder produced in Examples 1 and 2 was sieved using a 100-mesh (mesh size 150 μm) sieve using a mini sieve shaker MVSI manufactured by AS ONE Corporation. The obtained mesodermal fiber powder and polypropylene (PP: Novatec PP FY-6 manufactured by Nippon Polypropylene Co., Ltd.) having a major axis of 10 to 150 μm were respectively obtained as shown in Table 2 below. And 50:50 (weight ratio), and this is a biaxial kneading extruder 160B with a vent manufactured by Imoto Seisakusho (same direction rotating twin screw, screw diameter: 20 mm, L / D: 25, number of vents: 1) Was melt-kneaded to produce a strand-shaped composite molded body. The melt-kneading conditions for compounding with polypropylene were as follows: hopper lower temperature 65 ° C., barrel temperature 190 ° C., die temperature 190 ° C., screw rotation speed 14 rpm. As Comparative Example 1, a molded body was similarly produced using polypropylene alone.
In any of composite molded body production examples 1 to 4 and comparative example 1, the melt-kneaded product of mesocarp fiber powder and polypropylene charged from the hopper was extruded as a strand from the die in about 3 minutes. The molding condition was good and no clogging occurred.
 得られたストランド状の複合成形体は、ペレット状にした後、井元製作所製のIMC-18D1型簡易射出成形機を用いて、210℃で曲げ試験用の試験片を作製した。作製した試験片のサイズは、長さ30mm、幅5.1mm、厚み2.1mmである。曲げ試験は、JIS K 7171に従って、10mm/minのヘッドスピードで行った。得られた結果から、曲げ強度と曲げ弾性率を求め、表2に併記した。 The obtained strand-like composite molded body was pelletized, and a test piece for bending test was produced at 210 ° C. using an IMC-18D1 type simple injection molding machine manufactured by Imoto Seisakusho. The size of the produced test piece is 30 mm in length, 5.1 mm in width, and 2.1 mm in thickness. The bending test was performed at a head speed of 10 mm / min according to JIS K 7171. From the obtained results, the bending strength and the flexural modulus were obtained and listed in Table 2.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 表2の結果から、アブラヤシ由来のバイオマス粉末として中果皮繊維粉末を含んだ複合成形体の曲げ強度および曲げ弾性率は、ポリプロピレン単独の場合よりも高くなることが明らかとなった。 From the results in Table 2, it was revealed that the flexural strength and flexural modulus of the composite molded body containing mesodermal fiber powder as the oil palm-derived biomass powder were higher than those of polypropylene alone.
(アブラヤシ由来のバイオマス粉末作製の実施例3、比較例2)
 [作製方法および得られるバイオマス粉末のサイズ等]
 茎葉繊維(アブラヤシの茎葉から糖成分を絞り取った後の繊維質残滓)50gを、バイオマス粉末作製実施例1の中果皮繊維と同様にして、過熱水蒸気処理装置を用いて、下表3に示した条件で常圧過熱水蒸気処理を行った。処理した茎葉繊維を取り出し、奈良機械製作所製の粉砕装置を用いて7000rpmで微粉砕を行った。粉砕時間は、投入サンプルの粉砕が完了した時間とし、バイオマス粉末作製実施例3で約7分であった。粉砕したサンプルは、顕微鏡観察により粒度分布、水分測定装置により水分含有量を確認した。結果を表3に併記した。図4に、バイオマス粉末作製実施例3で作製した茎葉繊維粉末の光学顕微鏡写真を示す。なおバイオマス粉末作製比較例2として、常圧過熱水蒸気処理をしていない茎葉繊維についても、同じ装置・条件を用いて微粉砕試験を試みた。
(Example 3 for producing biomass powder derived from oil palm, Comparative Example 2)
[Production method and size of biomass powder obtained]
Table 3 below shows 50 g of foliage fiber (fiber residue after squeezing sugar components from oil palm foliage) using a superheated steam treatment apparatus in the same manner as the mesocarp fiber of biomass powder production Example 1. Under normal conditions, atmospheric pressure superheated steam treatment was performed. The treated foliage fiber was taken out and finely pulverized at 7000 rpm using a pulverizer manufactured by Nara Machinery Co., Ltd. The pulverization time was the time when the pulverization of the input sample was completed, and was about 7 minutes in the biomass powder production example 3. The crushed sample was confirmed for particle size distribution by microscopic observation and water content by a moisture measuring device. The results are also shown in Table 3. In FIG. 4, the optical microscope photograph of the foliage fiber powder produced in biomass powder production Example 3 is shown. In addition, as a biomass powder production comparative example 2, a pulverization test was attempted using the same apparatus and conditions for the foliage fibers that were not subjected to atmospheric pressure superheated steam treatment.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 表3の結果から、茎葉繊維を過熱水蒸気処理することによって、バイオマス粉末作製実施例3の茎葉繊維は容易に粉砕され、粒子サイズが1~500μm内に100%に存在した。一方、常圧過熱水蒸気処理をしていないバイオマス粉末作製比較例2の茎葉繊維については、茎葉繊維の強度が大きいため、粉砕を20分継続しても全てを粉砕するのは不可能だった。比較例2の顕微鏡観察によるバイオマス粉末のサイズ分布データは省略した。
 図4に実施例3の粉砕された茎葉繊維粉末の光学顕微鏡写真を示す。様々の長さの短繊維が広く分布していることがわかる。また、図5に実施例3で得られた茎葉繊維粉末の長径サイズ分布のヒストグラムを示す。
From the results of Table 3, the foliage fiber of biomass powder production example 3 was easily pulverized by subjecting the foliage fiber to superheated steam treatment, and the particle size was 100% within 1 to 500 μm. On the other hand, for the foliage fiber of Comparative Example 2 for producing biomass powder that was not subjected to atmospheric pressure superheated steam treatment, the strength of the foliage fiber was so large that it was impossible to crush all even after crushing for 20 minutes. The biomass powder size distribution data obtained by microscopic observation in Comparative Example 2 was omitted.
FIG. 4 shows an optical micrograph of the pulverized foliage fiber powder of Example 3. It can be seen that short fibers of various lengths are widely distributed. FIG. 5 shows a histogram of the major axis size distribution of the foliage fiber powder obtained in Example 3.
 [熱重量分析計による熱重量変化の分析]
 常圧過熱水蒸気処理を行った茎葉繊維中の組成変化を確認するために、茎葉繊維サンプルをアルミニウムパンに取り、セイコーインスツルメンツ社製TG/DTA6200を用いて50mL/分の窒素気流下、10℃/分の昇温速度で熱重量分析を行った。
 バイオマス粉末作製実施例3で得られたサンプルの熱重量減少曲線(TG)を図6aに、およびその微分曲線(DTG)図6bにそれぞれを示す。実施例2の水蒸気処理後のサンプルは、180~320℃の温度範囲において分解ピークを有さず、300~400℃の温度範囲にセルロースの分解に基づくピークを示した。一方、バイオマス粉末作製比較例2の無処理の茎葉繊維は、熱重量減少曲線(TG)(図6aに併記)とその微分曲線(DTG)(図6bに併記)を示すように、180~320℃の温度範囲に低温分解性リグニン成分とヘミセルロース成分の分解に基づくピークと300~400℃の温度範囲にセルロースの分解に基づくピークの双方を示した。これらの結果は、過熱水蒸気処理によって、茎葉繊維組織の中のヘミセルロース成分および低温分解性リグニン成分が優先的に分解除去されたことを示している。
[Analysis of thermogravimetric changes with a thermogravimetric analyzer]
In order to confirm the composition change in the foliage fiber subjected to the atmospheric pressure superheated steam treatment, the foliage fiber sample is taken in an aluminum pan, using a TG / DTA6200 manufactured by Seiko Instruments Inc. under a nitrogen stream of 50 mL / min at 10 ° C. / Thermogravimetric analysis was conducted at a rate of temperature increase of minutes.
The thermogravimetric decrease curve (TG) of the sample obtained in biomass powder production Example 3 is shown in FIG. 6a, and its differential curve (DTG) FIG. 6b, respectively. The sample after the steam treatment of Example 2 did not have a decomposition peak in the temperature range of 180 to 320 ° C., and showed a peak based on the decomposition of cellulose in the temperature range of 300 to 400 ° C. On the other hand, the untreated foliage fibers of Biomass Powder Production Comparative Example 2 have a thermogravimetric decrease curve (TG) (shown together in FIG. 6a) and its differential curve (DTG) (shown together in FIG. 6b). Both a peak based on the decomposition of the low temperature decomposable lignin component and the hemicellulose component and a peak based on the decomposition of cellulose in the temperature range of 300 to 400 ° C were shown in the temperature range of ° C. These results indicate that the hemicellulose component and the low-temperature degradable lignin component in the foliage fiber tissue were preferentially decomposed and removed by the superheated steam treatment.
(アブラヤシ由来のバイオマス粉末を用いた複合成形体作製の実施例5、6、比較例2)
 バイオマス粉末作製実施例3で作製した茎葉繊維粉末を、アズワン株式会社製ミニ篩振とう機MVSIを使って、100メッシュ(目開き150μm)の篩を用いて篩いわけを行った。得られた長径10~150μmの茎葉繊維粉末とポリプロピレン(日本ポリプロピレン株式会社製ノバテックPP FY-6)を、表4に示したように、それぞれ茎葉繊維粉末:ポリプロピレン=20:80および50:50(重量比)で混合し、これを井本製作所製ベント付2軸混練押出機160B型(同方向回転2軸スクリュー、スクリュー直径:20mm、L/D:25、ベント口数:1)を用いて溶融混練し、ストランド状の複合成形体を作製した。ポリプロピレンとの複合化の溶融混練条件は、ホッパー下温度65℃、バレル内温度190℃、ダイス温度190℃、スクリュー回転数14rpmで行った。比較例2として、ポリプロピレン単独で同様に成形体を作製した。複合成形体作製実施例3、4および比較例2のいずれの場合も、ホッパーから投入された茎葉繊維粉末とポリプロピレンとの溶融混練物は、約3分でダイスよりストランドとして押し出された。成形状況は良好であり、目詰まりなどは一切起こらなかった。
(Examples 5 and 6 for producing composite molded bodies using oil palm-derived biomass powder, Comparative Example 2)
The stalk and leaf fiber powder produced in biomass powder production Example 3 was sieved using a 100-mesh (mesh size 150 μm) sieve using a mini sieve shaker MVSI manufactured by AS ONE Corporation. As shown in Table 4, the obtained foliage fiber powder having a major axis of 10 to 150 μm and polypropylene (Novatech PP FY-6 manufactured by Nippon Polypropylene Co., Ltd.) were respectively obtained as foliage fiber powder: polypropylene = 20: 80 and 50:50 ( (By weight ratio), and this is melt-kneaded using a vented twin-screw kneading extruder 160B type (same direction rotating twin screw, screw diameter: 20 mm, L / D: 25, vent number: 1) Thus, a strand-shaped composite molded body was produced. The melt-kneading conditions for compounding with polypropylene were as follows: hopper lower temperature 65 ° C., barrel temperature 190 ° C., die temperature 190 ° C., screw rotation speed 14 rpm. As Comparative Example 2, a molded article was similarly produced using polypropylene alone. In any of composite molded body production examples 3 and 4 and comparative example 2, the melt-kneaded material of the foliage fiber powder and polypropylene charged from the hopper was extruded as a strand from the die in about 3 minutes. The molding condition was good and no clogging occurred.
 得られたストランド状の複合成形体は、ペレット状にした後、井元製作所製のIMC-18D1型簡易射出成形機を用いて、210℃で曲げ試験用の試験片を作成した。作成した試験片のサイズは、長さ30mm、幅5.1mm、厚み2.1mmである。曲げ試験は、JIS K 7171に従って、10mm/minのヘッドスピードで行った。得られた結果から、曲げ強度と曲げ弾性率を求め、表4に併記した。 The obtained strand-shaped composite molded body was pelletized, and a test piece for a bending test was created at 210 ° C. using an IMC-18D1 type simple injection molding machine manufactured by Imoto Seisakusho. The size of the prepared test piece is 30 mm long, 5.1 mm wide, and 2.1 mm thick. The bending test was performed at a head speed of 10 mm / min according to JIS K 7171. From the obtained results, the bending strength and the flexural modulus were obtained and listed in Table 4.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 表4の結果から、アブラヤシ由来のバイオマスとして茎葉繊維粉末を含んだ複合成形体の曲げ強度および曲げ弾性率は、ポリプロピレン単独の場合よりも高くなることが明らかとなった。
 
From the results of Table 4, it became clear that the flexural strength and flexural modulus of the composite molded body containing the foliage powder as the oil-derived biomass were higher than those of polypropylene alone.

Claims (8)

  1.  熱重量減少の微分曲線において、180~320℃の温度範囲にピークを有さず、300~400℃の温度範囲にピークを有し、50質量%以上が長径1~500μmの範囲にあるアブラヤシ由来のバイオマス粉末。 In the differential curve of thermogravimetry, there is no peak in the temperature range of 180-320 ° C, it has a peak in the temperature range of 300-400 ° C, and 50 mass% or more is derived from oil palm with a major axis in the range of 1-500 μm Biomass powder.
  2.  アブラヤシの中果皮から油分を絞り取った後の繊維質残滓を原料とすることを特徴とする請求項1記載のバイオマス粉末。 2. The biomass powder according to claim 1, wherein the raw material is a fibrous residue after squeezing oil from the mesocarp of oil palm.
  3.  アブラヤシの茎葉から糖成分を絞り取った後の繊維質残滓を原料とすることを特徴とする請求項1記載のバイオマス粉末。 2. The biomass powder according to claim 1, wherein the raw material is a fibrous residue after squeezing the sugar component from oil palm stalks and leaves.
  4.  アブラヤシの果実から小果を取り去った後の空房を原料とすることを特徴とする請求項1記載のバイオマス粉末。 2. The biomass powder according to claim 1, wherein the raw material is an empty bunch after removing the berries from the oil palm fruit.
  5.  原料を170~250℃の水蒸気を用いて10分~6時間処理した後に、粉砕することを特徴とする請求項1~4のいずれか1項に記載のバイオマス粉末の製造方法。 The method for producing biomass powder according to any one of claims 1 to 4, wherein the raw material is pulverized after being treated with steam at 170 to 250 ° C for 10 minutes to 6 hours.
  6.  請求項1~4のいずれか1項に記載のバイオマス粉末と熱可塑性樹脂または熱硬化性樹脂のプレポリマーとを5:95~80:20の質量比で含有する組成物を成形してなるバイオマス複合成形体。 A biomass formed by molding a composition containing the biomass powder according to any one of claims 1 to 4 and a prepolymer of a thermoplastic resin or a thermosetting resin in a mass ratio of 5:95 to 80:20. Composite molded body.
  7.  溶融成形することを特徴とする請求項6記載のバイオマス複合成形体の製造方法。 7. The method for producing a biomass composite molded body according to claim 6, wherein the molded body is melt-molded.
  8.  射出成形法または押出成形法で成形することを特徴とする請求項7記載のバイオマス複合成形体の製造方法。 8. The method for producing a biomass composite molded article according to claim 7, wherein the molding is performed by an injection molding method or an extrusion molding method.
PCT/JP2012/007427 2011-11-25 2012-11-20 Biomass powder derived from oil palm and production method therefor, and biomass-composite molded body and production method therefor WO2013076960A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013545787A JP5946226B2 (en) 2011-11-25 2012-11-20 Oil palm derived biomass powder and method for producing the same, biomass composite molded body and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-256880 2011-11-25
JP2011256880 2011-11-25

Publications (1)

Publication Number Publication Date
WO2013076960A1 true WO2013076960A1 (en) 2013-05-30

Family

ID=48469427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007427 WO2013076960A1 (en) 2011-11-25 2012-11-20 Biomass powder derived from oil palm and production method therefor, and biomass-composite molded body and production method therefor

Country Status (2)

Country Link
JP (1) JP5946226B2 (en)
WO (1) WO2013076960A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5660513B1 (en) * 2014-05-22 2015-01-28 国立大学法人九州工業大学 Biomass nanofiber manufacturing method and biomass nanofiber / polymer resin composite manufacturing method
JP2015168126A (en) * 2014-03-06 2015-09-28 北川工業株式会社 Method of producing plant-based material, plant-based material, and method of reducing content of saccharides
JP2018083876A (en) * 2016-11-22 2018-05-31 牧 恒雄 Production method of woody composite resin material and woody composite resin material
JP2022001344A (en) * 2020-06-19 2022-01-06 グレンカル・テクノロジー株式会社 Molding material, molded article, and manufacturing method of molding material
JP7093138B1 (en) 2021-12-07 2022-06-29 株式会社パームホルツ Wood board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285819A (en) * 1993-04-07 1994-10-11 Tooa Shoji Kk Formed board mainly made of natural vegetable fiber such as oil palm fiber and jute fiber and the like
JPH1142611A (en) * 1997-07-25 1999-02-16 Matsushita Electric Works Ltd Manufacture of wood board
JP2000006116A (en) * 1998-06-26 2000-01-11 Kanegafuchi Chem Ind Co Ltd Fiber board and its manufacture
JP2004209462A (en) * 2002-12-18 2004-07-29 Kobe Steel Ltd Drying method of plant-derived biomass, and production method of biomass fuel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5656167B2 (en) * 2010-08-13 2015-01-21 国立大学法人九州工業大学 Bamboo fiber, method for producing the same, and method for producing a composite material using bamboo fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285819A (en) * 1993-04-07 1994-10-11 Tooa Shoji Kk Formed board mainly made of natural vegetable fiber such as oil palm fiber and jute fiber and the like
JPH1142611A (en) * 1997-07-25 1999-02-16 Matsushita Electric Works Ltd Manufacture of wood board
JP2000006116A (en) * 1998-06-26 2000-01-11 Kanegafuchi Chem Ind Co Ltd Fiber board and its manufacture
JP2004209462A (en) * 2002-12-18 2004-07-29 Kobe Steel Ltd Drying method of plant-derived biomass, and production method of biomass fuel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015168126A (en) * 2014-03-06 2015-09-28 北川工業株式会社 Method of producing plant-based material, plant-based material, and method of reducing content of saccharides
JP5660513B1 (en) * 2014-05-22 2015-01-28 国立大学法人九州工業大学 Biomass nanofiber manufacturing method and biomass nanofiber / polymer resin composite manufacturing method
JP2016064501A (en) * 2014-05-22 2016-04-28 国立大学法人九州工業大学 Method for producing biomass nanofibers and method for producing biomass nanofiber-polymeric resin composite
JP2018083876A (en) * 2016-11-22 2018-05-31 牧 恒雄 Production method of woody composite resin material and woody composite resin material
JP2022001344A (en) * 2020-06-19 2022-01-06 グレンカル・テクノロジー株式会社 Molding material, molded article, and manufacturing method of molding material
JP7098176B2 (en) 2020-06-19 2022-07-11 グレンカル・テクノロジー株式会社 Molding material, molded body, and manufacturing method of molding material
EP4169632A4 (en) * 2020-06-19 2024-01-17 Glencal Technology Co., Ltd. Molding material, molded article, and production method for molding material
JP7093138B1 (en) 2021-12-07 2022-06-29 株式会社パームホルツ Wood board
JP2023084179A (en) * 2021-12-07 2023-06-19 株式会社パームホルツ wooden board

Also Published As

Publication number Publication date
JPWO2013076960A1 (en) 2015-04-27
JP5946226B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
JP5656167B2 (en) Bamboo fiber, method for producing the same, and method for producing a composite material using bamboo fiber
DK2508263T3 (en) PROCEDURE FOR COMPRESSING FIBER MATERIAL
JP5946226B2 (en) Oil palm derived biomass powder and method for producing the same, biomass composite molded body and method for producing the same
Chiellini et al. Composite films based on biorelated agro-industrial waste and poly (vinyl alcohol). Preparation and mechanical properties characterization
JP4081579B2 (en) Lignocellulosic material and use thereof
JP4371373B2 (en) MANUFACTURING METHOD FOR WOOD-BASED MOLDED BODY AND WOOD-BASED MOLDED BODY
JP4971449B2 (en) Manufacturing method of biocomposite material using high temperature grinding technology
Kılınc et al. Manufacturing and characterization of vine stem reinforced high density polyethylene composites
US10662301B2 (en) Method for producing a lignocellulose plastic composite material
Boontima et al. Mechanical properties of sugarcane bagasse fiber-reinforced soy based biocomposites
WO2006027861A1 (en) Plastic molding capable of carbon dioxide reduction
CN103044702A (en) Method of producing foaming plastic from plant materials
Thiagamani et al. Isolation and characterization of agro-waste biomass sapodilla seeds as reinforcement in potential polymer composite applications
JP5481623B2 (en) Wood resin composition and wood pellet
JP6852870B2 (en) Functional additive and manufacturing method of functional additive
Boufi Biocomposites from olive-stone flour: A step forward in the valorization of the solid waste from the olive-oil industry
JP6821168B2 (en) How to miniaturize plant cellulose
US9145496B2 (en) Composite product, a method for manufacturing a composite product and its use, a material component and a final product
JP7108401B2 (en) Thermoplastic resin composition
JP5930160B2 (en) Breeding seedling pot
Veeman et al. Numerical and experimental investigations on the mechanical behavior of additively manufactured novel composite materials for biomedical applications
JP2016111362A (en) Electromagnetic wave shielding polymer composite material and method for producing electromagnetic wave shielding material
JP2004261967A (en) Lignocellulose type rotary drive body
JP6613405B2 (en) Flame-retardant resin composition and method for producing flame-retardant resin composition
JP2019199009A (en) Manufacturing method of bamboo powder composite resin, manufacturing method of bamboo powder resin mixed melt, bamboo powder resin mixed melt, and bamboo powder composite resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851278

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013545787

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201402963

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12851278

Country of ref document: EP

Kind code of ref document: A1