JP2010010641A - Magnetic sheet and method of manufacturing the same - Google Patents

Magnetic sheet and method of manufacturing the same Download PDF

Info

Publication number
JP2010010641A
JP2010010641A JP2008239883A JP2008239883A JP2010010641A JP 2010010641 A JP2010010641 A JP 2010010641A JP 2008239883 A JP2008239883 A JP 2008239883A JP 2008239883 A JP2008239883 A JP 2008239883A JP 2010010641 A JP2010010641 A JP 2010010641A
Authority
JP
Japan
Prior art keywords
film
composition ratio
magnetic sheet
magnetic
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008239883A
Other languages
Japanese (ja)
Other versions
JP5284736B2 (en
Inventor
Akira Nakabayashi
亮 中林
Hisato Koshiba
寿人 小柴
Takao Mizushima
隆夫 水嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2008239883A priority Critical patent/JP5284736B2/en
Priority to PCT/JP2009/059502 priority patent/WO2009145130A1/en
Publication of JP2010010641A publication Critical patent/JP2010010641A/en
Application granted granted Critical
Publication of JP5284736B2 publication Critical patent/JP5284736B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/138Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/02Amorphous compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/131Amorphous metallic alloys, e.g. glassy metals containing iron or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/132Amorphous metallic alloys, e.g. glassy metals containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/14Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/16Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/187Amorphous compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Details Of Aerials (AREA)
  • Physical Vapour Deposition (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic sheet used for an RFID or for suppressing an electromagnetic wave, the magnetic sheet being configured by sputtering a high-resistance soft magnetic film (Fe-M-O) on a substrate, and to provide a method of manufacturing the same. <P>SOLUTION: A magnetic sheet 4 is interposed in between an RFID tag 2 and a metallic member 3. The magnetic sheet 4 includes A-M-O elements in a resin sheet. The element A represents Fe or Co or their mixture; and the element M is at least either one of Hf, Ti, Zr, V, Nb, Ta, Mo, W, Al, Mg, Zn and Ca. Further, the magnetic sheet 4 is composed by sputtering the high-resistance soft magnetic film constituted by the membrane structure of an amorphous phase containing the compound of the elements M and O, and a fine-crystal phase with an average particle crystal size of ≤30 nm, mainly formed of one or two elements selected from Fe or Co dotted in the amorphous phase. This improves effectively the RFID characteristic and contributes to a thin-film structure. A thermal process is not required for the Fe-M-O film. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、RFIDデバイスや電磁波抑制体に用いられる磁性シート及びその製造方法に関する。   The present invention relates to a magnetic sheet used for an RFID device or an electromagnetic wave suppressor and a method for manufacturing the same.

RFID(Radio Frequency ID)タグの需要は、非接触ICカードの普及や携帯電話等への搭載により拡大している。   The demand for RFID (Radio Frequency ID) tags is increasing due to the spread of non-contact IC cards and their mounting on mobile phones and the like.

前記RFIDタグは、情報を記録するICチップと、金属製のアンテナを備え、リーダライタとの間で無線通信を可能としている。   The RFID tag includes an IC chip for recording information and a metal antenna, and enables wireless communication with a reader / writer.

しかしながら前記RFIDタグの近傍に金属がある場合、前記リードライタからの磁界により前記金属に渦電流が生じ、前記渦電流による反磁界が、無線通信に必要な磁界をキャンセルしてしまう問題があった。
特開平4−48707号公報 特開平6−316748号公報 特開平4−144210号公報 特開平11−186035号公報 特開2004−221522号公報 特開2004−259787号公報 日本金属学会誌57、1301(1993) 日本応用磁気学会誌18、750(1994)
However, when there is a metal in the vicinity of the RFID tag, there is a problem that an eddy current is generated in the metal due to the magnetic field from the reader / writer and the demagnetizing field due to the eddy current cancels the magnetic field necessary for wireless communication. .
JP-A-4-48707 JP-A-6-316748 JP-A-4-144210 Japanese Patent Laid-Open No. 11-186035 JP 2004-221522 A JP 2004-259787 A Journal of the Japan Institute of Metals 57, 1301 (1993) Journal of the Japan Society of Applied Magnetics 18, 750 (1994)

よって上記した問題を解決すべく、磁性シートを、前記金属と、前記RFIDタグとの間に挿入すると、磁性シートが前記リードライタからの磁束をRFIDタグ側に引き寄せて、リードライタのアンテナとRFIDタグのアンテナ間に磁束を貫通させることができ、前記RFIDタグのアンテナにて受信した信号出力の減衰量を小さくできRFID特性の向上を図ることができる。   Therefore, in order to solve the above problem, when a magnetic sheet is inserted between the metal and the RFID tag, the magnetic sheet attracts the magnetic flux from the reader / writer to the RFID tag side, and the antenna of the reader / writer and the RFID Magnetic flux can be passed between the antennas of the tag, the attenuation of the signal output received by the antenna of the RFID tag can be reduced, and the RFID characteristics can be improved.

しかしながら従来では、RFID用磁性シートとして必要な複素比透磁率の実数部μ´及び比抵抗ρを満たした高抵抗軟磁性膜をシート上に物理蒸着法にて成膜(例えば金属蒸着、スパッタ成膜、イオンビームデポジション)してなるRFID用磁性シートは存在しなかった。   Conventionally, however, a high resistance soft magnetic film satisfying the real part μ ′ of complex relative permeability necessary for an RFID magnetic sheet and the specific resistance ρ is formed on the sheet by physical vapor deposition (for example, metal vapor deposition, sputter deposition). There was no RFID magnetic sheet formed by film or ion beam deposition.

上記特許文献1〜6はいずれもRFID用磁性シートとして用いられるものでなく、当然に上記したRFIDの従来課題の認識はなく、従来課題を解決するために磁性スパッタ膜に対する調整は何らなされていない。   None of the above-mentioned patent documents 1 to 6 is used as a magnetic sheet for RFID, and naturally there is no recognition of the conventional problems of RFID described above, and no adjustment is made to the magnetic sputtered film in order to solve the conventional problems. .

また例えば特許文献3にあるように、通常、磁性膜に対して熱処理(アニール)を施さないと良好な軟磁気特性を得ることができず、よって複素比透磁率の実数部μ´を大きくできないため、良好な軟磁気特性を得るには熱処理を必要としたが、樹脂シートの材質が限定されてしまい、あるいは樹脂シートが熱に曝された際の熱変形により寸法精度が低下する問題が生じた。   Also, for example, as disclosed in Patent Document 3, it is usually impossible to obtain good soft magnetic characteristics unless the magnetic film is subjected to heat treatment (annealing), and therefore the real part μ ′ of the complex relative permeability cannot be increased. Therefore, heat treatment is required to obtain good soft magnetic properties, but the material of the resin sheet is limited, or there is a problem that the dimensional accuracy decreases due to thermal deformation when the resin sheet is exposed to heat. It was.

さらに従来では、複素比透磁率の実数部μ´を十分に大きくすることが困難であり、したがってRFID用磁性シートを挿入したことによるRFID特性の向上を効果的に図るには、前記磁性膜の膜厚を厚くする必要があった。あるいは、従来ではバルクのフェライト材を使用したり、軟磁性粉末(例えばFe−Al−Si合金であるセンダスト(登録商標))を樹脂に混合してシート状にしたものをRFID用として用いていたため、さほど大きい複素比透磁率の実数部μ´を得られなくても、RFID用磁性シートとして使用することができた。従来では、磁性粉末を含む樹脂シートの膜厚は、磁性体の濃度を大きくすることができないため大きな体積を必要とし、少なくとも100μm以上あった。しかし、このように膜厚の厚い磁性シートを、RFIDタグと金属との間に挿入すると、RFIDデバイスの薄型化に支障をきたした。   Further, in the past, it has been difficult to sufficiently increase the real part μ ′ of the complex relative permeability. Therefore, in order to effectively improve the RFID characteristics by inserting the RFID magnetic sheet, the magnetic film It was necessary to increase the film thickness. Or, conventionally, a bulk ferrite material is used, or a soft magnetic powder (for example, Sendust (registered trademark), which is an Fe-Al-Si alloy) mixed with a resin to form a sheet is used for RFID. Even if the real part μ ′ having such a large complex relative permeability could not be obtained, it could be used as a magnetic sheet for RFID. Conventionally, the resin sheet containing magnetic powder has a film thickness of at least 100 μm because it requires a large volume because the concentration of the magnetic material cannot be increased. However, inserting such a thick magnetic sheet between the RFID tag and the metal hinders the thickness reduction of the RFID device.

また磁性シートは、携帯電話やパーソナルコンピュータ等のノイズ対策として内蔵される電磁波抑制体として用いることも出来る。   The magnetic sheet can also be used as an electromagnetic wave suppressor built in as a noise countermeasure for a mobile phone or a personal computer.

電磁波抑制特性(ノイズ抑制効果)を向上させるには、100MHz以上の高周波帯域で、電磁波抑制体の複素比透磁率の虚数部μ″を大きくすることが必要であり、また、比抵抗ρも大きくなければならない。   In order to improve the electromagnetic wave suppression characteristics (noise suppression effect), it is necessary to increase the imaginary part μ ″ of the complex relative permeability of the electromagnetic wave suppressor in a high frequency band of 100 MHz or higher, and the specific resistance ρ is also large. There must be.

しかしながら従来では、複素比透磁率の虚数部μ″及び比抵抗ρが大きい高抵抗軟磁性膜をシート上にスパッタ成膜してなる電磁波抑制体は存在しなかった。   However, conventionally, there has been no electromagnetic wave suppressor formed by sputtering a high-resistance soft magnetic film having a large complex relative permeability imaginary part μ ″ and a large specific resistance ρ on a sheet.

そこで本発明は上記従来の課題を解決するためのものであり、特に、基板上に高抵抗軟磁性膜(Fe−M−O)をスパッタ成膜して成るRFID用あるいは電磁波抑制用としての磁性シート及びその製造方法を提供することを目的としている。   Therefore, the present invention is to solve the above-described conventional problems, and in particular, for magnetism for RFID or electromagnetic wave suppression obtained by sputtering a high-resistance soft magnetic film (Fe-MO) on a substrate. It aims at providing a sheet | seat and its manufacturing method.

本発明における磁性シートは、基板上に、A−M−O(ただし元素AはFeまたはCoまたはその混合物を表し、元素Mは、Hf、Ti、Zr、V、Nb、Ta、Mo、W、Al、Mg、Zn、Caのうち少なくともいずれか一種を表す)から成り、元素MとOの化合物を含むアモルファス相と、前記アモルファス相中に点在するFeまたはCoから選ばれる一種または二種を主体とした平均結晶粒径30nm以下の微結晶相との膜構造で形成された磁性膜が物理蒸着法により成膜されてなることを特徴とするものである。   The magnetic sheet in the present invention is formed on a substrate with AMO (where the element A represents Fe or Co or a mixture thereof, and the element M is Hf, Ti, Zr, V, Nb, Ta, Mo, W, An amorphous phase containing a compound of the elements M and O, and one or two selected from Fe or Co interspersed in the amorphous phase. A magnetic film formed of a film structure with a main crystal grain size of 30 nm or less as a main crystal grain is formed by a physical vapor deposition method.

上記により本発明では、RFID用や電磁波抑制用として、優れた軟磁気特性を備える磁性シートを得ることが出来る。   As described above, in the present invention, a magnetic sheet having excellent soft magnetic properties can be obtained for RFID and electromagnetic wave suppression.

本発明では、前記基板は、携帯電話やノートPC等の携帯機器の樹脂製筐体等も含む可撓性の樹脂シートであり、前記磁性膜の膜構造を、熱処理することなく形成できる。これにより、前記樹脂シートを熱に曝すことがなくなり、寸法精度に優れた磁性部材を形成できるとともに、前記樹脂シートの材質の選択性を広げることができる。   In the present invention, the substrate is a flexible resin sheet including a resin casing of a portable device such as a mobile phone or a notebook PC, and the film structure of the magnetic film can be formed without heat treatment. Thereby, the resin sheet is not exposed to heat, a magnetic member having excellent dimensional accuracy can be formed, and the selectivity of the material of the resin sheet can be expanded.

また本発明では、前記磁性膜は、元素AがFeであり、組成式がFeabcから成り、元素Oの組成比cが、6.85〜47at%の範囲内、元素Mの組成比が7.95〜21.38at%の範囲内、残部が元素Feの組成比aであり、a+b+c=100at%の関係を満たすことが好ましい。アモルファス相中にFeを主体とした微結晶相が点在する混相構造で形成できる。 In the present invention, the magnetic film has the element A of Fe, the composition formula is Fe a M b O c , the composition ratio c of the element O is in the range of 6.85 to 47 at%, It is preferable that the composition ratio is in the range of 7.95 to 21.38 at%, the balance is the composition ratio a of the element Fe, and the relationship of a + b + c = 100 at% is satisfied. It can be formed in a mixed phase structure in which microcrystalline phases mainly composed of Fe are scattered in the amorphous phase.

本発明では、元素MはHfであり、元素Oの組成比cが、6.85〜47at%の範囲内、元素Hfの組成比bが11.40〜15.74at%の範囲内、残部が元素Feの組成比aであり、a+b+c=100at%の関係を満たすことが好ましい。   In the present invention, the element M is Hf, the composition ratio c of the element O is in the range of 6.85 to 47 at%, the composition ratio b of the element Hf is in the range of 11.40 to 15.74 at%, and the balance is It is preferable that the composition ratio a of the element Fe satisfies the relationship of a + b + c = 100 at%.

あるいは本発明では、元素MはAlであり、元素Oの組成比cが、6.99〜16.75at%の範囲内、元素Alの組成比bが9.79〜21.38at%の範囲内、残部が元素Feの組成比aであり、a+b+c=100at%の関係を満たすことが好ましい。   Alternatively, in the present invention, the element M is Al, the composition ratio c of the element O is in the range of 699 to 16.75 at%, and the composition ratio b of the element Al is in the range of 9.79 to 21.38 at%. The remainder is the composition ratio a of the element Fe, and preferably satisfies the relationship of a + b + c = 100 at%.

または本発明では、元素MはZrであり、元素Oの組成比cが、8.11〜9.29at%の範囲内、元素Zrの組成比bが7.95〜8.36at%の範囲内、残部が元素Feの組成比aであり、a+b+c=100at%の関係を満たすことが好ましい。   Alternatively, in the present invention, the element M is Zr, the composition ratio c of the element O is in the range of 8.11 to 9.29 at%, and the composition ratio b of the element Zr is in the range of 7.95 to 8.36 at%. The remainder is the composition ratio a of the element Fe, and preferably satisfies the relationship of a + b + c = 100 at%.

前記磁性シートはRFIDデバイスに用いられる。このとき、前記磁性膜の膜厚は、0.5〜15μmの範囲内であることが好ましい。このように本発明では、前記磁性膜の膜厚を15μm以下の薄い膜厚にしてもRFID特性の指標となるRFID用デバイスのアンテナからの受信信号の減衰量を効果的に小さくできるが、前記磁性膜の膜厚を0.5μmより薄くすると前記減衰量が大きくなってしまうため、前記磁性膜の膜厚を0.5〜15μmの範囲に設定している。   The magnetic sheet is used for RFID devices. At this time, the thickness of the magnetic film is preferably in the range of 0.5 to 15 μm. As described above, according to the present invention, the attenuation of the received signal from the antenna of the RFID device, which serves as an index of the RFID characteristics, can be effectively reduced even if the magnetic film is made thinner than 15 μm. If the thickness of the magnetic film is thinner than 0.5 μm, the amount of attenuation increases, so the thickness of the magnetic film is set in the range of 0.5 to 15 μm.

また前記磁性シートを電磁波抑制体に用いることも出来る。
本発明における磁性シートの製造方法は、
基板上に、A−M−O(ただし元素AはFeまたはCoまたはその混合物を表し、元素Mは、Hf、Ti、Zr、V、Nb、Ta、Mo、W、Al、Mg、Zn、Ca、Ce、Yのうち少なくともいずれか一種を表す)から成る磁性膜を物理蒸着法により成膜するとき、不活性ガスとO2ガスとの混合ガスのガス圧を0.5mTorr〜6mTorrの範囲内で調整し、元素MとOの化合物を含むアモルファス相と、前記アモルファス相中に点在するFeまたはCoから選ばれる一種または二種を主体とした平均結晶粒径30nm以下の微結晶相との膜構造を形成することを特徴とするものである。
Moreover, the said magnetic sheet can also be used for an electromagnetic wave suppression body.
The method for producing a magnetic sheet in the present invention is as follows.
On the substrate, A-M-O (where element A represents Fe or Co or a mixture thereof, and element M is Hf, Ti, Zr, V, Nb, Ta, Mo, W, Al, Mg, Zn, Ca) , Ce, and Y) are formed by physical vapor deposition, the gas pressure of the mixed gas of inert gas and O 2 gas is in the range of 0.5 mTorr to 6 mTorr. And an amorphous phase containing a compound of elements M and O, and a microcrystalline phase having an average crystal grain size of 30 nm or less mainly composed of one or two kinds selected from Fe or Co interspersed in the amorphous phase A film structure is formed.

上記のように、ガス圧を調整することで、アモルファス相と微結晶相との膜構造を形成でき、良好な軟磁気特性を得ることが出来る。   As described above, by adjusting the gas pressure, a film structure of an amorphous phase and a microcrystalline phase can be formed, and good soft magnetic characteristics can be obtained.

本発明では、前記磁性膜は、元素AがFeであり、組成式がFeabcから成り、元素Oの組成比cが、6.85〜47at%の範囲内、元素Mの組成比が7.95〜21.38at%の範囲内、残部が元素Feの組成比aであり、a+b+c=100at%の関係を満たす前記磁性膜を成膜することが好ましい。 In the present invention, in the magnetic film, the element A is Fe, the composition formula is Fe a M b O c , the composition ratio c of the element O is in the range of 6.85 to 47 at%, and the composition of the element M It is preferable to form the magnetic film having a ratio in the range of 7.95 to 21.38 at%, the balance being the composition ratio a of the element Fe, and satisfying the relationship of a + b + c = 100 at%.

また本発明では、元素MはHfであり、元素Oの組成比cが、6.85〜47at%の範囲内、元素Hfの組成比bが11.40〜15.74at%の範囲内、残部が元素Feの組成比aであり、a+b+c=100at%の関係を満たす前記磁性膜を成膜することが好ましい。   In the present invention, the element M is Hf, the composition ratio c of the element O is in the range of 6.85 to 47 at%, the composition ratio b of the element Hf is in the range of 11.40 to 15.74 at%, and the balance Is the composition ratio a of the element Fe, and it is preferable to form the magnetic film satisfying the relationship of a + b + c = 100 at%.

あるいは本発明では、元素MはAlであり、元素Oの組成比cが、6.99〜16.75at%の範囲内、元素Alの組成比bが9.79〜21.38at%の範囲内、残部が元素Feの組成比aであり、a+b+c=100at%の関係を満たす前記磁性膜を成膜することが好ましい。   Alternatively, in the present invention, the element M is Al, the composition ratio c of the element O is in the range of 699 to 16.75 at%, and the composition ratio b of the element Al is in the range of 9.79 to 21.38 at%. Further, it is preferable to form the magnetic film satisfying the relationship of a + b + c = 100 at% with the balance being the composition ratio a of the element Fe.

または本発明では、元素MはZrであり、元素Oの組成比cが、8.11〜9.29at%の範囲内、元素Zrの組成比bが7.95〜8.36at%の範囲内、残部が元素Feの組成比aであり、a+b+c=100at%の関係を満たす前記磁性膜を成膜することが好ましい。   Alternatively, in the present invention, the element M is Zr, the composition ratio c of the element O is in the range of 8.11 to 9.29 at%, and the composition ratio b of the element Zr is in the range of 7.95 to 8.36 at%. Further, it is preferable to form the magnetic film satisfying the relationship of a + b + c = 100 at% with the balance being the composition ratio a of the element Fe.

本発明によれば、RFID用あるいは、電磁波抑制用として優れた軟磁気特性を備える磁性シートを得ることができる。   According to the present invention, a magnetic sheet having excellent soft magnetic properties for RFID or electromagnetic wave suppression can be obtained.

また前記磁性膜の膜構造を、熱処理することなく形成できるため、前記磁性膜を支持する樹脂シートを熱に曝すことがなくなり、寸法精度に優れた磁性部材を形成できるとともに、前記樹脂シートの材質の選択性を広げることができる。   Further, since the film structure of the magnetic film can be formed without heat treatment, the resin sheet supporting the magnetic film is not exposed to heat, and a magnetic member having excellent dimensional accuracy can be formed. The selectivity of can be expanded.

また磁性膜を物理蒸着法により成膜するとき、不活性ガスとO2ガスとの混合ガスのガス圧を適正化することで、アモルファス相と微結晶相との膜構造を形成でき、良好な軟磁気特性を得ることが可能である。 In addition, when a magnetic film is formed by physical vapor deposition, it is possible to form a film structure of an amorphous phase and a microcrystalline phase by optimizing the gas pressure of a mixed gas of an inert gas and O 2 gas. Soft magnetic properties can be obtained.

図1は、RFIDデバイス及びリードライタの模式図、図2は本発明の実施形態の磁性シートの斜視図、図3はFe−M−O膜の膜構造の模式図である。   FIG. 1 is a schematic diagram of an RFID device and a reader / writer, FIG. 2 is a perspective view of a magnetic sheet according to an embodiment of the present invention, and FIG. 3 is a schematic diagram of a film structure of an Fe-MO film.

図1に示すようにRFID(Radio Frequency ID)デバイス1は、アンテナ及びICチップを備えるRFIDタグ2と、金属部材3と、前記RFIDタグ2と前記金属部材3との間に挿入された磁性シート4とを有して構成される。   As shown in FIG. 1, an RFID (Radio Frequency ID) device 1 includes an RFID tag 2 having an antenna and an IC chip, a metal member 3, and a magnetic sheet inserted between the RFID tag 2 and the metal member 3. 4.

前記RFIDタグ2は、基板上に前記アンテナ及びICチップが形成された形態である。   The RFID tag 2 has a form in which the antenna and the IC chip are formed on a substrate.

前記金属部材3は例えば筐体の一部を成しており、Al、Ti、Cr等で形成される。前記金属部材3の膜厚T1は、0.05〜0.5mm程度である。   The metal member 3 forms part of a housing, for example, and is made of Al, Ti, Cr, or the like. The metal member 3 has a film thickness T1 of about 0.05 to 0.5 mm.

前記RFIDタグ2と前記金属部材3との間に挿入される磁性シート4は、図2に示すように樹脂シート5上に磁性膜6がスパッタ成膜されたものである。   The magnetic sheet 4 inserted between the RFID tag 2 and the metal member 3 is obtained by sputtering a magnetic film 6 on a resin sheet 5 as shown in FIG.

前記磁性膜6は、A−M−O(ただし元素AはFeまたはCoまたはその混合物を表し、元素Mは、Hf、Ti、Zr、V、Nb、Ta、Mo、W、Al、Mg、Zn、Ca、Ce、Yのうち少なくともいずれか一種を表す)から成る。   The magnetic film 6 is AMO (where the element A represents Fe or Co or a mixture thereof, and the element M is Hf, Ti, Zr, V, Nb, Ta, Mo, W, Al, Mg, Zn). , Ca, Ce, or Y).

ここで、前記磁性膜6は、A−M−O膜の元素AがFeであり、FeaMbOcの組成式からなり、元素Oの組成比cが、6.85〜47at%の範囲内、元素Mの組成比bが7.95〜21.38at%の範囲内、残部が元素Feの組成比aであり、a+b+c=100at%の関係を満たす高抵抗軟磁性膜である。   Here, in the magnetic film 6, the element A of the A-M-O film is Fe and is composed of a composition formula of FeaMbOc, and the composition ratio c of the element O is in the range of 6.85 to 47 at%. Is a high resistance soft magnetic film satisfying the relationship of a + b + c = 100 at% with the composition ratio b of 7.95 to 21.38 at% remaining, the balance being the element Fe composition ratio a.

また本実施形態では、元素MはHfであり、元素Oの組成比cが、6.85〜47at%の範囲内、元素Hfの組成比bが11.40〜15.74at%の範囲内、残部が元素Feの組成比aであり、a+b+c=100at%の関係を満たすことが好ましい。これにより、複素比透磁率の実数部μ´を50以上、比抵抗ρを200(μΩ・cm)以上に設定できる。また元素Oの組成比cを、27.08〜47at%、元素Hfの組成比bを11.40〜15.74at%とすることがより好ましい。これにより、複素比透磁率の実数部μ´を400以上、比抵抗ρを300(μΩ・cm)以上に設定できる。   In this embodiment, the element M is Hf, the composition ratio c of the element O is in the range of 6.85 to 47 at%, the composition ratio b of the element Hf is in the range of 11.40 to 15.74 at%, The balance is the composition ratio a of the element Fe, and preferably satisfies the relationship of a + b + c = 100 at%. Thereby, the real part μ ′ of the complex relative permeability can be set to 50 or more and the specific resistance ρ can be set to 200 (μΩ · cm) or more. The composition ratio c of the element O is more preferably 27.08 to 47 at%, and the composition ratio b of the element Hf is more preferably 11.40 to 15.74 at%. Thereby, the real part μ ′ of the complex relative permeability can be set to 400 or more and the specific resistance ρ can be set to 300 (μΩ · cm) or more.

あるいは本実施形態では、元素MはAlであり、元素Oの組成比cが、6.99〜16.75at%の範囲内、元素Alの組成比bが9.79〜21.38at%の範囲内、残部が元素Feの組成比aであり、a+b+c=100at%の関係を満たすことが好ましい。これにより、複素比透磁率の実数部μ´を50以上、比抵抗ρを200(μΩ・cm)以上に設定できる。また本実施形態では、元素Oの組成比cを、12.20〜16.75at%、Hfの組成比bを12.68〜15.17at%とすることがより好ましい。これにより、複素比透磁率の実数部μ´を300以上、比抵抗ρを300(μΩ・cm)以上に設定できる。   Alternatively, in this embodiment, the element M is Al, the composition ratio c of the element O is in the range of 699 to 16.75 at%, and the composition ratio b of the element Al is in the range of 9.79 to 21.38 at%. Among them, the balance is the composition ratio a of the element Fe, and it is preferable that the relationship of a + b + c = 100 at% is satisfied. Thereby, the real part μ ′ of the complex relative permeability can be set to 50 or more and the specific resistance ρ can be set to 200 (μΩ · cm) or more. In the present embodiment, the composition ratio c of the element O is more preferably 12.20 to 16.75 at%, and the composition ratio b of Hf is preferably 12.68 to 15.17 at%. Thereby, the real part μ ′ of the complex relative permeability can be set to 300 or more and the specific resistance ρ can be set to 300 (μΩ · cm) or more.

または本実施形態では、元素MはZrであり、元素Oの組成比cが、8.11〜9.29at%の範囲内、Zrの組成比bが7.95〜8.36at%の範囲内、残部が元素Feの組成比aであり、a+b+c=100at%の関係を満たすことが好ましい。これにより、複素比透磁率の実数部μ´を100以上、比抵抗ρを250(μΩ・cm)以上に設定できる。また本実施形態では、元素Oの組成比cを、8.11〜9.27at%、Hfの組成比bを7.95〜8.36at%とすることがより好ましい。これにより、複素比透磁率の実数部μ´を800以上、比抵抗ρを250(μΩ・cm)以上に設定できる。   Alternatively, in the present embodiment, the element M is Zr, the composition ratio c of the element O is in the range of 8.11 to 9.29 at%, and the composition ratio b of the Zr is in the range of 7.95 to 8.36 at%. The remainder is the composition ratio a of the element Fe, and preferably satisfies the relationship of a + b + c = 100 at%. Thereby, the real part μ ′ of the complex relative permeability can be set to 100 or more and the specific resistance ρ can be set to 250 (μΩ · cm) or more. In the present embodiment, it is more preferable that the composition ratio c of the element O is 8.11 to 9.27 at%, and the composition ratio b of Hf is 7.95 to 8.36 at%. Thereby, the real part μ ′ of the complex relative permeability can be set to 800 or more and the specific resistance ρ can be set to 250 (μΩ · cm) or more.

また、前記磁性膜6は、金属部材3ではなく、携帯電話、ノートPC等の樹脂製の筐体に直接成膜しても良い。   The magnetic film 6 may be formed directly on a resin casing such as a mobile phone or a notebook PC instead of the metal member 3.

以降本発明の磁性膜を、Fe−M−O膜6という表記で代表させた。
Fe−M−O膜6は、図2に示すように前記樹脂シート5上の全面にスパッタ成膜される形態のほかに、部分的に、例えば、前記樹脂シート5の縁部を残して、前記樹脂シート5の中央部分のみに形成されてもよい。ただし、図1のように磁性シート4とRFIDタグ2とを重ねたときに、前記Fe−M−O膜6が前記RFIDタグ2上の全面を完全に覆う程度の大きさで形成されることが好適である。また、樹脂シート5は携帯電話やノートPC等の携帯機器の樹脂筐体であっても良い。
Hereinafter, the magnetic film of the present invention is represented by the notation Fe-MO film 6.
As shown in FIG. 2, the Fe—M—O film 6 is partially sputtered on the entire surface of the resin sheet 5, for example, partially leaving the edge of the resin sheet 5, It may be formed only in the central portion of the resin sheet 5. However, when the magnetic sheet 4 and the RFID tag 2 are overlapped as shown in FIG. 1, the Fe-MO film 6 is formed to have a size that completely covers the entire surface of the RFID tag 2. Is preferred. Further, the resin sheet 5 may be a resin casing of a mobile device such as a mobile phone or a notebook PC.

前記Fe−M−O膜6は、スパッタ成膜中、あるいはスパッタ成膜後に熱処理を施すことなく形成されたものであり、このように非熱処理においても、図3に示すように、元素MとOの化合物を含むアモルファス相7と、前記アモルファス相7中に点在するFeを主体とした微結晶相8との混相構造で形成されている。前記微結晶相8の平均粒径を30nm以下にでき、また前記微結晶相8の結晶構造をbcc構造にできる。前記微結晶相8は、bcc構造に限定されずhcp構造、fcc構造でもよい。前記微結晶相8は、元素AにCo、あるいは元素AにFe及びCoを選択したときは、Co、あるいは、Fe及びCoを主体とした平均結晶粒径30nm以下の微結晶相である。   The Fe—M—O film 6 is formed without being subjected to heat treatment during the sputter deposition or after the sputter deposition. As shown in FIG. It is formed with a mixed phase structure of an amorphous phase 7 containing an O compound and a microcrystalline phase 8 mainly composed of Fe interspersed in the amorphous phase 7. The average grain size of the microcrystalline phase 8 can be 30 nm or less, and the crystal structure of the microcrystalline phase 8 can be a bcc structure. The microcrystalline phase 8 is not limited to the bcc structure, and may have an hcp structure or an fcc structure. The microcrystalline phase 8 is a microcrystalline phase having an average crystal grain size of 30 nm or less mainly composed of Co or Fe and Co when Co is selected as the element A or Fe and Co are selected as the element A.

前記アモルファス相7は、元素Mの酸化物を多量に含み、そのほか、FeOやFe23も含むと考えられる。元素MがHfの場合、前記アモルファス相7にはHfO2が多量に含まれていると考えられる。 It is considered that the amorphous phase 7 contains a large amount of an oxide of the element M and also contains FeO and Fe 2 O 3 . When the element M is Hf, it is considered that the amorphous phase 7 contains a large amount of HfO 2 .

前記Fe−M−O膜6における上記の膜構造は、ナノグラニュラー合金とは異なる。ナノグラニュラーは、強磁性微粒子と強磁性微粒子間に絶縁物等の粒界物質が介在する構成である。一方、前記Fe−M−O膜6におけるアモルファス相7は、微結晶相8間の粒界だけに存在しない。上記したように前記Fe−M−O膜6は、アモルファス相7中に微結晶相8が点在した混相構造となっている。後述するX線回折スペクトルでもアモルファス相7の存在とはっきりと見て取れる。   The film structure of the Fe-MO film 6 is different from that of the nano granular alloy. The nano-granular has a configuration in which a grain boundary material such as an insulator is interposed between the ferromagnetic fine particles. On the other hand, the amorphous phase 7 in the Fe-MO film 6 does not exist only at the grain boundaries between the microcrystalline phases 8. As described above, the Fe-MO film 6 has a mixed phase structure in which the microcrystalline phase 8 is scattered in the amorphous phase 7. Even in the X-ray diffraction spectrum described later, it can be clearly seen that the amorphous phase 7 exists.

前記Fe−M−O膜6中に含まれるアモルファス相7は体積比率で20〜80%程度であることが好適である。   The amorphous phase 7 contained in the Fe—M—O film 6 is preferably about 20 to 80% by volume ratio.

上記したFe−M−O膜6は、軟磁気特性に優れる。例えば、複素比透磁率の実数部μ´を50以上、好ましくは300以上、より好ましくは400以上にでき、また比抵抗ρを200(μΩ・cm)以上、好ましくは300(μΩ・cm)以上に設定できる。   The Fe-MO film 6 described above is excellent in soft magnetic characteristics. For example, the real part μ ′ of the complex relative magnetic permeability can be 50 or more, preferably 300 or more, more preferably 400 or more, and the specific resistance ρ is 200 (μΩ · cm) or more, preferably 300 (μΩ · cm) or more. Can be set.

本実施形態では、前記Fe−M−O膜6の膜厚T2(図2参照)を従来における樹脂に磁性粉末を分散させたRFID用磁性シートよりも薄い厚さで形成できる。具体的には、磁性体を樹脂に分散させる必要がなく、前記Fe−M−O膜6のみで形成できるため膜厚T2を100μmより薄い膜厚で形成できる。また上記のように前記Fe−M−O膜6の複素比透磁率の実数部μ´を50以上、好ましくは300以上や400以上に高くでき、よって後述する実験で示すように、前記Fe−M−O膜6の膜厚T2を100μmより十分に薄くしても、受信信号の減衰量を左右する複素比透磁率の実数部μ´×磁性膜の膜厚tを比較的大きくできる。本実施形態では、Fe−M−O膜6の膜厚T2を、0.5〜15μmの薄い膜厚に設定しても、前記減衰量を効果的に小さくすることが可能である。好ましくは膜厚T2を10μm以上とする。   In the present embodiment, the film thickness T2 (see FIG. 2) of the Fe-MO film 6 can be formed thinner than the conventional magnetic sheet for RFID in which magnetic powder is dispersed in a resin. Specifically, it is not necessary to disperse the magnetic material in the resin, and the film can be formed only with the Fe-MO film 6, so that the film thickness T2 can be formed with a film thickness smaller than 100 μm. Further, as described above, the real part μ ′ of the complex relative magnetic permeability of the Fe—M—O film 6 can be increased to 50 or more, preferably 300 or more, or 400 or more. Therefore, as shown in the experiment described later, the Fe— Even if the film thickness T2 of the MO film 6 is sufficiently smaller than 100 μm, the real part μ ′ of the complex relative permeability that affects the attenuation of the received signal × the film thickness t of the magnetic film can be made relatively large. In the present embodiment, even if the film thickness T2 of the Fe—MO film 6 is set to a thin film thickness of 0.5 to 15 μm, the attenuation amount can be effectively reduced. Preferably, the film thickness T2 is 10 μm or more.

本実施形態では前記Fe−M−O膜6を支持する基板として可撓性の樹脂シート5を用いている。これにより前記磁性シート4を前記RFIDタグ2と金属部材3との間に密着させることができる。また、前記磁性シート4を湾曲させるような場合でも適切に前記磁性シート4を湾曲でき、また前記Fe−M−O膜6はアモルファス相7を備えるため、前記Fe−M−O膜6を樹脂シート5とともに平面状から変形させたときでも前記Fe−M−O膜6は割れ等の損傷を受けにくい。なお前記基板としてリジッドなガラス基板等を用いることもできる。   In the present embodiment, a flexible resin sheet 5 is used as a substrate for supporting the Fe-MO film 6. Thereby, the magnetic sheet 4 can be brought into close contact between the RFID tag 2 and the metal member 3. Further, even when the magnetic sheet 4 is bent, the magnetic sheet 4 can be bent appropriately, and the Fe-MO film 6 includes an amorphous phase 7. Therefore, the Fe-MO film 6 is made of resin. Even when the sheet 5 is deformed from a flat shape, the Fe-MO film 6 is not easily damaged such as cracking. A rigid glass substrate or the like can also be used as the substrate.

また上記したように前記Fe−M−O膜6に対して熱処理を施さないため、前記Fe−M−O膜6を支持する樹脂シート5の材質を特に限定しなくてもよい。すなわち前記樹脂シート5の材質の選択性を広げることができる。また樹脂シート5に対する熱的影響がないため磁性シート4の寸法安定性を従来よりも高精度に得ることが可能である。前記樹脂シート5には、熱可塑性樹脂を使用でき、その中でも耐熱性に優れたPPS(ポリフェニレンスルフィド)の使用が好適であるものの、PET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)、アミラード(全芳香族系ポリアミド)、ポリイミド等の使用も可能である。   Further, as described above, since the heat treatment is not performed on the Fe-MO film 6, the material of the resin sheet 5 that supports the Fe-MO film 6 may not be particularly limited. That is, the selectivity of the resin sheet 5 can be increased. Further, since there is no thermal influence on the resin sheet 5, it is possible to obtain the dimensional stability of the magnetic sheet 4 with higher accuracy than before. A thermoplastic resin can be used for the resin sheet 5, and among them, PPS (polyphenylene sulfide) having excellent heat resistance is suitable, but PET (polyethylene terephthalate), PEN (polyethylene naphthalate), amirado (all Aromatic polyamide), polyimide and the like can also be used.

前記樹脂シート5の膜厚T3は、0.01〜0.05mm程度であることが好適である。   The film thickness T3 of the resin sheet 5 is preferably about 0.01 to 0.05 mm.

本実施形態では、図1に示すように、Fe−M−O膜6を樹脂シート5上にスパッタ成膜した磁性シート4を前記RFIDタグ2と前記金属部材3との間に挿入することで、リードライタ10からの磁束Hが前記Fe−M−O膜6内を通り、前記RFIDデバイス1とリードライタ10との間で還流磁束が形成される。この結果、前記RFIDタグ2のアンテナにて受信した信号出力の減衰量を小さくでき、例えば13.56MHzでのRFID特性の向上を効果的に図ることができる。また、本実施形態では、前記RFIDデバイス1とリードライタ10間の通信距離L1の範囲を広げることができ、具体的には前記通信距離L1を10〜50mmの範囲に設定しても適切に無線通信を行うことが可能である。   In the present embodiment, as shown in FIG. 1, a magnetic sheet 4 in which an Fe—M—O film 6 is sputter-deposited on a resin sheet 5 is inserted between the RFID tag 2 and the metal member 3. Then, the magnetic flux H from the read / dryer 10 passes through the Fe-MO film 6, and a reflux magnetic flux is formed between the RFID device 1 and the read / dryer 10. As a result, the amount of attenuation of the signal output received by the antenna of the RFID tag 2 can be reduced, and for example, the RFID characteristics at 13.56 MHz can be effectively improved. Further, in the present embodiment, the range of the communication distance L1 between the RFID device 1 and the reader / writer 10 can be expanded. Specifically, even if the communication distance L1 is set to a range of 10 to 50 mm, wireless communication is appropriately performed. Communication is possible.

なお前記磁性シート4を前記金属部材3とRFIDタグ2との間に挿入するとき、磁性シート5及びFe−M−O膜6が金属部材3あるいはRFIDタグ2のどちら側に向くか特に限定しないが、例えば、前記Fe−M−O膜6を接着層(図示しない)を介して前記金属部材3に接触させ、前記磁性シート5を接着層(図示しない)を介して前記RFIDタグ2に接触させる。   When the magnetic sheet 4 is inserted between the metal member 3 and the RFID tag 2, there is no particular limitation as to which side the magnetic sheet 5 and the Fe-MO film 6 face the metal member 3 or the RFID tag 2. For example, the Fe-MO film 6 is brought into contact with the metal member 3 through an adhesive layer (not shown), and the magnetic sheet 5 is brought into contact with the RFID tag 2 through an adhesive layer (not shown). Let

本実施形態では上記したように、Fe−M−O膜6に対して熱処理を施さなくとも、図3に示すアモルファス相7と、前記アモルファス相7中に点在する微結晶相8との混相構造を得ることができ、軟磁気特性に優れ、RFID用磁性シートとして十分に大きい複素比透磁率の実数部μ´(具体的には50以上、好ましくは300以上や400以上)を得ることができ、さらに高い比抵抗ρ(具体的には200(μΩcm)以上、好ましくは300(μΩcm)以上)を得ることが可能になる。   In the present embodiment, as described above, a mixed phase of the amorphous phase 7 shown in FIG. 3 and the microcrystalline phases 8 interspersed in the amorphous phase 7 without heat treatment of the Fe-MO film 6. A structure can be obtained, and a real part μ ′ (specifically, 50 or more, preferably 300 or more, 400 or more) having a complex relative permeability that is excellent in soft magnetic properties and sufficiently large as a magnetic sheet for RFID can be obtained. It is possible to obtain a higher specific resistance ρ (specifically, 200 (μΩcm) or more, preferably 300 (μΩcm) or more).

また本実施形態では、熱処理がなくとも、より適切に、アモルファス相7と、前記アモルファス相7中に点在する微結晶相8との膜構造を得ることができ、さらにより効果的に、50以上、好ましくは300以上や400以上の複素比透磁率の実数部μ´及び、200(μΩcm)以上、好ましくは300(μΩcm)以上の比抵抗ρを得ることができる。   Further, in the present embodiment, a film structure of the amorphous phase 7 and the microcrystalline phases 8 scattered in the amorphous phase 7 can be obtained more appropriately without heat treatment. As described above, it is possible to obtain a real part μ ′ of complex relative permeability of 300 or more, preferably 400 or more, and a specific resistance ρ of 200 (μΩcm) or more, preferably 300 (μΩcm) or more.

上記したように、本実施形態では、元素MとしてHf、Al、Zr等を使用できる。このとき、元素MがZrであると、高い複素比透磁率の実数部μ´、低い複素比透磁率の虚数部μ″、及び低い膜応力を得られることが後述する実験によりわかった。後述する実験によれば、複素比透磁率の実数部μ´を800程度、、複素比透磁率の虚数部μ″を50程度、及び膜応力を80(MPa)程度に出来る。したがって、優れた軟磁気特性を備えるとともに、膜応力が低いFeZrOから成る磁性膜6を、筐体カバーに直接成膜したり、ガラスエポキシ基板や樹脂シート等の軟らかい材質に成膜したときに適切に磁性膜の成膜を行うことが出来る。特に、柔らかい基材の片側だけに磁性膜を成膜しても膜応力が低いため磁性シート4がロール状にならず、磁性シート4の取り扱いが楽になるし、また材料費も安く済む。材料費が安く済む理由は、上記したように、基材の片側にだけ磁性膜を成膜すればよいことと(膜応力が大きい場合、基材の両側に磁性膜を成膜して基材に作用する膜応力を小さくする方法がある)、ZrはHf等に比べて十分に安いためである。   As described above, in this embodiment, Hf, Al, Zr, or the like can be used as the element M. At this time, when the element M is Zr, it was found by experiments described later that a real part μ ′ having a high complex relative permeability, an imaginary part μ ″ having a low complex relative permeability, and a low film stress can be obtained. According to this experiment, the real part μ ′ of the complex relative permeability can be about 800, the imaginary part μ ″ of the complex relative permeability can be about 50, and the film stress can be about 80 (MPa). Therefore, it is suitable when the magnetic film 6 made of FeZrO having excellent soft magnetic characteristics and low film stress is directly formed on the housing cover or on a soft material such as a glass epoxy substrate or a resin sheet. In addition, a magnetic film can be formed. In particular, even if a magnetic film is formed only on one side of a soft substrate, the magnetic sheet 4 does not become a roll because the film stress is low, the handling of the magnetic sheet 4 is easy, and the material cost is low. The reason why the material cost can be reduced is that the magnetic film only needs to be formed on one side of the substrate as described above (if the film stress is large, the magnetic film is formed on both sides of the substrate This is because Zr is sufficiently cheaper than Hf or the like.

また図2に示す磁性シート4は、電磁波抑制用として用いることが出来る。電磁波抑制用としての磁性シート4は、使用用途や使用範囲によって変わるが、例えば横寸法L1は、10mm以上、縦寸法L2は、10mm以上の範囲内で形成される。   Moreover, the magnetic sheet 4 shown in FIG. 2 can be used for electromagnetic wave suppression. The magnetic sheet 4 for suppressing electromagnetic waves varies depending on the usage and range of use. For example, the horizontal dimension L1 is formed within a range of 10 mm or more, and the vertical dimension L2 is formed within a range of 10 mm or more.

樹脂シート5上に成膜されたFe−M−O膜6の組成比及び膜構造については上記で述べたとおりである。   The composition ratio and film structure of the Fe—M—O film 6 formed on the resin sheet 5 are as described above.

アモルファス相7と微結晶相8との混相構造を備えるFe−M−O膜6を樹脂シート5上にスパッタ成膜した電磁波抑制用の磁性シート4は、100MHz以上の周波数帯域で前記Fe−M−O膜6の複素比透磁率の虚数部μ″を80以上にでき、また前記Fe−M−O膜6の比抵抗ρを300(μΩ・cm)以上にでき、薄いシート厚にて優れた電波吸収特性を得ることが可能になる。   The magnetic sheet 4 for suppressing electromagnetic waves, in which the Fe-M-O film 6 having a mixed phase structure of the amorphous phase 7 and the microcrystalline phase 8 is formed on the resin sheet 5 by sputtering, has the above-described Fe-M in a frequency band of 100 MHz or more. The imaginary part μ ″ of the complex relative permeability of the −O film 6 can be made 80 or more, and the specific resistance ρ of the Fe—MO film 6 can be made 300 (μΩ · cm) or more, and it is excellent in a thin sheet thickness. It is possible to obtain the radio wave absorption characteristics.

また本実施形態では、前記Fe−M−O膜6の膜厚T2(図2参照)を、0.5μm程度に薄く形成しても、100MHz以上の周波数帯域で前記複素比透磁率の虚数部μ″を80以上に大きくできる。   In the present embodiment, even if the film thickness T2 (see FIG. 2) of the Fe-MO film 6 is thinned to about 0.5 μm, the imaginary part of the complex relative permeability in a frequency band of 100 MHz or more. μ ″ can be increased to 80 or more.

また前記樹脂シート5の膜厚T3(図2参照)は、10〜50μm程度であり、したがって、前記磁性シート4のトータル厚T1を10.5〜65μmの範囲内に設定できる。このように電磁波抑制用としての磁性シート4のトータル厚T1を薄くできるため、例えば携帯電話のような小型機器の筐体内部の壁面に前記磁性シート4を貼着しても部品の設置の邪魔にならない。   The film thickness T3 (see FIG. 2) of the resin sheet 5 is about 10 to 50 μm, and therefore the total thickness T1 of the magnetic sheet 4 can be set within the range of 10.5 to 65 μm. As described above, since the total thickness T1 of the magnetic sheet 4 for suppressing electromagnetic waves can be reduced, for example, even if the magnetic sheet 4 is adhered to the wall surface inside the housing of a small device such as a mobile phone, the installation of the components is obstructed. do not become.

本実施形態では前記Fe−M−O膜6を支持する基板として可撓性の樹脂シート5を用いている。よって例えば前記磁性シート4を、凹凸のある平面上や曲面上にも適切に貼着できる。また、前記Fe−M−O膜6はアモルファス相7を備えるため、前記Fe−M−O膜6を樹脂シート5とともに平面状から変形させたときでも前記Fe−M−O膜6は割れ等の損傷を受けにくい。   In the present embodiment, a flexible resin sheet 5 is used as a substrate for supporting the Fe-MO film 6. Therefore, for example, the magnetic sheet 4 can be appropriately attached on a flat surface or a curved surface with unevenness. Further, since the Fe-MO film 6 includes the amorphous phase 7, even when the Fe-MO film 6 is deformed from the planar shape together with the resin sheet 5, the Fe-MO film 6 is cracked or the like. Less susceptible to damage.

図2に示す磁性シート4は、物理蒸着法により樹脂シート5上に成膜できる。本実施形態では、Fe−M−O膜6を樹脂シート5上に成膜するとき、不活性ガス(例えばAr)とO2ガスとの混合ガスのガス圧を0.5mTorr〜6mTorrの範囲内で調整する。これにより、元素MとOの化合物を含むアモルファス相と、前記アモルファス相中に点在するFeまたはCoから選ばれる一種または二種を主体とした平均結晶粒径30nm以下の微結晶相との膜構造を形成することが可能である。後述する実験に示すように、ガス圧を高くしすぎると、X線回折スペクトルにFeのbcc相に対応するシャープで明瞭なピークが現れず、ブロードになり、全体的に膜構造がアモルファス化することがわかった。そして、複素比透磁率の実数部μ´及び虚数部μ″が共に低くなることがわかった。 The magnetic sheet 4 shown in FIG. 2 can be formed on the resin sheet 5 by physical vapor deposition. In the present embodiment, when the Fe—M—O film 6 is formed on the resin sheet 5, the gas pressure of the mixed gas of an inert gas (for example, Ar) and O 2 gas is in the range of 0.5 mTorr to 6 mTorr. Adjust with. Thus, a film comprising an amorphous phase containing a compound of elements M and O and a microcrystalline phase having an average crystal grain size of 30 nm or less mainly composed of one or two kinds selected from Fe or Co scattered in the amorphous phase. It is possible to form a structure. As shown in the experiment described later, when the gas pressure is increased too much, a sharp and clear peak corresponding to the bcc phase of Fe does not appear in the X-ray diffraction spectrum, and it becomes broad, and the film structure becomes amorphous as a whole. I understood it. It was also found that both the real part μ ′ and the imaginary part μ ″ of the complex relative permeability are lowered.

ガス圧を0.5mTorr〜6mTorrの範囲内で調整すると、X線回折スペクトルにFeのbcc相に対応するシャープで明瞭なピークが現れ、アモルファス相7と微結晶相8との混相構造にでき、複素比透磁率の実数部μ´及び虚数部μ″の双方が高い軟磁気特性を得ることが可能になる。   When the gas pressure is adjusted within the range of 0.5 mTorr to 6 mTorr, a sharp and clear peak corresponding to the bcc phase of Fe appears in the X-ray diffraction spectrum, and a mixed phase structure of the amorphous phase 7 and the microcrystalline phase 8 can be obtained. Both the real part μ ′ and the imaginary part μ ″ of the complex relative permeability can obtain high soft magnetic characteristics.

このような成膜条件と膜構造と磁気特性の関係は、高抵抗軟磁性膜特有のものである。例えばCoZrNb等はアモルファス膜であるが、軟磁気特性を得ることが出来る。   Such a relationship between the film forming conditions, the film structure, and the magnetic characteristics is unique to the high resistance soft magnetic film. For example, CoZrNb or the like is an amorphous film, but can obtain soft magnetic characteristics.

物理蒸着法としては、RFまたはDC平行平板マグネトロンスパッタ法(MT法)、DC対向ターゲットスパッタ法(FTS法)、RF対向ターゲットスパッタ法、蒸着法、反応性プラズマ蒸着法等を提示できる。   As the physical vapor deposition method, RF or DC parallel plate magnetron sputtering method (MT method), DC facing target sputtering method (FTS method), RF facing target sputtering method, vapor deposition method, reactive plasma vapor deposition method, and the like can be presented.

(RFID特性の実験)
RFID特性(受信信号の減衰量)の実験を行った。
図4(a)は、基準構成である。図4(a)に示すように、送信アンテナ20と受信アンテナ21との間の通信距離L2を28mmとした。また前記送信アンテナ20と受信アンテナ21を、平面の大きさが55mm×85mm、厚さが0.55mmの基板上に形成した。また、前記送信アンテナ20と受信アンテナ21を、最大外縁寸法を30mm×30mm、及び3ターンとした平面パターンで形成した。
(Experiment of RFID characteristics)
Experiments on RFID characteristics (attenuation of received signals) were conducted.
FIG. 4A shows a reference configuration. As shown in FIG. 4A, the communication distance L2 between the transmission antenna 20 and the reception antenna 21 was 28 mm. The transmitting antenna 20 and the receiving antenna 21 were formed on a substrate having a plane size of 55 mm × 85 mm and a thickness of 0.55 mm. The transmitting antenna 20 and the receiving antenna 21 were formed in a planar pattern having a maximum outer edge dimension of 30 mm × 30 mm and 3 turns.

図4(b)では、図4(a)の基準構成に、金属板22を追加したものであり、図4(b)に示すように、前記金属板22を、前記受信アンテナ21の前記送信アンテナ20との対向面と反対面側に設けた。前記金属板22は、Alであり、平面の大きさが55mm×85mm、厚さが2mmであった。なお前記金属板22と前記受信アンテナ21との間に膜厚が0.1μmのAl23膜を形成した。 In FIG. 4B, a metal plate 22 is added to the reference configuration of FIG. 4A, and the metal plate 22 is transmitted to the transmission antenna 21 as shown in FIG. It was provided on the side opposite to the surface facing the antenna 20. The metal plate 22 was made of Al and had a plane size of 55 mm × 85 mm and a thickness of 2 mm. An Al 2 O 3 film having a thickness of 0.1 μm was formed between the metal plate 22 and the receiving antenna 21.

また、図4(c)では、図4(b)の構成に対して、前記金属板22と受信アンテナ21との間に磁性シート23を挿入した。   In FIG. 4C, a magnetic sheet 23 is inserted between the metal plate 22 and the receiving antenna 21 with respect to the configuration of FIG.

前記磁性シート23には比較例として、アルプス電気(製)の商品名20R(厚さ100μm、200μm)、40R(厚さ100μm、200μm)、60R(厚さ100μm)、80R(厚さ100μm)(比較例1〜6)と、NECトーキン(製)の商品名R4N(01)、FK1(01)(比較例7、8:いずれも厚さ100μm)の磁性シートを使用した。   As a comparative example, the magnetic sheet 23 has Alps Electric's trade names 20R (thickness 100 μm, 200 μm), 40R (thickness 100 μm, 200 μm), 60R (thickness 100 μm), 80R (thickness 100 μm) ( Comparative Examples 1 to 6) and NEC TOKIN (product name) R4N (01), FK1 (01) (Comparative Examples 7 and 8: both 100 μm thick) were used.

また、厚さが0.55mmのホウケイ酸ガラス基板上に、膜厚が0.78μm、3.3μm、10μm、15μmのFe50.19at%Hf13.72at%36.09at%をスパッタ成膜した磁性シート23を形成した。ターゲットにはFe−Hf合金を用いた。スパッタ装置には、キヤノンアネルバ製のSPF−730 マグネトロンスパッタ装置を用いた。またスパッタ条件としてArガス流量を50sccm、Ar+5%O2ガス流量を25sccm、R
F電力を600W、ガス圧を3mTorr、T/S=0%、基板間接冷却とした。なおFe−Hf−O膜に対する熱処理は行っていない。
Further, a magnetic sheet in which Fe 50.19 at% Hf 13.72 at% O 36.09 at% having a film thickness of 0.78 μm, 3.3 μm, 10 μm, and 15 μm is formed on a borosilicate glass substrate having a thickness of 0.55 mm by sputtering. 23 was formed. An Fe—Hf alloy was used as the target. A SPF-730 magnetron sputtering apparatus manufactured by Canon Anelva was used as the sputtering apparatus. As sputtering conditions, the Ar gas flow rate is 50 sccm, the Ar + 5% O 2 gas flow rate is 25 sccm, R
F power was 600 W, gas pressure was 3 mTorr, T / S = 0%, and substrate indirect cooling. Note that no heat treatment was performed on the Fe—Hf—O film.

そして各試料に対して、スペクトラムアナライザ(アンリツ(株)製、型式:MS2601B)を用いて、13.56MHzにおける受信アンテナ21からの受信信号の出力値を測定した。   For each sample, the output value of the received signal from the receiving antenna 21 at 13.56 MHz was measured using a spectrum analyzer (manufactured by Anritsu Co., Ltd., model: MS2601B).

受信信号の減衰量(dBm)は、(図4(a)の基準構成での受信信号の出力値)−(図4(b)、あるいは図4(c)の各構成での受信信号の出力値)で得ることができる。減衰量は小さいほど受信アンテナ21が送信アンテナ20からの電磁波を漏れなく受信しRFID特性が良好であることを意味する。
実験で使用した試料、受信アンテナからの信号出力、減衰量を以下の表1に示した。
The attenuation (dBm) of the received signal is (output value of the received signal in the reference configuration in FIG. 4A) − (output of the received signal in each configuration in FIG. 4B or 4C). Value). A smaller attenuation means that the receiving antenna 21 receives the electromagnetic wave from the transmitting antenna 20 without leakage and has better RFID characteristics.
The sample used in the experiment, the signal output from the receiving antenna, and the attenuation are shown in Table 1 below.

Figure 2010010641
Figure 2010010641

表1を基に、試料No.2〜14の磁性膜の膜厚と減衰量との関係を調べた。その実験結果が図5に示されている。   Based on Table 1, sample no. The relationship between the film thicknesses of 2 to 14 magnetic films and the attenuation was examined. The experimental results are shown in FIG.

また、表1の試料No.2〜14の複素比透磁率の実数部μ´×磁性膜の膜厚t(以下、μ´×tという)を調べ、磁性膜厚、減衰量とともに以下の表2に掲載した。   In addition, sample No. The real part μ ′ × complex relative permeability of 2 to 14 × the film thickness t (hereinafter referred to as μ ′ × t) of the magnetic film was examined and listed in the following Table 2 together with the magnetic film thickness and attenuation.

Figure 2010010641
Figure 2010010641

また表2を基に、試料No2〜14のμ´×tと減衰量との関係を調べた。その実験結果が図6に示されている。   Moreover, based on Table 2, the relationship between μ ′ × t and the attenuation amount of sample Nos. 2 to 14 was examined. The experimental results are shown in FIG.

図5、図6に示すように、受信アンテナ21と金属板22との間に磁性膜を設けない図4(b)の形態では、減衰量が非常に大きくなった。これは前記金属板22に生じた渦電流による反磁界の影響である。   As shown in FIGS. 5 and 6, in the configuration of FIG. 4B in which a magnetic film is not provided between the receiving antenna 21 and the metal plate 22, the amount of attenuation is very large. This is an influence of a demagnetizing field caused by an eddy current generated in the metal plate 22.

また、図5、図6に示すように受信アンテナ21と金属板22との間に磁性シートを挿入した比較例では、図4(b)の形態に比べて減衰量を小さくできたが、磁性膜の膜厚が100μm〜200μmであり、前記磁性シートを挿入してしまうとRFIDデバイスの薄型化を促進できなかった。   In addition, in the comparative example in which the magnetic sheet is inserted between the receiving antenna 21 and the metal plate 22 as shown in FIGS. 5 and 6, the attenuation can be reduced as compared with the configuration of FIG. The film thickness was 100 μm to 200 μm, and if the magnetic sheet was inserted, the RFID device could not be made thinner.

一方、受信アンテナ21と金属板22との間にFe−Hf−Oスパッタ膜を設けた形態では、図4(b)の形態よりも減衰量を小さくできるとともに、前記Fe−Hf−Oスパッタ膜の膜厚を、比較例の磁性膜の膜厚よりも十分に薄くできた。具体的には表1や表2に示すように前記Fe−Hf−Oスパッタ膜の膜厚を、比較例の磁性膜の膜厚の約1/10程度にできた。   On the other hand, in the form in which the Fe—Hf—O sputtered film is provided between the receiving antenna 21 and the metal plate 22, the attenuation can be made smaller than that in the form of FIG. 4 (b), and the Fe—Hf—O sputtered film. Was made sufficiently thinner than the magnetic film of the comparative example. Specifically, as shown in Tables 1 and 2, the film thickness of the Fe—Hf—O sputtered film could be about 1/10 of the film thickness of the magnetic film of the comparative example.

図5及び図6に示すように比較例と同等以下の減衰量とするには、前記Fe−Hf−Oスパッタ膜の膜厚を概ね0.5μm以上、好ましくは0.78μm以上さらに好ましくは10μm以上にすることが好適であるとわかった。   As shown in FIGS. 5 and 6, in order to obtain an attenuation amount equal to or less than that of the comparative example, the film thickness of the Fe—Hf—O sputtered film is approximately 0.5 μm or more, preferably 0.78 μm or more, more preferably 10 μm. It turned out that it is suitable for the above.

図6に示すように、受信信号の減衰量は、μ´×tを大きくするほど徐々に小さくできることがわかった。よってFe−Hf−Oスパッタ膜の膜厚を厚くすればするほど、減衰量をよりゼロに近づけることが可能になるが、RFIDデバイスの薄型化に寄与するためにFe−Hf−Oスパッタ膜の最大厚を15μmとした。すなわちFe−Hf−Oスパッタ膜の好ましい膜厚範囲を0.5〜15μmとした。また好ましいμ´×tの範囲を402(μm)〜7895(μm)とした。   As shown in FIG. 6, it was found that the attenuation amount of the received signal can be gradually decreased as μ ′ × t is increased. Therefore, as the thickness of the Fe—Hf—O sputtered film increases, the attenuation can be made closer to zero. However, in order to contribute to the reduction in the thickness of the RFID device, the Fe—Hf—O sputtered film can be reduced. The maximum thickness was 15 μm. That is, the preferable film thickness range of the Fe—Hf—O sputtered film was set to 0.5 to 15 μm. A preferable range of μ ′ × t was 402 (μm) to 7895 (μm).

次に、基板上にFe−Hf−O膜をスパッタ成膜し、元素Oの組成比と複素比透磁率の実数部μ´(13.56MHz)及び虚数部μ″(13.56MHz)との関係を調べた。   Next, an Fe—Hf—O film is formed on the substrate by sputtering, and the composition ratio of the element O and the real part μ ′ (13.56 MHz) and the imaginary part μ ″ (13.56 MHz) of the complex relative permeability. I investigated the relationship.

前記Fe−Hf−O膜のスパッタに使用したスパッタ装置、ターゲット及びスパッタ条件(O2流量比以外)は上記での実験と同じである。各試料のFe−Hf−O膜をほぼ1μmの膜厚にて形成した。また各試料に対していずれも熱処理を施していない。実験ではO2流量比を変化させて、Fe−Hf−O中に取り込まれる元素Oの組成比を変化させるとともに、各試料に対して複素比透磁率の実数部μ´(13.56MHz)及び虚数部μ″(13.56MHz)を測定した。μ´及びμ″の測定には、凌和電子(株)製のPMF−3000(ネットワークアナライザHP4396B、検出部にshielded Loop coilを採用した高周波透磁率測定方式)を用いて行った。実験結果を以下の表3及び図7に示す。 The sputtering apparatus, target, and sputtering conditions (other than the O 2 flow ratio) used for the sputtering of the Fe—Hf—O film are the same as in the above experiment. An Fe—Hf—O film of each sample was formed with a film thickness of approximately 1 μm. In addition, no heat treatment was applied to each sample. In the experiment, the composition ratio of the element O incorporated in Fe—Hf—O is changed by changing the O 2 flow rate ratio, and the real part μ ′ (13.56 MHz) of the complex relative permeability for each sample and The imaginary part μ ″ (13.56 MHz) was measured. For the measurement of μ ′ and μ ″, PMF-3000 (network analyzer HP4396B manufactured by Ryowa Denshi Co., Ltd., high-frequency transmission coil using a shielded loop coil as the detection unit) was measured. Magnetic susceptibility measurement method). The experimental results are shown in Table 3 below and FIG.

Figure 2010010641
Figure 2010010641

表3及び図7に示すように元素Oの組成比を27.08〜47at%の範囲に設定することで、複素比透磁率の実数部μ´(13.56MHz)を400以上にできることがわかった。また複素比透磁率の虚数部μ″(13.56MHz)を22以下に抑えることができるとわかった。   As shown in Table 3 and FIG. 7, it is found that the real part μ ′ (13.56 MHz) of the complex relative permeability can be increased to 400 or more by setting the composition ratio of the element O in the range of 27.08 to 47 at%. It was. It was also found that the imaginary part μ ″ (13.56 MHz) of the complex relative permeability can be suppressed to 22 or less.

また、上記の表3のFe−Hf−O膜の比抵抗ρを調べた。さらに、Fe−Hf−O膜の飽和磁束密度Bs及び保磁力Hcも調べた。元素Oの組成比と比抵抗ρとの関係を以下の表4及び図8に、元素Oの組成比と飽和磁束密度Bsとの関係を図9に、元素Oの組成比と保磁力Hcとの関係を図10に夫々示す。なお表4及び図8にはHf組成比/(Fe組成比+Hf組成比)(%)も合わせて掲載した。   Further, the specific resistance ρ of the Fe—Hf—O film shown in Table 3 was examined. Further, the saturation magnetic flux density Bs and the coercive force Hc of the Fe—Hf—O film were also examined. The relationship between the composition ratio of the element O and the specific resistance ρ is shown in Table 4 and FIG. 8 below, the relationship between the composition ratio of the element O and the saturation magnetic flux density Bs is shown in FIG. 9, and the composition ratio of the element O and the coercive force Hc These relationships are shown in FIG. In Table 4 and FIG. 8, Hf composition ratio / (Fe composition ratio + Hf composition ratio) (%) is also shown.

Figure 2010010641
Figure 2010010641

表4及び図8に示すように、元素Oの組成比を27.08〜47at%の範囲に設定したとき、300(μΩcm)以上の高い比抵抗ρを得られることがわかった。   As shown in Table 4 and FIG. 8, it was found that when the composition ratio of the element O was set in the range of 27.08 to 47 at%, a high specific resistance ρ of 300 (μΩcm) or more could be obtained.

また図9、図10に示すように、元素Oの組成比を27.08〜47at%の範囲に設定したとき、飽和磁束密度Bsを大きくでき、保磁力Hcを小さくでき優れた軟磁気特性が得られることがわかった。   Further, as shown in FIGS. 9 and 10, when the composition ratio of the element O is set in the range of 27.08 to 47 at%, the saturation magnetic flux density Bs can be increased, the coercive force Hc can be decreased, and excellent soft magnetic characteristics can be obtained. It turns out that it is obtained.

続いて、表3に示す元素Oの組成比が6.41at%、27.08at%、66.91at%の各Fe−Hf−O膜のX線回折スペクトルを求めた。いずれも熱処理を施していない。その結果が図11に示されている。   Subsequently, an X-ray diffraction spectrum of each Fe—Hf—O film having the composition ratio of element O shown in Table 3 of 6.41 at%, 27.08 at%, and 66.91 at% was obtained. Neither is heat-treated. The result is shown in FIG.

元素Oの組成比を6.41at%とした場合、アモルファス相が主相となり、一方、Feのbcc相の存在を確認できなかった。また、元素Oの組成比を66.91at%としたFe−Hf−O膜のX線回折スペクトルには、Feのbcc相のピークが見られず、HfO、FeOのピークとアモルファス相(FeあるいはHfの酸化物)が存在することがわかった。   When the composition ratio of element O was 6.41 at%, the amorphous phase became the main phase, while the presence of the bcc phase of Fe could not be confirmed. Further, in the X-ray diffraction spectrum of the Fe—Hf—O film in which the composition ratio of element O is 66.91 at%, the peak of the bcc phase of Fe is not seen, and the peak of HfO, FeO and the amorphous phase (Fe or Fe Hf oxide) was present.

一方、元素Oの組成比を27.08at%としたFe−Hf−O膜のX線回折スペクトルには、Feのbcc相に対応するシャープで明瞭なピークとHfあるいはFeの酸化物に近い回折角にブロードなピークが観察された。この結果から、元素Oの組成比を27.08at%としたFe−Hf−O膜の膜構造は、アモルファス相と、前記アモルファス相中に点在するFeを主体としたbccの微結晶相との混相構造であるとわかった。   On the other hand, the X-ray diffraction spectrum of the Fe—Hf—O film in which the composition ratio of element O is 27.08 at% shows a sharp and clear peak corresponding to the bcc phase of Fe and a frequency close to that of Hf or Fe oxide. A broad peak was observed at the corner. From this result, the film structure of the Fe—Hf—O film in which the composition ratio of element O is 27.08 at% is an amorphous phase and a bcc microcrystalline phase mainly composed of Fe interspersed in the amorphous phase. It was found to be a multiphase structure.

このようにFe−Hf−O膜に対して熱処理をしなくても、アモルファス相と、前記アモルファス相中に点在するFeを主体としたbccの微結晶相との混相構造が得られることがわかった。このような混相構造は、微結晶相を備えることで軟磁気特性に優れるとともにアモルファス相の存在により比抵抗ρを高くできる。したがって図7、図8に示す実験結果から元素Oの組成比を27.08〜47at%の範囲にしたFe−Hf−O膜では、熱処理を施さなくとも、アモルファス相と、前記アモルファス相中に点在するFeを主体としたbccの微結晶相との混相構造になっていると推測できる。なお、以上の実験においてはホウケイ酸ガラス基板上にFe−Hf−O膜を形成したが、樹脂シート上にFe−Hf−O膜形成しても同様な効果が得られることは言うまでもない。   Thus, a mixed phase structure of an amorphous phase and a bcc microcrystalline phase mainly composed of Fe interspersed in the amorphous phase can be obtained without performing heat treatment on the Fe—Hf—O film. all right. Such a mixed phase structure is excellent in soft magnetic characteristics by including a microcrystalline phase and can increase the specific resistance ρ due to the presence of an amorphous phase. Therefore, in the Fe—Hf—O film in which the composition ratio of the element O is in the range of 27.08 to 47 at% based on the experimental results shown in FIGS. 7 and 8, the amorphous phase and the amorphous phase are included in the amorphous phase without heat treatment. It can be presumed that it has a mixed phase structure with bcc microcrystalline phase mainly composed of scattered Fe. In the above experiment, the Fe—Hf—O film was formed on the borosilicate glass substrate, but it goes without saying that the same effect can be obtained even if the Fe—Hf—O film is formed on the resin sheet.

(ノイズ抑制効果の実験)
放射ノイズ抑制効果(透過減衰量)、及び、伝導ノイズ抑制効果(伝送減衰率:P(loss)/P(in))の実験を行った。
(Noise suppression effect experiment)
Experiments on radiation noise suppression effect (transmission attenuation) and conduction noise suppression effect (transmission attenuation rate: P (loss) / P (in)) were conducted.

図12は、ノイズ抑制評価装置を示す図である。図12に示すように、前記ノイズ抑制評価装置は、導電パターン16を有する評価基板11と、導電パターン16に信号を送出する信号源13と、放射ノイズを受信する受信用ループアンテナ14a,14bと、放射ノイズ抑制効果及び伝導ノイズ抑制効果を評価する制御部15とから主に構成されている。   FIG. 12 is a diagram illustrating a noise suppression evaluation apparatus. As shown in FIG. 12, the noise suppression evaluation apparatus includes an evaluation board 11 having a conductive pattern 16, a signal source 13 for sending a signal to the conductive pattern 16, and reception loop antennas 14a and 14b for receiving radiation noise. The control unit 15 mainly evaluates the radiation noise suppression effect and the conduction noise suppression effect.

評価基板11上に、導電パターン16を覆うように磁性シート4を配置する。前記導電パターン16上に磁性シート4を配置した際に、磁性シート4が存在していない領域及び磁性シート4が存在している領域ができるので、受信用ループアンテナ14a,14bにて、それぞれの領域の放射ノイズを受信する。図12においては、受信用ループアンテナ14aで磁性シート4が存在していない領域の放射ノイズを受信し、受信用ループアンテナ14bで磁性シート4が存在している領域の放射ノイズを受信する。これにより、受信用ループアンテナ14aで受信した放射ノイズにより、磁性シート4が存在していない領域の反射依存分のノイズ抑制効果を評価することができ、受信用ループアンテナ14bで受信した放射ノイズにより、磁性シート4が存在している領域の透過減衰分のノイズ抑制効果を評価することができる。   The magnetic sheet 4 is disposed on the evaluation substrate 11 so as to cover the conductive pattern 16. When the magnetic sheet 4 is disposed on the conductive pattern 16, a region where the magnetic sheet 4 is not present and a region where the magnetic sheet 4 is present are formed. Receive radiated noise in the area. In FIG. 12, the reception loop antenna 14a receives radiation noise in a region where the magnetic sheet 4 does not exist, and the reception loop antenna 14b receives radiation noise in a region where the magnetic sheet 4 exists. Thereby, the noise suppression effect for the reflection dependence of the area where the magnetic sheet 4 does not exist can be evaluated by the radiation noise received by the reception loop antenna 14a, and the radiation noise received by the reception loop antenna 14b can be evaluated. In addition, it is possible to evaluate the noise suppression effect of the transmission attenuation in the region where the magnetic sheet 4 is present.

制御部15は、放射ノイズ抑制効果と伝導ノイズ抑制効果とを評価する処理部である。放射ノイズ抑制効果は、スペクトルアナライザにより評価し、伝導ノイズ抑制効果は、ネットワークアナライザにより評価することができる。そして、受信用ループアンテナ14a,14bがスペクトラムアナライザに電気的に接続されており、評価基板11の導電パターン16がネットワークアナライザに電気的に接続されている。   The control unit 15 is a processing unit that evaluates the radiation noise suppression effect and the conduction noise suppression effect. The radiation noise suppression effect can be evaluated by a spectrum analyzer, and the conduction noise suppression effect can be evaluated by a network analyzer. The receiving loop antennas 14a and 14b are electrically connected to the spectrum analyzer, and the conductive pattern 16 of the evaluation board 11 is electrically connected to the network analyzer.

図12に示すように、評価基板に形成された導電パターン16上に磁性シート4を配置し、この状態で、導電パターン16に信号を出力したときに導電パターン16を通る信号の伝導ノイズ抑制効果(伝送減衰率)を測定すると共に、磁性シート4が存在していない領域及び磁性シート4が存在している領域のそれぞれの放射ノイズ抑制効果を測定する。   As shown in FIG. 12, the magnetic sheet 4 is arranged on the conductive pattern 16 formed on the evaluation substrate, and in this state, when a signal is output to the conductive pattern 16, the conduction noise suppression effect of the signal passing through the conductive pattern 16 While measuring (transmission attenuation factor), the radiation noise suppression effect of each of the region where the magnetic sheet 4 is not present and the region where the magnetic sheet 4 is present is measured.

まず、評価基板11に磁性シート4を配置しない状態で受信用ループアンテナ14aにより放射ノイズ抑制効果の反射依存分を測定し、受信用ループアンテナ14bにより放射ノイズ抑制効果の透過減衰分を測定する。次いで、評価基板11に磁性シート4を配置した状態で受信用ループアンテナ14aにより放射ノイズ抑制効果の反射依存分を測定し、受信用ループアンテナ14bにより放射ノイズ抑制効果の透過減衰分を測定する。そして、磁性シート4がある場合の反射依存分の放射ノイズ抑制効果から磁性シート4がない場合の反射依存分の放射ノイズ抑制効果を差し引いて反射依存分の放射ノイズを求め、磁性シート4がある場合の透過減衰分の放射ノイズ抑制効果から磁性シート4がない場合の透過減衰分の放射ノイズ抑制効果を差し引いて透過減衰分の放射ノイズ抑制効果を求め、求められた反射依存分の放射ノイズ抑制効果と求められた透過減衰分の放射ノイズ抑制効果を加えることで放射ノイズ抑制効果(透過減衰量)を測定できる。また、信号源13から送出された信号を制御部15で受信することにより伝導ノイズ抑制効果(伝送減衰率)を測定できる。   First, the reflection dependence of the radiation noise suppression effect is measured by the reception loop antenna 14a in a state where the magnetic sheet 4 is not disposed on the evaluation board 11, and the transmission attenuation of the radiation noise suppression effect is measured by the reception loop antenna 14b. Next, the reflection dependency of the radiation noise suppression effect is measured by the reception loop antenna 14a in a state where the magnetic sheet 4 is disposed on the evaluation board 11, and the transmission attenuation of the radiation noise suppression effect is measured by the reception loop antenna 14b. Then, the radiation noise for the reflection dependency is obtained by subtracting the radiation noise suppression effect for the reflection dependency when there is no magnetic sheet 4 from the radiation noise suppression effect for the reflection dependency when the magnetic sheet 4 is present. The radiation noise suppression effect for the transmission attenuation is obtained by subtracting the radiation noise suppression effect for the transmission attenuation in the absence of the magnetic sheet 4 from the radiation noise suppression effect for the transmission attenuation in the case. The radiation noise suppression effect (transmission attenuation) can be measured by adding the effect and the radiation noise suppression effect for the required transmission attenuation. In addition, the conduction noise suppression effect (transmission attenuation factor) can be measured by receiving the signal transmitted from the signal source 13 by the control unit 15.

上記放射ノイズ抑制効果(透過減衰量)及び伝導ノイズ抑制効果(伝送減衰率)は以下の式にて求めることができる。   The radiation noise suppression effect (transmission attenuation amount) and the conduction noise suppression effect (transmission attenuation factor) can be obtained by the following equations.

放射ノイズ抑制効果(透過減衰量)(dB)=S31(磁性シート41がある場合)−S31(磁性シート4がない場合)
伝導ノイズ抑制効果(伝送減衰率)(P(loss)/P(in))=1−(S11)2−(S21)2
Radiation noise suppression effect (transmission attenuation) (dB) = S31 (when there is a magnetic sheet 41) -S31 (when there is no magnetic sheet 4)
Conductive noise suppression effect (transmission attenuation factor) (P (loss) / P (in)) = 1− (S11) 2 − (S21) 2

実験では、厚さが0.55mmで幅寸法30mm×長さ寸法40mmのホウケイ酸ガラス基板上に、膜厚が3μmのFe50.19at%Hf13.72at%36.09at%をスパッタ成膜した磁性シート4(実施例)を形成した。ターゲットにはFe−Hf合金を用いた。スパッタ装置には、キャノンアネルバ製のSPF−730 マグネトロンスパッタ装置を用いた。またスパッタ条件としてArガス流量を50sccm、Ar+5%O2ガス流量を25sccm、RF電力を600W、ガス圧を3mTorr、T/S=0%、基板間接冷却とした。なおFe−Hf−O膜に対する熱処理は行っていない。 In the experiment, a magnetic sheet in which Fe 50.19 at% Hf 13.72 at% O 36.09 at% with a film thickness of 3 μm was sputter-deposited on a borosilicate glass substrate having a thickness of 0.55 mm and a width of 30 mm × length of 40 mm. 4 (Example) was formed. An Fe—Hf alloy was used as the target. As a sputtering apparatus, an SPF-730 magnetron sputtering apparatus manufactured by Canon Anelva was used. As sputtering conditions, the Ar gas flow rate was 50 sccm, the Ar + 5% O 2 gas flow rate was 25 sccm, the RF power was 600 W, the gas pressure was 3 mTorr, T / S = 0%, and indirect substrate cooling. Note that no heat treatment was performed on the Fe—Hf—O film.

また、図12に示すノイズ抑制評価装置において、受信用ループアンテナとして、φ4mmのマイクロループアンテナを用い、ネットワークアナライザとして、N3383A(アジレントテクノロジ社製)を用い、スペクトラムアナライザとして、8595E(アジレントテクノロジ社製)を用いた。   In the noise suppression evaluation apparatus shown in FIG. 12, a φ4 mm micro loop antenna is used as a receiving loop antenna, N3383A (manufactured by Agilent Technologies) is used as a network analyzer, and 8595E (manufactured by Agilent Technologies) is used as a spectrum analyzer. ) Was used.

実施例として、前記磁性シート4のFe−Hf−O膜側を前記導電パターン16に対向させ、ちょうど前記磁性シート4の中心に前記導電パターン16が位置するように前記磁性シート4を前記評価基板11上に設置した。なお前記磁性シート4上には重り(約100g)を載せた。そして、500MHzでの放射ノイズ抑制効果(透過減衰量)を求めるとともに、伝導ノイズ抑制効果(伝送減衰率)を求めた。   As an example, the magnetic sheet 4 is placed on the evaluation board so that the Fe-Hf-O film side of the magnetic sheet 4 is opposed to the conductive pattern 16 and the conductive pattern 16 is positioned at the center of the magnetic sheet 4. 11 was installed. A weight (about 100 g) was placed on the magnetic sheet 4. Then, a radiation noise suppression effect (transmission attenuation) at 500 MHz was determined, and a conduction noise suppression effect (transmission attenuation rate) was determined.

また比較例として、NECトーキン(製)の商品名FK1(01)の磁性シート(磁性膜の膜厚は100μm)を前記導電パターン16上に設置して、500MHzでの放射ノイズ抑制効果(透過減衰量)を求めるとともに、伝導ノイズ抑制効果(伝送減衰率)を求めた。   Further, as a comparative example, a magnetic sheet (trade name: FK1 (01)) manufactured by NEC TOKIN (manufactured) is installed on the conductive pattern 16 to suppress radiation noise at 500 MHz (transmission attenuation). Amount) and the conduction noise suppression effect (transmission attenuation factor).

図13が、実施例及び比較例の放射ノイズ抑制効果(透過減衰量)の実験結果、図14が、実施例及び比較例の伝導ノイズ抑制効果(伝送減衰率)の実験結果である。   FIG. 13 is an experimental result of the radiation noise suppression effect (transmission attenuation amount) of the example and the comparative example, and FIG. 14 is an experimental result of the conduction noise suppression effect (transmission attenuation factor) of the example and the comparative example.

図13に示すように、実施例では比較例よりも透過減衰量(絶対値)が大きくなり、実施例のほうが比較例よりもノイズを適切に減衰させることができるとわかった。   As shown in FIG. 13, in the example, the transmission attenuation amount (absolute value) is larger than that of the comparative example, and it has been found that the example can attenuate the noise more appropriately than the comparative example.

また図14の実験結果から、実施例のほうが比較例に比べて、広い周波数帯域でノイズ抑制効果が大きいことがわかった。   Further, from the experimental results shown in FIG. 14, it was found that the noise suppression effect was greater in the example in a wider frequency band than in the comparative example.

続いて、上記した実施例の磁性シート4における複素比透磁率の実数部μ´及び虚数部μ″の周波数依存性を求めた。その結果が図15に示されている。   Subsequently, the frequency dependence of the real part μ ′ and the imaginary part μ ″ of the complex relative permeability in the magnetic sheet 4 of the above-described example was obtained. The result is shown in FIG.

図15に示すように、100MHz以上の周波数帯域で、前記電磁波吸収シート1の複素比透磁率の虚数部μ″を80以上にできることがわかった。   As shown in FIG. 15, it was found that the imaginary part μ ″ of the complex relative permeability of the electromagnetic wave absorbing sheet 1 can be 80 or more in a frequency band of 100 MHz or more.

なお、以上の実験においてはホウケイ酸ガラス基板上にFe−Hf−O膜を形成したが、樹脂シート上にFe−Hf−O膜形成しても同様な効果が得られることは言うまでもない。   In the above experiment, the Fe—Hf—O film was formed on the borosilicate glass substrate, but it goes without saying that the same effect can be obtained even if the Fe—Hf—O film is formed on the resin sheet.

(ガス圧の実験)
RF平行平板マグネトロンスパッタ法(MT法)、及び、DC対向ターゲットスパッタ法(FTS法)を用いて、Fe−Hf−O膜を基板上にスパッタ成膜した。
(Gas pressure experiment)
An Fe—Hf—O film was formed on the substrate by sputtering using an RF parallel plate magnetron sputtering method (MT method) and a DC facing target sputtering method (FTS method).

まずFe−Hf−O膜をMT法でスパッタ成膜した。基板にはホウケイ酸ガラス基板を用いた。またターゲットにはFe−Hf合金を用いた。スパッタ装置には、キヤノンアネルバ製のSPF−730 マグネトロンスパッタ装置を用いた。またスパッタ条件としてArガス流量を50sccm、Ar+5%O2ガス流量を25sccm、O2/(Ar+O2)流量比を1.67%、RF電力を600W、T/S=0%、基板間接冷却とした。Fe−Hf−O膜を1μmの膜厚で成膜した。また、ガス圧はオリフィスの角度で調整した。 First, an Fe—Hf—O film was formed by sputtering using the MT method. A borosilicate glass substrate was used as the substrate. The target was an Fe—Hf alloy. A SPF-730 magnetron sputtering apparatus manufactured by Canon Anelva was used as the sputtering apparatus. As sputtering conditions, the Ar gas flow rate is 50 sccm, the Ar + 5% O 2 gas flow rate is 25 sccm, the O 2 / (Ar + O 2 ) flow rate ratio is 1.67%, the RF power is 600 W, T / S = 0%, and indirect substrate cooling. did. An Fe—Hf—O film was formed to a thickness of 1 μm. The gas pressure was adjusted by the orifice angle.

Fe−Hf−O膜に対して熱処理は施していない。ArとO2との混合ガスのガス圧を変化させ、ガス圧と、Fe−Hf−O膜の複素比透磁率の実数部μ´及び虚数部μ″との関係を調べた。 No heat treatment was performed on the Fe—Hf—O film. The gas pressure of the mixed gas of Ar and O 2 was changed, and the relationship between the gas pressure and the real part μ ′ and the imaginary part μ ″ of the complex relative permeability of the Fe—Hf—O film was examined.

続いて、Fe−Hf−O膜をFTS法でスパッタ成膜した。基板にはSi基板を用いた。また、ターゲットにはFe−Hf合金ターゲットを用いた。スパッタ装置には、RF対向ターゲットスパッタ装置を用いた。またスパッタ条件として電力を300W、5500W(高Power)、ArガスとO2ガスの混合ガスを用いてO2/(Ar+O2)流量比を0%〜26.3%とした。Fe−Hf−O膜を2μmの膜厚で成膜した。ガス圧はガスの流量を調整して設定した。 Subsequently, an Fe—Hf—O film was formed by sputtering using the FTS method. A Si substrate was used as the substrate. Moreover, the Fe-Hf alloy target was used for the target. An RF facing target sputtering apparatus was used as the sputtering apparatus. As sputtering conditions, the power was 300 W, 5500 W (high power), and a mixed gas of Ar gas and O 2 gas was used, and the O 2 / (Ar + O 2 ) flow rate ratio was set to 0% to 26.3%. An Fe—Hf—O film was formed to a thickness of 2 μm. The gas pressure was set by adjusting the gas flow rate.

Fe−Hf−O膜に対して熱処理は施していない。ArとO2との混合ガスのガス圧を変化させ、ガス圧と、Fe−Hf−O膜の複素比透磁率の実数部μ´及び虚数部μ″との関係を調べた。 No heat treatment was performed on the Fe—Hf—O film. The gas pressure of the mixed gas of Ar and O 2 was changed, and the relationship between the gas pressure and the real part μ ′ and the imaginary part μ ″ of the complex relative permeability of the Fe—Hf—O film was examined.

図16に実験結果が示されている。図17は、ガス圧と、Fe−Hf−O膜との組成比との関係が示されている。   FIG. 16 shows the experimental results. FIG. 17 shows the relationship between the gas pressure and the composition ratio of the Fe—Hf—O film.

図17に示すようにガス圧が6mTorrと9mTorrとでは、Fe−Hf−O膜との組成比に顕著な差が出ないことがわかった。   As shown in FIG. 17, it was found that there was no significant difference in the composition ratio with the Fe—Hf—O film when the gas pressure was 6 mTorr and 9 mTorr.

しかしながら、図16に示すように、ガス圧が6mTorrより高くなると、複素比透磁率の実数部μ´及び虚数部μ″が大きく低下することがわかった。   However, as shown in FIG. 16, it was found that when the gas pressure is higher than 6 mTorr, the real part μ ′ and the imaginary part μ ″ of the complex relative permeability are greatly reduced.

次に、ガス圧と、Fe−Hf−O膜のX線回折スペクトルの関係を調べた。測定には、Fe−Hf−O膜を上記の実験でMT法により成膜した試料を用いた。その実験結果が図18に示されている。   Next, the relationship between the gas pressure and the X-ray diffraction spectrum of the Fe—Hf—O film was examined. For the measurement, a sample in which an Fe—Hf—O film was formed by the MT method in the above experiment was used. The experimental result is shown in FIG.

この図18に示すように、ガス圧を9mTorrとした試料では、bcc−Fe(110)のピークがブロードになり、アモルファスに近い構造になっていることがわかった。またガス圧を、6.5mTorr、7mTorr、8mTorrとした実験結果も、ガス圧を9mTorrとしたときほどではないが、bcc−Fe(110)のピークがブロードになることがわかった。   As shown in FIG. 18, in the sample with a gas pressure of 9 mTorr, it was found that the peak of bcc-Fe (110) is broad and has a structure close to amorphous. In addition, the experimental results at gas pressures of 6.5 mTorr, 7 mTorr, and 8 mTorr also showed that the bcc-Fe (110) peak was broad, although not as much as when the gas pressure was 9 mTorr.

次に、主としてFTS法にてFe−Hf−O膜を成膜したときのガス圧と、Fe−Hf−O膜のX線回折スペクトルの関係を調べた。なお図19での測定に用いたFTS法及びMT法でのFe−Hf−O膜は図17の実験で使用したものと同じである。   Next, the relationship between the gas pressure when the Fe—Hf—O film was formed mainly by the FTS method and the X-ray diffraction spectrum of the Fe—Hf—O film was examined. Note that the Fe—Hf—O film in the FTS method and MT method used for the measurement in FIG. 19 is the same as that used in the experiment in FIG.

図19に示すように、FTS法においてもガス圧を9.8mTorrとするとbcc−Fe(110)のピークがブロードになり、アモルファスに近い構造になっていることがわかった。また、FTS法においてガス圧を6mTorrとしたとき、bcc−Fe(110)のピークが現れていないように見えるが、実際にはピークが現れており軟磁性を示すことがわかった。   As shown in FIG. 19, even in the FTS method, when the gas pressure was 9.8 mTorr, the bcc-Fe (110) peak was broad, indicating that the structure was close to amorphous. Further, when the gas pressure was set to 6 mTorr in the FTS method, it seemed that the peak of bcc-Fe (110) did not appear, but the peak actually appeared, indicating soft magnetism.

続いて、FTS法により、様々な組成比によりなるFe−Hf−O膜をスパッタ成膜した。以下の表5に示すようにガス圧を0.7mTorr、1.0mTorr、3.0mTorrと変えた。   Subsequently, Fe—Hf—O films having various composition ratios were formed by sputtering using the FTS method. As shown in Table 5 below, the gas pressure was changed to 0.7 mTorr, 1.0 mTorr, and 3.0 mTorr.

Figure 2010010641
Figure 2010010641

表5に示すように元素Oを6.85at%まで小さくしても複素比透磁率の実数部μ´及び虚数部μ″の双方が高い優れた軟磁気特性を得ることが可能である。なお、以上の実験においてはホウケイ酸ガラス基板上にFe−Hf−O膜を形成したが、樹脂シート上にFe−Hf−O膜形成しても同様な効果が得られることは言うまでもない。   As shown in Table 5, even when the element O is reduced to 6.85 at%, it is possible to obtain excellent soft magnetic characteristics in which both the real part μ ′ and the imaginary part μ ″ of the complex relative permeability are high. In the above experiment, the Fe—Hf—O film was formed on the borosilicate glass substrate, but it goes without saying that the same effect can be obtained even if the Fe—Hf—O film is formed on the resin sheet.

以上により、Fe−Hf−O膜については、元素Oの組成比cが、6.85〜47at%の範囲内、元素Hfの組成比bが11.40〜15.74at%の範囲内、残部が元素Feの組成比aであり、a+b+c=100at%の関係を満たすことが好ましい。これにより、複素比透磁率の実数部μ´を50以上、比抵抗ρを200(μΩ・cm)以上に設定できる。また元素Oの組成比cを、27.08〜47at%、Hfの組成比bを11.40〜15.74at%とすることがより好ましい。これにより、複素比透磁率の実数部μ´を400以上、比抵抗ρを300(μΩ・cm)以上に設定できる。   As described above, in the Fe—Hf—O film, the composition ratio c of the element O is in the range of 6.85 to 47 at%, the composition ratio b of the element Hf is in the range of 11.40 to 15.74 at%, and the balance Is the composition ratio a of the element Fe, and preferably satisfies the relationship of a + b + c = 100 at%. Thereby, the real part μ ′ of the complex relative permeability can be set to 50 or more and the specific resistance ρ can be set to 200 (μΩ · cm) or more. More preferably, the composition ratio c of the element O is 27.08 to 47 at%, and the composition ratio b of Hf is 11.40 to 15.74 at%. Thereby, the real part μ ′ of the complex relative permeability can be set to 400 or more and the specific resistance ρ can be set to 300 (μΩ · cm) or more.

(Fe−Al−O膜、及び、Fe−Zr−O膜の実験)
基板上に元素Oの組成比やAlの組成比を変化させたFe−Al−O膜をスパッタ成膜し、このとき得られた各Fe−Al−O膜の複素比透磁率の実数部μ´(13.56MHz)、及び、虚数部μ″(13.56MHz)等を調べた。
(Experiment of Fe-Al-O film and Fe-Zr-O film)
A Fe—Al—O film in which the composition ratio of element O and the composition ratio of Al was changed was sputtered on the substrate, and the real part μ of the complex relative permeability of each Fe—Al—O film obtained at this time ′ (13.56 MHz), imaginary part μ ″ (13.56 MHz) and the like were examined.

実験では、RF平行平板コンベンショナルスパッタ法、あるいは、DC対向ターゲットスパッタ法(FTS法)にて、Fe−Al−O膜を成膜した。成膜時におけるガス圧を前者は4mTorr、後者は3mTorrとした。   In the experiment, an Fe—Al—O film was formed by the RF parallel plate conventional sputtering method or the DC facing target sputtering method (FTS method). The gas pressure during film formation was 4 mTorr for the former and 3 mTorr for the latter.

続いて、基板上に元素Oの組成比やZrの組成比を変化させたFe−Zr−O膜をスパッタ成膜し、このとき得られた各Fe−Zr−O膜の複素比透磁率の実数部μ´(13.56MHz)、及び、虚数部μ″(13.56MHz)等を調べた。   Subsequently, an Fe—Zr—O film in which the composition ratio of element O and the composition ratio of Zr was changed was formed on the substrate by sputtering, and the complex relative permeability of each Fe—Zr—O film obtained at this time was determined. The real part μ ′ (13.56 MHz) and the imaginary part μ ″ (13.56 MHz) were examined.

上記したように、Fe−Zr−O膜に占める元素Oの組成比を変化させるには、図20、図21に示すように、O2/(Ar+O2)流量比を変化させて行った。なお図20、図21は、MT法にてFe−Zr−O膜を成膜した際、ガス圧、及びO2/(Ar+O2)流量比を変化させたときの複素比透磁率の実数部μ´及び膜応力の実験結果である。 As described above, the composition ratio of element O in the Fe—Zr—O film was changed by changing the O 2 / (Ar + O 2 ) flow rate ratio as shown in FIGS. 20 and 21 show the real part of the complex relative permeability when the gas pressure and the O 2 / (Ar + O 2 ) flow rate ratio are changed when the Fe—Zr—O film is formed by the MT method. It is an experimental result of μ ′ and film stress.

実験では、RF平行平板マグネトロンスパッタ法(MT法)にて、Fe−Zr−O膜を成膜した。成膜時におけるガス圧を3mTorrとした。
その実験結果を以下の表6に示す。
In the experiment, an Fe—Zr—O film was formed by RF parallel plate magnetron sputtering (MT method). The gas pressure during film formation was 3 mTorr.
The experimental results are shown in Table 6 below.

Figure 2010010641
Figure 2010010641

表6には、既に上記で説明したFe−Hf−O膜の実験結果も合わせて掲載した。
表6に示すようにFe−Al−O膜について、元素Oの組成比を6.99〜16.75at%、Alの組成比を9.79〜21.38at%と規制することで、複素比透磁率の実数部μ´50以上で、比抵抗(抵抗率)を200(μΩcm)以上にできることがわかった。
Table 6 also shows the experimental results of the Fe—Hf—O film already described above.
As shown in Table 6, for the Fe—Al—O film, the complex ratio is controlled by restricting the composition ratio of element O to 6.99 to 16.75 at% and the Al composition ratio to 9.79 to 21.38 at%. It has been found that the specific resistance (resistivity) can be increased to 200 (μΩcm) or higher with the real part μ′50 or higher of the magnetic permeability.

また、元素Oの組成比cを、12.20〜16.75at%、Alの組成比bを12.68〜15.17at%とすることがより好ましい。これにより、複素比透磁率の実数部μ´を300以上、比抵抗ρを300(μΩ・cm)以上に設定できることがわかった。   More preferably, the composition ratio c of the element O is 12.20 to 16.75 at%, and the Al composition ratio b is 12.68 to 15.17 at%. Thus, it was found that the real part μ ′ of the complex relative permeability can be set to 300 or more and the specific resistance ρ can be set to 300 (μΩ · cm) or more.

また表6に示すようにFe−Zr−O膜について、元素Oの組成比を、8.11〜9.29at%の範囲内、Zrの組成比を7.95〜8.36at%の範囲内とすることで、複素比透磁率の実数部μ´を100以上、比抵抗ρを250(μΩ・cm)以上に設定できることがわかった。   Further, as shown in Table 6, for the Fe—Zr—O film, the composition ratio of element O is within the range of 8.11 to 9.29 at%, and the composition ratio of Zr is within the range of 7.95 to 8.36 at%. It was found that the real part μ ′ of the complex relative permeability can be set to 100 or more and the specific resistance ρ can be set to 250 (μΩ · cm) or more.

また、元素Oの組成比を、8.11〜9.27at%、Zrの組成比bを7.95〜8.36at%とすることがより好ましい。これにより、複素比透磁率の実数部μ´を800以上、比抵抗ρを250(μΩ・cm)以上に設定できることがわかった。   More preferably, the composition ratio of element O is 8.11 to 9.27 at%, and the composition ratio b of Zr is 7.95 to 8.36 at%. Thus, it was found that the real part μ ′ of the complex relative permeability can be set to 800 or more and the specific resistance ρ can be set to 250 (μΩ · cm) or more.

表6及び図20、図21によりFe−Zr−O膜については、Fe−Hf−O膜やFe−Al−O膜に比べて、高い複素比透磁率の実数部μ´、低い複素比透磁率の虚数部μ″、及び低い膜応力を得られることがわかった。具体的には、複素比透磁率の実数部μ´を800程度、複素比透磁率の虚数部μ″を50程度、及び膜応力を80(MPa)程度に出来ることがわかった。したがって、Fe−Zr−O膜を用いれば、特に、柔らかい基材の片側だけに磁性膜を成膜しても膜応力が低いため磁性シートがロール状にならず、磁性シートの取り扱いが楽になるし、また片側成膜で済み、しかもHf等に比べて安いZrを使用できることで材料費も安く済むことがわかった。   As shown in Table 6 and FIGS. 20 and 21, the Fe—Zr—O film has a real part μ ′ having a high complex relative permeability and a low complex relative permeability compared to the Fe—Hf—O film and the Fe—Al—O film. It was found that an imaginary part μ ″ of magnetic susceptibility and low film stress can be obtained. Specifically, a real part μ ′ of complex relative permeability is about 800, an imaginary part μ ″ of complex relative permeability is about 50, It was also found that the film stress could be about 80 (MPa). Therefore, when a Fe—Zr—O film is used, even if a magnetic film is formed on only one side of a soft base material, the magnetic sheet does not become a roll because the film stress is low, and handling of the magnetic sheet becomes easy. In addition, it has been found that the material cost can be reduced by forming the film on one side and using Zr which is cheaper than Hf or the like.

次に、Fe73.22at%Al13.31at%13.47at%膜のX線回折スペクトルの関係を調べた。その実験結果が図22に示されている。 Next, the relationship of the X-ray diffraction spectrum of the Fe 73.22 at% Al 13.31 at% O 13.47 at% film was examined. The experimental results are shown in FIG.

図22に示すように、Feのbcc相に対応するシャープで明瞭なピークが観察された。一方、アモルファスを示すブロードなピークが観察されなかった。しかしながら、次の理由により、Fe−Al−O膜もbccFeの微結晶相とアモルファス相との混相構造であると推測できる。   As shown in FIG. 22, a sharp and clear peak corresponding to the bcc phase of Fe was observed. On the other hand, a broad peak indicating amorphous was not observed. However, it can be presumed that the Fe—Al—O film also has a mixed phase structure of a bccFe microcrystalline phase and an amorphous phase for the following reason.

まず、図22に示すように、アモルファスであるAl23膜にも、アモルファスのブロードのピークが見られない。また、Fe−Al−O膜のX線回折スペクトルに示すように、Feのbcc相に対応するピーク以外に明瞭な結晶を示すピークが見られない。さらには、α−Fe(110)の面間隔dは、Fe−Al膜であると(すなわち元素Oが無い)、AlがFe格子に置換して入るためか広がるのに、Fe−Al−O膜であると、AlがOと優先して結合するためか、Fe格子にAlが入らなくなり、アモルファスのブロードピークが明確に観察されるFe−Zr−O膜(X線回折スペクトルを次に示す)とほぼ同じ面間隔となっている。以上を総合的に勘案すれば、Fe−Al−O膜についてもアモルファスが存在することを推測できる。 First, as shown in FIG. 22, no amorphous broad peak is observed in the amorphous Al 2 O 3 film. Further, as shown in the X-ray diffraction spectrum of the Fe—Al—O film, no peak showing a clear crystal other than the peak corresponding to the bcc phase of Fe is observed. Further, the interplanar spacing d of α-Fe (110) increases when the Fe—Al film (ie, there is no element O) spreads because Al replaces the Fe lattice. In the case of a film, Al is preferentially bonded to O, or Al does not enter the Fe lattice, and an amorphous broad peak is clearly observed (an X-ray diffraction spectrum is shown below). ) Is almost the same spacing as. Considering the above comprehensively, it can be presumed that amorphous exists also in the Fe—Al—O film.

図23は、次に、Fe83.58at%Zr8.31at%8.11at%膜のX線回折スペクトルである。図23に示すように、Feのbcc相に対応するシャープで明瞭なピークと、ZrあるいはFeの酸化物に近い回折角にブロードなピークが観察された。この結果から、Fe−Zr−O膜の膜構造は、アモルファス相と、前記アモルファス相中に点在するFeを主体としたbccの微結晶相との混相構造であるとわかった。 FIG. 23 is an X-ray diffraction spectrum of an Fe 83.58 at% Zr 8.31 at% O 8.11 at% film. As shown in FIG. 23, a sharp and clear peak corresponding to the bcc phase of Fe and a broad peak at a diffraction angle close to that of Zr or Fe oxide were observed. From this result, it was found that the film structure of the Fe—Zr—O film was a mixed phase structure of an amorphous phase and a bcc microcrystalline phase mainly composed of Fe scattered in the amorphous phase.

RFIDデバイス及びリードライタの模式図、Schematic diagram of RFID device and reader / writer 本発明の実施形態の磁性シートの斜視図、The perspective view of the magnetic sheet of the embodiment of the present invention, Fe−M−O膜の膜構造の模式図、Schematic diagram of the film structure of the Fe-MO film, 受信信号の減衰量の測定に使用した試料の各構成図であり、(a)は、基本構成図、(b)は、(a)の受信アンテナの送信アンテナとの対向面と反対側に金属板を設けた構成図、(c)は、(b)の受信アンテナと金属板との間に磁性シートを挿入した構成図、It is each block diagram of the sample used for the measurement of the attenuation amount of a received signal, (a) is a basic block diagram, (b) is a metal on the opposite side to the opposing surface with the transmitting antenna of (a). (C) is a configuration diagram in which a magnetic sheet is inserted between the receiving antenna of (b) and the metal plate, 受信アンテナと金属板との間に挿入した磁性膜の膜厚と減衰量との関係を示すグラフ、A graph showing the relationship between the attenuation and the thickness of the magnetic film inserted between the receiving antenna and the metal plate, 磁性膜の複素比透磁率の実数部μ´×磁性膜の膜厚tと減衰量との関係を示すグラフ、A graph showing the relationship between the real part μ ′ of the complex relative permeability of the magnetic film × the thickness t of the magnetic film and the attenuation; Fe−Hf−O膜の元素Oの組成比と複素比透磁率の実数部μ´及び虚数部μ″との関係を示すグラフ、A graph showing the relationship between the composition ratio of the element O of the Fe—Hf—O film and the real part μ ′ and the imaginary part μ ″ of the complex relative permeability; Fe−Hf−O膜の元素Oの組成比と比抵抗ρとの関係を示すグラフ、A graph showing the relationship between the composition ratio of the element O of the Fe—Hf—O film and the specific resistance ρ; Fe−Hf−O膜の元素Oの組成比と飽和磁束密度Bsとの関係を示すグラフ、A graph showing the relationship between the composition ratio of the element O of the Fe—Hf—O film and the saturation magnetic flux density Bs; Fe−Hf−O膜のFe−Hf−O膜の元素Oの組成比と保磁力Hcとの関係を示すグラフ、A graph showing the relationship between the composition ratio of the element O of the Fe—Hf—O film and the coercive force Hc of the Fe—Hf—O film; 元素Oの組成比を6.41at%、27.08at%、66.91at%とした各Fe−Hf−O膜のX線回折スペクトル、X-ray diffraction spectrum of each Fe—Hf—O film in which the composition ratio of the element O is 6.41 at%, 27.08 at%, 66.91 at%, ノイズ抑制評価装置の構成図、Configuration diagram of the noise suppression evaluation device, 実施例(Fe−Hf−O膜)及び比較例(従来の磁性シート)の放射ノイズ抑制効果(透過減衰量)の実験結果、Experimental results of radiation noise suppression effect (transmission attenuation) of Example (Fe—Hf—O film) and Comparative Example (conventional magnetic sheet), 実施例(Fe−Hf−O膜を用いた電磁波吸収シート)及び比較例(従来の磁性シート)の伝導ノイズ抑制効果(伝送減衰率)の実験結果、Experimental results of conductive noise suppression effect (transmission attenuation factor) of Example (electromagnetic wave absorbing sheet using Fe-Hf-O film) and Comparative Example (conventional magnetic sheet), 実施例の電磁波吸収シートにおける複素比透磁率の実数部μ´及び虚数部μ″の周波数依存性を示すグラフ、A graph showing the frequency dependence of the real part μ ′ and the imaginary part μ ″ of the complex relative permeability in the electromagnetic wave absorbing sheet of the example, ArとO2との混合ガスのガス圧を変化させたときの、ガス圧と、Fe−Hf−O膜の複素比透磁率の実数部μ´及び虚数部μ″との関係を示すグラフ、A graph showing the relationship between the gas pressure and the real part μ ′ and the imaginary part μ ″ of the complex relative permeability of the Fe—Hf—O film when the gas pressure of the mixed gas of Ar and O 2 is changed; ガス圧と、Fe−Hf−O膜との組成比との関係を示すグラフ、A graph showing the relationship between the gas pressure and the composition ratio of the Fe—Hf—O film; 異なるガス圧で成膜されたFe−Hf−O膜のX線回折スペクトル(MT法)、X-ray diffraction spectra (MT method) of Fe—Hf—O films formed at different gas pressures, 異なるガス圧で成膜されたFe−Hf−O膜のX線回折スペクトル(FTS法及びMT法)、X-ray diffraction spectra (FTS method and MT method) of Fe—Hf—O films formed at different gas pressures, Fe−Al−O膜を成膜した際、ガス圧、及びO2/(Ar+O2)流量比を変化させたときの複素比透磁率の実数部μ´の実験結果、The experimental result of the real part μ ′ of the complex relative permeability when the gas pressure and the O 2 / (Ar + O 2 ) flow rate ratio are changed when the Fe—Al—O film is formed, Fe−Al−O膜を成膜した際、ガス圧、及びO2/(Ar+O2)流量比を変化させたときの膜応力の実験結果、When the Fe—Al—O film was formed, the experimental results of the film stress when the gas pressure and the O 2 / (Ar + O 2 ) flow rate ratio were changed, Fe73.22at%Al13.31at%13.47at%膜のX線回折スペクトル、X-ray diffraction spectrum of Fe 73.22 at% Al 13.31 at% O 13.47 at% film, Fe83.58at%Zr8.31at%8.11at%膜のX線回折スペクトル、X-ray diffraction spectrum of Fe 83.58 at% Zr 8.31 at% O 8.11 at% film,

符号の説明Explanation of symbols

1 RFIDデバイス
2 RFIDタグ
3、22 金属部材
4、23 磁性シート
5 樹脂シート
6 磁性膜
7 アモルファス相
8 微結晶相
10 リードライタ
20 送信アンテナ
21 受信アンテナ
DESCRIPTION OF SYMBOLS 1 RFID device 2 RFID tag 3 and 22 Metal member 4 and 23 Magnetic sheet 5 Resin sheet 6 Magnetic film 7 Amorphous phase 8 Microcrystalline phase 10 Lead dryer 20 Transmitting antenna 21 Receiving antenna

Claims (14)

基板上に、A−M−O(ただし元素AはFeまたはCoまたはその混合物を表し、元素Mは、Hf、Ti、Zr、V、Nb、Ta、Mo、W、Al、Mg、Zn、Ca、Ce、Yのうち少なくともいずれか一種を表す)から成り、元素MとOの化合物を含むアモルファス相と、前記アモルファス相中に点在するFeまたはCoから選ばれる一種または二種を主体とした平均結晶粒径30nm以下の微結晶相との膜構造で形成された磁性膜が物理蒸着法により成膜されてなることを特徴とする磁性シート。   On the substrate, A-M-O (where element A represents Fe or Co or a mixture thereof, and element M is Hf, Ti, Zr, V, Nb, Ta, Mo, W, Al, Mg, Zn, Ca) , Ce, and Y), and an amorphous phase containing a compound of elements M and O, and one or two selected from Fe or Co interspersed in the amorphous phase A magnetic sheet formed by physical vapor deposition of a magnetic film formed with a film structure of a microcrystalline phase having an average crystal grain size of 30 nm or less. 前記基板は、可撓性の樹脂シートであり、前記磁性膜の膜構造は、熱処理することなく形成されたものである請求項1記載の磁性シート。   The magnetic sheet according to claim 1, wherein the substrate is a flexible resin sheet, and the film structure of the magnetic film is formed without heat treatment. 前記磁性膜は、元素AがFeであり、組成式がFeabcから成り、元素Oの組成比cが、6.85〜47at%の範囲内、元素Mの組成比が7.95〜21.38at%の範囲内、残部が元素Feの組成比aであり、a+b+c=100at%の関係を満たす請求項1または2に記載の磁性シート。 In the magnetic film, the element A is Fe, the composition formula is Fe a M b O c , the composition ratio c of the element O is in the range of 6.85 to 47 at%, and the composition ratio of the element M is 7. 3. The magnetic sheet according to claim 1, wherein the balance is in the range of 95 to 21.38 at%, the balance being the composition ratio a of the element Fe, and satisfying the relationship of a + b + c = 100 at%. 元素MはHfであり、元素Oの組成比cが、6.85〜47at%の範囲内、元素Hfの組成比bが11.40〜15.74at%の範囲内、残部が元素Feの組成比aであり、a+b+c=100at%の関係を満たす請求項3記載の磁性シート。   The element M is Hf, the composition ratio c of the element O is in the range of 6.85 to 47 at%, the composition ratio b of the element Hf is in the range of 11.40 to 15.74 at%, and the balance is the composition of the element Fe. The magnetic sheet according to claim 3, wherein the ratio is a and the relationship of a + b + c = 100 at% is satisfied. 元素MはAlであり、元素Oの組成比cが、6.99〜16.75at%の範囲内、元素Alの組成比bが9.79〜21.38at%の範囲内、残部が元素Feの組成比aであり、a+b+c=100at%の関係を満たす請求項3記載の磁性シート。   The element M is Al, the composition ratio c of the element O is in the range of 699 to 16.75 at%, the composition ratio b of the element Al is in the range of 9.79 to 21.38 at%, and the balance is the element Fe The magnetic sheet according to claim 3, wherein the composition ratio is a and the relationship of a + b + c = 100 at% is satisfied. 元素MはZrであり、元素Oの組成比cが、8.11〜9.29at%の範囲内、元素Zrの組成比bが7.95〜8.36at%の範囲内、残部が元素Feの組成比aであり、a+b+c=100at%の関係を満たす請求項3記載の磁性シート。   The element M is Zr, the composition ratio c of the element O is within the range of 8.11 to 9.29 at%, the composition ratio b of the element Zr is within the range of 7.95 to 8.36 at%, and the balance is the element Fe The magnetic sheet according to claim 3, wherein the composition ratio is a and the relationship of a + b + c = 100 at% is satisfied. 前記磁性シートはRFIDデバイスに用いられる請求項1ないし6のいずれかに記載の磁性シート。   The magnetic sheet according to claim 1, wherein the magnetic sheet is used for an RFID device. 前記磁性膜の膜厚は、0.5〜15μmの範囲内である請求項7記載の磁性シート。   The magnetic sheet according to claim 7, wherein a thickness of the magnetic film is in a range of 0.5 to 15 μm. 前記磁性シートは電磁波抑制体に用いられる請求項1ないし6のいずれかに記載の磁性シート。   The magnetic sheet according to claim 1, wherein the magnetic sheet is used for an electromagnetic wave suppressing body. 基板上に、A−M−O(ただし元素AはFeまたはCoまたはその混合物を表し、元素Mは、Hf、Ti、Zr、V、Nb、Ta、Mo、W、Al、Mg、Zn、Ca、Ce、Yのうち少なくともいずれか一種を表す)から成る磁性膜を物理蒸着法により成膜するとき、不活性ガスとO2ガスとの混合ガスのガス圧を0.5mTorr〜6mTorrの範囲内で調整し、元素MとOの化合物を含むアモルファス相と、前記アモルファス相中に点在するFeまたはCoから選ばれる一種または二種を主体とした平均結晶粒径30nm以下の微結晶相との膜構造を形成することを特徴とする磁性シートの製造方法。 On the substrate, A-M-O (where element A represents Fe or Co or a mixture thereof, and element M is Hf, Ti, Zr, V, Nb, Ta, Mo, W, Al, Mg, Zn, Ca) , Ce, and Y) are formed by physical vapor deposition, the gas pressure of the mixed gas of inert gas and O 2 gas is in the range of 0.5 mTorr to 6 mTorr. And an amorphous phase containing a compound of elements M and O, and a microcrystalline phase having an average crystal grain size of 30 nm or less mainly composed of one or two kinds selected from Fe or Co interspersed in the amorphous phase A method for producing a magnetic sheet, comprising forming a film structure. 前記磁性膜は、元素AがFeであり、組成式がFeabcから成り、元素Oの組成比cが、6.85〜47at%の範囲内、元素Mの組成比が7.95〜21.38at%の範囲内、残部が元素Feの組成比aであり、a+b+c=100at%の関係を満たす前記磁性膜を成膜する請求項10記載の磁性シートの製造方法。 In the magnetic film, the element A is Fe, the composition formula is Fe a M b O c , the composition ratio c of the element O is in the range of 6.85 to 47 at%, and the composition ratio of the element M is 7. The method for producing a magnetic sheet according to claim 10, wherein the magnetic film satisfying the relationship of a + b + c = 100 at% is formed in a range of 95 to 21.38 at%, the balance being the composition ratio a of element Fe. 元素MはHfであり、元素Oの組成比cが、6.85〜47at%の範囲内、元素Hfの組成比bが11.40〜15.74at%の範囲内、残部が元素Feの組成比aであり、a+b+c=100at%の関係を満たす前記磁性膜を成膜する請求項11記載の磁性シートの製造方法。   The element M is Hf, the composition ratio c of the element O is in the range of 6.85 to 47 at%, the composition ratio b of the element Hf is in the range of 11.40 to 15.74 at%, and the balance is the composition of the element Fe. The method of manufacturing a magnetic sheet according to claim 11, wherein the magnetic film satisfying the ratio a and the relationship of a + b + c = 100 at% is formed. 元素MはAlであり、元素Oの組成比cが、6.99〜16.75at%の範囲内、元素Alの組成比bが9.79〜21.38at%の範囲内、残部が元素Feの組成比aであり、a+b+c=100at%の関係を満たす前記磁性膜を成膜する請求項11記載の磁性シートの製造方法。   The element M is Al, the composition ratio c of the element O is in the range of 699 to 16.75 at%, the composition ratio b of the element Al is in the range of 9.79 to 21.38 at%, and the balance is the element Fe The method for manufacturing a magnetic sheet according to claim 11, wherein the magnetic film satisfying the relationship of a + b + c = 100 at% is formed. 元素MはZrであり、元素Oの組成比cが、8.11〜9.29at%の範囲内、元素Zrの組成比bが7.95〜8.36at%の範囲内、残部が元素Feの組成比aであり、a+b+c=100at%の関係を満たす前記磁性膜を成膜する請求項11記載の磁性シートの製造方法。   The element M is Zr, the composition ratio c of the element O is within the range of 8.11 to 9.29 at%, the composition ratio b of the element Zr is within the range of 7.95 to 8.36 at%, and the balance is the element Fe The method for manufacturing a magnetic sheet according to claim 11, wherein the magnetic film satisfying the relationship of a + b + c = 100 at% is formed.
JP2008239883A 2007-10-01 2008-09-18 Magnetic sheet and manufacturing method thereof Expired - Fee Related JP5284736B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008239883A JP5284736B2 (en) 2007-10-01 2008-09-18 Magnetic sheet and manufacturing method thereof
PCT/JP2009/059502 WO2009145130A1 (en) 2008-05-28 2009-05-25 Magnetic sheet and method for manufacturing the same

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2007257426 2007-10-01
JP2007257423 2007-10-01
JP2007257423 2007-10-01
JP2007257426 2007-10-01
JP2008139987 2008-05-28
JP2008139987 2008-05-28
JP2008239883A JP5284736B2 (en) 2007-10-01 2008-09-18 Magnetic sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010010641A true JP2010010641A (en) 2010-01-14
JP5284736B2 JP5284736B2 (en) 2013-09-11

Family

ID=41377005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008239883A Expired - Fee Related JP5284736B2 (en) 2007-10-01 2008-09-18 Magnetic sheet and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5284736B2 (en)
WO (1) WO2009145130A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008814A (en) * 2010-06-25 2012-01-12 Alps Electric Co Ltd Communication device
WO2013191178A1 (en) * 2012-06-19 2013-12-27 株式会社新日本電波吸収体 Shield material for loop antenna, shield unit, and shield tag
JP2016023340A (en) * 2014-07-22 2016-02-08 アルプス・グリーンデバイス株式会社 Fe-BASED ALLOY COMPOSITION, MOLDING MEMBER, MANUFACTURING METHOD OF MOLDING MEMBER, DUST CORE, ELECTRONIC COMPONENT, MAGNETIC SHEET, COMMUNICATION MEMBER, COMMUNICATION EQUIPMENT AND ELECTROMAGNETIC INTERFERENCE INHIBITION MEMBER

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068593A1 (en) * 2012-11-01 2014-05-08 Indian Institute Of Science High-frequency integrated device with an enhanced inductance and a process thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448707A (en) * 1990-06-15 1992-02-18 Tdk Corp Soft magnetic thin film
JPH0547551A (en) * 1991-08-16 1993-02-26 Sony Corp Soft magnetic thin film
JPH09181476A (en) * 1995-12-26 1997-07-11 Mitsui Mining & Smelting Co Ltd Ultrafine-crystalline magnetic film-made radio wave absorber
JP2007277080A (en) * 2006-03-14 2007-10-25 Nec Tokin Corp Ferrite material, ferrite film and rfid tag using it

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217125A (en) * 2000-02-04 2001-08-10 Alps Electric Co Ltd Soft magnetic film, planar-type magnetic element using soft magnetic film, filter and thin-film magnetic head
JP2001358030A (en) * 2000-06-12 2001-12-26 Alps Electric Co Ltd Method of manufacturing soft magnetic film, flat magnetic element using it, filter, and method of manufacturing thin film magnetic head

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448707A (en) * 1990-06-15 1992-02-18 Tdk Corp Soft magnetic thin film
JPH0547551A (en) * 1991-08-16 1993-02-26 Sony Corp Soft magnetic thin film
JPH09181476A (en) * 1995-12-26 1997-07-11 Mitsui Mining & Smelting Co Ltd Ultrafine-crystalline magnetic film-made radio wave absorber
JP2007277080A (en) * 2006-03-14 2007-10-25 Nec Tokin Corp Ferrite material, ferrite film and rfid tag using it

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008814A (en) * 2010-06-25 2012-01-12 Alps Electric Co Ltd Communication device
WO2013191178A1 (en) * 2012-06-19 2013-12-27 株式会社新日本電波吸収体 Shield material for loop antenna, shield unit, and shield tag
CN104396360A (en) * 2012-06-19 2015-03-04 株式会社新日本电波吸收体 Shield material for loop antenna, shield unit, and shield tag
JPWO2013191178A1 (en) * 2012-06-19 2016-05-26 株式会社新日本電波吸収体 Shield material for loop antenna, shield unit, and shield tag
JP2016023340A (en) * 2014-07-22 2016-02-08 アルプス・グリーンデバイス株式会社 Fe-BASED ALLOY COMPOSITION, MOLDING MEMBER, MANUFACTURING METHOD OF MOLDING MEMBER, DUST CORE, ELECTRONIC COMPONENT, MAGNETIC SHEET, COMMUNICATION MEMBER, COMMUNICATION EQUIPMENT AND ELECTROMAGNETIC INTERFERENCE INHIBITION MEMBER

Also Published As

Publication number Publication date
WO2009145130A1 (en) 2009-12-03
JP5284736B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
US8305281B2 (en) Core-shell magnetic material, method of manufacturing core-shell magnetic material, device, and antenna device
KR101451964B1 (en) Magnetic Shielding Sheet for Digitizer, Manufacturing Method thereof, and Portable Terminal Equipment Using the Same
TWI258710B (en) Antenna for reader/recorder and reader/recorder having the antenna
US9832917B2 (en) Electromagnetic wave absorbing sheet and method of manufacturing the same and electronic device using the same
JP5175884B2 (en) Nanoparticle composite material, antenna device using the same, and electromagnetic wave absorber
JP4691103B2 (en) Electromagnetic wave countermeasure parts and electronic equipment using the same
US8289222B2 (en) Core-shell magnetic material, method of manufacturing core-shell magnetic material, device, antenna device, and portable device
KR101399021B1 (en) Magnetic Shielding Sheet for Digitizer, Manufacturing Method thereof, and Portable Terminal Equipment Using the Same
JP2015510695A (en) Magnetic field shielding sheet for digitizer, method of manufacturing the same, and portable terminal device using the same
JP2007295558A (en) Antenna transmission improving sheet body and electronic apparatus
Matsushita et al. Spin-sprayed Ni–Zn–Co ferrite films with high μ r ″> 100 in extremely wide frequency range 100 MHz–1 GHz
US6346336B1 (en) Soft magnetic film soft magnetic multilayer film method of manufacturing the same and magnetic device
JP5284736B2 (en) Magnetic sheet and manufacturing method thereof
JP2002158486A (en) Electromagnetic wave absorbing film
CN101308947A (en) Antenna for reader/writer and reader/writer having the antenna
JP5085470B2 (en) Core-shell magnetic material, device device, and antenna device.
US10923822B2 (en) Wireless communications antenna
US10573969B2 (en) Wireless communication antenna
JP4843612B2 (en) Soft magnetic film, anti-electromagnetic wave component and electronic device using the same
JP2004303825A (en) Laminated soft magnetic member, and electronic apparatus
JP2011082278A (en) Composite magnetic material
JP7510106B2 (en) Magnetic sheet and wireless communication tag
JP2010283333A (en) Magnetic member for rfid, and rfid device
EP0991087A2 (en) Soft magnetic thin film, soft magnetic multi-layered film, producing method thereof and magnetic device using them
WO2010113791A1 (en) Magnetic sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130530

R150 Certificate of patent or registration of utility model

Ref document number: 5284736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees