JP2010283333A - Magnetic member for rfid, and rfid device - Google Patents

Magnetic member for rfid, and rfid device Download PDF

Info

Publication number
JP2010283333A
JP2010283333A JP2010056368A JP2010056368A JP2010283333A JP 2010283333 A JP2010283333 A JP 2010283333A JP 2010056368 A JP2010056368 A JP 2010056368A JP 2010056368 A JP2010056368 A JP 2010056368A JP 2010283333 A JP2010283333 A JP 2010283333A
Authority
JP
Japan
Prior art keywords
film
magnetic
rfid
films
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010056368A
Other languages
Japanese (ja)
Inventor
Akira Nakabayashi
亮 中林
Shigeru Kobayashi
茂 小林
Hisato Koshiba
寿人 小柴
Takao Mizushima
隆夫 水嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2010056368A priority Critical patent/JP2010283333A/en
Publication of JP2010283333A publication Critical patent/JP2010283333A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic member for an RFID, the magnetic member enhancing effectively, in particular, a communication sensitivity, compared with that in the prior art, as to structure for film-forming a magnetic film on a base material by a physical vapor deposition method; and to provide an RFID device. <P>SOLUTION: The magnetic films 7, 8 are laminated to form a plurality of layers while separated by an insulating film 6b, by the physical vapor deposition method, although the magnetic film is film-formed of a single layer on the base material in the prior art. A film thickness in each of the magnetic films 7, 8 is preferably 0.5 μm or more to 3 μm or less. The layer number of magnetic films is within 2-8 of range, in particular, the layer number is preferably 2. The magnetic films 7, 8 are formed, for example, of an Fe-M-O film or an Fe-M-N film, and the insulating films 6a, 6b, 6c are formed, for example, of an SiO<SB>2</SB>film. The communication sensitivity of the RFID device is effectively enhanced compared with that in the prior art, by using the magnetic member for the RFID. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、RFIDタグと金属部材間に挿入されるRFID用磁性部材に関する。   The present invention relates to a magnetic member for RFID inserted between an RFID tag and a metal member.

RFID(Radio Frequency ID)タグの需要は、非接触ICカードの普及や携帯電話等への搭載により拡大している。   The demand for RFID (Radio Frequency ID) tags is increasing due to the spread of non-contact IC cards and their mounting on mobile phones and the like.

前記RFIDタグは、情報を記録するICチップと、金属製のアンテナを備え、リーダライタとの間で無線通信を可能としている。   The RFID tag includes an IC chip for recording information and a metal antenna, and enables wireless communication with a reader / writer.

しかしながら前記RFIDタグの近傍に金属部材がある場合、前記リーダライタからの磁界により前記金属に渦電流が生じ、前記渦電流による反磁界が、無線通信に必要な磁界をキャンセルしてしまう問題があった。
特開2006−81140号公報 特開2006−191041号公報
However, when there is a metal member in the vicinity of the RFID tag, an eddy current is generated in the metal by the magnetic field from the reader / writer, and the demagnetizing field due to the eddy current cancels the magnetic field necessary for wireless communication. It was.
JP 2006-81140 A JP 2006-191041 A

上記した問題を解決すべく、磁性部材を、前記金属部材と、前記RFIDタグとの間に挿入すると、磁性部材が前記リーダライタからの磁束をRFIDタグ側に引き寄せて、リーダライタのアンテナとRFIDタグのアンテナ間に磁束を貫通させることができ、前記RFIDタグのアンテナにて受信した信号出力の減衰量を小さくできRFID特性の向上を図ることができる。   In order to solve the above problem, when a magnetic member is inserted between the metal member and the RFID tag, the magnetic member attracts the magnetic flux from the reader / writer to the RFID tag side, and the reader / writer antenna and the RFID Magnetic flux can be passed between the antennas of the tag, the attenuation of the signal output received by the antenna of the RFID tag can be reduced, and the RFID characteristics can be improved.

しかしながら、例えば、磁性粉末とバインダー樹脂からなるRFID用の磁性シートやフェライト材では、シート厚が数百μmと非常に厚くなり、このため、RFIDタグを搭載した通信機器の薄型化に伴い、機器内にて前記磁性シートやフェライト材に対する設置空間を確保できない場合があった。   However, for example, an RFID magnetic sheet or ferrite material made of magnetic powder and a binder resin has a sheet thickness of several hundreds of micrometers, and as a result, communication equipment equipped with RFID tags has become thinner. In some cases, an installation space for the magnetic sheet or ferrite material cannot be secured.

また、基材上に高抵抗軟磁性膜を物理蒸着法により成膜したRFID用磁性部材では、上記した磁性シートやフェライト材よりも磁性膜の薄膜化を実現できるが、前記磁性シートやフェライト材に比べて通信感度が同程度以下になりやすい等、通信感度を効果的に向上させることができなかった。   Further, in the RFID magnetic member in which a high-resistance soft magnetic film is formed on a substrate by physical vapor deposition, the magnetic film can be made thinner than the above-described magnetic sheet or ferrite material. The communication sensitivity could not be improved effectively, for example, the communication sensitivity was likely to be equal to or less than that of.

また特許文献2には、多層構造を有する磁性膜にて渦電流損失を低減させる発明が開示されている。   Patent Document 2 discloses an invention for reducing eddy current loss with a magnetic film having a multilayer structure.

しかしながら特許文献2に記載された発明では、RFID用として使用されるものでなく上記したRFID用磁性部材における従来課題を解決するものではない。また特許文献2に記載された発明では磁性膜の具体的な組成等が不明であり、また磁性膜の膜厚も最大で数百μmと非常に厚い膜厚となっている。   However, the invention described in Patent Document 2 is not used for RFID, and does not solve the conventional problems in the above-described magnetic member for RFID. In the invention described in Patent Document 2, the specific composition and the like of the magnetic film are unknown, and the film thickness of the magnetic film is a very large film thickness of several hundred μm at the maximum.

そこで本発明は上記従来の課題を解決するためのものであり、基材上に物理蒸着法にて磁性膜を成膜する構造に係り、特に、従来に比べて、通信感度を効果的に向上させることができるRFID用磁性部材及びRFIDデバイスを提供することを目的としている。   Therefore, the present invention is to solve the above-described conventional problems, and relates to a structure in which a magnetic film is formed on a substrate by a physical vapor deposition method. In particular, the communication sensitivity is effectively improved as compared with the conventional one. It is an object of the present invention to provide an RFID magnetic member and an RFID device that can be made to operate.

本発明におけるRFID用磁性部材は、基材上に、積層された磁性膜と、各磁性膜間に介在する絶縁膜とを有して構成され、各磁性膜は、主成分の元素T(元素TはFeまたはCoまたはその混合物を表す)と、元素M(元素Mは、Hf、Ti、Zr、V、Nb、Ta、Mo、W、Al、Mg、Zn、Ca、Ce、Yのうち少なくともいずれか一種を表す)と、元素X(OまたはNのうち少なくともいずれか1種を表す)とを有し、膜構造が、元素Mと元素Xの化合物を含むアモルファス相と、前記アモルファス相中に点在する元素Tを主体とした微結晶相とを有してなることを特徴とするものである。   The magnetic member for RFID in the present invention is configured to have a laminated magnetic film and an insulating film interposed between the magnetic films on a base material, and each magnetic film is composed of a main component element T (element T represents Fe or Co or a mixture thereof) and an element M (the element M is at least one of Hf, Ti, Zr, V, Nb, Ta, Mo, W, Al, Mg, Zn, Ca, Ce, and Y). Any one type) and an element X (representing at least one of O or N), the film structure including an element M and a compound of the element X, and the amorphous phase And a microcrystalline phase mainly composed of elements T interspersed therewith.

そして、本発明におけるRFIDデバイスは、RFIDタグと金属部材間に本発明のRFID用磁性部材が介在してなることを特徴とするものである。   The RFID device according to the present invention is characterized in that the RFID magnetic member according to the present invention is interposed between an RFID tag and a metal member.

本発明によれば、従来のように、磁性膜の単層構造をRFID用磁性部材としてRFIDタグと金属部材間に介在させた場合に比べて、通信感度を効果的に向上させることができる。   According to the present invention, it is possible to effectively improve communication sensitivity as compared with the conventional case where a single-layer structure of a magnetic film is interposed between an RFID tag and a metal member as an RFID magnetic member.

本発明では、各磁性膜の膜厚は、0.5μm以上で3.0μm以下であることが好ましい。このように膜厚の薄い磁性膜と絶縁膜とを積層する構成としたことで、通信感度を効果的に向上させることができるが、各磁性膜の膜厚を薄くしすぎても、十分な通信感度の向上を図ることができない。そのため、各磁性膜の膜厚の下限値を0.5μmと設定した。   In the present invention, the thickness of each magnetic film is preferably 0.5 μm or more and 3.0 μm or less. The structure in which the thin magnetic film and the insulating film are stacked in this way can effectively improve communication sensitivity. However, even if the thickness of each magnetic film is made too thin, it is sufficient. Communication sensitivity cannot be improved. Therefore, the lower limit value of the thickness of each magnetic film is set to 0.5 μm.

本発明のように磁性膜を複数層に分断し、そして上記した各磁性膜の膜厚に規制することで、例えば、磁性膜の総厚を従来の磁性膜の単層構造と同等にして対比すると、従来の磁性膜の単層構造に比べて、効果的に、通信感度を向上させることができ、また、前記総厚を従来の磁性膜の単層構造より薄くしても、従来と同等以上の通信感度が得られるように調整できる。   By dividing the magnetic film into a plurality of layers as in the present invention and restricting the thickness of each magnetic film as described above, for example, the total thickness of the magnetic film is made equal to the single-layer structure of the conventional magnetic film. Then, compared with the conventional single-layer structure of the magnetic film, the communication sensitivity can be effectively improved, and even if the total thickness is made thinner than the single-layer structure of the conventional magnetic film, it is equivalent to the conventional structure. Adjustments can be made to obtain the above communication sensitivity.

また本発明では、各磁性膜の膜厚の合計膜厚(総厚)は、1μm以上で12μm以下の範囲内であることが好ましい。   In the present invention, the total film thickness (total thickness) of the magnetic films is preferably in the range of 1 μm to 12 μm.

本発明では、前記磁性膜は,Fe−M−Nにて形成されることが好ましい。このように磁性膜をFe−M−Nとすることで、各磁性膜の膜厚及び複数の磁性膜の総厚をより薄く形成しても、従来と同等以上の通信感度を得ることが可能である。   In the present invention, the magnetic film is preferably formed of Fe-MN. By using Fe-MN as the magnetic film in this way, it is possible to obtain the same or higher communication sensitivity as before even if the thickness of each magnetic film and the total thickness of the plurality of magnetic films are made thinner. It is.

本発明では、Nの組成比は、13at%以上で18at%以下であることが好ましい。さらに具体的には、13at%以上で16at%以下の範囲内であることが好ましい。かかる場合、Fe−M−NをRFコンベンショナルスパッタ法で形成することが好適である。これにより、複素比透磁率の実数部μ´(13.56MHz)を約2000以上にできる。あるいは、Nの組成比は、15at%以上で18at%以下の範囲内であることが好ましい。かかる場合、Fe−M−NをDC対向ターゲットスパッタ法で形成することが好適である。これにより、複素比透磁率の実数部μ´(13.56MHz)を約1400以上にできる。 In the present invention, the composition ratio of N is preferably 13 at% or more and 18 at% or less. More specifically, it is preferably within a range of 13 at% or more and 16 at% or less. In such a case, it is preferable to form Fe-M-N by an RF conventional sputtering method. Thereby, the real part μ ′ (13.56 MHz) of the complex relative permeability can be increased to about 2000 or more. Alternatively, the composition ratio of N is preferably in the range of 15 at% or more and 18 at% or less. In such a case, it is preferable to form Fe-MN by DC facing target sputtering. Thereby, the real part μ ′ (13.56 MHz) of the complex relative permeability can be increased to about 1400 or more.

本発明では、Fe−M−Nからなる各磁性膜の膜厚を、0.5μm以上で1.2μm以下に薄く形成できる。後述する実験によれば、各磁性膜の膜厚を1μm以下にし、複数の磁性膜の総厚を薄くしても、高い通信出力が得られ、効果的に通信距離を延ばすことができるとわかった。   In the present invention, the film thickness of each magnetic film made of Fe-MN can be thinly formed to 0.5 μm or more and 1.2 μm or less. According to the experiment described later, it is found that even if the thickness of each magnetic film is 1 μm or less and the total thickness of the plurality of magnetic films is reduced, a high communication output can be obtained and the communication distance can be effectively extended. It was.

あるいは本発明では、前記磁性膜は、Fe−M−Oにて形成されることが好ましい。かかる場合、各磁性膜の膜厚は、0.7μm以上で2.8μm以下であることが好ましい。   Alternatively, in the present invention, the magnetic film is preferably formed of Fe-MO. In such a case, the thickness of each magnetic film is preferably 0.7 μm or more and 2.8 μm or less.

また本発明では、前記磁性膜の積層数は、2〜8の範囲内であることが好ましい。特に、前記磁性膜の積層数は、2であることがより好ましい。これにより、磁性膜の総厚を薄く且つ、効果的に通信感度を向上させることができる。   In the present invention, the number of laminated magnetic films is preferably in the range of 2-8. In particular, the number of laminated magnetic films is more preferably 2. Thereby, the total thickness of the magnetic film can be reduced and the communication sensitivity can be effectively improved.

また本発明では、前記絶縁膜は、SiO2膜であることが好ましい。
また本発明では、前記磁性膜を前記基材に直接、あるいは絶縁膜を介して形成することが可能である。すなわち基材/磁性膜/絶縁膜/磁性膜・・・、基材/絶縁膜/磁性膜/絶縁膜/磁性膜・・・にて形成できる。
In the present invention, the insulating film is preferably a SiO 2 film.
In the present invention, the magnetic film can be formed on the substrate directly or via an insulating film. That is, it can be formed by base material / magnetic film / insulating film / magnetic film..., Base material / insulating film / magnetic film / insulating film / magnetic film.

また本発明では、前記基材は、可撓性の樹脂シートであり、前記磁性膜の膜構造は、熱処理することなく形成されたものであることが好ましい。これにより、樹脂シートを熱に曝すことがなくなり、寸法精度に優れた磁性部材を形成できるとともに、樹脂シートの材質の選択性を広げることができる。   Moreover, in this invention, it is preferable that the said base material is a flexible resin sheet, and the film | membrane structure of the said magnetic film is formed without heat-processing. Accordingly, the resin sheet is not exposed to heat, a magnetic member having excellent dimensional accuracy can be formed, and the selectivity of the material of the resin sheet can be expanded.

また本発明では、前記基材は、金属で形成されていてもよい。すなわち金属/絶縁膜/磁性膜/絶縁膜/磁性膜・・・、金属/磁性膜/絶縁膜/磁性膜・・・とすることが可能である。   Moreover, in this invention, the said base material may be formed with the metal. That is, metal / insulating film / magnetic film / insulating film / magnetic film..., Metal / magnetic film / insulating film / magnetic film.

そして本発明におけるRFIDデバイスでは、RFIDタグと金属部材間に、磁性膜が前記金属部材を基材として形成されている構成にすることも可能である。   In the RFID device according to the present invention, a magnetic film may be formed between the RFID tag and the metal member using the metal member as a base material.

本発明によれば、従来に比べて、通信感度を効果的に向上させることができる。   According to the present invention, it is possible to effectively improve the communication sensitivity as compared with the prior art.

RFIDデバイス及びリーダライタの模式図、Schematic diagram of RFID device and reader / writer, 本発明の実施形態の磁性部材の部分断面図、The fragmentary sectional view of the magnetic member of the embodiment of the present invention, Fe−M−O膜の膜構造の模式図、Schematic diagram of the film structure of the Fe-MO film, 図2と異なる本発明の実施形態の磁性部材の部分断面図、The fragmentary sectional view of the magnetic member of the embodiment of the present invention different from FIG. 実験に使用した各磁性部材の磁性膜の膜厚(磁性膜が複数層ある場合は総厚)と、13.56MHzにおけるRFIDデバイスの信号強度との関係を示すグラフ、A graph showing the relationship between the thickness of the magnetic film of each magnetic member used in the experiment (total thickness when there are multiple magnetic films) and the signal strength of the RFID device at 13.56 MHz; FeAlN(RFコンベンショナルスパッタ法で成膜)の積層膜を用いた実施例1、及び比較例1〜5における周波数と信号出力との関係を示すグラフ、A graph showing the relationship between frequency and signal output in Example 1 using a laminated film of FeAlN (deposited by RF conventional sputtering method) and Comparative Examples 1 to 5, 実施例1の磁性部材における周波数と、複素比透磁率の実数部μ´及び虚数部μ″との関係を示すグラフ、A graph showing the relationship between the frequency in the magnetic member of Example 1 and the real part μ ′ and the imaginary part μ ″ of the complex relative permeability, FeAlN(DC対向ターゲットスパッタ法で成膜)の積層膜を用いた実施例2、及び比較例1、2における周波数と信号出力との関係を示すグラフ、A graph showing the relationship between frequency and signal output in Example 2 using a laminated film of FeAlN (deposited by a DC facing target sputtering method) and Comparative Examples 1 and 2, 実施例2の磁性部材における周波数と、複素比透磁率の実数部μ´及び虚数部μ″との関係を示すグラフ、A graph showing the relationship between the frequency in the magnetic member of Example 2 and the real part μ ′ and the imaginary part μ ″ of the complex relative permeability, 各磁性膜の膜厚と最大通信距離との関係を示すグラフ。The graph which shows the relationship between the film thickness of each magnetic film, and the maximum communication distance.

図1は、RFIDデバイス及びリーダライタの模式図、図2は本発明の実施形態のRFID用磁性部材の部分断面図(膜厚方向に沿って切断した際の部分断面図)、図3は本実施形態の磁性膜の膜構造の模式図である。   FIG. 1 is a schematic diagram of an RFID device and a reader / writer, FIG. 2 is a partial cross-sectional view of a magnetic member for RFID according to an embodiment of the present invention (partial cross-sectional view taken along the film thickness direction), and FIG. It is a schematic diagram of the film | membrane structure of the magnetic film of embodiment.

図1に示すようにRFID(Radio Frequency ID)デバイス1は、アンテナ及びICチップを備えるRFIDタグ2と、金属部材3と、前記RFIDタグ2と前記金属部材3との間に介在するRFID用磁性部材4とを有して構成される。RFIDは、13.56MHzでの電磁誘導を利用した通信システムとして知られている。   As shown in FIG. 1, an RFID (Radio Frequency ID) device 1 includes an RFID tag 2 having an antenna and an IC chip, a metal member 3, and an RFID magnet interposed between the RFID tag 2 and the metal member 3. And a member 4. RFID is known as a communication system using electromagnetic induction at 13.56 MHz.

前記RFIDタグ2は、基板上に前記アンテナ及びICチップが形成された形態である。   The RFID tag 2 has a form in which the antenna and the IC chip are formed on a substrate.

前記金属部材3は例えば筐体の一部を成しており、Al、Ti、Cr等で形成される。前記金属部材3の厚さは、0.05〜0.5mm程度である。   The metal member 3 forms part of a housing, for example, and is made of Al, Ti, Cr, or the like. The metal member 3 has a thickness of about 0.05 to 0.5 mm.

図1に示すように、RFID用磁性部材4をRFIDタグ2と金属部材3との間に挿入することで、リーダライタ11からの磁束BがRFID用磁性部材4内を通り、RFIDデバイス1とリーダライタ11との間で還流磁束が形成される。この結果、RFIDタグ2のアンテナにて受信した信号出力の減衰量を小さくでき、13.56MHzでの通信感度の向上を効果的に図ることができる。   As shown in FIG. 1, by inserting the RFID magnetic member 4 between the RFID tag 2 and the metal member 3, the magnetic flux B from the reader / writer 11 passes through the RFID magnetic member 4, and the RFID device 1 A reflux magnetic flux is formed with the reader / writer 11. As a result, the attenuation of the signal output received by the antenna of the RFID tag 2 can be reduced, and the communication sensitivity at 13.56 MHz can be effectively improved.

前記RFIDタグ2と前記金属部材3との間に挿入されるRFID用磁性部材4は、図2に示すように基材5上に絶縁膜6a,6b,6cと磁性膜7,8が交互に積層された形態である。磁性膜7,8及び絶縁膜6a,6b,6cは、物理蒸着法により成膜されたものであることが好適である。   The RFID magnetic member 4 inserted between the RFID tag 2 and the metal member 3 has insulating films 6a, 6b and 6c and magnetic films 7 and 8 alternately on a substrate 5 as shown in FIG. It is a laminated form. The magnetic films 7 and 8 and the insulating films 6a, 6b, and 6c are preferably formed by physical vapor deposition.

磁性膜7,8は、T−M−X(ただし、TはFeまたはCoまたはその混合物を表し、元素Mは、Hf、Ti、Zr、V、Nb、Ta、Mo、W、Al、Mg、Zn、Ca、Ce、Yのうち少なくともいずれか一種を表し、元素Xは、OまたはNのうち少なくともいずれか1種を表す)から成る。   The magnetic films 7 and 8 are TMX (where T represents Fe or Co or a mixture thereof, and the element M is Hf, Ti, Zr, V, Nb, Ta, Mo, W, Al, Mg, Zn, Ca, Ce, or Y represents at least one of them, and the element X represents at least one of O or N).

磁性膜7,8は、基材5上の全面に成膜される形態のほかに、部分的に、例えば、基材5の縁部を残して、基材5の中央部分のみに形成されてもよい。ただし、図1のようにRFID用磁性部材4とRFIDタグ2とを重ねたときに、磁性膜7,8がRFIDタグ2の全面と完全に対向する程度の大きさで形成されることが好適である。   The magnetic films 7 and 8 are not only formed on the entire surface of the base material 5 but also partially formed, for example, only on the central portion of the base material 5 while leaving the edge of the base material 5. Also good. However, when the RFID magnetic member 4 and the RFID tag 2 are stacked as shown in FIG. 1, the magnetic films 7 and 8 are preferably formed to have a size that completely faces the entire surface of the RFID tag 2. It is.

磁性膜7,8は、成膜中、あるいは成膜後に熱処理を施すことなく形成されたものであり、このように非熱処理においても、図3に示すように、元素Mと元素Xの化合物を含むアモルファス相9と、前記アモルファス相9中に点在する元素Tを主体とした微結晶相10とを有する混相構造で形成されている。微結晶相10の平均粒径を30nm以下にできる。   The magnetic films 7 and 8 are formed without being subjected to heat treatment during film formation or after film formation. Thus, even in non-heat treatment, as shown in FIG. It includes a mixed phase structure having an amorphous phase 9 and a microcrystalline phase 10 mainly composed of elements T interspersed in the amorphous phase 9. The average particle diameter of the microcrystalline phase 10 can be 30 nm or less.

本実施形態の磁性膜7,8は、高抵抗軟磁性膜であり、軟磁気特性に優れる。例えば、複素比透磁率の実数部μ´(13.56MHz)を200以上、好ましくは300以上、好ましくは800以上、より好ましくは1400以上、更に好ましくは2000以上にでき、また比抵抗ρを100(μΩ・cm)以上、好ましくは150(μΩ・cm)以上、より好ましくは200(μΩ・cm)以上、更に好ましくは300(μΩ・cm)以上に設定できる。 The magnetic films 7 and 8 of this embodiment are high resistance soft magnetic films and are excellent in soft magnetic characteristics. For example, the real part μ ′ (13.56 MHz) of the complex relative magnetic permeability can be 200 or more, preferably 300 or more, preferably 800 or more, more preferably 1400 or more, still more preferably 2000 or more, and the specific resistance ρ can be 100 ( μΩ · cm) or more, preferably 150 (μΩ · cm) or more, more preferably 200 (μΩ · cm) or more, and even more preferably 300 (μΩ · cm) or more.

本実施形態の磁性膜7,8は、Fe−M−Nで形成されることが好ましく、そのときのNの組成比は13at%以上で18at%以下であると良い。より具体的には、Nの組成比は、13at%以上で16at%以下の範囲内であることが好ましい。また残りのFeとMの組成比(at%)は、[M/(Fe+M)]×100(%)が16〜20%の範囲内となるように調整することが好適である。かかる場合、Fe−M−NをRFコンベンショナルスパッタ法で形成することが好適である。これにより、複素比透磁率の実数部μ´(13.56MHz)を約2000以上にできる。 The magnetic films 7 and 8 of this embodiment are preferably formed of Fe-MN, and the composition ratio of N at that time is preferably 13 at% or more and 18 at% or less. More specifically, the composition ratio of N is preferably in the range of 13 at% to 16 at%. The composition ratio (at%) of the remaining Fe and M is preferably adjusted so that [M / (Fe + M)] × 100 (%) falls within the range of 16 to 20%. In such a case, it is preferable to form Fe-M-N by an RF conventional sputtering method. Thereby, the real part μ ′ (13.56 MHz) of the complex relative permeability can be increased to about 2000 or more.

あるいは、Nの組成比は、15at%以上で18at%以下の範囲内であることが好ましい。また残りのFeとMの組成比(at%)は、[M/(Fe+M)]×100(%)が17〜19%の範囲内となるように調整することが好適である。かかる場合、Fe−M−NをDC対向ターゲットスパッタ法で形成することが好適である。これにより、複素比透磁率の実数部μ´(13.56MHz)を約1400以上にできる。 Alternatively, the composition ratio of N is preferably in the range of 15 at% or more and 18 at% or less. The composition ratio (at%) of the remaining Fe and M is preferably adjusted so that [M / (Fe + M)] × 100 (%) falls within the range of 17 to 19%. In such a case, it is preferable to form Fe-MN by DC facing target sputtering. Thereby, the real part μ ′ (13.56 MHz) of the complex relative permeability can be increased to about 1400 or more.

または、本実施形態の磁性膜7,8は、組成式がTabcで示され、元素TにはFeを、元素XにはOを選択することが可能である。このとき、元素MがZrで、Zrの組成比bが、7.95〜8.36at%の範囲内、Oの組成比cが、8.11〜9.27at%の範囲内であることが好適である。そして、組成比a+b+cの合計が100at%である。 Or, the magnetic film 7 and 8 of this embodiment, the composition formula is represented by T a M b X c, the element T to Fe, the element X can be selected to O. At this time, the element M is Zr, the composition ratio b of Zr is in the range of 7.95 to 8.36 at%, and the composition ratio c of O is in the range of 8.11 to 9.27 at%. Is preferred. The sum of the composition ratios a + b + c is 100 at%.

あるいは、本実施形態の磁性膜7,8は、組成式がTabcで示され、元素TがFeで、元素MがAlで、元素XがOであり、Alの組成比bが、9.79〜21.38at%の範囲内、Oの組成比cが、6.99〜16.75at%の範囲内であることが好適である。また組成比a+b+cの合計が100at%である。 Alternatively, in the magnetic films 7 and 8 of the present embodiment, the composition formula is represented by T a M b X c , the element T is Fe, the element M is Al, the element X is O, and the Al composition ratio b Is preferably in the range of 9.79 to 21.38 at%, and the composition ratio c of O is preferably in the range of 699 to 16.75 at%. The sum of the composition ratios a + b + c is 100 at%.

Fe−M−Oからなる磁性膜では、Fe−M−Nからなる磁性膜よりも複素比透磁率の実数部μ´(13.56MHz)が小さくなりやすいものの、上記のように組成比の調整により、約800以上、好ましくは約1000以上の複素比透磁率の実数部μ´(13.56MHz)を得ることが可能である。 In the magnetic film made of Fe-M-O, the real part μ ′ (13.56 MHz) of the complex relative permeability is likely to be smaller than that of the magnetic film made of Fe-MN, but by adjusting the composition ratio as described above It is possible to obtain a real part μ ′ (13.56 MHz) having a complex relative permeability of about 800 or more, preferably about 1000 or more.

磁性膜7,8における上記の膜構造は、ナノグラニュラー合金とは異なる。ナノグラニュラーは、強磁性微粒子と強磁性微粒子間に絶縁物等の粒界物質が介在する構成である。一方、磁性膜7,8におけるアモルファス相9は、微結晶相10間の粒界に限らず、その周囲を囲むように存在する。上記したように磁性膜7,8は、アモルファス相9中に微結晶相10が点在した混相構造となっている。   The film structure of the magnetic films 7 and 8 is different from that of the nano granular alloy. The nano-granular has a configuration in which a grain boundary material such as an insulator is interposed between the ferromagnetic fine particles. On the other hand, the amorphous phase 9 in the magnetic films 7 and 8 is present not only at the grain boundary between the microcrystalline phases 10 but also surrounding the periphery. As described above, the magnetic films 7 and 8 have a mixed phase structure in which the microcrystalline phases 10 are scattered in the amorphous phase 9.

磁性膜7,8中に含まれるアモルファス相9は体積比率で20〜80%程度であることが好適である。   The amorphous phase 9 contained in the magnetic films 7 and 8 is preferably about 20 to 80% by volume.

磁性膜7,8と交互に積層される絶縁膜6a,6b,6cは、磁性膜7,8間を電気的に絶縁する膜である。本実施形態では、少なくとも磁性膜7,8の間に介在する絶縁膜6bを有することが必要である。また図2に示すように、各磁性膜7,8の上下に絶縁膜を備えることが好ましい。図2に示す最下層の絶縁膜6aは下地膜として作用し、最上層の絶縁膜6cは環境変化等の外的要因に対する保護膜として作用している。   The insulating films 6a, 6b, and 6c stacked alternately with the magnetic films 7 and 8 are films that electrically insulate the magnetic films 7 and 8 from each other. In this embodiment, it is necessary to have an insulating film 6b interposed between at least the magnetic films 7 and 8. Further, as shown in FIG. 2, it is preferable to provide insulating films above and below the magnetic films 7 and 8, respectively. The lowermost insulating film 6a shown in FIG. 2 functions as a base film, and the uppermost insulating film 6c functions as a protective film against external factors such as environmental changes.

あるいは図4に示すように磁性膜7が、基材5上に直接成膜されたものであってもよい。かかる場合、絶縁層の数を減らすことができ、RFID磁性部材4全体の膜厚を薄くできるとともに、生産コストを低減できる。   Alternatively, as shown in FIG. 4, the magnetic film 7 may be formed directly on the substrate 5. In this case, the number of insulating layers can be reduced, the thickness of the entire RFID magnetic member 4 can be reduced, and the production cost can be reduced.

絶縁膜6a,6b,6cには、酸化絶縁膜、窒化絶縁膜、炭化絶縁膜等を提示できるが、酸化絶縁膜であることが好ましい。また、絶縁膜6a,6b,6cにはSiO2膜、Al23膜、Fe23膜、Ta23膜、TiO2膜、Mo23膜のうち1種以上を選択できる。また、絶縁膜6a,6b,6cは、磁性膜7,8と同じT−M−O膜であるがOの組成比が高く(具体的には30at%以上)絶縁性のT−M−O膜とすることも出来る。この場合、絶縁膜6a,6b,6cの成膜と、磁性膜7,8の成膜に同じターゲットを使用できるメリットがある。このT−M−O膜は全て酸化物の結晶相からなるか、または、アモルファス相と酸化物の結晶相からなる非磁性膜であり、磁性膜5、7、8の結晶構造と異なるものである。 As the insulating films 6a, 6b, and 6c, an oxide insulating film, a nitride insulating film, a carbonized insulating film, and the like can be presented, but an oxide insulating film is preferable. Further, one or more of SiO 2 film, Al 2 O 3 film, Fe 2 O 3 film, Ta 2 O 3 film, TiO 2 film, and Mo 2 O 3 film can be selected for the insulating films 6a, 6b, and 6c. . The insulating films 6a, 6b and 6c are the same TMO films as the magnetic films 7 and 8, but have a high O composition ratio (specifically, 30 at% or more) and insulating TMO. It can also be a film. In this case, there is an advantage that the same target can be used for forming the insulating films 6a, 6b, and 6c and forming the magnetic films 7 and 8. This T-M-O film is a non-magnetic film consisting entirely of an oxide crystal phase or an amorphous phase and an oxide crystal phase, and is different from the crystal structure of the magnetic films 5, 7, and 8. is there.

本実施形態では図2に示すように、各磁性膜7,8の膜厚がT1である。ここで各磁性膜7,8を同じ膜厚あるいは異なる膜厚にすることも出来る。各磁性膜7,8の膜厚は0.5μm以上で3μm以下であることが好ましい。   In the present embodiment, as shown in FIG. 2, the thickness of each of the magnetic films 7 and 8 is T1. Here, the magnetic films 7 and 8 can have the same film thickness or different film thicknesses. The film thickness of each of the magnetic films 7 and 8 is preferably 0.5 μm or more and 3 μm or less.

本実施形態における磁性膜7,8がFe−M−Nで形成されるとき、各磁性膜7,8の膜厚を0.5μm以上で1.2μm以下に設定することができる。このように、各磁性膜の膜厚を1.2μm以下にし、複数の磁性膜の総厚を薄くしても、高い通信出力が得られ、効果的に通信距離を延ばすことができる。   When the magnetic films 7 and 8 in this embodiment are formed of Fe-MN, the thickness of each magnetic film 7 and 8 can be set to 0.5 μm or more and 1.2 μm or less. Thus, even when the thickness of each magnetic film is 1.2 μm or less and the total thickness of the plurality of magnetic films is reduced, a high communication output can be obtained and the communication distance can be effectively extended.

また本実施形態における磁性膜7,8がFe−M−Oで形成されるとき、各磁性膜7,8の膜厚を0.7μm以上で2.8μm以下とすることができる。また、各磁性膜7,8の膜厚を1.5μm以上で2.8μm以下とすることがさらに好ましい。これにより、高い通信出力が得られ、効果的に通信距離を延ばすことができる。   Moreover, when the magnetic films 7 and 8 in this embodiment are formed by Fe-MO, the film thickness of each magnetic film 7 and 8 can be 0.7 micrometer or more and 2.8 micrometers or less. Further, it is more preferable that the thickness of each of the magnetic films 7 and 8 is 1.5 μm or more and 2.8 μm or less. Thereby, a high communication output can be obtained and the communication distance can be effectively extended.

磁性膜7,8を複素比透磁率の実数部μ´(13.56MHz)が高いFe−M−Nで形成することで、Fe−M−Oに比べて各磁性膜7,8の膜厚及び複数の磁性膜7,8の総厚を薄くしても、高い通信出力が得られ、効果的に通信距離を延ばすことが可能になる。 By forming the magnetic films 7 and 8 with Fe-MN having a high real part μ ′ (13.56 MHz) of the complex relative permeability, the thicknesses of the magnetic films 7 and 8 and Even if the total thickness of the plurality of magnetic films 7 and 8 is reduced, a high communication output can be obtained and the communication distance can be effectively extended.

ただし、各磁性膜7,8(Fe−M−O、Fe−M−Nに係り無く)の膜厚を薄くしすぎても、十分な通信感度の向上を図ることができない。そのため、各磁性膜の膜厚の下限値を0.5μmと設定した。   However, even if the magnetic films 7 and 8 (regardless of Fe-MO, Fe-MN) are made too thin, it is not possible to sufficiently improve the communication sensitivity. Therefore, the lower limit value of the thickness of each magnetic film is set to 0.5 μm.

従来では基材上に磁性膜を単層で成膜したが、本実施形態では、磁性膜7,8を複数層に絶縁膜を介して分断して積層した。その際、上記したように各磁性膜7,8の膜厚T1を所定範囲内に規制することで、各磁性膜の渦電流損失の低減等の要因により、例えば、磁性膜7,8の総厚を従来の磁性膜の単層構造と同等としたときに、従来の磁性膜の単層構造に比べて、効果的に、図1のRFIDデバイス1の通信感度を向上させることができ、また、前記総厚を従来の磁性膜の単層構造より薄くしても、従来と同等以上の通信感度が得られるように調整できる。   Conventionally, a magnetic film is formed as a single layer on a base material, but in this embodiment, the magnetic films 7 and 8 are divided into a plurality of layers via an insulating film and laminated. At that time, as described above, by restricting the film thickness T1 of each of the magnetic films 7 and 8 within a predetermined range, for example, the total of the magnetic films 7 and 8 is caused by factors such as reduction of eddy current loss of each magnetic film. When the thickness is equivalent to that of the conventional single layer structure of the magnetic film, the communication sensitivity of the RFID device 1 of FIG. 1 can be effectively improved as compared with the single layer structure of the conventional magnetic film. Even if the total thickness is made thinner than the conventional single-layer structure of the magnetic film, it can be adjusted so that the communication sensitivity equal to or higher than the conventional one can be obtained.

また本実施形態では、上記した磁性膜7,8の膜厚T1の条件と合わせて、磁性膜7,8の積層数を2〜8程度にすることができ、積層数を2〜4程度とすることが好ましく、積層数を2とすることがより好適である。本実施形態では、磁性膜を極端に細分化せず、各磁性膜7,8を上記したように、ある程度の厚みにて形成し(具体的には0.5μm以上)、且つ積層数を少なくすることで、磁性膜7,8の総厚を薄くでき、しかも効果的に通信感度を向上させることができる。   In the present embodiment, the number of stacked magnetic films 7 and 8 can be set to about 2 to 8, and the number of stacked layers can be set to about 2 to 4 in accordance with the condition of the film thickness T1 of the magnetic films 7 and 8 described above. It is preferable that the number of layers is two, and it is more preferable. In the present embodiment, the magnetic films are not extremely subdivided, and the magnetic films 7 and 8 are formed with a certain thickness as described above (specifically 0.5 μm or more), and the number of stacked layers is small. As a result, the total thickness of the magnetic films 7 and 8 can be reduced, and the communication sensitivity can be effectively improved.

また各磁性膜7,8の膜厚T1の総厚は、1μm以上で12μm以下であることが好ましい。また、前記総厚を、8μm以下、あるいは6μm以下にすることも出来る。更に磁性膜7,8にFe−M−Nを用いた場合には、総厚を2.4μm以下に設定することも可能になる。総厚は、各磁性膜7,8の膜厚T1と積層数から算出できる。本実施形態では、磁性膜7,8の総厚を磁性膜の単層構造の従来に比べて薄くすることができ、係る場合において、従来と同等以上の通信感度を得ることが出来る。   The total thickness T1 of the magnetic films 7 and 8 is preferably 1 μm or more and 12 μm or less. Further, the total thickness can be 8 μm or less, or 6 μm or less. Further, when Fe-MN is used for the magnetic films 7 and 8, the total thickness can be set to 2.4 μm or less. The total thickness can be calculated from the film thickness T1 of each magnetic film 7 and 8 and the number of stacked layers. In the present embodiment, the total thickness of the magnetic films 7 and 8 can be made thinner than that of the conventional single-layer structure of the magnetic film. In such a case, communication sensitivity equal to or higher than that of the conventional one can be obtained.

各絶縁膜6a,6b,6cの膜厚は、10nm〜500nm程度とすることが好ましく、100nm以下とすることがより好ましい。   The thickness of each insulating film 6a, 6b, 6c is preferably about 10 nm to 500 nm, and more preferably 100 nm or less.

図1に示すRFIDデバイス1では、図2、図4に示す基材5として可撓性の樹脂シートやガラス基板等を用いることができる。このとき、基材5として樹脂シートを用いると、RFID用磁性部材4を湾曲させるような場合でも適切にRFID用磁性部材4を湾曲でき、また磁性膜7,8はアモルファス相9を備えるため、磁性膜7,8を樹脂シートである基材5とともに平面状から変形させたときでも磁性膜7,8は割れ等の損傷を受けにくい。   In the RFID device 1 illustrated in FIG. 1, a flexible resin sheet, a glass substrate, or the like can be used as the base material 5 illustrated in FIGS. 2 and 4. At this time, if a resin sheet is used as the base material 5, the RFID magnetic member 4 can be appropriately curved even when the RFID magnetic member 4 is curved, and the magnetic films 7 and 8 include the amorphous phase 9. Even when the magnetic films 7 and 8 are deformed from the planar shape together with the base material 5 which is a resin sheet, the magnetic films 7 and 8 are not easily damaged such as cracks.

また磁性膜7,8に対して熱処理を施さないため、磁性膜7,8を支持する基材5の材質を特に限定しなくてもよい。すなわち基材5の材質の選択性を広げることができる。また基材5に対する熱的影響がないためRFID用磁性部材4の寸法安定性を従来よりも高精度に得ることが可能である。前記基材5には、熱可塑性樹脂を使用でき、その中でも耐熱性に優れたPEN(ポリエチレンナフタレート)、PPS(ポリフェニレンスルフィド)の使用が好適であるものの、PET(ポリエチレンテレフタレート)やアミラード(全芳香族系ポリアミド)、ポリイミド、ガラスエポキシ(FR4)等の使用も可能である。また、レジスト等の保護絶縁層を表面コーティングしたシートでも良い。   In addition, since the magnetic films 7 and 8 are not subjected to heat treatment, the material of the base material 5 that supports the magnetic films 7 and 8 may not be particularly limited. That is, the selectivity of the material of the base material 5 can be expanded. Further, since there is no thermal influence on the base material 5, it is possible to obtain the dimensional stability of the RFID magnetic member 4 with higher accuracy than before. For the base material 5, a thermoplastic resin can be used. Among them, PEN (polyethylene naphthalate) and PPS (polyphenylene sulfide), which are excellent in heat resistance, are suitable, but PET (polyethylene terephthalate) and amylado (all Aromatic polyamide), polyimide, glass epoxy (FR4) and the like can also be used. Alternatively, a sheet coated with a protective insulating layer such as a resist may be used.

本実施形態では、基材5の厚さを、10〜100μm程度に出来る。
また図2に示すRFID用磁性部材4を、図1の金属部材3とRFIDタグ2との間に挿入する際、RFID用磁性部材4の基材5が金属部材3側と対向するように挿入しても、前記基材5がRFIDタグ2側と対向するように挿入してどちらでもよい。なお、図1に示す、RFIDタグ2とRFID用磁性部材4との間、及び、RFID用磁性部材4と金属部材3との間には粘着層を有する。なお、RFID用磁性部材4はRFIDタグ2の表面に直接成膜しても良い。
In the present embodiment, the thickness of the substrate 5 can be set to about 10 to 100 μm.
Further, when the RFID magnetic member 4 shown in FIG. 2 is inserted between the metal member 3 and the RFID tag 2 in FIG. 1, the RFID magnetic member 4 is inserted so that the base material 5 faces the metal member 3 side. Even if it inserts so that the said base material 5 may oppose the RFID tag 2 side, either may be sufficient. 1, there are adhesive layers between the RFID tag 2 and the RFID magnetic member 4 and between the RFID magnetic member 4 and the metal member 3. As shown in FIG. The RFID magnetic member 4 may be directly formed on the surface of the RFID tag 2.

あるいは基材5は金属で形成されたものであってもよい。すなわち、図2の形態であれば、金属で形成された基材5/絶縁膜6a/磁性膜7/絶縁膜6b/磁性膜8/絶縁膜6cとすることができ、図4に示す形態であれば、金属で形成された基材5/磁性膜7/絶縁膜6b/磁性膜8/絶縁膜6cとすることができる。   Alternatively, the substrate 5 may be made of metal. That is, in the form of FIG. 2, the base material 5 / insulating film 6a / magnetic film 7 / insulating film 6b / magnetic film 8 / insulating film 6c formed of metal can be used. In the form shown in FIG. If present, the base material 5 / magnetic film 7 / insulating film 6b / magnetic film 8 / insulating film 6c formed of metal can be used.

また基材5が図1に示す金属部材3であってもよい。すなわち、RFIDデバイス1は、金属部材3/絶縁膜6a/磁性膜7/絶縁膜6b/磁性膜8/絶縁膜6c/粘着層/RFIDタグ2とすることができ、あるいは、金属部材3/磁性膜7/絶縁膜6b/磁性膜8/絶縁膜6c/粘着層/RFIDタグ2とすることができる。これにより、より効果的に、RFIDデバイス1を薄く形成することが可能になり、また生産コストを低減できる。また、図1、図2のいずれの場合であっても積層体の最表面はSiO2等の保護膜を形成することが好ましい。 Further, the base member 5 may be the metal member 3 shown in FIG. That is, the RFID device 1 can be metal member 3 / insulating film 6a / magnetic film 7 / insulating film 6b / magnetic film 8 / insulating film 6c / adhesive layer / RFID tag 2, or metal member 3 / magnetic. Film 7 / insulating film 6b / magnetic film 8 / insulating film 6c / adhesive layer / RFID tag 2 can be used. As a result, the RFID device 1 can be formed more effectively and the production cost can be reduced. In either case of FIGS. 1 and 2, it is preferable to form a protective film such as SiO 2 on the outermost surface of the laminate.

本実施形態の磁性膜7,8及び絶縁膜6a,6b,6cは、物理蒸着法により成膜されるが、物理蒸着法としては、RFまたはDC平行平板マグネトロンスパッタ法(MT法)、DC対向ターゲットスパッタ法(FTS法)、RF対向ターゲットスパッタ法、RFコンベンショナルスパッタ法、蒸着法、反応性プラズマ蒸着法等を提示できる。   The magnetic films 7 and 8 and the insulating films 6a, 6b, and 6c of this embodiment are formed by physical vapor deposition. As physical vapor deposition, RF or DC parallel plate magnetron sputtering (MT method), DC facing Target sputtering method (FTS method), RF facing target sputtering method, RF conventional sputtering method, vapor deposition method, reactive plasma vapor deposition method and the like can be presented.

(FeZrO単層構造を備える磁性部材を用いた実験)
基材上にFeZrO単層構造を成膜した従来例の磁性部材を作製した。基材にはホウケイ酸ガラス基板を用いた。ガラス基板の厚さは0.55mmであった。
(Experiment using magnetic member with FeZrO single layer structure)
A conventional magnetic member in which a FeZrO single layer structure was formed on a substrate was produced. A borosilicate glass substrate was used as the substrate. The thickness of the glass substrate was 0.55 mm.

そしてホウケイ酸ガラス基板上に、FeZrO膜をスパッタ成膜した。ターゲットにはFe−Zr合金を用いた。スパッタ装置には、キヤノンアネルバ製のSPF−730 マグネトロンスパッタ装置を用いた。またスパッタ条件としてArガス流量を63sccm、Ar+5%O2ガス流量を12sccm、RF電力を600W、ガス圧を3mTorr、基板間接冷却なしとした。
また実験で使用したFeZrO膜は、Fe83.58at%Zr8.31at%8.11at%であった。
Then, an FeZrO film was formed by sputtering on the borosilicate glass substrate. An Fe—Zr alloy was used as the target. A SPF-730 magnetron sputtering apparatus manufactured by Canon Anelva was used as the sputtering apparatus. As sputtering conditions, the Ar gas flow rate was 63 sccm, the Ar + 5% O 2 gas flow rate was 12 sccm, the RF power was 600 W, the gas pressure was 3 mTorr, and the substrate was not indirectly cooled.
The FeZrO film used in the experiment was Fe 83.58 at% Zr 8.31 at% O 8.11 at% .

上記により作製された磁性部材を、受信アンテナと金属板の間に挿入し、スペクトラムアナライザ(アンリツ(株)製、型式:MS2601B)を用いて、13.56MHzにおける受信アンテナからの受信信号の出力値を測定した(通信強度の測定)。なお送信アンテナと受信アンテナとの間の通信距離を28mmとした。また前記送信アンテナと受信アンテナを、平面の大きさが55mm×85mm、厚さが0.55mmの基板上に形成した。また、送信アンテナと受信アンテナを、最大外縁寸法を30mm×30mm、及び3ターンとした平面パターンで形成した。   The magnetic member produced as described above is inserted between the receiving antenna and the metal plate, and the output value of the received signal from the receiving antenna at 13.56 MHz is measured using a spectrum analyzer (Anritsu Co., Ltd., model: MS2601B). (Measurement of communication strength). The communication distance between the transmitting antenna and the receiving antenna was 28 mm. The transmitting antenna and the receiving antenna were formed on a substrate having a plane size of 55 mm × 85 mm and a thickness of 0.55 mm. Further, the transmitting antenna and the receiving antenna were formed in a planar pattern having a maximum outer edge dimension of 30 mm × 30 mm and 3 turns.

また、金属板を、平面の大きさが55mm×85mm、厚さが2mmのAlで形成した。   Further, the metal plate was formed of Al having a plane size of 55 mm × 85 mm and a thickness of 2 mm.

実験は、FeZrO単層膜の膜厚が異なる複数の磁性部材を用いて行った。
また、磁性部材を、受信アンテナと金属板の間に介在させるとき、磁性部材の基材を金属板側に対向させて介在させた場合と、磁性部材の基材を受信アンテナ側に対向させて介在させた場合の双方について実験を行った。
The experiment was performed using a plurality of magnetic members having different thicknesses of the FeZrO single layer film.
In addition, when the magnetic member is interposed between the receiving antenna and the metal plate, the magnetic member base is opposed to the metal plate, and the magnetic member is opposed to the receiving antenna. Experiments were conducted for both cases.

(SiO2/FeZrO・・・の積層構造を備える磁性部材の実験)
基材、FeZrOのスパッタ条件、組成比、通信強度の測定条件については上記と同じである。
(Experiment of magnetic member having laminated structure of SiO 2 / FeZrO ...)
The base material, FeZrO sputtering conditions, composition ratio, and communication strength measurement conditions are the same as described above.

SiO2膜を、SiO2ターゲットを用いて成膜した。スパッタ装置には、キヤノンアネルバ製のSPF−730 マグネトロンスパッタ装置を用いた。またスパッタ条件としてArガス流量を75sccm、RF電力を300W、ガス圧を3mTorr、基板間接冷却なしとした。なお、各SiO2膜の膜厚を0.1μmに統一した。 A SiO 2 film was formed using a SiO 2 target. A SPF-730 magnetron sputtering apparatus manufactured by Canon Anelva was used as the sputtering apparatus. As sputtering conditions, the Ar gas flow rate was 75 sccm, the RF power was 300 W, the gas pressure was 3 mTorr, and the substrate was not indirectly cooled. The thickness of each SiO 2 film was unified to 0.1 μm.

SiO2膜はFeZrO膜間の間のみならず、図2のように、基材上及び最上層のFeZrO膜の表面層にも設けた。 The SiO 2 film was provided not only between the FeZrO films but also on the surface of the uppermost FeZrO film as shown in FIG.

実験では、FeZrO膜の膜厚を0.25μmとしたとき、FeZrO膜の積層数を、4、12とし、FeZrO膜の膜厚を0.5μmとしたとき、FeZrO膜の積層数を、6、7、8とし、FeZrO膜の膜厚を2.8μmとしたとき、FeZrO膜の積層数を、3、4とした。   In the experiment, when the film thickness of the FeZrO film was 0.25 μm, the number of layers of the FeZrO film was 4 and 12, and when the film thickness of the FeZrO film was 0.5 μm, the number of layers of the FeZrO film was 6, 7 and 8, and the thickness of the FeZrO film was 2.8 μm, the number of FeZrO films was 3 and 4.

また、実験では、FeZrO膜の積層数を2とし、そのときのFeZrO膜の膜厚を、0.7μm、1μm、1.5μm、2.8μmとした。   In the experiment, the number of stacked FeZrO films was 2, and the thickness of the FeZrO film at that time was 0.7 μm, 1 μm, 1.5 μm, and 2.8 μm.

また、磁性部材を、受信アンテナと金属板の間に介在させるとき、磁性部材の基材を金属板側に対向させて介在させた場合と、磁性部材の基材を受信アンテナ側に対向させて介在させた場合の双方について実験を行った。   In addition, when the magnetic member is interposed between the receiving antenna and the metal plate, the magnetic member base is opposed to the metal plate, and the magnetic member is opposed to the receiving antenna. Experiments were conducted for both cases.

図5に通信強度の実験結果を示す。図5での通信強度は絶対値が小さいほど通信感度が優れることを意味する。また図5には、金属板及び磁性部材を設けない構成(図5に示す「金属なし」)や、受信アンテナ/基材/金属板の構成の場合(図5に示す「基材/金属(磁性部材なし)」)についての通信強度の実験結果も合わせて掲載した。また、図5に示す「磁性膜/基材/金属 絶縁膜なし」や「基材/磁性膜/金属 絶縁膜なし」のプロットが上記の従来例における通信強度の実験結果である。   FIG. 5 shows the experimental results of communication strength. The communication intensity in FIG. 5 means that the smaller the absolute value, the better the communication sensitivity. FIG. 5 also shows a configuration in which a metal plate and a magnetic member are not provided (“no metal” shown in FIG. 5) or a configuration of a receiving antenna / base material / metal plate (“base material / metal (shown in FIG. 5)”. The experimental results of the communication strength for “no magnetic member)”) are also shown. In addition, the plots of “magnetic film / base material / no metal insulation film” and “base material / magnetic film / no metal insulation film” shown in FIG. 5 are the experimental results of the communication strength in the above-described conventional example.

また図5に示す横軸は、複数のFeZrO膜の間にSiO2膜を介在させた磁性部材にあっては、各FeZrO膜の総厚である。 The horizontal axis shown in FIG. 5 is the total thickness of each FeZrO film in a magnetic member in which a SiO 2 film is interposed between a plurality of FeZrO films.

またFeZrO膜の積層数を2とした磁性部材の実験結果において、各FeZrO膜の膜厚をグラフ上に記載した。   Further, in the experimental results of the magnetic member in which the number of stacked FeZrO films is 2, the film thickness of each FeZrO film is shown on the graph.

図5に示すように、複数のFeZrO膜の間にSiO2膜を介在させた磁性部材のうち、各FeZrO膜の膜厚を0.5μmとした磁性部材での通信強度は、FeZrO膜を単層構造とした従来例での通信強度ラインよりもややグラフ上方に位置し、各FeZrO膜の膜厚を0.5μm以上とすることで、従来に比べて通信感度を向上できることがわかった。 As shown in FIG. 5, among the magnetic members in which the SiO 2 film is interposed between the plurality of FeZrO films, the communication strength of the magnetic member in which the thickness of each FeZrO film is 0.5 μm is the same as that of the FeZrO film. It was found that the communication sensitivity can be improved as compared with the conventional one by setting the layer thickness of each FeZrO film to 0.5 μm or more, slightly above the communication intensity line in the conventional example having a layer structure.

また図5に示すように、複数のFeZrO膜の間にSiO2膜を介在させた磁性部材のうち、各FeZrO膜の膜厚を0.7μm以上とすれば、各FeZrO膜の総厚を、FeZrO膜の単層構造の膜厚と同等の場合と比較してみると、より効果的に通信感度を向上させることができるとわかった。この実験結果により、各FeZrO膜の膜厚を0.7μm以上2.8μm以下とした範囲を好ましい範囲とした。また、各FeZrO膜の膜厚を1.5μm以上2.8μm以下とした範囲をさらに好ましい範囲とした。 Also, as shown in FIG. 5, among the magnetic members in which the SiO 2 film is interposed between the plurality of FeZrO films, if the thickness of each FeZrO film is 0.7 μm or more, the total thickness of each FeZrO film is It was found that the communication sensitivity can be improved more effectively when compared with the case where the film thickness is equivalent to that of the single layer structure of the FeZrO film. From this experimental result, the range in which the film thickness of each FeZrO film was 0.7 μm or more and 2.8 μm or less was set as a preferable range. Further, the range in which the film thickness of each FeZrO film was 1.5 μm or more and 2.8 μm or less was further preferred.

また、FeZrO膜の積層数は2〜8程度とし、好ましくは2〜4であり、特に積層数を2とすることで、磁性膜の総厚を薄くできるとともに、優れた通信感度を得ることができるとわかった。   Further, the number of stacked FeZrO films should be about 2 to 8, preferably 2 to 4. Particularly, by setting the number of stacked layers to 2, it is possible to reduce the total thickness of the magnetic film and obtain excellent communication sensitivity. I knew it was possible.

図5に示すように、例えば2層の各磁性膜の膜厚を2.8μmとして総厚を5.6μmとしたとき、同じく単層構造の磁性膜の膜厚を5.6μmとした従来例に比べて、あるいは、単層構造の磁性膜の膜厚が5.6μmより厚い従来例に対しても、十分に通信感度を高めることができるとわかった。   As shown in FIG. 5, for example, when the thickness of each of the two magnetic films is 2.8 μm and the total thickness is 5.6 μm, the thickness of the magnetic film having a single-layer structure is 5.6 μm. Compared to the above, or it was found that the communication sensitivity can be sufficiently increased even for the conventional example in which the thickness of the magnetic film having a single layer structure is thicker than 5.6 μm.

(FeAlN/SiO2/FeAlNの積層構造を備える磁性部材の実験)
実験では、SUS基板上に、FeAlN(0.9)/SiO2(0.1)/FeAlN(0.9)をRFコンベンショナルスパッタ法により成膜した。なお括弧内の数値は膜厚を示し単位はμmである。
(Experiment of a magnetic member having a laminated structure of FeAlN / SiO 2 / FeAlN)
In the experiment, FeAlN (0.9) / SiO 2 (0.1) / FeAlN (0.9) was formed on the SUS substrate by RF conventional sputtering. The numerical values in parentheses indicate the film thickness and the unit is μm.

スパッタ装置には、キャノンアネルバ製SPF−730を使用した。また実験に使用したFeAlN膜は、Fe69.75at%Al16.04at%14.21at%であった。 As the sputtering apparatus, SPF-730 manufactured by Canon Anelva was used. The FeAlN film used in the experiment was Fe 69.75 at% Al 16.04 at% N 14.21 at% .

上記により作製された磁性膜が、受信アンテナ(タグ)と磁性膜を成膜する際の基材であるSUS基板(SUS304)の間に位置するように配置し、周波数と信号出力との関係について調べた。周波数及び信号出力はネットワークアナライザー(アジレント製)を用いて測定した。なお、送信アンテナと受信アンテナとの間の通信距離を15mmとした。   Regarding the relationship between the frequency and signal output, the magnetic film produced as described above is placed between the receiving antenna (tag) and the SUS substrate (SUS304) that is the base material for forming the magnetic film. Examined. The frequency and signal output were measured using a network analyzer (manufactured by Agilent). The communication distance between the transmitting antenna and the receiving antenna was 15 mm.

また、受信アンテナ(タグ)と金属板(SUS304)の間に磁性部材を挿入しない比較例1、受信アンテナ(タグ)と金属板(SUS304)の間に、アルプス電気(株)製のRFID用磁性シート(80R50)を挿入した比較例2、受信アンテナ(タグ)と金属板(SUS304)の間に、膜厚1μmの単層のFeAlN膜を介在させた比較例3、受信アンテナ(タグ)と金属板(SUS304)の間に、膜厚2μmの単層のFeAlN膜を介在させた比較例4、受信アンテナ(タグ)と金属板(SUS304)の間に、膜厚3μmの単層のFeAlN膜を介在させた磁性部材を挿入した比較例5についても同様の実験を行った。   Further, Comparative Example 1 in which no magnetic member is inserted between the receiving antenna (tag) and the metal plate (SUS304), and the magnetic field for RFID manufactured by Alps Electric Co., Ltd. between the receiving antenna (tag) and the metal plate (SUS304). Comparative Example 2 in which a sheet (80R50) is inserted, Comparative Example 3 in which a single-layer FeAlN film having a thickness of 1 μm is interposed between a receiving antenna (tag) and a metal plate (SUS304), a receiving antenna (tag) and a metal Comparative Example 4 in which a single-layer FeAlN film having a thickness of 2 μm is interposed between the plates (SUS304), and a single-layer FeAlN film having a thickness of 3 μm between the receiving antenna (tag) and the metal plate (SUS304). A similar experiment was conducted for Comparative Example 5 in which the interposed magnetic member was inserted.

その実験結果が図6に示されている。図6に示す信号出力は絶対値で大きいほど通信感度に優れていることを示している。図6に示すように、単層のFeAlN膜を用いた比較例3〜5は、FeAlN膜の膜厚を増加させるほど信号出力が増加し、共振周波数も13.56MHzに近づけることができるが比較例2に比べて信号出力(絶対値)が小さく、十分な通信距離を得ることができないとわかった。   The experimental results are shown in FIG. The signal output shown in FIG. 6 indicates that the larger the absolute value, the better the communication sensitivity. As shown in FIG. 6, in Comparative Examples 3 to 5 using a single-layer FeAlN film, the signal output increases as the film thickness of the FeAlN film increases, and the resonance frequency can also approach 13.56 MHz. It was found that the signal output (absolute value) was smaller than that of Example 2 and a sufficient communication distance could not be obtained.

比較例2は、共振周波数がほぼ13.56MHzでしかも信号出力(絶対値)を大きくできる。比較例2は、本実施例に対する指標である。比較例2は、バインダー樹脂と磁性粉末を有してなる磁性膜をシート化したものであるが、膜厚が約50μm〜200μm程度となっている。本実施例は、比較例2と同等のRFID特性を有しながら膜厚をより一層薄くすることを目指したものである。   In Comparative Example 2, the resonance frequency is approximately 13.56 MHz and the signal output (absolute value) can be increased. Comparative example 2 is an index for this example. In Comparative Example 2, a magnetic film including a binder resin and magnetic powder is formed into a sheet, and the film thickness is about 50 μm to 200 μm. The present embodiment aims to further reduce the film thickness while having RFID characteristics equivalent to those of Comparative Example 2.

実験で使用した実施例1は、FeAlN/SiO2/FeAlNの積層構造を備える。各FeAlN膜は膜厚が0.9μmと非常に薄く、2層のFeAlN膜を合わせても総厚が1.8μmである。比較例2に比べて非常に薄い膜厚となるが、このように磁性膜の総厚を薄く形成しても、実施例1では、比較例2とほぼ同等の信号出力(絶対値)を得ることができるとわかった。 Example 1 used in the experiment has a laminated structure of FeAlN / SiO 2 / FeAlN. Each FeAlN film is very thin with a thickness of 0.9 μm, and the total thickness is 1.8 μm even when the two layers of FeAlN are combined. Although the film thickness is much thinner than that of the comparative example 2, even if the total thickness of the magnetic film is formed as described above, the signal output (absolute value) substantially equal to that of the comparative example 2 is obtained in the example 1. I knew I could do it.

また、図5の実験で使用したFeZrO膜の場合、2層構造で良好な実験結果は、各FeZrO膜を2.8μmの膜厚で形成した場合であり、総厚が5.6μmであった。このように、FeAlN膜で形成した実施例1では、FeZrO膜を用いた場合よりも、磁性膜の総厚を薄くできるとともに、図6に示す比較例2とほぼ同等の信号出力(絶対値)を得ることができるとわかった。   Further, in the case of the FeZrO film used in the experiment of FIG. 5, a good experimental result with the two-layer structure is a case where each FeZrO film is formed with a film thickness of 2.8 μm, and the total thickness is 5.6 μm. . Thus, in Example 1 formed with the FeAlN film, the total thickness of the magnetic film can be made thinner than when the FeZrO film is used, and the signal output (absolute value) is almost equivalent to that of Comparative Example 2 shown in FIG. I found out I could get

図6の実験で使用した実施例1の磁性部材を用いて、周波数と複素比透磁率の実数部μ´及び虚数部μ″との関係について測定した。複素比透磁率の実数部μ´及び虚数部μ″を、ネットワークアナライザー(アジレント製)を用いて測定した。その実験結果が図7に示されている。   The relationship between the frequency and the real part μ ′ and imaginary part μ ″ of the complex relative permeability was measured using the magnetic member of Example 1 used in the experiment of FIG. 6. The real part μ ′ of the complex relative permeability and The imaginary part μ ″ was measured using a network analyzer (manufactured by Agilent). The experimental results are shown in FIG.

図7に示すように13.56MHzの周波数で複素比透磁率の実数部μ´を約2000にできることがわかった。   As shown in FIG. 7, it was found that the real part μ ′ of the complex relative permeability can be made about 2000 at a frequency of 13.56 MHz.

次に、実験では、SUS基板上に、FeAlN(0.9)/SiO2(0.1)/FeAlN(0.9)をDC対向ターゲットスパッタ法により成膜した。なお括弧内の数値は膜厚を示し単位はμmである。
また実験に使用したFeAlN膜は、Fe67.62at%Al15.04at%17.34at%であった。
Next, in the experiment, FeAlN (0.9) / SiO 2 (0.1) / FeAlN (0.9) was formed on a SUS substrate by a DC facing target sputtering method. The numerical values in parentheses indicate the film thickness and the unit is μm.
The FeAlN film used in the experiment was Fe 67.62 at% Al 15.04 at% N 17.34 at% .

そして図6、図7と同様の実験を行った。図8には、図6にも示した比較例1及び比較例2の実験結果を掲載した。図8に示す実施例2は、上記したFeAlN膜をDC対向ターゲットスパッタ法により形成した磁性部材を用いた実験結果である。   Experiments similar to those shown in FIGS. 6 and 7 were performed. FIG. 8 shows the experimental results of Comparative Example 1 and Comparative Example 2 also shown in FIG. Example 2 shown in FIG. 8 is an experimental result using a magnetic member in which the above-described FeAlN film is formed by a DC facing target sputtering method.

図8に示すように、磁性膜の総厚が非常に薄い(総厚が1.8μm)実施例2を用いた場合、比較例2とほぼ同等の共振周波数及び信号出力(絶対値)を得ることができるとわかった。   As shown in FIG. 8, when Example 2 in which the total thickness of the magnetic film is very thin (total thickness is 1.8 μm) is used, a resonance frequency and a signal output (absolute value) substantially equivalent to those in Comparative Example 2 are obtained. I knew I could do it.

図9は、実施例2の磁性部材における周波数と複素比透磁率の実数部μ´及び虚数部μ″との関係を示している。図9に示すように、13.56MHzの周波数で複素比透磁率の実数部μ´を約1800にできることがわかった。   FIG. 9 shows the relationship between the frequency and the real part μ ′ and the imaginary part μ ″ of the complex relative permeability in the magnetic member of Example 2. As shown in FIG. 9, the complex ratio at a frequency of 13.56 MHz. It was found that the real part μ ′ of the permeability could be about 1800.

(最大通信距離の実験)
続いて、図6の比較例1〜5、実施例1及び実施例2における最大通信距離を測定した。最大通信距離は、送信アンテナと受信アンテナ間を徐々に離していき、通信不可となった時点を「最大通信距離」と規定した。
(Maximum communication distance experiment)
Subsequently, the maximum communication distance in Comparative Examples 1 to 5, Example 1 and Example 2 in FIG. 6 was measured. The maximum communication distance was defined as the “maximum communication distance” when the transmission antenna and the reception antenna were gradually separated and communication was impossible.

なお通信距離は、タカヤ株式会社製のTAKAYA−TR3を用いて測定した。またタグにはTI製のRI−I02−112B−03(55×85サイズ)を用いた。
実験結果は下記の表1に示されている。
The communication distance was measured using TAKAYA-TR3 manufactured by Takaya Corporation. The tag used was RI-I02-112B-03 (55 × 85 size) manufactured by TI.
The experimental results are shown in Table 1 below.

Figure 2010283333
Figure 2010283333

表1に示すように、実施例1,2は比較例2とほぼ同等の最大通信距離を得ることができるとわかった。   As shown in Table 1, it was found that Examples 1 and 2 can obtain a maximum communication distance substantially equal to that of Comparative Example 2.

(磁性膜の厚さと通信距離の関係に関する実験)
SUS基板上に、FeAlN(X)/SiO2(0.1)/FeAlN(X)(X=0.6、0.7、0.8、0.9、1.0、1.2μm)をRFコンベンショナルスパッタ法により成膜した。実験に使用したFeAlN膜は、Fe69.75at%Al16.04at%14.21at%であった。これら試料を表1と同様に各膜厚Xにおける最大通信距離を測定した。測定した結果を図10に示す。なお、図10には実施例2のプロットと、比較例2の最大通信距離の値のラインも併せて掲載した。
(Experiment regarding the relationship between magnetic film thickness and communication distance)
On a SUS substrate, FeAlN (X) / SiO 2 (0.1) / FeAlN (X) (X = 0.6, 0.7, 0.8, 0.9, 1.0, 1.2 μm) The film was formed by RF conventional sputtering. The FeAlN film used in the experiment was Fe 69.75 at% Al 16.04 at% N 14.21 at% . These samples were measured for the maximum communication distance at each film thickness X in the same manner as in Table 1. The measurement results are shown in FIG. In addition, the plot of Example 2 and the line of the value of the maximum communication distance of the comparative example 2 were also published in FIG.

図10に示す通り、各磁性膜の膜厚Xの値が0.6μm以上、1.2μm以下、より好ましくは0.7μm以上、1.0μm以下で最大通信距離が大きくなっていることが分かった。   As shown in FIG. 10, it is found that the maximum communication distance is increased when the value of the film thickness X of each magnetic film is 0.6 μm or more and 1.2 μm or less, more preferably 0.7 μm or more and 1.0 μm or less. It was.

(磁性膜の膜組成と複素比透磁率の実数部μ´等との関係に関する実験)
RFマグネトロンスパッタ法にて各基材上に、FeZrO(0.2μm)磁性膜を成膜し、このとき、各基材上に成膜された各FeZrOの組成比を夫々、下記の表2に示す値で成膜した。
(Experiment regarding the relationship between the film composition of the magnetic film and the real part μ ′ of the complex relative permeability)
An FeZrO (0.2 μm) magnetic film was formed on each substrate by RF magnetron sputtering, and the composition ratio of each FeZrO formed on each substrate was shown in Table 2 below. Films were formed at the indicated values.

次に、RFコンベンショナルスパッタ法にて各基材上に、FeAlN(0.2μm)磁性膜を成膜し、このとき、各基材上に成膜された各FeAlNの組成比を夫々、下記の表2に示す値で成膜した。   Next, a FeAlN (0.2 μm) magnetic film is formed on each substrate by RF conventional sputtering, and at this time, the composition ratio of each FeAlN formed on each substrate is as follows. Films were formed at the values shown in Table 2.

次に、DC対向ターゲットスパッタ法にて各基材上に、FeAlN(0.2μm)磁性膜を成膜し、このとき、各基材上に成膜された各FeAlNの組成比を夫々、下記の表2に示す値で成膜した。   Next, a FeAlN (0.2 μm) magnetic film is formed on each substrate by a DC facing target sputtering method. At this time, the composition ratio of each FeAlN formed on each substrate is as follows. Films were formed at the values shown in Table 2.

なお、各磁性膜の組成比は、EDS(エネルギー分散型蛍光X線分光法)あるいはAES(オージェ電子分光法)により測定した。   The composition ratio of each magnetic film was measured by EDS (energy dispersive X-ray fluorescence spectroscopy) or AES (Auger electron spectroscopy).

Figure 2010283333
Figure 2010283333

表2に示すように磁性膜としてFeMO膜を使用した場合、Oの組成比を8.11〜9.27at%の範囲内とすると複素比透磁率の実数部μ´(13.56MHz)を800以上、好ましくは1000以上にできることがわかった。また複素比透磁率の虚数部μ″(13.56MHz)を50〜70程度に小さくできることがわかった。また、FeとMとの組成比を、[M/(Fe+M)]×100(%)が8.8〜9.1%の範囲内となるように調整することが好適であるとわかった。 As shown in Table 2, when an FeMO film is used as the magnetic film, the real part μ ′ (13.56 MHz) of the complex relative permeability is 800 or more when the composition ratio of O is in the range of 8.11 to 9.27 at%. It was found that it can be preferably 1000 or more. It was also found that the imaginary part μ ″ (13.56 MHz) of the complex relative permeability can be reduced to about 50 to 70. Further, the composition ratio of Fe and M is [M / (Fe + M)] × 100 (%). It turned out that it is suitable to adjust so that it may exist in the range of 8.8-9.1%.

次に、RFコンベンショナルスパッタ法にて成膜されたFeMN膜を使用した場合、Nの組成比を、13at%以上で16at%以下の範囲内とすると、複素比透磁率の実数部μ´(13.56MHz)を約2000以上にできることがわかった。また、複素比透磁率の虚数部μ″(13.56MHz)を約100〜300程度に小さくできることがわかった。また残りのFeとMの組成比(at%)を、[M/(Fe+M)]×100(%)が16〜20%の範囲内となるように調整することが好適であるとわかった。 Next, when the FeMN film formed by the RF conventional sputtering method is used, assuming that the composition ratio of N is in the range of 13 at% to 16 at%, the real part μ ′ (13.56) of the complex relative permeability. (MHz) can be increased to about 2000 or more. It was also found that the imaginary part μ ″ (13.56 MHz) of the complex relative magnetic permeability can be reduced to about 100 to 300. Further, the composition ratio (at%) of the remaining Fe and M is [M / (Fe + M)]. It turned out that it is suitable to adjust so that x100 (%) may exist in the range of 16-20%.

次に、DC対向ターゲットスパッタ法にて成膜されたFeMN膜を使用した場合、Nの組成比を、15at%以上で18at%以下の範囲内とすると、複素比透磁率の実数部μ´(13.56MHz)を約1400以上にできることがわかった。また、複素比透磁率の虚数部μ″(13.56MHz)を約100〜200程度に小さくできることがわかった。また残りのFeとMの組成比(at%)を、[M/(Fe+M)]×100(%)が、17〜19%の範囲内となるように調整することが好ましいとわかった。またNの組成比を、15at%〜17.4at%程度とすると、複素比透磁率の実数部μ´(13.56MHz)を約1700以上にできより好ましいことがわかった。 Next, when the FeMN film formed by the DC facing target sputtering method is used, if the N composition ratio is in the range of 15 at% to 18 at%, the real part μ ′ ( It was found that 13.56 MHz) can be increased to about 1400 or more. It was also found that the imaginary part μ ″ (13.56 MHz) of the complex relative permeability can be reduced to about 100 to 200. Further, the composition ratio (at%) of the remaining Fe and M is [M / (Fe + M)]. × 100 (%) was found to be preferably adjusted to be in the range of 17 to 19%, and when the composition ratio of N was about 15 at% to 17.4 at%, the complex relative permeability It was found that the real part μ ′ (13.56 MHz) can be increased to about 1700 or more, which is more preferable.

1 RFIDデバイス
2 RFIDタグ
3 金属部材
4 RFID用磁性部材
5 基材
6a、6b、6c 絶縁膜
7、8 磁性膜
9 アモルファス相
10 微結晶相
11 リーダライタ
DESCRIPTION OF SYMBOLS 1 RFID device 2 RFID tag 3 Metal member 4 RFID magnetic member 5 Base material 6a, 6b, 6c Insulating film 7, 8 Magnetic film 9 Amorphous phase 10 Microcrystalline phase 11 Reader / writer

Claims (16)

基材上に、積層された磁性膜と、各磁性膜間に介在する絶縁膜とを有して構成され、各磁性膜は、主成分の元素T(元素TはFeまたはCoまたはその混合物を表す)と、元素M(元素Mは、Hf、Ti、Zr、V、Nb、Ta、Mo、W、Al、Mg、Zn、Ca、Ce、Yのうち少なくともいずれか一種を表す)と、元素X(OまたはNのうち少なくともいずれか1種を表す)とを有し、膜構造が、元素Mと元素Xの化合物を含むアモルファス相と、前記アモルファス相中に点在する元素Tを主体とした微結晶相とを有してなることを特徴とするRFID用磁性部材。   Each of the magnetic films is composed of a main component element T (element T is Fe or Co or a mixture thereof). Element), element M (element M represents at least one of Hf, Ti, Zr, V, Nb, Ta, Mo, W, Al, Mg, Zn, Ca, Ce, and Y), and element X (represents at least one of O and N), and the film structure is mainly composed of an amorphous phase containing a compound of the element M and the element X, and the elements T scattered in the amorphous phase. A magnetic member for RFID, comprising a microcrystalline phase. 各磁性膜の膜厚は、0.5μm以上で3μm以下である請求項2記載のRFID用磁性部材。   The magnetic member for RFID according to claim 2, wherein the thickness of each magnetic film is 0.5 μm or more and 3 μm or less. 各磁性膜の膜厚の合計膜厚は、1μm以上で12μm以下の範囲内である請求項2記載のRFID用磁性部材。   The magnetic member for RFID according to claim 2, wherein the total film thickness of each magnetic film is in a range of 1 μm to 12 μm. 前記磁性膜は,Fe−M−Nにて形成される請求項1ないし3のいずれか1項に記載のRFID用磁性部材。   The magnetic member for RFID according to any one of claims 1 to 3, wherein the magnetic film is formed of Fe-MN. Nの組成比は、13at%以上で18at%以下の範囲内である請求項4記載のRFID用磁性部材。   5. The magnetic member for RFID according to claim 4, wherein the composition ratio of N is in the range of 13 at% or more and 18 at% or less. 各磁性膜の膜厚は、0.5μm以上で1.2μm以下である請求項4又は5のいずれか1項に記載のRFID用磁性部材。   6. The RFID magnetic member according to claim 4, wherein the thickness of each magnetic film is 0.5 μm or more and 1.2 μm or less. 前記磁性膜は、Fe−M−Oにて形成される請求項1ないし3のいずれか1項に記載のRFID用磁性部材。   The magnetic member for RFID according to any one of claims 1 to 3, wherein the magnetic film is formed of Fe-MO. 各磁性膜の膜厚は、0.7μm以上で2.8μm以下である請求項7記載のRFID用磁性部材。   8. The magnetic member for RFID according to claim 7, wherein the thickness of each magnetic film is 0.7 μm or more and 2.8 μm or less. 前記磁性膜の積層数は、2〜8の範囲内である請求項2、3、6又は8のいずれか1項に記載のRFID用磁性部材。   The magnetic member for RFID according to claim 2, wherein the number of laminated magnetic films is in a range of 2 to 8. 前記磁性膜の積層数は、2である請求項9記載のRFID用磁性部材。   The RFID magnetic member according to claim 9, wherein the number of laminated magnetic films is two. 前記絶縁膜は、SiO2膜である請求項1ないし10のいずれか1項に記載のRFID用磁性部材。 The RFID magnetic member according to claim 1, wherein the insulating film is a SiO 2 film. 前記磁性膜が前記基材に直接、あるいは絶縁膜を介して形成されている請求項1ないし11のいずれか1項に記載のRFID用磁性部材。   The magnetic member for RFID according to claim 1, wherein the magnetic film is formed directly on the base material or via an insulating film. 前記基材は、可撓性の樹脂シートであり、前記磁性膜は、熱処理することなく形成されたものである請求項1ないし12のいずれか1項に記載のRFID用磁性部材。   The RFID magnetic member according to claim 1, wherein the base material is a flexible resin sheet, and the magnetic film is formed without heat treatment. 前記基材は、金属で形成されている請求項1ないし13のいずれか1項に記載のRFID用磁性部材。   14. The RFID magnetic member according to claim 1, wherein the substrate is made of metal. RFIDタグと金属部材間に請求項1ないし14のいずれか1項に記載されたRFID用磁性部材が介在してなることを特徴とするRFIDデバイス。   An RFID device comprising the RFID magnetic member according to any one of claims 1 to 14 interposed between an RFID tag and a metal member. RFIDタグと金属部材間に請求項14に記載の磁性膜が前記金属部材を基材として形成されていることを特徴とするRFIDデバイス。   15. An RFID device, wherein the magnetic film according to claim 14 is formed between the RFID tag and a metal member using the metal member as a base material.
JP2010056368A 2009-05-08 2010-03-12 Magnetic member for rfid, and rfid device Withdrawn JP2010283333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010056368A JP2010283333A (en) 2009-05-08 2010-03-12 Magnetic member for rfid, and rfid device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009113776 2009-05-08
JP2010056368A JP2010283333A (en) 2009-05-08 2010-03-12 Magnetic member for rfid, and rfid device

Publications (1)

Publication Number Publication Date
JP2010283333A true JP2010283333A (en) 2010-12-16

Family

ID=43539767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010056368A Withdrawn JP2010283333A (en) 2009-05-08 2010-03-12 Magnetic member for rfid, and rfid device

Country Status (1)

Country Link
JP (1) JP2010283333A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022533669A (en) * 2019-05-17 2022-07-25 杭州海康威視数字技術股▲フン▼有限公司 Card touch-enabled devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022533669A (en) * 2019-05-17 2022-07-25 杭州海康威視数字技術股▲フン▼有限公司 Card touch-enabled devices
JP7320623B2 (en) 2019-05-17 2023-08-03 杭州海康威視数字技術股▲フン▼有限公司 Card touch-enabled devices
US11868838B2 (en) 2019-05-17 2024-01-09 Hangzhou Hikvision Digital Technology Co., Ltd. Device supporting card-swiping

Similar Documents

Publication Publication Date Title
US10931152B2 (en) Method of manufacturing magnetic field shielding sheet and magnetic field shielding sheet formed thereby
JP6151185B2 (en) Magnetic sheet for non-contact power receiving device, non-contact power receiving device using the same, electronic device, and non-contact charging device
JP4265114B2 (en) Antenna coil for tags
KR101787350B1 (en) Magnetic sheet, electronic device using same, and method for manufacturing magnetic sheet
KR101916149B1 (en) Shielding unit for magnetic resonance wireless power transfer, Wireless power transfer module comprising the same and Electronic device comprising the same
JP6667624B2 (en) Multifunctional composite module and portable device including the same
US10658104B2 (en) Magnetic sheet and wireless power charging apparatus including the same
US20160125987A1 (en) Soft magnetic metal complex
JP2008541616A (en) Radio frequency identification tags for use on metals and other conductive objects
KR20170017416A (en) antenna unit for wireless power transfer and a wireless charging receiver module having the same
CN108698369B (en) Magnetic multilayer sheet
KR20150010519A (en) Soft magnetic exchange coupled composite structure, high frequency device components comprising the same, antenna module comprising the same, and magnetoresistive device comprising the same
JP2008117944A (en) Magnetic core member for antenna module, antenna module, and portable information terminal equipped with the same
JP2005006263A (en) Core member and antenna for rfid using the same
JP2006060432A (en) Radio wave transmitting and receiving antenna
JP5284736B2 (en) Magnetic sheet and manufacturing method thereof
JP2007081349A (en) Inductor
US20170294504A1 (en) Laminated structures for power efficient on-chip magnetic inductors
JP2010283333A (en) Magnetic member for rfid, and rfid device
EP1450378A2 (en) Soft magnetic member, method for manufacturing thereof and electromagnetic wave controlling sheet
US20160134020A1 (en) Magnetic shielding for an antenna, using a composite based on thin magnetic layers, and antenna comprising such a shielding
US10304611B2 (en) Chip inductor and method of manufacturing the same
WO2022145113A1 (en) Ferrite sheet strip, and antenna device and cable using ferrite sheet strip
JP2012008814A (en) Communication device
JP2021068279A (en) Magnetic sheet and wireless communication tag

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130604