JP2010011043A - Transmission line, branch line coupler, and wilkinson division circuit - Google Patents

Transmission line, branch line coupler, and wilkinson division circuit Download PDF

Info

Publication number
JP2010011043A
JP2010011043A JP2008167550A JP2008167550A JP2010011043A JP 2010011043 A JP2010011043 A JP 2010011043A JP 2008167550 A JP2008167550 A JP 2008167550A JP 2008167550 A JP2008167550 A JP 2008167550A JP 2010011043 A JP2010011043 A JP 2010011043A
Authority
JP
Japan
Prior art keywords
line
transmission line
transmission
patterns
line patterns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008167550A
Other languages
Japanese (ja)
Other versions
JP5089502B2 (en
Inventor
Hidenori Yugawa
秀憲 湯川
Hifumi Noto
一二三 能登
Masaki Hanya
政毅 半谷
Koji Yamanaka
宏治 山中
Kazuhisa Yamauchi
和久 山内
Akira Inoue
晃 井上
Moriyasu Miyazaki
守泰 宮▲ざき▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008167550A priority Critical patent/JP5089502B2/en
Publication of JP2010011043A publication Critical patent/JP2010011043A/en
Application granted granted Critical
Publication of JP5089502B2 publication Critical patent/JP5089502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transmission line having characteristics equivalent to those of a single transmission line for over a wide band and to enable downsizing. <P>SOLUTION: The transmission line which functions as a distribution constant circuit in a high frequency band of microwave or millimeter wave is constituted by connecting at least two line patterns in parallel between input/output terminals. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、マイクロ波やミリ波の高周波帯の高周波回路に使用する伝送線路、ブランチラインカプラおよびウィルキンソン分配回路に関するものである。   The present invention relates to a transmission line, a branch line coupler, and a Wilkinson distribution circuit used in a high frequency circuit of a microwave or millimeter wave high frequency band.

マイクロ波やミリ波の高周波帯において分布定数回路として機能する伝送線路は、適用される機器の小形化に伴って、プリント基板で形成されるマイクロストリップラインやストリップラインで構成されるものが多用されるようになった。マイクロストリップラインやストリップラインの伝送線路は高周波特性や再現性、コスト等の点で優れているため、方向性結合器、分配回路などの高周波回路部品も、この種の伝送線路を組み合わせることによって小形化されてきた。今日では、例えば携帯電話機に見られるように高密度実装が進められており、上記伝送線路や高周波部品も更なる小形化が求められている。
長手方向に延びる単一の伝送線路の小形化を図る方法としてとしては、図14に示すように、1本の伝送線路20の入力端子1に第1のオープンスタブ21を接続し、出力端子2に第2のオープンスタブ22を接続する技術が提案されている(例えば非特許文献1参照)。一般に、伝送線路は擬似的に並列容量成分と直列誘導成分で近似される。また、オープンスタブは一般的に容量性として機能することが知られている。したがって、図14のように、伝送線路20にオープンスタブ21,22を接続した場合、並列容量が装荷された伝送線路とみなすことができる。このため、オープンスタブによる容量成分を装荷した場合、その分の伝送線路長を短縮することで、元の単一の伝送線路と等価な特性が得られることになる。
Transmission lines that function as distributed constant circuits in the microwave and millimeter wave high-frequency bands are often used that are made up of microstrip lines and strip lines formed of printed circuit boards as the equipment to be applied is miniaturized. It became so. Microstrip lines and stripline transmission lines are superior in terms of high-frequency characteristics, reproducibility, cost, etc. High-frequency circuit components such as directional couplers and distribution circuits can also be reduced by combining this type of transmission line. It has become. Today, high-density mounting is being promoted as seen in, for example, mobile phones, and further miniaturization of the transmission line and the high-frequency components is required.
As a method of reducing the size of a single transmission line extending in the longitudinal direction, a first open stub 21 is connected to the input terminal 1 of one transmission line 20 as shown in FIG. For example, a technique for connecting the second open stub 22 has been proposed (see Non-Patent Document 1, for example). In general, a transmission line is approximated by a parallel capacitance component and a series induction component in a pseudo manner. It is also known that open stubs generally function as capacitive. Therefore, when the open stubs 21 and 22 are connected to the transmission line 20 as shown in FIG. 14, it can be regarded as a transmission line loaded with a parallel capacitor. For this reason, when the capacitive component by an open stub is loaded, the characteristic equivalent to the original single transmission line is acquired by shortening the transmission line length by that amount.

Y.-H.Chun, et al, “Design of a compact broadband branch-line hybrid,” 2005 IEEE MTT-S IMS Digest, pp.997-1000 (Fig.2)Y.-H.Chun, et al, “Design of a compact broadband branch-line hybrid,” 2005 IEEE MTT-S IMS Digest, pp.997-1000 (Fig.2)

しかしながら、上記のようにオープンスタブを接続して伝送線路を構成した場合、オープンスタブによる容量性と、元の単一の伝送線路の容量性では周波数特性が異なるため、広い周波数帯域に渡っては等価な特性が得られないという問題がある。   However, when a transmission line is configured by connecting open stubs as described above, the frequency characteristics differ between the capacities of the open stubs and the capacities of the original single transmission line. There is a problem that an equivalent characteristic cannot be obtained.

この発明は、上記問題点を解決するためになされたもので、広帯域に渡って単一の伝送線路と等価な特性を持ち、小形化を可能にする伝送線路およびこの伝送線路を適用したブランチラインカプラおよびウィルキンソン分配回路を得ることを目的とする。   The present invention has been made to solve the above problems, and has a transmission line that has characteristics equivalent to a single transmission line over a wide band and enables miniaturization, and a branch line to which this transmission line is applied. The object is to obtain a coupler and a Wilkinson distribution circuit.

この発明に係る伝送線路は、入出力端子間に少なくとも2本の線路パターンを並列に接続してなるものである。   The transmission line according to the present invention is formed by connecting at least two line patterns in parallel between input and output terminals.

この発明によれば、広い周波数帯域に渡って単一の伝送線路と等価な特性を得ることができ、2本の線路パターンをメアンダ状に配置することにより、長さ方向を短縮して小形にできる。また、2本の線路パターンを長短の組み合わせにして長い方の線路パターンをメアンダ状に配置することで、線路幅を小さく、かつ長さ方向も短縮できるため小形の伝送線路を構成できる。したがって、高周波回路や高周波部品の伝送線路に適用して回路や部品の小形化が図れる。   According to the present invention, characteristics equivalent to a single transmission line can be obtained over a wide frequency band, and by arranging the two line patterns in a meander shape, the length direction can be shortened and the size can be reduced. it can. Further, by arranging the two line patterns in a long and short combination and arranging the longer line pattern in a meander shape, the line width can be reduced and the length direction can be shortened, so that a small transmission line can be configured. Therefore, the circuit and components can be miniaturized by applying to transmission lines of high-frequency circuits and high-frequency components.

実施の形態1.
図1は、この発明の実施の形態1による伝送線路の基本構成を示す回路図、図2は、単一の長手方向に延びる伝送線路を実施の形態1による伝送線路で置き換える方法について示す説明図である。
図1において、実施の形態1による伝送線路は、入力端子1と出力端子2間に2本の伝送線路3,4を並列に接続した構成となっている。なお、この発明の説明では、説明上の紛らわしさを解消するために、3,4等に相当する伝送線路を「線路パターン」と称することにする。
図2(a)に示すように、単一の伝送線路TL1の特性アドミタンスをYconventional、電気長を2θconventionalとし、図2(b)に示すように、この実施の形態1の2本の線路パターンTL3,TL4のそれぞれの特性アドミタンス(インピーダンスの逆数)をY1,Y2、伝送線路長を2θ1,2θ2とする。単一の伝送線路TL1と2本の線路パターンTL3,TL4からなる伝送線路が等価な特性を持っているとした場合、(1)式が成り立つ。

Figure 2010011043
Embodiment 1 FIG.
FIG. 1 is a circuit diagram showing a basic configuration of a transmission line according to the first embodiment of the present invention, and FIG. 2 is an explanatory diagram showing a method for replacing a single transmission line extending in the longitudinal direction with the transmission line according to the first embodiment. It is.
In FIG. 1, the transmission line according to Embodiment 1 has a configuration in which two transmission lines 3 and 4 are connected in parallel between an input terminal 1 and an output terminal 2. In the description of the present invention, a transmission line corresponding to 3 or 4 or the like is referred to as a “line pattern” in order to eliminate confusion in the description.
As shown in FIG. 2 (a), the characteristic admittance of a single transmission line TL1 and Y Conventional, the electrical length and 2 [Theta] Conventional, as shown in FIG. 2 (b), 2 pieces of line of the first embodiment The characteristic admittances (reciprocals of impedance) of the patterns TL3 and TL4 are Y 1 and Y 2 , and the transmission line lengths are 2θ 1 and 2θ 2 . When a transmission line composed of a single transmission line TL1 and two line patterns TL3 and TL4 has equivalent characteristics, equation (1) holds.
Figure 2010011043

次に、入力端子1における反射特性と、入力端子1から出力端子2への通過特性の計算結果を図3に示す。
図3(a)に、特性インピーダンスを25Ω、動作中心周波数2GHzにおける電気長を90度とした元の単一の伝送線路TL1を示す。一方、図3(b)に、元の単一の伝送線路TL1に置き換えたこの実施の形態1の伝送線路の諸元を示す。すなわち、2本の線路パターンTL3,TL4の特性インピーダンスをそれぞれ50Ω、動作中心周波数2GHzにおける電気長を90度に設定している。この条件でシミュレーションすることにより、図3(c)の反射特性、図3(d)の通過振幅、図3(e)の通過位相が得られた。実施の形態1の2本の線路パターンからなる伝送線路は、元の単一の伝送線路TL1とほぼ同じ特性になっていることがわかる。
元の単一の伝送線路を2本の線路パターンに分割することにより、それぞれの線路パターンの幅は、元の単一の伝送線路の線路幅の半分になる。この実施の形態1の伝送線路を実際に形成する場合は、線路パターン3,4を、例えば図4に示すようにメアンダ状にした配置とする。このことで、入出力端子間の長さ方向を短縮して小形な構成にできる。
Next, the calculation result of the reflection characteristic at the input terminal 1 and the transmission characteristic from the input terminal 1 to the output terminal 2 is shown in FIG.
FIG. 3A shows an original single transmission line TL1 having a characteristic impedance of 25Ω and an electrical length of 90 degrees at an operation center frequency of 2 GHz. On the other hand, FIG. 3B shows specifications of the transmission line according to the first embodiment, which is replaced with the original single transmission line TL1. That is, the characteristic impedances of the two line patterns TL3 and TL4 are set to 50Ω, respectively, and the electrical length at the operation center frequency of 2 GHz is set to 90 degrees. By simulating under this condition, the reflection characteristic of FIG. 3C, the passing amplitude of FIG. 3D, and the passing phase of FIG. 3E were obtained. It can be seen that the transmission line composed of the two line patterns of the first embodiment has substantially the same characteristics as the original single transmission line TL1.
By dividing the original single transmission line into two line patterns, the width of each line pattern is half the line width of the original single transmission line. When the transmission line according to the first embodiment is actually formed, the line patterns 3 and 4 are arranged in a meander shape as shown in FIG. As a result, the length direction between the input / output terminals can be shortened to achieve a compact configuration.

以上のように、この実施の形態1の伝送線路は、入出力端子間に少なくとも2本の線路パターンを並列に接続し、2本の線路パターンの特性アドミタンスと電気長をそれぞれ同じ値に設定することで、広い周波数帯域に渡って単一の伝送線路と等価な特性を得ることができる。また、2本の線路パターンを、メアンダ状に配置することにより、等価な単一の伝送線路よりも長さ方向を短縮して小形にできる。したがって、高周波回路や高周波部品で用いる伝送線路に適用して回路や部品の小形化が図れる。   As described above, in the transmission line of the first embodiment, at least two line patterns are connected in parallel between the input and output terminals, and the characteristic admittance and the electrical length of the two line patterns are set to the same value, respectively. Thus, a characteristic equivalent to a single transmission line can be obtained over a wide frequency band. Further, by arranging the two line patterns in a meander shape, the length direction can be shortened to be smaller than that of an equivalent single transmission line. Therefore, the circuit and parts can be miniaturized by applying to transmission lines used in high frequency circuits and high frequency parts.

実施の形態2.
この実施の形態2による伝送線路は、実施の形態1と同様に2本の線路パターンで構成されているが、互いの線路長が異なるように設定したものである。この場合も、(1)式により、実施の形態1と同様、元の単一の伝送線路と等価な特性を持たせることができる。
Embodiment 2. FIG.
The transmission line according to the second embodiment is composed of two line patterns as in the first embodiment, but is set so that the line lengths are different from each other. Also in this case, the characteristic equivalent to the original single transmission line can be given by the expression (1) as in the first embodiment.

次に、入力端子1における反射特性と、入力端子1から出力端子2への通過特性の計算結果を図5に示す。
図5(a)に、特性インピーダンスを25Ω、動作中心周波数2GHzにおける電気長を90度とした元の単一の伝送線路TL1を示す。図5(b)に、元の単一の伝送線路TL1に置き換えたこの実施の形態2の伝送線路の諸元を示す。すなわち、2本の線路パターンの一方TL31の特性インピーダンスを58Ω、動作中心周波数2GHzにおける電気長を60度に、他方TL41の特性インピーダンスを58Ω、動作中心周波数2GHzにおける電気長を120度に設定している。これらの値によりシミュレーションすることにより、図5(c)の反射特性、図5(d)の通過振幅、図5(e)の通過位相が得られた。元の単一の伝送線路TL1と、動作中心周波数2GHzにおいて同じ特性となっていることがわかる。
この実施の形態2の伝送線路の場合、2本の線路パターンの線路長を異なる値としているため、両線路パターンの幅の和は元の単一の伝送線路の幅に比べて小さくなる。また、この実施の形態2の伝送線路を実際に形成する場合は、例えば図6に示すように、短い方の線路パターン3に合わせて長い方の線路パターン4をメアンダ状にした配置とする。このことで、等価な単一の伝送線路よりも線路幅だけでなく長さ方向も短縮した小形な構成にできる。
なお、ここでは2本の線路パターンで構成する場合について示したが、さらに線路パターンの本数を増やす構成としてもよい。
Next, the calculation result of the reflection characteristic at the input terminal 1 and the transmission characteristic from the input terminal 1 to the output terminal 2 is shown in FIG.
FIG. 5A shows an original single transmission line TL1 having a characteristic impedance of 25Ω and an electrical length of 90 degrees at an operation center frequency of 2 GHz. FIG. 5B shows the specifications of the transmission line according to the second embodiment replaced with the original single transmission line TL1. That is, the characteristic impedance of one TL31 of the two line patterns is set to 58Ω, the electrical length at the operation center frequency 2 GHz is set to 60 degrees, the other TL41 is set to the characteristic impedance 58Ω, and the electrical length at the operation center frequency 2 GHz is set to 120 degrees Yes. By simulating with these values, the reflection characteristics of FIG. 5C, the pass amplitude of FIG. 5D, and the pass phase of FIG. 5E were obtained. It can be seen that the original single transmission line TL1 has the same characteristics as the operation center frequency of 2 GHz.
In the case of the transmission line according to the second embodiment, since the line lengths of the two line patterns have different values, the sum of the widths of both line patterns is smaller than the width of the original single transmission line. When the transmission line of the second embodiment is actually formed, for example, as shown in FIG. 6, the longer line pattern 4 is arranged in a meander shape in accordance with the shorter line pattern 3. This makes it possible to achieve a compact configuration in which not only the line width but also the length direction is shortened compared to an equivalent single transmission line.
In addition, although it showed about the case where it comprises with two line patterns here, it is good also as a structure which increases the number of line patterns further.

以上のように、この実施の形態2の伝送線路は、入出力端子間に少なくとも2本の線路パターンを並列に接続し、2本の線路パターンの特性アドミタンスを同じ値とし、電気長を互いに異なる値に設定することで、動作中心周波数で単一の伝送線路と等価な特性を得ることができ、両線路パターンの幅の和が元の単一の伝送線路の幅に比べて小さくなる。また、少なくとも長い方の線路パターンをメアンダ状に配置することで、元の単一の伝送線路よりも長さ方向を短縮し小形な構成とすることができる。したがって、高周波回路や高周波部品で用いている伝送線路に適用して回路や部品の小形化が図れる。   As described above, in the transmission line of the second embodiment, at least two line patterns are connected in parallel between the input and output terminals, the characteristic admittances of the two line patterns are set to the same value, and the electrical lengths are different from each other. By setting the value, it is possible to obtain a characteristic equivalent to a single transmission line at the operating center frequency, and the sum of the widths of both line patterns becomes smaller than the width of the original single transmission line. Further, by arranging at least the longer line pattern in a meander shape, the length direction can be shortened and the configuration can be made smaller than the original single transmission line. Therefore, the circuit and parts can be miniaturized by applying to transmission lines used in high frequency circuits and high frequency parts.

実施の形態3.
図7は、この発明の実施の形態3に係る伝送線路の基本構成を示す回路図である。図において、図1と同一な部分には同一符号を付して示す。
この実施の形態3では、線路パターン3,4のそれぞれの中心を別の線路パターン5により接続した構成としている。
上記実施の形態2のように線路長が異なる2本の線路パターンで構成した伝送線路の場合、図5に示したように動作中心周波数では元の単一の伝送線路と等価な特性となるが、高域の周波数では特性が大きくずれてしまう。これは、図8(a)に示すように、2本の線路パターンで形成されるループにより高域においてループ共振が生じるためである。このループ発振周波数は線路パターンの長さに反比例する。そこで、この実施の形態2では、2本の線路パターン3,4のそれぞれの中心を第3の線路パターン5で接続して、図8(b)に示すように2つのループを形成し、1つのループの長さを短縮している。これにより、ループ発振周波数はより高域にシフトするため、そのループ共振による特性のずれの影響が小さくなり、広帯域に渡り元の単一の伝送線路と等価な特性を得ることができる。
Embodiment 3 FIG.
FIG. 7 is a circuit diagram showing a basic configuration of a transmission line according to Embodiment 3 of the present invention. In the figure, the same parts as those in FIG.
In the third embodiment, the center of each of the line patterns 3 and 4 is connected by another line pattern 5.
In the case of a transmission line constituted by two line patterns having different line lengths as in the second embodiment, the operation center frequency has characteristics equivalent to the original single transmission line as shown in FIG. The characteristics are greatly shifted at high frequencies. This is because, as shown in FIG. 8 (a), loop resonance occurs in a high band by a loop formed by two line patterns. This loop oscillation frequency is inversely proportional to the length of the line pattern. Therefore, in the second embodiment, the centers of the two line patterns 3 and 4 are connected by the third line pattern 5 to form two loops as shown in FIG. The length of one loop is shortened. Thereby, since the loop oscillation frequency is shifted to a higher frequency, the influence of the characteristic shift due to the loop resonance is reduced, and a characteristic equivalent to the original single transmission line can be obtained over a wide band.

次に、入力端子1における反射特性と、入力端子1から出力端子2への通過特性の計算結果を図9に示す。
図9(a)に、特性インピーダンスを25Ω、動作中心周波数2GHzにおける電気長を90度とした元の単一の伝送線路TL1を示す。図9(b)に、元の単一の伝送線路TL1に置き換えた実施の形態3の伝送線路の諸元を示す。すなわち、2本の線路パターンの一方TL31(=TL311+TL312)の特性インピーダンスを55Ω、動作中心周波数2GHzにおける電気長を62度に、他方TL41(=TL411+TL412)の特性インピーダンス55Ω、動作中心周波数2GHzにおける電気長を126度にし、それぞれの中心部を接続した線路パターンTL5の特性インピーダンス55Ω、動作中心周波数2GHzにおける電気長を2度に設定している。これらの値によりシミュレーションすることにより、図9(c)の反射特性、図9(d)の通過振幅、図9(e)の通過位相が得られた。元の単一の伝送線路TL1とほぼ同じ特性になっていることがわかる。したがって、広帯域に渡り元の単一な伝送線路と等価特性を持つ伝送線路を得ることができる。なお、上記計算例では接続する線路パターンTL5の電気長が短い場合について示したが、長くてもよい。
Next, the calculation result of the reflection characteristic at the input terminal 1 and the transmission characteristic from the input terminal 1 to the output terminal 2 is shown in FIG.
FIG. 9A shows an original single transmission line TL1 having a characteristic impedance of 25Ω and an electrical length of 90 degrees at an operation center frequency of 2 GHz. FIG. 9B shows specifications of the transmission line according to the third embodiment, which is replaced with the original single transmission line TL1. That is, the characteristic impedance of one of the two line patterns TL31 (= TL311 + TL312) is 55Ω and the electrical length at the operation center frequency 2 GHz is 62 degrees, and the other TL41 (= TL411 + TL412) is the characteristic impedance 55Ω and the electrical length at the operation center frequency 2 GHz. Is set to 126 degrees, the characteristic impedance of the line pattern TL5 connecting the respective center portions is set to 55 Ω, and the electrical length at the operation center frequency of 2 GHz is set to 2 degrees. By simulating with these values, the reflection characteristics of FIG. 9C, the pass amplitude of FIG. 9D, and the pass phase of FIG. 9E were obtained. It can be seen that the characteristics are almost the same as those of the original single transmission line TL1. Therefore, it is possible to obtain a transmission line having characteristics equivalent to the original single transmission line over a wide band. In the above calculation example, the case where the electrical length of the line pattern TL5 to be connected is short is shown, but it may be long.

この実施の形態3の伝送線路を実際に形成する場合は、例えば図10に示すように、短い方の線路パターン3に合わせて長い方の線路パターン4をメアンダ状にし、両線路パターン3,4の中心に別の線路パターン5で接続した配置とする。このことで、広帯域に渡り元の単一な伝送線路と等価特性を持ち、単一の伝送線路よりも線路幅だけでなく長さ方向も短縮した小形な構成を得ることができる。   When the transmission line according to the third embodiment is actually formed, for example, as shown in FIG. 10, the longer line pattern 4 is formed into a meander shape in accordance with the shorter line pattern 3, and both line patterns 3, 4 are used. It is set as the arrangement | positioning connected by the another line pattern 5 to the center of. As a result, it is possible to obtain a small configuration that has the same characteristics as the original single transmission line over a wide band and shortens not only the line width but also the length direction as compared with the single transmission line.

以上のように、この実施の形態3の伝送線路は、上記実施の形態2の構成に加え、2本の線路パターンのそれぞれの中心間を別の線路パターンで接続した構成としたので、広帯域に渡り元の単一な伝送線路と等価特性が得られる。   As described above, the transmission line of the third embodiment has a configuration in which the centers of the two line patterns are connected by different line patterns in addition to the configuration of the second embodiment. Equivalent characteristics can be obtained with a single transmission line.

実施の形態4.
図11は、この発明の実施の形態4によるブランチラインカプラの構成を示す回路図である。
図11において、ブランチラインカプラは、入力端子6と通過端子7の間に伝送線路12を接続し、結合端子8とアイソレーション端子9の間に伝送線路13を接続し、入力端子6とアイソレーション端子9の間に伝送線路10を接続し、通過端子7と結合端子8に伝送線路11を接続した構成を持つ。通常のブランチラインカプラの場合、伝送線路10,11,12,13としては電気長90度の単一の伝送線路が使用されているが、この実施の形態4の場合は、図に示すように、上記実施の形態3で説明した、電気長90度とする伝送線路を使用している。そのため、通常のブランチラインカプラよりも小形にレイアウトできるという効果がある。
Embodiment 4 FIG.
FIG. 11 is a circuit diagram showing a structure of a branch line coupler according to Embodiment 4 of the present invention.
In FIG. 11, the branch line coupler connects the transmission line 12 between the input terminal 6 and the passing terminal 7, connects the transmission line 13 between the coupling terminal 8 and the isolation terminal 9, and isolates from the input terminal 6. The transmission line 10 is connected between the terminals 9, and the transmission line 11 is connected to the passing terminal 7 and the coupling terminal 8. In the case of a normal branch line coupler, a single transmission line having an electrical length of 90 degrees is used as the transmission lines 10, 11, 12, and 13. In the case of the fourth embodiment, as shown in FIG. The transmission line having an electrical length of 90 degrees described in the third embodiment is used. Therefore, there is an effect that the layout can be made smaller than a normal branch line coupler.

なお、ここでは伝送線路10〜13のすべてを2本の線路パターンからなる伝送線路で置き換えた場合について示しているが、2つの伝送線路(例えば12,13)のみを2本の線路パターンからなる伝送線路で置き換えた構成としてもよい。また、実施の形態3による2本の線路パターン間に別の線路パターンを装荷したものを適用した場合について示したが、実施の形態1または実施の形態2に示した伝送線路で構成してもよい。   Note that, here, a case where all of the transmission lines 10 to 13 are replaced with transmission lines composed of two line patterns is shown, but only two transmission lines (for example, 12, 13) are composed of two line patterns. It is good also as a structure replaced with the transmission line. Moreover, although the case where what loaded another line pattern between the two line patterns by Embodiment 3 was applied was shown, even if it comprises the transmission line shown in Embodiment 1 or Embodiment 2 Good.

実施の形態5.
図12は、この発明の実施の形態4によるウィルキンソン分配回路の構成を示す回路図である。
図12において、ウィルキンソン分配回路は、入力端子14と2つの分配端子15,16間にそれぞれ電気長90度の2つの伝送線路17,18を接続し、分配端子15,16間にアイソレーション抵抗19を接続した構成を持つ。通常のウィルキンソン分配回路の場合、伝送線路17,18としては電気長90度の単一の伝送線路が使用されているが、この実施の形態5の場合は、図に示すように、上記実施の形態3で説明した、電気長90度とする伝送線路が使用している。そのため、通常のウィルキンソン分配回路よりも小形にレイアウトできるという効果がある。
Embodiment 5 FIG.
FIG. 12 is a circuit diagram showing a configuration of a Wilkinson distribution circuit according to Embodiment 4 of the present invention.
In FIG. 12, the Wilkinson distribution circuit connects two transmission lines 17 and 18 each having an electrical length of 90 degrees between an input terminal 14 and two distribution terminals 15 and 16, and an isolation resistor 19 between the distribution terminals 15 and 16. With a connected configuration. In the case of a normal Wilkinson distribution circuit, a single transmission line having an electrical length of 90 degrees is used as the transmission lines 17 and 18, but in the case of this fifth embodiment, as shown in the figure, The transmission line having an electrical length of 90 degrees described in the third embodiment is used. Therefore, there is an effect that the layout can be made smaller than a normal Wilkinson distribution circuit.

また、図13に示すような従来のウィルキンソン分配回路ではアイソレーション抵抗の接続のために新たな伝送線路を設けているが、この実施の形態5で使用する伝送線路の場合、レイアウトに自由度があるため、伝送線路端を接近させることでアイソレーション抵抗を接続することができ、より小形になる。
なお、図12の構成では、実施の形態3による2本の線路パターン間に別の線路パターンを装荷したものを適用した場合について示したが、実施の形態1または実施の形態2に示した伝送線路で構成してもよい。
Further, in the conventional Wilkinson distribution circuit as shown in FIG. 13, a new transmission line is provided for connection of the isolation resistor. However, in the case of the transmission line used in the fifth embodiment, the layout has a degree of freedom. For this reason, the isolation resistance can be connected by bringing the transmission line end closer, and the size becomes smaller.
In the configuration of FIG. 12, the case where another line pattern loaded between two line patterns according to the third embodiment is applied, but the transmission shown in the first or second embodiment is applied. You may comprise with a track.

この発明の実施の形態1に係る伝送線路の基本構成を示す回路図である。It is a circuit diagram which shows the basic composition of the transmission line which concerns on Embodiment 1 of this invention. 単一の伝送線路を実施の形態1の伝送線路に置き換える方法について示す説明図である。FIG. 3 is an explanatory diagram showing a method for replacing a single transmission line with the transmission line of the first embodiment. この実施の形態1に係る伝送線路の反射特性と通過特性を示す説明図である。It is explanatory drawing which shows the reflection characteristic and transmission characteristic of the transmission line which concern on this Embodiment 1. FIG. この実施の形態1による伝送線路の実際の配置構成の例を示す回路図である。It is a circuit diagram which shows the example of the actual arrangement configuration of the transmission line by this Embodiment 1. FIG. この実施の形態2に係る伝送線路の反射特性と通過特性を示す説明図である。It is explanatory drawing which shows the reflection characteristic and transmission characteristic of the transmission line which concern on this Embodiment 2. FIG. この実施の形態2による伝送線路の実際の配置構成の例を示す説明図である。It is explanatory drawing which shows the example of the actual arrangement configuration of the transmission line by this Embodiment 2. FIG. この発明の実施の形態3に係る伝送線路の基本構成を示す回路図である。It is a circuit diagram which shows the basic composition of the transmission line which concerns on Embodiment 3 of this invention. この実施の形態3に係る高域周波数の改善方法を示す説明図である。It is explanatory drawing which shows the improvement method of the high frequency which concerns on this Embodiment 3. FIG. この実施の形態3に係る伝送線路の反射特性と通過特性を示す説明図である。It is explanatory drawing which shows the reflection characteristic and transmission characteristic of the transmission line which concern on this Embodiment 3. FIG. この実施の形態3による伝送線路の実際の配置構成の例を示す回路図である。It is a circuit diagram which shows the example of the actual arrangement configuration of the transmission line by this Embodiment 3. この発明の実施の形態4によるブランチラインカプラの構成を示す回路図である。It is a circuit diagram which shows the structure of the branch line coupler by Embodiment 4 of this invention. この発明の実施の形態5によるウィルキンソン分配回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the Wilkinson distribution circuit by Embodiment 5 of this invention. 従来のウィルキンソン分配回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the conventional Wilkinson distribution circuit. 従来の伝送線路の等価回路図である。It is an equivalent circuit diagram of a conventional transmission line.

符号の説明Explanation of symbols

1,6,14 入力端子、2 出力端子、3,4,5,TL3,TL4,TL31,TL41 線路パターン、8 結合端子、9 アイソレーション端子、10〜13,17,18 伝送線路、15,16 分配端子、19 アイソレーション抵抗。   1, 6, 14 Input terminal, 2 Output terminal, 3, 4, 5, TL3, TL4, TL31, TL41 Line pattern, 8 Coupling terminal, 9 Isolation terminal, 10-13, 17, 18 Transmission line, 15, 16 Distribution terminal, 19 Isolation resistor.

Claims (12)

入出力端子間に少なくとも2本の線路パターンを並列に接続してなる伝送線路。   A transmission line formed by connecting at least two line patterns in parallel between input and output terminals. 2本の線路パターンは、特性アドミタンスと電気長をそれぞれ同じ値とすると共に、メアンダ状に配置されたことを特徴とする請求項1記載の伝送線路。   The transmission line according to claim 1, wherein the two line patterns have the same value for the characteristic admittance and the electrical length, and are arranged in a meander shape. 2本の線路パターンは、特性アドミタンスを同じ値とし、電気長を互いに異なる値とすると共に、少なくとも一方がメアンダ状に配置されたことを特徴とする請求項1記載の伝送線路。   The transmission line according to claim 1, wherein the two line patterns have the same value of characteristic admittance, different values of electrical length, and at least one of them is arranged in a meander shape. 2本の線路パターンのそれぞれの中心間を別の線路パターンで接続したことを特徴とする請求項3記載の伝送線路。   4. The transmission line according to claim 3, wherein the centers of the two line patterns are connected by different line patterns. 4本の伝送線路で構成されるブランチラインカプラにおいて、前記4本の伝送線路の一部または全部を、少なくとも2本の線路パターンを並列に接続した伝送線路にしたことを特徴とするブランチラインカプラ。   A branch line coupler comprising four transmission lines, wherein a part or all of the four transmission lines are transmission lines in which at least two line patterns are connected in parallel. . 伝送線路を構成する2本の線路パターンは、特性アドミタンスと電気長をそれぞれ同じ値とすると共に、メアンダ状に配置されたことを特徴とする請求項5記載のブランチラインカプラ。   6. The branch line coupler according to claim 5, wherein the two line patterns constituting the transmission line have the same value of characteristic admittance and electrical length, and are arranged in a meander shape. 伝送線路を構成する2本の線路パターンは、特性アドミタンスを同じ値とし、電気長を互いに異なる値とすると共に、少なくとも一方がメアンダ状に配置されたことを特徴とする請求項5記載のブランチラインカプラ。   6. The branch line according to claim 5, wherein the two line patterns constituting the transmission line have the same value of characteristic admittance, different values of electrical length, and at least one of them arranged in a meander shape. Coupler. 伝送線路を構成する2本の線路パターンのそれぞれの中心間を別の線路パターンで接続したことを特徴とする請求項6または請求項7記載のブランチラインカプラ。   8. The branch line coupler according to claim 6, wherein the center of each of the two line patterns constituting the transmission line is connected by another line pattern. 2本の伝送線路とアイソレーション抵抗で構成されるウィルキンソン分配回路において、前記2本の伝送線路のそれぞれを、少なくとも2本の線路パターンを並列に接続した伝送線路にしたことを特徴とするウィルキンソン分配回路。   A Wilkinson distribution circuit comprising two transmission lines and an isolation resistor, wherein each of the two transmission lines is a transmission line in which at least two line patterns are connected in parallel. circuit. 伝送線路を構成する2本の線路パターンは、特性アドミタンスと電気長をそれぞれ同じ値とすると共に、メアンダ状に配置されたことを特徴とする請求項9記載のウィルキンソン分配回路。   The Wilkinson distribution circuit according to claim 9, wherein the two line patterns constituting the transmission line have the same value of characteristic admittance and electrical length, and are arranged in a meander shape. 伝送線路を構成する2本の線路パターンは、特性アドミタンスを同じ値とし、電気長を互いに異なる値とすると共に、少なくとも一方がメアンダ状に配置されたことを特徴とする請求項9記載のウィルキンソン分配回路。   10. The Wilkinson distribution according to claim 9, wherein the two line patterns constituting the transmission line have the same value of characteristic admittance, different values of electrical length, and at least one of them arranged in a meander shape. circuit. 伝送線路を構成する2本の線路パターンのそれぞれの中心間を別の線路パターンで接続したことを特徴とする請求項10または請求項11記載のウィルキンソン分配回路。   12. The Wilkinson distribution circuit according to claim 10, wherein the centers of the two line patterns constituting the transmission line are connected by different line patterns.
JP2008167550A 2008-06-26 2008-06-26 Branch line coupler and Wilkinson distribution circuit Active JP5089502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008167550A JP5089502B2 (en) 2008-06-26 2008-06-26 Branch line coupler and Wilkinson distribution circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008167550A JP5089502B2 (en) 2008-06-26 2008-06-26 Branch line coupler and Wilkinson distribution circuit

Publications (2)

Publication Number Publication Date
JP2010011043A true JP2010011043A (en) 2010-01-14
JP5089502B2 JP5089502B2 (en) 2012-12-05

Family

ID=41591004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008167550A Active JP5089502B2 (en) 2008-06-26 2008-06-26 Branch line coupler and Wilkinson distribution circuit

Country Status (1)

Country Link
JP (1) JP5089502B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011172072A (en) * 2010-02-19 2011-09-01 Fujitsu Ltd Transmission line, impedance transformer, integrated circuit mounting device, and communication device module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101896188B1 (en) 2017-08-23 2018-09-07 영남대학교 산학협력단 Circulator using asymmetric directional coupler

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132154A (en) * 1978-04-06 1979-10-13 Hitachi Cable Ltd Directional coupler
JPS5623002A (en) * 1979-08-03 1981-03-04 Nippon Telegr & Teleph Corp <Ntt> Microwave strip line
JPS59190701A (en) * 1983-04-14 1984-10-29 Fujitsu Ltd Adjusting device for transmission phase
JPS60106214A (en) * 1983-11-15 1985-06-11 Oki Electric Ind Co Ltd Power amplifier circuit
JPS6422101A (en) * 1987-06-22 1989-01-25 Ribieeru Rutsuku Microwave transmission line
JPH0766609A (en) * 1993-08-25 1995-03-10 Nec Corp Impedance matching circuit
JPH0794914A (en) * 1993-09-22 1995-04-07 Murata Mfg Co Ltd Strip line, transmission line, resonator and filter using same
JPH10135712A (en) * 1996-10-30 1998-05-22 Murata Mfg Co Ltd Transmission line
JP2000059113A (en) * 1998-08-04 2000-02-25 Murata Mfg Co Ltd Transmission line and transmission line resonator
JP2001308608A (en) * 2000-02-16 2001-11-02 Murata Mfg Co Ltd High frequency circuit device and communication equipment
JP2002151917A (en) * 2000-08-29 2002-05-24 Toshiba Corp Wiring board and electronic equipment
JP2004014834A (en) * 2002-06-07 2004-01-15 Mitsubishi Electric Corp Microwave circuit having printed resistor
JP2006352347A (en) * 2005-06-14 2006-12-28 Nec Corp High-frequency transmission line
JP2006351647A (en) * 2005-06-14 2006-12-28 Hitachi Ltd Wiring board
JP2008022235A (en) * 2006-07-12 2008-01-31 Mitsubishi Electric Corp Microwave power amplifier
JP2008048445A (en) * 2007-09-21 2008-02-28 Mitsubishi Electric Corp Transmission line substrate and semiconductor package

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132154A (en) * 1978-04-06 1979-10-13 Hitachi Cable Ltd Directional coupler
JPS5623002A (en) * 1979-08-03 1981-03-04 Nippon Telegr & Teleph Corp <Ntt> Microwave strip line
JPS59190701A (en) * 1983-04-14 1984-10-29 Fujitsu Ltd Adjusting device for transmission phase
JPS60106214A (en) * 1983-11-15 1985-06-11 Oki Electric Ind Co Ltd Power amplifier circuit
JPS6422101A (en) * 1987-06-22 1989-01-25 Ribieeru Rutsuku Microwave transmission line
JPH0766609A (en) * 1993-08-25 1995-03-10 Nec Corp Impedance matching circuit
JPH0794914A (en) * 1993-09-22 1995-04-07 Murata Mfg Co Ltd Strip line, transmission line, resonator and filter using same
JPH10135712A (en) * 1996-10-30 1998-05-22 Murata Mfg Co Ltd Transmission line
JP2000059113A (en) * 1998-08-04 2000-02-25 Murata Mfg Co Ltd Transmission line and transmission line resonator
JP2001308608A (en) * 2000-02-16 2001-11-02 Murata Mfg Co Ltd High frequency circuit device and communication equipment
JP2002151917A (en) * 2000-08-29 2002-05-24 Toshiba Corp Wiring board and electronic equipment
JP2004014834A (en) * 2002-06-07 2004-01-15 Mitsubishi Electric Corp Microwave circuit having printed resistor
JP2006352347A (en) * 2005-06-14 2006-12-28 Nec Corp High-frequency transmission line
JP2006351647A (en) * 2005-06-14 2006-12-28 Hitachi Ltd Wiring board
JP2008022235A (en) * 2006-07-12 2008-01-31 Mitsubishi Electric Corp Microwave power amplifier
JP2008048445A (en) * 2007-09-21 2008-02-28 Mitsubishi Electric Corp Transmission line substrate and semiconductor package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011172072A (en) * 2010-02-19 2011-09-01 Fujitsu Ltd Transmission line, impedance transformer, integrated circuit mounting device, and communication device module
US8816793B2 (en) 2010-02-19 2014-08-26 Fujitsu Limited Transmission line, impedance transformer, integrated circuit mounted device, and communication device module

Also Published As

Publication number Publication date
JP5089502B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
Sun et al. A compact branch-line coupler using discontinuous microstrip lines
KR100883529B1 (en) Power divider and power combiner using dual band - composite right / left handed transmission line
JP5153866B2 (en) Power distributor
WO2002003494A1 (en) Directional coupler and directional coupling method
EP3624257B1 (en) Power divider/combiner
CN108011168B (en) Novel Wilkinson power divider capable of terminating complex impedance
JP3981104B2 (en) Filter circuit and wireless communication apparatus using the same
WO1989007369A1 (en) Three-way power splitter using directional couplers
JP5089502B2 (en) Branch line coupler and Wilkinson distribution circuit
CN103779640A (en) Micro-strip dual-passband filter
KR101870385B1 (en) Asymmetric Power Divider
CN108258376A (en) The design method of high-isolation microwave not decile power splitter
Taravati et al. An efficient method of designing dual‐and wide‐band power dividers with arbitrary power division
CN112886175B (en) Lumped element unequal power divider and design method
Yeung A compact directional coupler with tunable coupling ratio using coupled-line sections
JP7253722B2 (en) Four-phase power divider and electronics
JP5478102B2 (en) High frequency cutoff circuit
KR100533907B1 (en) A Transmission-Line miniaturizing λ/4 Transmission-Line
Letavin et al. Usage of lowpass filters for miniaturization of microstrip branch-line hybrid couplers
JP4602240B2 (en) Short-circuit means, tip short-circuit stub including short-circuit means, resonator, and high-frequency filter
Chen et al. Design of a microstrip out-of-phase power divider using shorted-coupled-line transformer
Chi et al. Novel dual-band and arbitrary output-phase crossover based on two-section couplers
Khalid et al. Design of highly selective ultra-wideband bandpass filter using multiple resonance resonator
Liu et al. Miniaturized Quarter-Wavelength Resonator for Common-Mode Filter Based on Pattern Ground Structure
JP2008054174A (en) 90-degree hybrid circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5089502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250