JP2010010029A - Fuel cell system and its control circuit - Google Patents

Fuel cell system and its control circuit Download PDF

Info

Publication number
JP2010010029A
JP2010010029A JP2008170087A JP2008170087A JP2010010029A JP 2010010029 A JP2010010029 A JP 2010010029A JP 2008170087 A JP2008170087 A JP 2008170087A JP 2008170087 A JP2008170087 A JP 2008170087A JP 2010010029 A JP2010010029 A JP 2010010029A
Authority
JP
Japan
Prior art keywords
control means
fuel cell
sub
main control
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008170087A
Other languages
Japanese (ja)
Inventor
Shinya Koide
晋也 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008170087A priority Critical patent/JP2010010029A/en
Publication of JP2010010029A publication Critical patent/JP2010010029A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system with control means dispersed, having improved safety when a failure occurs in communicating the control means with each other, and an improved versatility in assigning an auxiliary machine to the control means. <P>SOLUTION: The fuel cell system comprises a main control means for controlling a series of operations of a fuel cell, represented by the start, power generation and stop of the fuel cell system, a sub control means for performing axiliary machine control determined by the control of the main control means, a fan and a pump for feeding air and water to be controlled by the control means including the main control means and the sub control means, and valves for changing over flow paths for gas, air and water. When a failure occurs in communicating the main control means and the sub control means with each other, the main control means and the sub control means independently perform stopping processing for the fuel cell. Thus, even when the failure occurs in communicating the control means with each other, the auxiliary machine connected to the sub control means can be controlled by the sub control means to stop the fuel cell. This improves the safety of the fuel cell when the communicating failure occurs. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は燃料電池発電装置の構成に関するものである。   The present invention relates to a configuration of a fuel cell power generator.

近年、二酸化炭素排出を削減する為の新エネルギー開発が盛んに行われており、各家庭に設置し電力とお湯を提供する燃料電池コージェネシステムも実用化段階に入っている。   In recent years, new energy development for reducing carbon dioxide emissions has been actively conducted, and a fuel cell cogeneration system that is installed in each household and provides electric power and hot water is also in a practical stage.

都市ガスを原料とする家庭用燃料電池システムは、炭化水素系の原料ガス中から水素を取り出す水素生成器、水素と酸素を反応させ発電を行うスタック、発電した直流電力を交流電力へ変換するインバータを主な構成要素とし、それらを制御する弁やポンプ、ヒータ、ファン等の様々な補機から構成され、また温度センサや流量センサも多数装着されている。   Household fuel cell systems that use city gas as a raw material consist of a hydrogen generator that extracts hydrogen from hydrocarbon-based source gas, a stack that generates electricity by reacting hydrogen and oxygen, and an inverter that converts the generated DC power into AC power Is composed of various auxiliary devices such as valves, pumps, heaters, fans and the like for controlling them, and a large number of temperature sensors and flow sensors are also mounted.

構成要素が多くそれらの要素も大きい為、自ずと燃料電池装置自身もその筐体が大きくなる。そこで、配線数削減と組み立て性向上を目的として、例えば特許文献1に示すように、制御装置を主制御装置と副制御装置のように分散する手法が知られている。
特開2007−242330号公報
Since there are many components and these elements are large, the housing of the fuel cell device itself is naturally large. For this reason, for the purpose of reducing the number of wires and improving assemblability, for example, as shown in Patent Document 1, a method of distributing control devices like a main control device and a sub control device is known.
JP 2007-242330 A

しかし上述の構成では、制御装置間を通信により協調させることを前提とし、仮に制御装置間の通信がノイズや通信ラインの断線により通信異常となった場合、該当制御装置が制御する補機への電源供給を主制御装置が遮断する。よって、安全の為に動作させる方が好ましい補機を副制御手段に接続すると、通信異常が発生した場合に動作出来ない事象が発生する。   However, in the above-mentioned configuration, assuming that the control devices are coordinated by communication, if communication between the control devices becomes abnormal due to noise or disconnection of the communication line, the control device controls the auxiliary machine. The main controller shuts off the power supply. Therefore, if an auxiliary machine that is preferably operated for safety is connected to the sub-control means, an event that cannot be performed occurs when a communication abnormality occurs.

また、機内空気を換気する換気ファン等や燃料電池システムを冷却する冷却ファンの様に、燃料電池の故障停止時に動作させる必要がある補機をすべて主制御手段へ割り当てると、補機割り当てや配線の取り回しで大きく自由度が損なわれる。   In addition, if all the auxiliary equipment that needs to be operated when the fuel cell malfunctions are stopped, such as a ventilation fan that ventilates the air inside the machine or a cooling fan that cools the fuel cell system, assigns the auxiliary equipment and wiring. The degree of freedom is greatly impaired by the handling.

前記従来の課題を解決する為に水素ガスと酸化剤ガスとを反応させて発電を行う燃料電池スタックと、前記燃料電池スタックで発電した電気を交流に変換するインバータと、前記燃料電池スタック、前記インバータを制御する副制御手段と、前記副制御手段の制御のほか、システムの起動、発電、停止を制御する主制御手段と、ガスや水などを遮断または経路を切替える弁と、ガスや水や空気などを送り込むポンプやファンと、ガスや水や空気などの温度や流量を計測するセンサを有し、前記副制御手段は前記主制御手段との通信の途絶を検知すると前記主制御手段からの補機制御指示によらず、冷却や換気を目的にファンやポンプを駆動し、ガスや水の供給や遮断を目的に弁を制御し、前記主制御手段は前記副制御手段との通信の途絶を検知すると、ガス供給を遮断する為にガス経路上の最上流に位置する弁を制御し、冷却や換気を目的にファンやポンプを駆動し、ガスや水の供給や遮断を目的に弁を制御し、前記副制御手段や前記主制御手段は各々の制御手段に接続された補機のみを制御して単独で燃料電池の停止処理を実施する。   In order to solve the conventional problems, a fuel cell stack that generates electricity by reacting hydrogen gas and oxidant gas, an inverter that converts electricity generated by the fuel cell stack into alternating current, the fuel cell stack, Sub-control means for controlling the inverter; in addition to control of the sub-control means, main control means for controlling system start-up, power generation and shutdown; valves for shutting off gas or water or switching the path; A pump and a fan for sending air and the like, and a sensor for measuring a temperature and a flow rate of gas, water, air, etc., and when the sub-control means detects the disconnection of communication with the main control means, Regardless of the auxiliary control instruction, the fan or pump is driven for the purpose of cooling or ventilation, the valve is controlled for the purpose of supplying or shutting off gas or water, and the main control means interrupts communication with the sub control means. Inspect Then, the valve located at the uppermost stream on the gas path is controlled to shut off the gas supply, the fan and pump are driven for cooling and ventilation, and the valve is controlled for the purpose of supplying and shutting off the gas and water. The sub-control means and the main control means control only the auxiliary devices connected to the respective control means and execute the fuel cell stop process alone.

これにより本発明の燃料電池装置は、燃料電池制御手段を主制御手段と副制御手段に分散し、それら制御手段間で通信異常が発生した場合、副制御手段は主制御手段の補機制御指令によらず補機制御出来るため、副制御手段に燃料電池を停止させる場合に動作させるべき補機を割り当てても、燃料電池装置を安全に停止させることが出来る。   As a result, the fuel cell device of the present invention distributes the fuel cell control means to the main control means and the sub-control means, and when a communication abnormality occurs between these control means, the sub-control means instructs the auxiliary control command of the main control means. Therefore, even if an auxiliary device to be operated is assigned to the sub-control unit when the fuel cell is stopped, the fuel cell device can be safely stopped.

さらに、補機配置と制御手段への割り当てに自由度が増す為、配線長や配線数を減少でき、製品コストを低減することが出来る。   Furthermore, since the degree of freedom increases in the arrangement of the auxiliary equipment and the assignment to the control means, the wiring length and the number of wirings can be reduced, and the product cost can be reduced.

第一の発明は、水素ガスと酸化剤ガスとを反応させて発電を行う燃料電池スタックと、前記燃料電池スタックで発電した電気を交流に変換するインバータと、前記燃料電池スタック、前記インバータを制御する副制御手段と、前記副制御手段の制御のほか、システムの起動、発電、停止を制御する主制御手段とから構成され、主制御手段と副制御手段間の通信が成立している場合、副制御手段は主制御手段に指示された通りの補機制御を実施し、また、センサやスイッチ入力結果を主制御手段へ送信し、主制御手段と副制御手段間で通信異常が発生した場合、副制御手段は副制御手段に接続されたファンやポンプを燃料電池装置の冷却と機内空気の換気を目的に制御し、弁をガスや空気の閉止と圧抜きを目的に制御し、主制御手段は原料となるガスの供給を停止する為、ガス経路における最上流の弁を閉止制御し、主制御手段に接続されたファンやポンプを燃料電池装置の冷却と機内空気の換気を目的に制御することを特徴とする燃料電池装置である。   1st invention controls the fuel cell stack which reacts hydrogen gas and oxidant gas, and generates electric power, the inverter which converts the electric power generated with the fuel cell stack into alternating current, the fuel cell stack, and the inverter In addition to the control of the sub-control means, and the main control means for controlling the start, power generation, and stop of the system in addition to the control of the sub-control means, when communication between the main control means and the sub-control means is established, The sub-control means performs auxiliary equipment control as instructed by the main control means, and also transmits a sensor or switch input result to the main control means, and a communication abnormality occurs between the main control means and the sub-control means. The sub-control means controls the fans and pumps connected to the sub-control means for the purpose of cooling the fuel cell device and ventilating the air inside the machine, and controls the valves for the purpose of shutting off the gas and air and releasing the pressure. Means are raw materials In order to stop the gas supply, the most upstream valve in the gas path is closed and the fan and pump connected to the main control means are controlled for the purpose of cooling the fuel cell device and ventilating the air inside the machine. This is a fuel cell device.

上記構成と動作によると、主制御手段と副制御手段の様に制御手段が分散された燃料電池装置において、例えばノイズや通信ラインの断線、コネクタの接触不良、通信LSIの故障等により通信異常が発生した場合、主制御手段はガス経路における最上流の弁を閉止制御するため、新たなガスの流出を防止出来、副制御手段は燃料電池を停止するための制御を副制御手段単独で実施するため、主制御手段と副制御手段の間での通信異常発生時に、換気の為のファンを駆動する事で燃料電池装置内への可燃性ガスの滞留防止や、燃料電池装置とその構成部品の冷却が可能になる効果をもたらす。   According to the above configuration and operation, in the fuel cell device in which the control means are distributed like the main control means and the sub-control means, for example, communication abnormality is caused by noise, disconnection of the communication line, poor contact of the connector, failure of the communication LSI, etc. When it occurs, the main control means controls the closing of the most upstream valve in the gas path, so that the outflow of new gas can be prevented, and the sub control means carries out the control for stopping the fuel cell by the sub control means alone. Therefore, when a communication abnormality occurs between the main control means and the sub-control means, the fan for ventilation is driven to prevent flammable gas from staying in the fuel cell apparatus, and the fuel cell apparatus and its components The effect that cooling becomes possible is brought about.

なお、主制御手段に対する副制御手段は複数存在しても良い。   There may be a plurality of sub-control means for the main control means.

第二の発明は、第一の発明において、主制御手段は副制御手段へ接続された補機への電源供給を遮断出来る電源遮断手段を有し、前記主制御手段は前記副制御手段との通信異常が発生した場合、一定時間経過もしくは、燃料電池装置内における予め決定した部位の温度が一定温度以下に低下した後に、前記電源遮断手段により、補機への電源供給を遮断する事を特徴とする燃料電池システムである。   According to a second invention, in the first invention, the main control means has power shut-off means capable of shutting off power supply to the auxiliary equipment connected to the sub-control means, and the main control means is connected to the sub-control means. When a communication abnormality occurs, the power supply to the auxiliary machine is shut off by the power shut-off means after a lapse of a certain time or the temperature of a predetermined part in the fuel cell device has dropped below a certain temperature. This is a fuel cell system.

上記構成と動作によると、主制御手段と副制御手段間の通信異常が副制御手段の暴走に起因したとしても、主制御手段が一定時間経過後に通信異常が発生した制御手段に接続された補機への電源供給を遮断する事で、副制御手段の暴走に伴う長時間の補機の誤動作を防止できる。   According to the configuration and operation described above, even if a communication abnormality between the main control unit and the sub control unit is caused by the runaway of the sub control unit, the main control unit is connected to the control unit that is connected to the control unit in which the communication abnormality has occurred after a certain period of time. By shutting off the power supply to the machine, it is possible to prevent the malfunction of the auxiliary machine for a long time due to the runaway of the secondary control means.

第三の発明は、第一の発明において、システムを構成する各構成要素のうち、システムの制御に係わるいくつかの構成要素を1つの制御回路として集積した場合の、効果的な一つの例である。   The third invention is an effective example in the case where several components related to system control are integrated as one control circuit among the components constituting the system in the first invention. is there.

第四の発明は、第二の発明において、システムを構成する各構成要素のうち、システムの制御に係わるいくつかの構成要素を1つの制御回路として集積した場合の、効果的な一つの例である。   The fourth invention is an effective example in the case where several components related to system control are integrated as one control circuit among the components constituting the system in the second invention. is there.

以下、本発明の実施の形態について図面を参照しながら説明する。本実施の形態は一例であり、本発明を制限するものでは無い。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. This embodiment is an example and does not limit the present invention.

(実施の形態1)
図1は本発明における燃料電池装置のシステム全体の構成図の例を示しており、電力を供給する燃料電池装置1と燃料電池装置1で発生した排熱を回収して貯湯する貯湯装置13の構成を示す。
(Embodiment 1)
FIG. 1 shows an example of a configuration diagram of a whole system of a fuel cell device according to the present invention. A fuel cell device 1 that supplies electric power and a hot water storage device 13 that collects and stores exhaust heat generated in the fuel cell device 1. The configuration is shown.

燃料電池装置1は原料となる都市ガスから水素を生成する水素生成手段2と、水素生成手段2で生成した水素と空気ポンプ4で送り込まれた空気中の酸素とを反応させ電力を発電する燃料電池スタック3と、発電電力を直流から交流へ変換するインバータ8と、発電時に発生した排熱を回収する排熱回収手段10と、貯湯装置13と通信する為の対貯湯通信手段9とを有し、それらを制御するために、主制御手段5と副制御手段7が通信ライン6を介して接続されている。   The fuel cell device 1 is a fuel that generates electric power by reacting hydrogen generated from a city gas as a raw material with hydrogen generating means 2, hydrogen generated by the hydrogen generating means 2 and oxygen in the air fed by an air pump 4. The battery stack 3, the inverter 8 for converting the generated power from direct current to alternating current, the exhaust heat recovery means 10 for recovering the exhaust heat generated during power generation, and the hot water storage communication means 9 for communicating with the hot water storage device 13 are provided. In order to control them, the main control means 5 and the sub control means 7 are connected via the communication line 6.

また、貯湯装置13は燃料電池装置1と通信するため通信ライン11と、排熱回収手段10から排熱回収水を得る排熱回収水経路12と、排熱回収水を貯湯する貯湯手段16とを有し、それらを制御する為に貯湯制御手段14を有し、燃料電池装置1と接続される。   The hot water storage device 13 communicates with the fuel cell device 1, a communication line 11, an exhaust heat recovery water path 12 for obtaining exhaust heat recovery water from the exhaust heat recovery means 10, and hot water storage means 16 for storing the exhaust heat recovery water. In order to control them, it has hot water storage control means 14 and is connected to the fuel cell device 1.

図2は燃料電池装置1のより詳細な図であり、主制御手段5は、原料ガスの最上流に設置されたガス制御弁20と、弁21と、ファン22と、空気ポンプ4を制御し、副制御手段7は、弁21と、ファン22と、空気ポンプ4と、インバータ8を制御し、主制御手段5で決定された補機操作は通信ライン6を介して副制御手段7へ伝達され、また副制御手段7に接続されたセンサ23で入力した温度や圧力や流量を、通信ライン6を介して主制御手段5へ伝達する。主制御手段5に接続されたセンサ23は主制御手段5が直接的に制御する。   FIG. 2 is a more detailed view of the fuel cell device 1, and the main control means 5 controls the gas control valve 20, the valve 21, the fan 22, and the air pump 4 installed at the uppermost stream of the raw material gas. The sub-control means 7 controls the valve 21, the fan 22, the air pump 4 and the inverter 8, and the auxiliary machine operation determined by the main control means 5 is transmitted to the sub-control means 7 via the communication line 6. In addition, the temperature, pressure, and flow rate input by the sensor 23 connected to the sub control means 7 are transmitted to the main control means 5 via the communication line 6. The sensor 23 connected to the main control means 5 is directly controlled by the main control means 5.

主制御手段5は副制御手段7との通信が正常に行われている場合、副制御手段7と補機出力を指令する為または、センサからの入力値を得るため通信する。主制御手段5は燃料電池装置1の起動、発電、停止に代表される一連の動作を制御し、副制御手段7に対して補機出力を指示することで各制御手段が協調して燃料電池装置1を動作させる。   When the communication with the sub-control unit 7 is normally performed, the main control unit 5 communicates with the sub-control unit 7 in order to instruct an auxiliary machine output or to obtain an input value from the sensor. The main control means 5 controls a series of operations typified by starting, generating and stopping the fuel cell device 1, and instructs the auxiliary control output to the sub-control means 7 so that the control means cooperate with each other in the fuel cell. The apparatus 1 is operated.

なお、主制御手段5と副制御手段7は、各々が通信を監視していて通信異常に起因する通信途絶を検知出来る。主制御手段5と副制御手段7との間で通信途絶には、ノイズによる通信異常、通信ライン6の断線、通信ライン6を接続するコネクタの接触不良、通信制御するLSIへの異常発生が考えられる。   Note that the main control means 5 and the sub control means 7 can monitor communication and detect a communication interruption caused by a communication abnormality. Communication interruptions between the main control means 5 and the sub-control means 7 are considered to be communication abnormality due to noise, disconnection of the communication line 6, contact failure of the connector connecting the communication line 6, and occurrence of abnormality in the LSI that controls communication. It is done.

図3(a)に示す主制御手段5の処理図のように、主制御手段5は副制御手段7との通信をステップ100で監視しており、通信異常による通信の途絶が発生した場合、主制御手段5はステップ102でそれ自身に接続されたガス制御弁20を閉止制御し、弁21と、ファン22と、空気ポンプ4を制御して燃料電池装置を安全に停止させる。   As shown in the processing diagram of the main control means 5 shown in FIG. 3A, the main control means 5 monitors the communication with the sub-control means 7 in step 100, and when communication interruption due to communication abnormality occurs, In step 102, the main control means 5 controls closing of the gas control valve 20 connected to itself, and controls the valve 21, the fan 22, and the air pump 4 to safely stop the fuel cell device.

通信の途絶が発生していない場合は、ステップ101で副制御手段7と通信により協調して燃料電池装置1を起動、発電、停止に代表される一連の動作を制御する。   If no communication interruption has occurred, a series of operations represented by starting, generating, and stopping the fuel cell device 1 are controlled in cooperation with the sub-control means 7 in step 101.

以降、主制御手段5もしくは副制御手段7が通信を介さず、対象となる制御手段に接続された補機のみにより燃料電池装置1を停止させる制御を単独停止処理と呼称する。   Hereinafter, the control in which the main control unit 5 or the sub control unit 7 stops the fuel cell device 1 only by using an auxiliary machine connected to the target control unit without communication is referred to as a single stop process.

単独停止処理とは、例えば水素生成手段2内部で圧力が上昇した場合にガスを逃すため弁を制御する、燃料電池装置1を冷却もしくは機内空気を換気する為ファンもしくはポンプを制御することが例示できる。   The single stop process is exemplified by controlling a valve to release gas when the pressure rises inside the hydrogen generating means 2, for example, controlling a fan or a pump to cool the fuel cell device 1 or ventilate the air in the apparatus. it can.

主制御手段5はステップ103で単独停止処理を実施して一定時間経過後もしくは、予め決定された箇所の温度が一定温度まで低下後ならば、燃料電池装置1の停止処理を完了したものとみなし、単独停止処理を完了する。   The main control means 5 considers that the stop process of the fuel cell device 1 has been completed after a single time has elapsed in step 103 and after a predetermined time has elapsed or the temperature at a predetermined location has dropped to a constant temperature. The single stop process is completed.

なお、主制御手段5は単独停止実施中においてもステップ100で副制御手段7との通信復帰を監視して、副制御手段7との通信が復帰した場合、副制御手段7と通信により協調して燃料電池装置1を停止処理しても良い。   Note that the main control means 5 monitors the return of communication with the sub-control means 7 in step 100 even when the single stop is being executed, and when communication with the sub-control means 7 returns, the main control means 5 cooperates with the sub-control means 7 by communication. Then, the fuel cell device 1 may be stopped.

図3(b)に示す副制御手段7の処理図のように、副制御手段7は主制御手段5との通信をステップ104で常時監視しており、通信異常による通信の途絶が発生した場合、ステップ105で副制御手段5に接続された弁21と、ファン22と、空気ポンプ4と、インバータ8を制御して燃料電池装置を安全に停止させる。   As shown in the processing diagram of the sub-control means 7 shown in FIG. 3B, the sub-control means 7 constantly monitors the communication with the main control means 5 in step 104, and communication is interrupted due to a communication abnormality. In step 105, the valve 21, fan 22, air pump 4, and inverter 8 connected to the sub-control means 5 are controlled to stop the fuel cell device safely.

通信の途絶が発生していない場合、ステップ105で主制御手段5から通信により指示された補機制御を実施して、主制御手段と協調して燃料電池装置1を制御する。   When communication interruption has not occurred, auxiliary equipment control instructed by communication from the main control means 5 is performed in step 105, and the fuel cell apparatus 1 is controlled in cooperation with the main control means.

例えば、水素生成手段2内部で圧力が上昇した場合にガスを逃すため弁を制御する、燃料電池装置1を冷却もしくは機内空気を換気する為ファンもしくはポンプを制御することが例示できる。副制御手段7はステップ107で単独停止処理を実施して一定時間経過後もしくは、予め決定された箇所の温度が一定温度まで低下後ならば、燃料電池装置1の停止処理を完了したものとみなし、単独停止処理を完了する。   For example, it can be exemplified that a valve is controlled to release gas when the pressure rises inside the hydrogen generating means 2, and a fan or pump is controlled to cool the fuel cell device 1 or ventilate the air in the apparatus. The sub-control means 7 performs the single stop process in Step 107 and, after a lapse of a certain time or after the temperature at a predetermined location has decreased to a constant temperature, it is considered that the stop process of the fuel cell device 1 has been completed. The single stop process is completed.

なお、副制御手段7は単独停止実施中においてもステップ104で主制御手段5との通信復帰を監視して、主制御手段5との通信が復帰した場合、主制御手段5から伝達された補機制御指令に従い制御を実施しても良い。   The sub-control means 7 monitors the return of communication with the main control means 5 in step 104 even when the single stop is being executed, and when communication with the main control means 5 is restored, the auxiliary control means 5 transmitted from the main control means 5 is monitored. Control may be performed according to the machine control command.

このように、燃料電池の安全性や劣化防止の観点から停止工程において動作させた方が好ましい弁やファンやポンプを、主制御手段5に集中して接続させる必要が無く、副制御手段7に接続出来るため、補機配置と補機制御のための配線レイアウトの自由度が増す。   Thus, there is no need to concentrate and connect valves, fans, and pumps that are preferably operated in the stopping process from the viewpoint of safety of the fuel cell and prevention of deterioration, and the sub-control means 7 does not need to be connected to the main control means 5 in a concentrated manner. Since it can be connected, the degree of freedom of wiring layout for auxiliary equipment arrangement and auxiliary equipment control is increased.

(実施の形態2)
実施の形態2は、実施の形態1に加えて、主制御手段5が補機への電源供給を遮断出来る構成を追加したものであり、その他の構成と動作は実施の形態1と同じである。
(Embodiment 2)
In the second embodiment, in addition to the first embodiment, a configuration in which the main control means 5 can cut off the power supply to the auxiliary machine is added. Other configurations and operations are the same as those in the first embodiment. .

以下では、実施の形態1との相異点を中心として説明し、その他の構成と動作は実施の形態1と同じとする。   In the following description, differences from the first embodiment will be mainly described, and other configurations and operations are the same as those of the first embodiment.

図4は副制御手段7の暴走発生による通信途絶に副制御手段7に接続された補機の誤動作を防止する為、主制御手段5が電源供給手段31から副制御手段7へ接続された補機への電源供給を遮断できる電源遮断手段32から構成される例である。   FIG. 4 shows that the main control means 5 is connected to the sub-control means 7 from the power supply means 31 in order to prevent malfunction of the auxiliary equipment connected to the sub-control means 7 due to the communication interruption due to the runaway of the sub-control means 7. It is an example comprised from the power-supply-cutoff means 32 which can interrupt | block the power supply to a machine.

図5に示す主制御手段5の処理図のように、主制御手段5はステップ100で副制御手段7との通信途絶を検出すると、ステップ102で単独停止処理を実施し、ステップ103で単独停止処理を実施して一定時間経過後もしくは、予め決定された箇所の温度が一定温度まで低下後ならば、燃料電池装置1の停止処理を完了したものとみなし、単独停止処理を終了させ、ステップ110で電源遮断手段32により副制御手段7へ接続された補機への電源供給を遮断する。   As shown in the processing diagram of the main control means 5 shown in FIG. 5, when the main control means 5 detects a communication interruption with the sub-control means 7 at step 100, it executes the single stop process at step 102 and single stop at step 103. If the process is performed and a predetermined time has elapsed or if the temperature at a predetermined location has decreased to a certain temperature, it is considered that the stop process of the fuel cell device 1 has been completed, the single stop process is terminated, and step 110 is performed. Then, power supply to the auxiliary machine connected to the sub-control means 7 is shut off by the power shut-off means 32.

この構成により副制御手段7の暴走による通信途絶の場合であっても、副制御手段7に接続された補機が誤動作し続けることが解消される。   With this configuration, even when communication is interrupted due to runaway of the sub-control means 7, it is possible to eliminate the malfunction of the auxiliary equipment connected to the sub-control means 7.

また、主制御手段5が暴走した場合、暴走検知手段30は主制御手段5が発生させるウォッチドックパルスの途絶えにより暴走を検知し、電源遮断手段32により電源供給手段31から補機へ供給される電源を遮断する構成が知られている。   When the main control means 5 runs away, the runaway detection means 30 detects the runaway due to the interruption of the watchdog pulse generated by the main control means 5 and is supplied from the power supply means 31 to the auxiliary machine by the power shut-off means 32. A configuration for cutting off the power supply is known.

本発明の燃料電池装置および制御回路は、燃料電池装置を分散制御した場合における安全性と配線レイアウトの自由度を向上させることが出来る。   The fuel cell device and the control circuit of the present invention can improve the safety and the degree of freedom of wiring layout when the fuel cell device is distributedly controlled.

本発明の一実施の形態に係る燃料電池システムの全体構成を示す構成図The block diagram which shows the whole structure of the fuel cell system which concerns on one embodiment of this invention 実施の形態1に係る燃料電池装置の内部を示す図The figure which shows the inside of the fuel cell apparatus which concerns on Embodiment 1. FIG. (a)実施の形態1に係る主制御手段の処理図、(b)実施の形態1に係る副制御手段の処理図(A) Processing diagram of main control means according to embodiment 1, (b) Processing diagram of sub-control means according to embodiment 1. 実施の形態2に係る燃料電池装置の内部を示す図The figure which shows the inside of the fuel cell apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係る主制御手段の処理図Processing diagram of main control means according to embodiment 2

符号の説明Explanation of symbols

1 燃料電池装置
2 水素生成手段
3 燃料電池スタック
4 空気ポンプ
5 主制御手段
6 通信ライン
7 副制御手段
8 インバータ
9 対貯湯通信手段
10 排熱回収手段
11 通信ライン
12 排熱回収水経路
13 貯湯装置
14 貯湯制御手段
15 対燃料電池通信手段
16 貯湯手段
17 ガス又は空気又は水の経路
20 ガス制御弁
21 弁
22 ファン
23 センサ
30 暴走検知手段
31 電源供給手段
32 電源遮断手段
DESCRIPTION OF SYMBOLS 1 Fuel cell apparatus 2 Hydrogen production | generation means 3 Fuel cell stack 4 Air pump 5 Main control means 6 Communication line 7 Sub-control means 8 Inverter 9 Hot water storage communication means 10 Waste heat recovery means 11 Communication line 12 Waste heat recovery water path 13 Hot water storage apparatus DESCRIPTION OF SYMBOLS 14 Hot water storage control means 15 Fuel cell communication means 16 Hot water storage means 17 Gas | air or air or water path | route 20 Gas control valve 21 Valve 22 Fan 23 Sensor 30 Runaway detection means 31 Power supply means 32 Power supply interruption means

Claims (4)

水素ガスと酸化剤ガスとを反応させて発電を行う燃料電池スタックと、
前記燃料電池スタックで発電した電気を交流に変換するインバータと、
前記燃料電池スタック、前記インバータを制御する副制御手段と、
前記副制御手段の制御のほか、システムの起動、発電、停止を制御する主制御手段とから構成され、
前記主制御手段は前記副制御手段との通信異常を検知したときに、
単独停止処理を実施することを特徴とし、
前記副制御手段は前記主制御手段との通信異常を検知したときに、
単独停止処理を実施することを特徴とする
燃料電池システム。
A fuel cell stack for generating electricity by reacting hydrogen gas and oxidant gas;
An inverter that converts electricity generated by the fuel cell stack into alternating current;
Sub-control means for controlling the fuel cell stack and the inverter;
In addition to the control of the sub-control means, the system is composed of main control means for controlling system start-up, power generation, and stop,
When the main control unit detects an abnormality in communication with the sub control unit,
It is characterized by carrying out single stop processing,
When the sub-control unit detects an abnormality in communication with the main control unit,
A fuel cell system that performs a single stop process.
水素ガスと酸化剤ガスとを反応させて発電を行う燃料電池スタックと、
前記燃料電池スタックで発電した電気を交流に変換するインバータと、
前記燃料電池スタック、前記インバータを制御する副制御手段と、
前記副制御手段の制御のほか、システムの起動、発電、停止を制御する主制御手段と、
前記主制御手段が前記副制御手段に接続された補機への電源供給を遮断する電源遮断手段とから構成され、
前記主制御手段と前記副制御手段との通信異常が発生したときに、
前記主制御手段は、前記通信異常が発生後一定時間ののち、前記副制御手段が制御する補機への電源供給を停止させることを特徴とする燃料電池システム。
A fuel cell stack for generating electricity by reacting hydrogen gas and oxidant gas;
An inverter that converts electricity generated by the fuel cell stack into alternating current;
Sub-control means for controlling the fuel cell stack and the inverter;
In addition to the control of the sub-control means, main control means for controlling system start-up, power generation, stop, and
The main control means is composed of power shut-off means for shutting off power supply to the auxiliary machine connected to the sub-control means,
When communication abnormality occurs between the main control unit and the sub control unit,
The fuel cell system, wherein the main control means stops power supply to the auxiliary machine controlled by the sub-control means after a certain time after the occurrence of the communication abnormality.
水素ガスと酸化剤ガスとを反応させて発電を行う燃料電池スタックと、
前記燃料電池スタックで発電した電気を交流に変換するインバータと、
前記燃料電池スタック、前記インバータを制御する副制御手段と、
前記副制御手段の制御のほか、システムの起動、発電、停止を制御する主制御手段とから構成され、
前記主制御手段は前記副制御手段との通信異常を検知したときに、
単独停止処理を実施することを特徴とし、
前記副制御手段は前記主制御手段との通信異常を検知したときに、
単独停止処理を実施することを特徴とする
燃料電池システムの制御回路。
A fuel cell stack for generating electricity by reacting hydrogen gas and oxidant gas;
An inverter that converts electricity generated by the fuel cell stack into alternating current;
Sub-control means for controlling the fuel cell stack and the inverter;
In addition to the control of the sub-control means, the system is composed of main control means for controlling system start-up, power generation, and stop,
When the main control unit detects an abnormality in communication with the sub control unit,
It is characterized by carrying out single stop processing,
When the sub-control unit detects an abnormality in communication with the main control unit,
A control circuit for a fuel cell system, which performs a single stop process.
水素ガスと酸化剤ガスとを反応させて発電を行う燃料電池スタックと、
前記燃料電池スタックで発電した電気を交流に変換するインバータと、
前記燃料電池スタック、前記インバータを制御する副制御手段と、
前記副制御手段の制御のほか、システムの起動、発電、停止を制御する主制御手段と、
前記主制御手段が前記副制御手段に接続された補機への電源供給を遮断する電源遮断手段とから構成され、
前記主制御手段と前記副制御手段との通信異常が発生したときに、
前記主制御手段は、前記通信異常が発生後一定時間ののち、前記副制御手段が制御する補機への電源供給を停止させることを特徴とする
燃料電池システムの制御回路。
A fuel cell stack for generating electricity by reacting hydrogen gas and oxidant gas;
An inverter that converts electricity generated by the fuel cell stack into alternating current;
Sub-control means for controlling the fuel cell stack and the inverter;
In addition to the control of the sub-control means, main control means for controlling system start-up, power generation, stop, and
The main control means is composed of power shut-off means for shutting off power supply to the auxiliary machine connected to the sub-control means,
When communication abnormality occurs between the main control unit and the sub control unit,
The control circuit of a fuel cell system, wherein the main control means stops power supply to an auxiliary machine controlled by the sub-control means after a certain time after the occurrence of the communication abnormality.
JP2008170087A 2008-06-30 2008-06-30 Fuel cell system and its control circuit Pending JP2010010029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008170087A JP2010010029A (en) 2008-06-30 2008-06-30 Fuel cell system and its control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008170087A JP2010010029A (en) 2008-06-30 2008-06-30 Fuel cell system and its control circuit

Publications (1)

Publication Number Publication Date
JP2010010029A true JP2010010029A (en) 2010-01-14

Family

ID=41590252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008170087A Pending JP2010010029A (en) 2008-06-30 2008-06-30 Fuel cell system and its control circuit

Country Status (1)

Country Link
JP (1) JP2010010029A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165593A (en) * 2010-02-15 2011-08-25 Panasonic Corp Fuel cell system
JP2017130431A (en) * 2016-01-22 2017-07-27 京セラ株式会社 Fuel battery system
JP2017182933A (en) * 2016-03-28 2017-10-05 京セラ株式会社 Control method, control device, and power generating system
WO2020203059A1 (en) * 2019-03-29 2020-10-08 京セラ株式会社 Fuel cell apparatus
JP7465172B2 (en) 2020-07-30 2024-04-10 株式会社東芝 Fuel Cell Systems

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165593A (en) * 2010-02-15 2011-08-25 Panasonic Corp Fuel cell system
JP2017130431A (en) * 2016-01-22 2017-07-27 京セラ株式会社 Fuel battery system
JP2017182933A (en) * 2016-03-28 2017-10-05 京セラ株式会社 Control method, control device, and power generating system
WO2020203059A1 (en) * 2019-03-29 2020-10-08 京セラ株式会社 Fuel cell apparatus
JPWO2020203059A1 (en) * 2019-03-29 2020-10-08
JP7465172B2 (en) 2020-07-30 2024-04-10 株式会社東芝 Fuel Cell Systems

Similar Documents

Publication Publication Date Title
JP2010010029A (en) Fuel cell system and its control circuit
JP2007018992A (en) Fuel cell system and operation control method of fuel cell system
JP2007242330A (en) Fuel cell power generator system
JP2014191949A (en) Cogeneration apparatus
JP5070717B2 (en) Fuel cell cogeneration system
JP2013218811A (en) Fuel cell system
CN102817778A (en) Method and device for preventing PLC (programmable logic controller) control system of fan from crashing
JP2003346854A (en) Fuel cell power generation system, and method of controlling the fuel cell power generation system
JP2005203145A (en) Power feeding method for self-sustaining load of fuel cell power generating device
JP5477032B2 (en) Fuel cell system
US20150086891A1 (en) Apparatus and method for starting fuel cell vehicle in emergency
US7021553B2 (en) Space heating system with fuel cells and a connection to a public electrical network
JP5376755B2 (en) Fuel cell device and operation method thereof
JP2007280790A (en) Fuel cell co-generation system
JP2015025586A (en) Cogeneration device
JP4442228B2 (en) Operation method of fuel cell power generator
JP6089820B2 (en) Grid connection system for fuel cells
JP6101602B2 (en) Cogeneration system and operation method thereof
JP2008262740A (en) Fuel cell power generation system
JP2011165318A (en) Fuel cell generator system
JP6253428B2 (en) Distributed power system
JP5176765B2 (en) Fuel cell power generator
JP2016201249A (en) Fuel cell system
JP2016066613A (en) Fuel battery system
JP7465172B2 (en) Fuel Cell Systems