WO2020203059A1 - Fuel cell apparatus - Google Patents

Fuel cell apparatus Download PDF

Info

Publication number
WO2020203059A1
WO2020203059A1 PCT/JP2020/009820 JP2020009820W WO2020203059A1 WO 2020203059 A1 WO2020203059 A1 WO 2020203059A1 JP 2020009820 W JP2020009820 W JP 2020009820W WO 2020203059 A1 WO2020203059 A1 WO 2020203059A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
shutdown
cell device
pump
temperature
Prior art date
Application number
PCT/JP2020/009820
Other languages
French (fr)
Japanese (ja)
Inventor
亨祐 山内
嶌田 光隆
高志 重久
Original Assignee
京セラ株式会社
ダイニチ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社, ダイニチ工業株式会社 filed Critical 京セラ株式会社
Priority to JP2021511306A priority Critical patent/JP7138777B2/en
Publication of WO2020203059A1 publication Critical patent/WO2020203059A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This disclosure relates to a fuel cell device.
  • Patent Document 1 An example of the prior art is described in Patent Document 1.
  • the fuel cell device of the present disclosure includes a fuel cell, a plurality of auxiliary devices necessary for operating the fuel cell, and a control device in a housing, and the control device is used when the fuel cell is shut down.
  • the auxiliary equipment to be operated and the auxiliary equipment to be stopped are set according to the type of shutdown, and the shutdown is executed.
  • next-generation energy fuel obtained by storing a cell stack in which a plurality of fuel cell cells capable of obtaining power by using fuel gas (hydrogen-containing gas) and air (oxygen-containing gas) are stored in a storage container.
  • fuel gas hydrogen-containing gas
  • air oxygen-containing gas
  • Various fuel cell devices have been proposed in which a battery module and a fuel cell module are housed in an outer case.
  • the state of the fuel cell device varies when the shutdown operation is performed, and if the shutdown operation is performed uniformly regardless of the state of the fuel cell device, the stack is damaged, the temperature of the fuel cell device is delayed, and the heat medium is affected. Problems such as boiling may occur.
  • FIG. 1 is a block diagram of the fuel cell device of the embodiment.
  • FIG. 2 is a perspective view of the fuel cell device of the embodiment.
  • the fuel cell device 100 of the embodiment includes a fuel cell module 1 that generates electricity using raw fuel gas such as natural gas and air, a first heat exchanger 2, a heat storage tank 3, a heat medium pump P2, and the like. It is equipped with an exhaust heat recovery system having a circulation flow path or the like to connect.
  • the first heat circulation system (heat cycle), which is an exhaust heat recovery system, is represented by the reference numeral HC1 in FIG.
  • the fuel cell device 100 is heated by heating water such as tap water supplied from the outside by using a high-temperature heat medium stored in the heat storage tank 3 described above. It is provided with a second heat circulation system HC2 that feeds the collected water to an external reheating device such as a water heater (not shown).
  • the second heat circulation system HC2 includes a second heat exchanger 4 (also referred to as a clean water heat exchanger), a circulation pump P3 that circulates a heat medium from the heat storage tank 3 described above, and a flow path pipe connecting these. ..
  • the fuel cell module 1 includes a cell stack 11 and a reformer 12 housed in a storage container 10.
  • the exhaust gas discharged from the fuel cell module 1 is heat-exchanged between the exhaust gas and a heat medium such as water or a refrigerant flowing in the first heat exchanger 2 in the first heat exchanger 2.
  • a heat medium such as water or a refrigerant flowing in the first heat exchanger 2 in the first heat exchanger 2.
  • the water contained in the exhaust gas condenses to generate condensed water.
  • the generated condensed water is collected via the condensed water flow path C and stored in the reforming water tank 6.
  • the exhaust gas from which the water has been removed is exhausted to the outside of the fuel cell device 100 via the exhaust gas flow path E. Further, the reformed water stored in the reformed water tank 6 is supplied to the reformer 12 in the fuel cell module 1 via the reformed water flow path R and the reformed water pump P1 which is a water pump. It is used for steam reforming of fuel gas.
  • the air used for power generation in the fuel cell module 1 is introduced into the cell stack 11 via the pipe F which is an air flow path including the blower B2.
  • the raw material fuel gas is introduced into the reformer 12 together with the reforming water passing through the reforming water flow path R via the pipe G which is the raw material fuel gas flow path including the fuel gas pump B1.
  • the fuel cell device 100 includes a first heat exchanger 2, a heat storage tank 3, a second heat exchanger 4, a reformed water tank 6, and the like as auxiliary machines for assisting the power generation operation. It includes a fuel gas pump B1, a blower B2, a reforming water pump P1, a heat medium pump P2, a circulation pump P3, a ventilation fan 60, a power conditioner 20, a control device 30, an operation board 40 including a display device and an operation panel, and the like.
  • the fuel cell device 100 is arranged in a case 50 including each frame 51 and each exterior panel 52 as shown in FIG. A plurality of measuring devices, sensors, and the like are provided around the fuel cell module 1 and each auxiliary machine, a flow path, a pipe, and the like in the case 50.
  • the reformer reforms the raw material by reacting the vaporization unit that mixes and heats the raw fuel and the reformed water with the steam generated by vaporizing the raw fuel and the reformed water.
  • a thermometer TC 1 for measuring the reforming inlet temperature T1 which is the temperature of the portion connected to the reforming portion of the vaporization portion is attached.
  • a thermometer TC 2 for measuring the center temperature T2 of the fuel cell module 1 is attached to the upper part of the cell stack 11.
  • the control device 30 can acquire the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 from the thermometers TC 1 and TC 2 .
  • the fuel cell device 100 includes a control device 30 including at least one processor, a storage device, and the like in order to provide control and processing power for performing various functions, as described in detail below.
  • a control device 30 including at least one processor, a storage device, and the like in order to provide control and processing power for performing various functions, as described in detail below.
  • At least one processor may be executed as a single integrated circuit or as a plurality of communicably connected integrated circuits and / or discrete circuits. At least one processor can be run according to a variety of known techniques.
  • the processor comprises, for example, one or more circuits or units configured to perform one or more data calculation procedures or processes by executing instructions stored in the associated memory.
  • the processor may be firmware, eg, a discrete logic component, configured to perform one or more data computation procedures or processes.
  • the processor is one or more processors, controllers, microprocessors, microcontrollers, application-specific integrated circuits, digital signal processors, programmable logic devices, field programmable gate arrays, or devices thereof or Any combination of configurations, or combinations of other known devices and configurations, may be included to perform the functions described below.
  • the control device 30 is connected to a storage device and a display device (both not shown), various components and various sensors constituting the fuel cell device 100, and includes each of these functional units and the entire fuel cell device 100. Control and manage.
  • the control device 30 acquires a program stored in a storage device attached to the control device 30, and executes the program to realize various functions related to each part of the fuel cell device 100.
  • control device 30 When a control signal or various information is transmitted from the control device 30 to another functional unit or device, the control device 30 and the other functional unit may be connected by wire or wirelessly.
  • the control characteristic of the present embodiment performed by the control device 30 will be described later.
  • the control device 30 particularly supplies raw fuel such as the fuel gas pump B1 based on the instructions and commands of the external device connected to the fuel cell device 100 and the instructions and measured values of the various sensors described above. Control the device.
  • the illustration of the connection line connecting the control device 30, each device constituting the fuel cell, and each sensor may be omitted.
  • a storage device can store programs and data.
  • the storage device may also be used as a work area for temporarily storing the processing result.
  • the storage device includes a recording medium.
  • the recording medium may include a semiconductor storage medium and any non-transitory storage medium such as a magnetic storage medium. Further, the storage device may include a plurality of types of storage media.
  • the storage device may include a combination of a portable recording medium such as a memory card, an optical disk, or a magneto-optical disk, and a storage reading device.
  • the storage device may include a storage device used as a temporary storage area such as a RAM (Random Access Memory).
  • the control device 30 and the storage device of the fuel cell device 100 can also be realized as a configuration provided outside the fuel cell device 100. Further, it can be realized as a control method including a characteristic control step in the control device 30 according to the present disclosure, or as a control program for causing a computer to execute the above steps.
  • the second heat exchanger 4 As warm water whose water temperature has risen after being warmed via the second heat exchanger 4, it is supplied and supplied to an external device such as a water heater via the hot water supply pipe K which is a part of the tap water flow path L. It is intended for the indirect use of waste heat.
  • the power generation operation (so-called water self-sustaining operation) using the condensed water (reformed water) recovered from the exhaust gas in the fuel cell device 100 will be briefly described.
  • the first heat exchanger 2 arranged adjacent to the fuel cell module 1 contains the exhaust gas discharged from the module, the water flowing in the first heat exchanger 2, and the like. Heat exchange is performed with the heat medium, and the moisture contained in the exhaust gas condenses to generate condensed water.
  • the generated condensed water is separated by a gas-liquid separator or the like, purified via a purification device such as an ion exchange resin, and then stored in the reformed water tank 6 through the condensed water flow path C.
  • a purification device such as an ion exchange resin
  • the exhaust gas from which the water has been removed is exhausted to the outside of the fuel cell device 100 via the exhaust gas flow path E.
  • the reformed water stored in the reformed water tank 6 is supplied to the reformer 12 in the fuel cell module 1 via the reformed water flow path R and the reformed water pump P1, and the reformed water is used as a source. It is used for steam reforming of fuel.
  • Shutdown to stop the fuel cell device 100 is when a problem occurs during the operation of the fuel cell device 100 and normal operation is difficult, or when it is necessary to stop the fuel cell device due to maintenance of the fuel cell device or the like. Is executed.
  • the heat medium may boil due to the residual heat of the fuel cell device 100, or it may take time to lower the temperature because the fan does not operate.
  • the adverse effect of heat on 100 may increase. Therefore, in the following embodiment, focusing on the fuel gas pump B1, the blower B2, the reformed water pump P1, the heat medium pump P2, and the ventilation fan 60, the operation of these auxiliary machines at the time of shutdown will be described.
  • the fuel gas pump B1, the blower B2, the reforming water pump P1, the heat medium pump P2, and the ventilation fan 60 are all operated to perform shutdown. As a result, the inside of the system can be cooled quickly.
  • the second shutdown control is executed.
  • the fuel gas pump B1 and the blower B2 the reforming water pump P1 and the ventilation fan 60, which are auxiliary machines, are not operated to shut down.
  • the third shutdown control is executed.
  • the fuel gas pump B1, the blower B2, the reforming water pump P1, the heat medium pump P2, and the ventilation fan 60 are not operated to shut down.
  • the stop time of the fuel cell device 100 is shortened as much as possible to improve the operating efficiency of the fuel cell device 100. Therefore, in order to protect the fuel cell module 1 at the minimum, the fuel gas pump B1 is shut down without being operated.
  • control device 30 can select the optimum shutdown process by setting the auxiliary equipment to be operated and the auxiliary equipment to be stopped and executing the shutdown according to the type of shutdown. As a result, it is possible to reduce the adverse effect on the fuel cell device 100 and the surrounding environment when the fuel cell device 100 is shut down. Moreover, since the fuel cell device 100 can be protected, the reliability of the fuel cell device 100 can be improved. In addition, the operating efficiency of the fuel cell device 100 can be improved.
  • step S0 If a shutdown occurs during operation, shutdown control is started (step S0).
  • the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 are continuously measured by the thermometer TC 1 and the thermometer TC 2 .
  • step S1 it is determined whether the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 exceed the first predetermined temperature.
  • the first predetermined temperature is, for example, a temperature for suppressing damage to the reformer 12 and the cell stack 11 due to the operation of the reforming water pump P1, the blower B2, and the fuel gas pump B1 in the shutdown control. ..
  • the process proceeds to step S2. If the reforming inlet temperature T1 and the fuel cell module 1 center temperature T2 both do not exceed the first predetermined temperature by shutting down immediately after starting, the process proceeds to step S5.
  • the operating time and operating amount of the fuel gas pump B1, the blower B2, the reformed water pump P1, the heat medium pump P2, and the ventilation fan 60 are the size of the fuel cell device, the capacity of each auxiliary machine, and the like. It can be set as appropriate according to.
  • step S2 in order to cool the fuel cell device 100, the ventilation fan 60 and the heat medium pump P2 are operated, and the reforming water pump P1 and the blower B2 are operated to supply air from the pipe F. At this time, the fuel gas pump B1 is stopped, and the supply of raw fuel gas from the pipe G is stopped. This state is continued for the first predetermined time t1.
  • the ventilation fan 60 since the ventilation fan 60 is operating, the flammable gas does not stay in the fuel cell device 100, so that the safety can be improved. Further, since the heat medium pump P2 is operated, boiling of the heat medium can be prevented. Further, by supplying air from the pipe F, the exhaust gas in the fuel cell device 100 can be discharged to the outside. Further, the reforming water pump P1 can be operated to supply the reforming water so that the air from the pipe F does not flow back into the reforming water flow path R. Off gas in the fuel cell module 1 is discharged to the outside by step S2.
  • step S3 shown in FIG. 4 it is determined whether the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 are equal to or lower than the first predetermined temperature. If either the reforming inlet temperature T1 or the center temperature T2 of the fuel cell module 1 exceeds the first predetermined temperature, the process proceeds to step S4 to further cool the fuel cell device 100. On the other hand, when both the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 are equal to or lower than the first predetermined temperature, the process proceeds to step S5.
  • step S4 the ventilation fan 60 and the heat medium pump P2 are operated, the blower B2 is stopped to stop the air supply from the pipe F, the fuel gas pump B1 is stopped, and the raw fuel gas is supplied from the pipe G. And stop the reforming water pump P1 to stop the supply of reforming water.
  • the auxiliary machine can repeat the intermittent operation.
  • the ventilation fan 60 can repeat the operation for the time t3 and the standby for the time t4, and the heat medium pump P2 can repeat the operation for the time t6 after the operation for the time t5.
  • the times of t3, t4, t5, and t6 may be appropriately set.
  • step S3 After the lapse of the second predetermined time t2, the process returns to step S3, and it is determined whether the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 are both equal to or lower than the first predetermined temperature. If the temperature is equal to or lower than the first predetermined temperature, the process proceeds to the next step S5. If at least one of the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 exceeds the first predetermined temperature, the process proceeds to step S4 again.
  • step S5 it is determined whether the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 are both equal to or lower than the second predetermined temperature.
  • the process proceeds to the next step S6.
  • the fuel gas pump B1, the blower B2, the reforming water pump P1, the heat medium pump P2, and the ventilation fan 60 are all stopped.
  • the second predetermined temperature is, for example, when the fuel gas pump B1 and the blower B2 are operated in order to discharge the water vapor in the reformer 12 and the fuel cell module 1 in the next step. It can be set at a temperature that does not adversely affect the cell stack 11.
  • step S6 while the ventilation fan 60 and the heat medium pump P2 are operating, the fuel gas pump B1 is operated to supply raw fuel gas from the pipe G, and the blower B2 is operated to supply air from the pipe F. To do. Further, the reforming water pump P1 is stopped. Step S6 continues for a third predetermined time t7.
  • the auxiliary equipment can be operated so that the driving time is different. For example, the fuel gas pump is operated for a time t8, and then the fuel gas pump B1 is stopped to stop the supply of raw fuel gas. By supplying the raw fuel gas, it is possible to prevent dew condensation of the reformed water inside the fuel cell. Further, the blower B2 can be operated so that a larger amount of air is supplied than in step S2. In this case, a large amount of air can be supplied from the pipe F to dilute the fuel gas and allow it to flow out of the fuel cell.
  • step S7 the ventilation fan 60 and the heat medium pump P2 are operated, and the blower B2 is driven to supply air from the pipe F to cool the fuel cell device 100. Further, the reforming water pump P1 and the fuel gas pump B1 are stopped. Step S7 continues for the fourth predetermined time t9.
  • the process proceeds to step S8, and it is determined whether the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 are both equal to or lower than the third predetermined temperature.
  • the third predetermined temperature can be set to, for example, a temperature at which boiling of the heat medium does not occur even if the heat medium pump P2 is stopped, or a temperature sufficiently cooled so that maintenance can be performed.
  • the process proceeds to step S9. If at least one of the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 exceeds the third predetermined temperature, the process proceeds to step S7 again.
  • step S9 the ventilation fan 60, the heat medium pump P2, and the blower B2 are stopped to stop the supply of air from the pipe F, and the equipment is stopped.
  • step S10 the fuel cell device 100 shifts to the standby state.
  • the second shutdown control is executed.
  • anomalies include abnormalities related to fuel gas, abnormalities related to reformed water, abnormalities related to air, and abnormalities related to ventilation.
  • the second shutdown control includes not only abnormalities related to auxiliary equipment operation, flow rate, concentration, and voltage that can directly detect fluid abnormalities, but also abnormalities related to temperature and pressure that can indirectly infer fluid abnormalities.
  • the abnormality judgment criteria may be set as appropriate. The operation of the second shutdown control will be described with reference to the flowchart of FIG.
  • step S20 when an abnormality occurs in the fluid required for the operation of the fuel cell device 100, the fuel cell device 100 starts shutdown control. Subsequently, in step S21, the heat medium pump P2 is operated. The fuel gas pump B1 is stopped to stop the fuel supply, and the blower B2 is stopped to stop the air supply. Further, the reforming water pump P1 is stopped to stop the supply of reforming water. Further, the ventilation fan 60 is stopped.
  • the fuel cell device 100 continues cooling until the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 become equal to or lower than the fourth predetermined temperature.
  • the fourth predetermined temperature in this case is, for example, a temperature sufficiently cooled so that maintenance can be performed.
  • step S23 When the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 become equal to or lower than the fourth predetermined temperature, the process proceeds to step S23 and the heat medium pump P2 is stopped. Next, the device is stopped in step S24, and the fuel cell device 100 shifts to the standby state in step S25. In this way, the cooling of the fuel cell device 100 is promoted by circulating the heat medium pump P2. Further, by stopping the fuel gas pump B1, the blower B2, the reforming water pump P1 and the ventilation fan 60, damage to the cell stack 11 and the reformer 12 and emission of exhaust gas and residual gas of the fuel cell module 1 are suppressed.
  • the fuel cell device 100 executes the third shutdown control when the second determination criterion different from the first abnormality determination criterion is satisfied.
  • anomalies include anomalies related to the heat medium of the first heat circulation system HC1 and the second heat circulation system HC2.
  • the third shutdown control is executed.
  • the third shutdown control includes not only anomalies related to auxiliary equipment operation, flow rate, and voltage that can directly detect abnormalities in the heat medium, but also abnormalities related to temperature and water level that can indirectly infer abnormalities in the heat medium.
  • the abnormality judgment criteria may be set as appropriate. The operation of the third shutdown control will be described with reference to the flowchart of FIG.
  • step S30 when an abnormality occurs in the heat medium of the first heat circulation system HC1 or the second heat circulation system HC2, the fuel cell device 100 starts shutdown control. Subsequently, in step S31, the heat medium pump P2 is stopped. Also, the ventilation fan 60 is stopped. Further, the reforming water pump P1 is stopped to stop the supply of reforming water, the fuel gas pump B1 is stopped to stop the supply of raw fuel gas, and the blower B2 is stopped to stop the air supply. To do.
  • step S32 the fuel gas pump B1, the blower B2, and the reforming water pump P1 are auxiliary machines until the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 become equal to or lower than the fifth predetermined temperature.
  • the heat medium pump P2, and the ventilation fan 60 are stopped.
  • the fifth predetermined temperature in this case is, for example, a temperature sufficiently cooled so that maintenance can be performed.
  • step S33 When the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 become equal to or lower than the fifth predetermined temperature, the process proceeds to step S33 to stop the equipment, and the fuel cell device 100 shifts to the standby state in step 34.
  • the heat medium By stopping the fuel gas pump B1, the blower B2, and the reforming water pump P1 in this way, the heat medium is overheated by the high-temperature exhaust gas and residual gas of the fuel cell module 1 flowing into the first heat exchanger 2. And prevent boiling. Further, by stopping the heat medium pump P2, the expansion of the leak is prevented when the heat medium leaks, and by stopping the ventilation fan 60, the leakage of the leaked water is prevented.
  • the operator who performs maintenance can shift the fuel cell device 100 to the maintenance mode from the operation board 40 while the fuel cell device 100 is operating. Further, in the maintenance mode, the fuel cell device 100 can start the fourth shutdown control by operating the operation board 40.
  • step 40 the operator performing maintenance starts shutdown control from the operation board 40.
  • step S41 it is determined whether the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 exceed the sixth predetermined temperature.
  • the sixth predetermined temperature can be set, for example, at a temperature that does not adversely affect the reformer 12 and the cell stack 11.
  • step S43 for stopping the equipment, and if at least one of the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 exceeds the sixth predetermined temperature. , Step S42.
  • step S42 in order to cool the fuel cell device 100, the ventilation fan 60, the reforming water pump P1, and the heat medium pump P2 are operated, and the blower B2 is operated to supply air from the pipe F. At this time, the fuel gas pump B1 is stopped, and the supply of raw fuel gas from the pipe G is stopped. Step S42 continues for the fifth predetermined time t10.
  • step S43 After the lapse of the fifth predetermined time t10, in step S43, the blower B2, the reforming water pump P1, the heat medium pump P2, and the ventilation fan 60 are stopped to stop the equipment.
  • step S44 the fuel cell device 100 shifts to the standby state, and stores the time Ta at which the transition to the standby state occurs.
  • step S45 When a restart instruction is received after the maintenance is completed in step S45, the process proceeds to step S46 and the time Tb at which the restart instruction is received is acquired.
  • step S47 it is determined whether the restart instruction is given within the sixth predetermined time t11 from the time Tb at which the restart instruction is received and the time Ta at which the standby state is entered. If it is within the predetermined time, the process proceeds to step S48 and restarts, and if the time exceeds the predetermined time, the process proceeds to step S49 and waits until the fuel cell device 100 is sufficiently cooled.
  • the fuel cell device 100 when performing the shutdown operation, can be operated by appropriately selecting the drive and stop of the fuel gas pump B1, the blower B2, the reforming water pump P1, the heat medium pump P2, and the ventilation fan 60. It can be protected and the reliability of the fuel cell device 100 can be improved. Further, in the case of shutdown by a maintenance instruction, the time after the shutdown is completed is measured, and the fuel cell device 100 can be restarted within the sixth predetermined time t11 to shorten the power generation stop time of the fuel cell device 100 due to maintenance. be able to.
  • the fuel cell device of the present disclosure includes a fuel cell, a plurality of auxiliary devices necessary for operating the fuel cell, and a control device in a housing, and the control device is used when the fuel cell is shut down.
  • the auxiliary machine to be operated and the auxiliary machine to be stopped are set according to the type of shutdown, and the shutdown is executed.
  • the fuel cell device can be protected when the fuel cell device is shut down, and the reliability of the fuel cell device can be improved.
  • Fuel cell module 2 1st heat exchanger 3 Heat storage tank 4 2nd heat exchanger 6 Modified water tank 10 Storage container 11 Cell stack 12 Modifiedr 20 Power conditioner 30 Control device 40 Operation board 50 Case 51 Frame 52 Exterior Panel 60 Ventilation fan 100 Fuel cell device B1 Fuel gas pump B2 Blower

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A fuel cell apparatus comprising, inside a case, a fuel cell, a plurality of auxiliary devices necessary for operation of the fuel cell, and a control device. When executing fuel cell shutdown, the control device sets which of the auxiliary devices will be operated and which auxiliary devices will stop operation and executes shutdown, in accordance with the type of shutdown.

Description

燃料電池装置Fuel cell device
 本開示は、燃料電池装置に関する。 This disclosure relates to a fuel cell device.
 従来技術の一例は、特許文献1に記載されている。 An example of the prior art is described in Patent Document 1.
特許第6048662号公報Japanese Patent No. 6048662
 本開示の燃料電池装置は、筐体内に、燃料電池と、該燃料電池の運転に必要な複数の補機と、制御装置と、を備え前記制御装置は、前記燃料電池のシャットダウンを実行する際に、シャットダウンの種類に応じて、前記補機のうち、稼動させる補機と稼動停止する補機とを設定してシャットダウンを実行する構成である。 The fuel cell device of the present disclosure includes a fuel cell, a plurality of auxiliary devices necessary for operating the fuel cell, and a control device in a housing, and the control device is used when the fuel cell is shut down. In addition, among the auxiliary equipment, the auxiliary equipment to be operated and the auxiliary equipment to be stopped are set according to the type of shutdown, and the shutdown is executed.
 本開示の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。 The purposes, features, and advantages of this disclosure will become clearer from the detailed description and drawings below.
本開示の実施形態の燃料電池装置のブロック図である。It is a block diagram of the fuel cell apparatus of the embodiment of this disclosure. 実施形態の燃料電池装置の斜視図である。It is a perspective view of the fuel cell apparatus of embodiment. 実施形態のシャットダウンの過程を示すフローチャートである。It is a flowchart which shows the process of shutdown of an embodiment. 実施形態のシャットダウンの過程を示すフローチャートである。It is a flowchart which shows the process of shutdown of an embodiment. 実施形態のシャットダウンの過程を示すフローチャートである。It is a flowchart which shows the process of shutdown of an embodiment. 実施形態のシャットダウンの過程を示すフローチャートである。It is a flowchart which shows the process of shutdown of an embodiment. 実施形態のシャットダウンの過程を示すフローチャートである。It is a flowchart which shows the process of shutdown of an embodiment. 実施形態のシャットダウンの過程を示すフローチャートである。It is a flowchart which shows the process of shutdown of an embodiment.
 まず、本開示の燃料電池装置が基礎とする構成の燃料電池装置について説明する。 First, the fuel cell device having the configuration based on the fuel cell device of the present disclosure will be described.
 近年、次世代エネルギーとして、燃料ガス(水素含有ガス)と空気(酸素含有ガス)とを用いて電力を得ることができる燃料電池セルを複数積層したセルスタックを収納容器内に収納してなる燃料電池モジュールや燃料電池モジュールを外装ケース内に収納してなる燃料電池装置が種々提案されている。 In recent years, as next-generation energy, fuel obtained by storing a cell stack in which a plurality of fuel cell cells capable of obtaining power by using fuel gas (hydrogen-containing gas) and air (oxygen-containing gas) are stored in a storage container. Various fuel cell devices have been proposed in which a battery module and a fuel cell module are housed in an outer case.
 燃料電池装置の動作中に何らかの不具合が生じた場合、あるいは、燃料電池装置のメンテナンス等で燃料電池装置を短時間停止させたい場合には、半強制的に装置の作動を停止させるシャットダウンを実行することがある。 If something goes wrong during the operation of the fuel cell device, or if you want to stop the fuel cell device for a short time due to maintenance of the fuel cell device, etc., perform a semi-forced shutdown to stop the operation of the device. Sometimes.
 しかしながら、シャットダウン動作をする場合に、燃料電池装置の状態はさまざまであり、燃料電池装置の状態に関わらず一律のシャットダウン動作を行うと、スタックの破損、燃料電池装置の降温の遅延および熱媒の沸騰などの不具合が起こるおそれがある。 However, the state of the fuel cell device varies when the shutdown operation is performed, and if the shutdown operation is performed uniformly regardless of the state of the fuel cell device, the stack is damaged, the temperature of the fuel cell device is delayed, and the heat medium is affected. Problems such as boiling may occur.
 以下、図面を用いて本開示の実施形態の燃料電池装置について説明する。
 図1は、実施形態の燃料電池装置のブロック図である。また、図2は、実施形態の燃料電池装置の斜視図である。
Hereinafter, the fuel cell device of the embodiment of the present disclosure will be described with reference to the drawings.
FIG. 1 is a block diagram of the fuel cell device of the embodiment. Further, FIG. 2 is a perspective view of the fuel cell device of the embodiment.
 実施形態の燃料電池装置100は、天然ガス等の原燃料ガスと空気とを使用して発電を行う燃料電池モジュール1と、第1熱交換器2、蓄熱タンク3、熱媒ポンプP2およびこれらをつなぐ循環流路等を有する排熱回収システムを備える。排熱回収システムである第1の熱循環系(ヒートサイクル)は、図1中に符号HC1で表記されている。 The fuel cell device 100 of the embodiment includes a fuel cell module 1 that generates electricity using raw fuel gas such as natural gas and air, a first heat exchanger 2, a heat storage tank 3, a heat medium pump P2, and the like. It is equipped with an exhaust heat recovery system having a circulation flow path or the like to connect. The first heat circulation system (heat cycle), which is an exhaust heat recovery system, is represented by the reference numeral HC1 in FIG.
 また、燃料電池装置100は、符号HC2で示すように、前述の蓄熱タンク3に貯留された高温の熱媒を用いて、外部から供給された水道水等の水を加温し、加温された水を外部の給湯器(図示せず)等の再加熱装置に向けて送給する、第2の熱循環系HC2を備える。第2の熱循環系HC2は、第2熱交換器4(上水熱交換器ともいう)と、前述の蓄熱タンク3から熱媒を循環させる循環ポンプP3およびこれらをつなぐ流路配管とを備える。 Further, as indicated by reference numeral HC2, the fuel cell device 100 is heated by heating water such as tap water supplied from the outside by using a high-temperature heat medium stored in the heat storage tank 3 described above. It is provided with a second heat circulation system HC2 that feeds the collected water to an external reheating device such as a water heater (not shown). The second heat circulation system HC2 includes a second heat exchanger 4 (also referred to as a clean water heat exchanger), a circulation pump P3 that circulates a heat medium from the heat storage tank 3 described above, and a flow path pipe connecting these. ..
 燃料電池モジュール1は、収納容器10に収容されたセルスタック11と改質器12とを含む。燃料電池モジュール1から排出された排ガスは、第1熱交換器2で、排ガスと第1熱交換器2内を流れる水等の熱媒または冷媒との間で熱交換が行われる。この際、排ガスに含まれる水分が結露して凝縮水が生じる。生じた凝縮水は、凝縮水流路Cを経由して回収され、改質水タンク6に貯留される。 The fuel cell module 1 includes a cell stack 11 and a reformer 12 housed in a storage container 10. The exhaust gas discharged from the fuel cell module 1 is heat-exchanged between the exhaust gas and a heat medium such as water or a refrigerant flowing in the first heat exchanger 2 in the first heat exchanger 2. At this time, the water contained in the exhaust gas condenses to generate condensed water. The generated condensed water is collected via the condensed water flow path C and stored in the reforming water tank 6.
 水分が取り除かれた排ガスは、排ガス流路Eを介して、燃料電池装置100の外に排気される。また、改質水タンク6に貯水された改質水は、改質水流路Rおよび水ポンプである改質水ポンプP1を介して、燃料電池モジュール1内の改質器12に供給され、原燃料ガスの水蒸気改質に利用される。 The exhaust gas from which the water has been removed is exhausted to the outside of the fuel cell device 100 via the exhaust gas flow path E. Further, the reformed water stored in the reformed water tank 6 is supplied to the reformer 12 in the fuel cell module 1 via the reformed water flow path R and the reformed water pump P1 which is a water pump. It is used for steam reforming of fuel gas.
 燃料電池モジュール1での発電に用いられる空気は、ブロワB2を含む空気流路である配管Fを介してセルスタック11に導入される。原燃料ガスは、燃料ガスポンプB1を含む原燃料ガス流路である配管Gを介して、改質水流路Rを経由した改質水とともに、改質器12に導入される。 The air used for power generation in the fuel cell module 1 is introduced into the cell stack 11 via the pipe F which is an air flow path including the blower B2. The raw material fuel gas is introduced into the reformer 12 together with the reforming water passing through the reforming water flow path R via the pipe G which is the raw material fuel gas flow path including the fuel gas pump B1.
 燃料電池装置100は、前述の燃料電池モジュール1等の他、その発電運転を補助する補機として、第1熱交換器2、蓄熱タンク3、第2熱交換器4、改質水タンク6、燃料ガスポンプB1、ブロワB2、改質水ポンプP1、熱媒ポンプP2、循環ポンプP3、換気ファン60、パワーコンディショナ20、制御装置30、表示装置や操作パネルを含む操作基板40等を備える。そして、燃料電池装置100は、図2に示すような、各フレーム51と各外装パネル52とからなるケース50の中に配設されている。このケース50の中の、燃料電池モジュール1および各補機の周りや流路、配管等に、複数の計測機器やセンサ等が設けられている。 In addition to the fuel cell module 1 and the like described above, the fuel cell device 100 includes a first heat exchanger 2, a heat storage tank 3, a second heat exchanger 4, a reformed water tank 6, and the like as auxiliary machines for assisting the power generation operation. It includes a fuel gas pump B1, a blower B2, a reforming water pump P1, a heat medium pump P2, a circulation pump P3, a ventilation fan 60, a power conditioner 20, a control device 30, an operation board 40 including a display device and an operation panel, and the like. The fuel cell device 100 is arranged in a case 50 including each frame 51 and each exterior panel 52 as shown in FIG. A plurality of measuring devices, sensors, and the like are provided around the fuel cell module 1 and each auxiliary machine, a flow path, a pipe, and the like in the case 50.
 改質器12内は、原燃料と改質水とを混合して加熱する気化部と、原燃料と改質水を気化させて生成した水蒸気とを反応させて原燃料を改質する改質部とに分かれており、気化部の改質部に接続する部分の温度である改質入口温度T1を計測するための温度計TCが取り付けられている。また、セルスタック11上部に燃料電池モジュール1の中心温度T2を計測するための温度計TCが取り付けられている。制御装置30は温度計TCおよびTCから改質入口温度T1および燃料電池モジュール1の中心温度T2を取得することが可能である。 Inside the reformer 12, the reformer reforms the raw material by reacting the vaporization unit that mixes and heats the raw fuel and the reformed water with the steam generated by vaporizing the raw fuel and the reformed water. A thermometer TC 1 for measuring the reforming inlet temperature T1 which is the temperature of the portion connected to the reforming portion of the vaporization portion is attached. Further, a thermometer TC 2 for measuring the center temperature T2 of the fuel cell module 1 is attached to the upper part of the cell stack 11. The control device 30 can acquire the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 from the thermometers TC 1 and TC 2 .
 そして、燃料電池装置100は、以下に詳細に述べるように、種々の機能を実行するための制御および処理能力を提供するために、少なくとも1つのプロセッサおよび記憶装置等を含む制御装置30を備える。 Then, the fuel cell device 100 includes a control device 30 including at least one processor, a storage device, and the like in order to provide control and processing power for performing various functions, as described in detail below.
 種々の実施形態によれば、少なくとも1つのプロセッサは、単一の集積回路として、または、複数の通信可能に接続された集積回路および/もしくはディスクリート回路として、実行されてもよい。少なくとも1つのプロセッサは、種々の既知の技術にしたがって実行されることが可能である。 According to various embodiments, at least one processor may be executed as a single integrated circuit or as a plurality of communicably connected integrated circuits and / or discrete circuits. At least one processor can be run according to a variety of known techniques.
 1つの実施形態において、プロセッサは、たとえば、関連するメモリに記憶された指示を実行することによって1以上のデータ計算手続または処理を実行するように構成された、1以上の回路またはユニットを含む。他の実施形態において、プロセッサは、1以上のデータ計算手続または処理を実行するように構成された、ファームウェア、たとえばディスクリートロジックコンポーネントであってもよい。 In one embodiment, the processor comprises, for example, one or more circuits or units configured to perform one or more data calculation procedures or processes by executing instructions stored in the associated memory. In other embodiments, the processor may be firmware, eg, a discrete logic component, configured to perform one or more data computation procedures or processes.
 種々の実施形態によれば、プロセッサは、1以上のプロセッサ、コントローラ、マイクロプロセッサ、マイクロコントローラ、特定用途向け集積回路、デジタル信号処理部、プログラマブルロジックデバイス、フィールドプログラマブルゲートアレイ、または、これらのデバイスもしくは構成の任意の組合わせ、または、他の既知のデバイスおよび構成の組合わせ、を含み、以下に説明される機能を実行してもよい。 According to various embodiments, the processor is one or more processors, controllers, microprocessors, microcontrollers, application-specific integrated circuits, digital signal processors, programmable logic devices, field programmable gate arrays, or devices thereof or Any combination of configurations, or combinations of other known devices and configurations, may be included to perform the functions described below.
 制御装置30は、記憶装置および表示装置(ともに図示省略)と、燃料電池装置100を構成する各種構成部品および各種センサと接続され、これらの各機能部をはじめとして、燃料電池装置100の全体を制御および管理する。制御装置30は、それに付属する記憶装置に記憶されているプログラムを取得して、このプログラムを実行することによって、燃料電池装置100の各部にかかる、種々の機能を実現する。 The control device 30 is connected to a storage device and a display device (both not shown), various components and various sensors constituting the fuel cell device 100, and includes each of these functional units and the entire fuel cell device 100. Control and manage. The control device 30 acquires a program stored in a storage device attached to the control device 30, and executes the program to realize various functions related to each part of the fuel cell device 100.
 制御装置30から、他の機能部または装置に制御信号または各種の情報などを送信する場合、制御装置30と他の機能部とは、有線または無線により接続されていればよい。制御装置30が行う本実施形態に特徴的な制御については、後記で説明する。なお、本実施形態において、制御装置30は特に、燃料電池装置100につながる外部装置の指示、指令や、先に述べた各種センサの指示や計測値に基づいて、燃料ガスポンプB1等の原燃料供給装置を制御する。図1では、制御装置30と、燃料電池を構成する各装置および各センサとを結ぶ接続線の図示を、省略している場合がある。 When a control signal or various information is transmitted from the control device 30 to another functional unit or device, the control device 30 and the other functional unit may be connected by wire or wirelessly. The control characteristic of the present embodiment performed by the control device 30 will be described later. In the present embodiment, the control device 30 particularly supplies raw fuel such as the fuel gas pump B1 based on the instructions and commands of the external device connected to the fuel cell device 100 and the instructions and measured values of the various sensors described above. Control the device. In FIG. 1, the illustration of the connection line connecting the control device 30, each device constituting the fuel cell, and each sensor may be omitted.
 図示しない記憶装置は、プログラムおよびデータを記憶できる。記憶装置は、処理結果を一時的に記憶する作業領域としても利用してもよい。記憶装置は、記録媒体を含む。記録媒体は、半導体記憶媒体、および磁気記憶媒体等の任意の非一時的(non-transitory)な記憶媒体を含んでよい。また、記憶装置は、複数の種類の記憶媒体を含んでいてもよい。記憶装置は、メモリカード、光ディスク、または光磁気ディスク等の可搬の記録媒体と、記憶の読み取り装置との組合せを含んでいてもよい。記憶装置は、RAM(Random Access Memory)等の一時的な記憶領域として利用される記憶デバイスを含んでいてもよい。 A storage device (not shown) can store programs and data. The storage device may also be used as a work area for temporarily storing the processing result. The storage device includes a recording medium. The recording medium may include a semiconductor storage medium and any non-transitory storage medium such as a magnetic storage medium. Further, the storage device may include a plurality of types of storage media. The storage device may include a combination of a portable recording medium such as a memory card, an optical disk, or a magneto-optical disk, and a storage reading device. The storage device may include a storage device used as a temporary storage area such as a RAM (Random Access Memory).
 なお、燃料電池装置100の制御装置30および記憶装置は、燃料電池装置100の外部に有する構成として実現することもできる。さらに、本開示に係る制御装置30における特徴的な制御工程を含む制御方法として実現したり、上記工程をコンピュータに実行させるための制御プログラムとして実現したりすることも可能である。 The control device 30 and the storage device of the fuel cell device 100 can also be realized as a configuration provided outside the fuel cell device 100. Further, it can be realized as a control method including a characteristic control step in the control device 30 according to the present disclosure, or as a control program for causing a computer to execute the above steps.
 なお、以下のフローは、前述の給湯先での温水の利用開始により、水道水流路Lの一部を構成する上水配管Jを通ってケース50内に供給された比較的低温の水道水が、第2熱交換器4を経由して温められ、水温の上昇した加温水として、水道水流路Lの一部である給湯配管Kを経由して給湯器等の外部機器に送給および給湯される、排熱の間接的な利用を想定したものである。 In the following flow, the relatively low temperature tap water supplied into the case 50 through the tap water pipe J forming a part of the tap water flow path L due to the start of use of hot water at the hot water supply destination described above. , As warm water whose water temperature has risen after being warmed via the second heat exchanger 4, it is supplied and supplied to an external device such as a water heater via the hot water supply pipe K which is a part of the tap water flow path L. It is intended for the indirect use of waste heat.
 燃料電池装置100における、排ガスから回収した凝縮水(改質水)を用いた発電運転(いわゆる、水自立運転)について簡単に説明する。 The power generation operation (so-called water self-sustaining operation) using the condensed water (reformed water) recovered from the exhaust gas in the fuel cell device 100 will be briefly described.
 発電運転中の燃料電池装置100においては、燃料電池モジュール1に隣接して配置された第1熱交換器2で、モジュールから排出された排ガスと、第1熱交換器2内を流れる水等の熱媒との間で熱交換が行われ、排ガスに含まれる水分が結露して凝縮水が生じる。 In the fuel cell device 100 during the power generation operation, the first heat exchanger 2 arranged adjacent to the fuel cell module 1 contains the exhaust gas discharged from the module, the water flowing in the first heat exchanger 2, and the like. Heat exchange is performed with the heat medium, and the moisture contained in the exhaust gas condenses to generate condensed water.
 生じた凝縮水は、気液分離器等により分離され、イオン交換樹脂等の浄化装置を経由して浄化された後、凝縮水流路Cを通じて、改質水タンク6に貯留される。一方、水分が取り除かれた排ガスは、排ガス流路Eを介して、燃料電池装置100の外に排気される。 The generated condensed water is separated by a gas-liquid separator or the like, purified via a purification device such as an ion exchange resin, and then stored in the reformed water tank 6 through the condensed water flow path C. On the other hand, the exhaust gas from which the water has been removed is exhausted to the outside of the fuel cell device 100 via the exhaust gas flow path E.
 改質水タンク6に貯留された改質水は、改質水流路Rおよび改質水ポンプP1を介して、燃料電池モジュール1内の改質器12に供給され、改質水を用いた原燃料の水蒸気改質に利用される。 The reformed water stored in the reformed water tank 6 is supplied to the reformer 12 in the fuel cell module 1 via the reformed water flow path R and the reformed water pump P1, and the reformed water is used as a source. It is used for steam reforming of fuel.
 燃料電池装置100を停止させるシャットダウンは、燃料電池装置100の動作中に不具合が生じて正常な運転が困難である場合、あるいは、燃料電池装置のメンテナンス等で燃料電池装置を停止させる必要がある場合などに実行される。 Shutdown to stop the fuel cell device 100 is when a problem occurs during the operation of the fuel cell device 100 and normal operation is difficult, or when it is necessary to stop the fuel cell device due to maintenance of the fuel cell device or the like. Is executed.
 燃料電池装置100のシャットダウンにおいてすべての補機を停止させると、燃料電池装置100の余熱によって、熱媒が沸騰したり、ファンが動作しないため降温に時間がかかったりして、シャットダウンによる燃料電池装置100への熱による悪影響が大きくなるおそれがある。そこで、以下の本実施形態においては、燃料ガスポンプB1、ブロワB2、改質水ポンプP1、熱媒ポンプP2、および換気ファン60に着目して、シャットダウン時におけるこれらの補機の稼動について説明する。 If all auxiliary equipment is stopped when the fuel cell device 100 is shut down, the heat medium may boil due to the residual heat of the fuel cell device 100, or it may take time to lower the temperature because the fan does not operate. The adverse effect of heat on 100 may increase. Therefore, in the following embodiment, focusing on the fuel gas pump B1, the blower B2, the reformed water pump P1, the heat medium pump P2, and the ventilation fan 60, the operation of these auxiliary machines at the time of shutdown will be described.
 シャットダウンの基本制御である、第1シャットダウン制御では、燃料ガスポンプB1、ブロワB2、改質水ポンプP1、熱媒ポンプP2、および換気ファン60をすべて稼動させてシャットダウンを行う。それによりシステム内の冷却を速やかに行うことができる。 In the first shutdown control, which is the basic shutdown control, the fuel gas pump B1, the blower B2, the reforming water pump P1, the heat medium pump P2, and the ventilation fan 60 are all operated to perform shutdown. As a result, the inside of the system can be cooled quickly.
 一方、燃料電池装置100の稼動に必要である流体に関する異常である、第1異常判定基準を満たした場合は、第2シャットダウン制御を実行する。第2シャットダウン制御では、補機である燃料ガスポンプB1、ブロワB2、改質水ポンプP1および換気ファン60を動作させずにシャットダウンを行う。 On the other hand, when the first abnormality determination criterion, which is an abnormality related to the fluid required for the operation of the fuel cell device 100, is satisfied, the second shutdown control is executed. In the second shutdown control, the fuel gas pump B1 and the blower B2, the reforming water pump P1 and the ventilation fan 60, which are auxiliary machines, are not operated to shut down.
 また、第1の熱循環系HC1や第2の熱循環系HC2の熱媒体に関する異常である、第2異常判定基準を満たした場合は、第3のシャットダウン制御を実行する。第3のシャットダウン制御では、燃料ガスポンプB1、ブロワB2、改質水ポンプP1、熱媒ポンプP2および換気ファン60を動作させずにシャットダウンを行う。 Further, when the second abnormality determination criterion, which is an abnormality related to the heat medium of the first heat circulation system HC1 and the second heat circulation system HC2, is satisfied, the third shutdown control is executed. In the third shutdown control, the fuel gas pump B1, the blower B2, the reforming water pump P1, the heat medium pump P2, and the ventilation fan 60 are not operated to shut down.
 また、燃料電池装置100のメンテナンスの場合に行う第4シャットダウン制御では、燃料電池装置100の停止時間をできるだけ短くして燃料電池装置100の稼動効率を高めるような方法が求められる。そこで、最低限の燃料電池モジュール1保護のため燃料ガスポンプB1を動作させずにシャットダウンを行う。 Further, in the fourth shutdown control performed in the case of maintenance of the fuel cell device 100, a method is required in which the stop time of the fuel cell device 100 is shortened as much as possible to improve the operating efficiency of the fuel cell device 100. Therefore, in order to protect the fuel cell module 1 at the minimum, the fuel gas pump B1 is shut down without being operated.
 このように制御装置30は、シャットダウンの種類に応じて、稼動させる補機と稼動停止する補機とを設定してシャットダウンを実行することによって、最適なシャットダウン工程を選択できる。それにより、燃料電池装置100のシャットダウン時の燃料電池装置100および周辺環境への悪影響を軽減することが可能になる。また、燃料電池装置100を保護することができるので燃料電池装置100の信頼性を高めることができる。また、燃料電池装置100の稼動効率を高めることができる。 In this way, the control device 30 can select the optimum shutdown process by setting the auxiliary equipment to be operated and the auxiliary equipment to be stopped and executing the shutdown according to the type of shutdown. As a result, it is possible to reduce the adverse effect on the fuel cell device 100 and the surrounding environment when the fuel cell device 100 is shut down. Moreover, since the fuel cell device 100 can be protected, the reliability of the fuel cell device 100 can be improved. In addition, the operating efficiency of the fuel cell device 100 can be improved.
 以下、図3~図5を用いて第1シャットダウン制御の動作について説明する。これらの図3~図5では、「ステップ」を「S」と略称するとともに、チャート内においては、判断制御における「正」(フラグ=1)を[Yes]で、「否」(フラグ=0)を[No]で表している。 Hereinafter, the operation of the first shutdown control will be described with reference to FIGS. 3 to 5. In FIGS. 3 to 5, "step" is abbreviated as "S", and in the chart, "positive" (flag = 1) in judgment control is [Yes] and "no" (flag = 0). ) Is represented by [No].
 運転中にシャットダウンが発生した場合、シャットダウン制御を開始する(ステップS0)。なお、燃料電池装置100においては、改質入口温度T1と燃料電池モジュール1の中心温度T2が、温度計TCと温度計TCにより連続して測定されている。 If a shutdown occurs during operation, shutdown control is started (step S0). In the fuel cell device 100, the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 are continuously measured by the thermometer TC 1 and the thermometer TC 2 .
 次に、ステップS1で、改質入口温度T1および燃料電池モジュール1の中心温度T2が第1の所定温度を超えているか判断する。第1の所定温度は、たとえば、シャットダウン制御における改質水ポンプP1、ブロワB2、燃料ガスポンプB1の稼動に伴って、改質器12やセルスタック11が破損することを抑制するための温度である。シャットダウン直前に発電を正常に行っている状態では、改質入口温度T1および燃料電池モジュール1の中心温度T2は第1の所定温度を超えている。この場合、ステップS2に移行する。また、起動直後にシャットダウンを行って改質入口温度T1および燃料電池モジュール1中心温度T2がともに第1の所定温度を超えていない場合には、ステップS5に移行する。なお、以降の説明において、燃料ガスポンプB1、ブロワB2、改質水ポンプP1、熱媒ポンプP2、および換気ファン60の稼動時間、稼動量は燃料電池装置の大きさ等や各補機の能力等に応じて適宜設定することができる。 Next, in step S1, it is determined whether the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 exceed the first predetermined temperature. The first predetermined temperature is, for example, a temperature for suppressing damage to the reformer 12 and the cell stack 11 due to the operation of the reforming water pump P1, the blower B2, and the fuel gas pump B1 in the shutdown control. .. In a state where power generation is normally performed immediately before shutdown, the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 exceed the first predetermined temperature. In this case, the process proceeds to step S2. If the reforming inlet temperature T1 and the fuel cell module 1 center temperature T2 both do not exceed the first predetermined temperature by shutting down immediately after starting, the process proceeds to step S5. In the following description, the operating time and operating amount of the fuel gas pump B1, the blower B2, the reformed water pump P1, the heat medium pump P2, and the ventilation fan 60 are the size of the fuel cell device, the capacity of each auxiliary machine, and the like. It can be set as appropriate according to.
 ステップS2において、燃料電池装置100を冷却するために、換気ファン60、熱媒ポンプP2を動作させるとともに、改質水ポンプP1、ブロワB2を動作させて、配管Fから空気を供給する。このとき、燃料ガスポンプB1を停止させ、配管Gからの原燃料ガスの供給を停止する。この状態を第1所定時間t1継続する。このように、第1シャットダウン制御では、換気ファン60が動作しているので燃料電池装置100内に可燃性ガスが滞留しないため安全性を高めることができる。また、熱媒ポンプP2を動作させているので、熱媒の沸騰を防止することができる。また、配管Fから空気を供給することによって、燃料電池装置100内の排ガスを外部に放出することができる。また、改質水ポンプP1を動作させて改質水を供給して、配管Fからの空気が改質水流路Rに逆流しないようにすることができる。ステップS2によって燃料電池モジュール1内のオフガスが外部に排出される。 In step S2, in order to cool the fuel cell device 100, the ventilation fan 60 and the heat medium pump P2 are operated, and the reforming water pump P1 and the blower B2 are operated to supply air from the pipe F. At this time, the fuel gas pump B1 is stopped, and the supply of raw fuel gas from the pipe G is stopped. This state is continued for the first predetermined time t1. As described above, in the first shutdown control, since the ventilation fan 60 is operating, the flammable gas does not stay in the fuel cell device 100, so that the safety can be improved. Further, since the heat medium pump P2 is operated, boiling of the heat medium can be prevented. Further, by supplying air from the pipe F, the exhaust gas in the fuel cell device 100 can be discharged to the outside. Further, the reforming water pump P1 can be operated to supply the reforming water so that the air from the pipe F does not flow back into the reforming water flow path R. Off gas in the fuel cell module 1 is discharged to the outside by step S2.
 続いて、図4に示すステップS3において、改質入口温度T1と燃料電池モジュール1の中心温度T2が第1の所定温度以下となったかを判定する。改質入口温度T1と燃料電池モジュール1の中心温度T2のどちらかが、第1の所定温度を超えている場合には、ステップS4に進み、さらに燃料電池装置100を冷却する。一方、改質入口温度T1と燃料電池モジュール1の中心温度T2がともに第1の所定温度に以下になっている場合には、ステップS5に進む。 Subsequently, in step S3 shown in FIG. 4, it is determined whether the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 are equal to or lower than the first predetermined temperature. If either the reforming inlet temperature T1 or the center temperature T2 of the fuel cell module 1 exceeds the first predetermined temperature, the process proceeds to step S4 to further cool the fuel cell device 100. On the other hand, when both the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 are equal to or lower than the first predetermined temperature, the process proceeds to step S5.
 ステップS4においては、換気ファン60および熱媒ポンプP2を動作させ、ブロワB2を停止して配管Fから空気の供給を停止し、燃料ガスポンプB1を停止して、配管Gからの原燃料ガスの供給を停止し、また、改質水ポンプP1を停止して改質水の供給を停止する。この状態を第2所定時間t2継続する。なお、ステップS4においては、補機は間欠運転を繰り返すこともできる。この場合、たとえば、換気ファン60は時間t3間の動作および時間t4間の待機を繰り返し、熱媒ポンプP2は、時間t5間の作動後、時間t6間の待機する動作を繰り返すことができる。なおt3、t4、t5、t6のそれぞれの時間は、適宜設定すればよい。 In step S4, the ventilation fan 60 and the heat medium pump P2 are operated, the blower B2 is stopped to stop the air supply from the pipe F, the fuel gas pump B1 is stopped, and the raw fuel gas is supplied from the pipe G. And stop the reforming water pump P1 to stop the supply of reforming water. This state is continued for the second predetermined time t2. In step S4, the auxiliary machine can repeat the intermittent operation. In this case, for example, the ventilation fan 60 can repeat the operation for the time t3 and the standby for the time t4, and the heat medium pump P2 can repeat the operation for the time t6 after the operation for the time t5. The times of t3, t4, t5, and t6 may be appropriately set.
第2所定時間t2経過後、ステップS3に戻り、改質入口温度T1と燃料電池モジュール1の中心温度T2がともに第1の所定温度に以下になっているか判断する。第1の所定温度以下の場合は次のステップS5に移行する。改質入口温度T1と燃料電池モジュール1の中心温度T2の少なくとも一方が、第1の所定温度を超えている場合は、ステップS4に再度移行する。 After the lapse of the second predetermined time t2, the process returns to step S3, and it is determined whether the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 are both equal to or lower than the first predetermined temperature. If the temperature is equal to or lower than the first predetermined temperature, the process proceeds to the next step S5. If at least one of the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 exceeds the first predetermined temperature, the process proceeds to step S4 again.
 続いて、図5に示すステップS5において、改質入口温度T1と燃料電池モジュール1の中心温度T2がともに第2の所定温度以下になったかを判定する。改質入口温度T1と燃料電池モジュール1の中心温度T2がともに第2の所定温度以下になった時点で、次のステップS6に移行する。ステップS5では、燃料ガスポンプB1、ブロワB2、改質水ポンプP1、熱媒ポンプP2、および換気ファン60をすべてが停止している。第2の所定温度は、たとえば、次のステップにて、改質器12や燃料電池モジュール1内の水蒸気を排出すべく、燃料ガスポンプB1およびブロワB2を動作させた場合に、改質器12やセルスタック11に悪影響を及ぼさない温度で設定することができる。 Subsequently, in step S5 shown in FIG. 5, it is determined whether the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 are both equal to or lower than the second predetermined temperature. When both the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 are equal to or lower than the second predetermined temperature, the process proceeds to the next step S6. In step S5, the fuel gas pump B1, the blower B2, the reforming water pump P1, the heat medium pump P2, and the ventilation fan 60 are all stopped. The second predetermined temperature is, for example, when the fuel gas pump B1 and the blower B2 are operated in order to discharge the water vapor in the reformer 12 and the fuel cell module 1 in the next step. It can be set at a temperature that does not adversely affect the cell stack 11.
 続いて、ステップS6において、換気ファン60および熱媒ポンプP2を動作させたまま、燃料ガスポンプB1を動作させて配管Gから原燃料ガスを供給し、ブロワB2を動作させて配管Fから空気を供給する。また、改質水ポンプP1は停止している。ステップS6は第3所定時間t7継続する。なお、ステップS6では、駆動時間が異なるように補機を動作させることもできる。たとえば、燃料ガスポンプを時間t8だけ稼動させ、その後、燃料ガスポンプB1を停止して原燃料ガスの供給を停止する。原燃料ガスを供給することで燃料電池セル内部に改質水が結露することを防止することができる。また、ブロワB2は、ステップS2よりも多くの空気量が供給されるように動作させることもできる。この場合、配管Fから多量の空気を供給して燃料ガスを薄めて燃料電池の外に流出させることができる。 Subsequently, in step S6, while the ventilation fan 60 and the heat medium pump P2 are operating, the fuel gas pump B1 is operated to supply raw fuel gas from the pipe G, and the blower B2 is operated to supply air from the pipe F. To do. Further, the reforming water pump P1 is stopped. Step S6 continues for a third predetermined time t7. In step S6, the auxiliary equipment can be operated so that the driving time is different. For example, the fuel gas pump is operated for a time t8, and then the fuel gas pump B1 is stopped to stop the supply of raw fuel gas. By supplying the raw fuel gas, it is possible to prevent dew condensation of the reformed water inside the fuel cell. Further, the blower B2 can be operated so that a larger amount of air is supplied than in step S2. In this case, a large amount of air can be supplied from the pipe F to dilute the fuel gas and allow it to flow out of the fuel cell.
 続いて、ステップS7において、換気ファン60および熱媒ポンプP2を動作させるとともに、ブロワB2を駆動させて、配管Fから空気を供給して燃料電池装置100を冷却する。また、改質水ポンプP1と燃料ガスポンプB1は停止している。ステップS7は第4所定時間t9継続する。 Subsequently, in step S7, the ventilation fan 60 and the heat medium pump P2 are operated, and the blower B2 is driven to supply air from the pipe F to cool the fuel cell device 100. Further, the reforming water pump P1 and the fuel gas pump B1 are stopped. Step S7 continues for the fourth predetermined time t9.
 第4所定時間t9が経過したらステップS8に移行し、改質入口温度T1と燃料電池モジュール1の中心温度T2とがともに第3の所定温度以下になっているか判断する。ここで第3の所定温度は、例えば、熱媒ポンプP2が停止しても熱媒の沸騰が発生しない温度や、メンテナンスを実行できる程度に十分冷却された温度に設定することができる。改質入口温度T1と燃料電池モジュール1の中心温度T2とがともに第3の所定温度以下の場合は、ステップS9に移行する。改質入口温度T1と燃料電池モジュール1の中心温度T2の少なくとも一方が、第3の所定温度を超えている場合は、ステップS7に再度移行する。 When the fourth predetermined time t9 has elapsed, the process proceeds to step S8, and it is determined whether the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 are both equal to or lower than the third predetermined temperature. Here, the third predetermined temperature can be set to, for example, a temperature at which boiling of the heat medium does not occur even if the heat medium pump P2 is stopped, or a temperature sufficiently cooled so that maintenance can be performed. When both the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 are equal to or lower than the third predetermined temperature, the process proceeds to step S9. If at least one of the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 exceeds the third predetermined temperature, the process proceeds to step S7 again.
 続いて、ステップS9において、換気ファン60、熱媒ポンプP2およびブロワB2を停止して配管Fから空気の供給を停止して、機器を停止させる。次に、ステップS10で、燃料電池装置100は、待機状態に移行する。 Subsequently, in step S9, the ventilation fan 60, the heat medium pump P2, and the blower B2 are stopped to stop the supply of air from the pipe F, and the equipment is stopped. Next, in step S10, the fuel cell device 100 shifts to the standby state.
 次に、燃料電池装置100の稼動に必要である流体に関する異常である、第1異常判定基準を満たした場合は、第2シャットダウン制御を実行する。このような異常としては、たとえば、燃料ガスに関する異常、改質水に関する異常、空気に関する異常、換気に関する異常等が例示できる。なお、第2シャットダウン制御は、直接的に流体の異常を検知できる補機動作、流量、濃度、電圧に関する異常だけでなく、間接的に流体の異常を推察できる温度、圧力に関する異常を含むなど、異常判定基準は適宜設定してよい。第2シャットダウン制御の動作を図6のフローチャートを用いて説明する。 Next, when the first abnormality determination criterion, which is an abnormality related to the fluid required for the operation of the fuel cell device 100, is satisfied, the second shutdown control is executed. Examples of such anomalies include abnormalities related to fuel gas, abnormalities related to reformed water, abnormalities related to air, and abnormalities related to ventilation. The second shutdown control includes not only abnormalities related to auxiliary equipment operation, flow rate, concentration, and voltage that can directly detect fluid abnormalities, but also abnormalities related to temperature and pressure that can indirectly infer fluid abnormalities. The abnormality judgment criteria may be set as appropriate. The operation of the second shutdown control will be described with reference to the flowchart of FIG.
 ステップS20において、燃料電池装置100の稼動に必要である流体に異常が発生した場合は、燃料電池装置100はシャットダウン制御を開始する。続いて、ステップS21において、熱媒ポンプP2を動作させる。燃料ガスポンプB1を停止して燃料供給を停止し、また、ブロワB2を停止して空気の供給を停止する。また、改質水ポンプP1を停止して改質水の供給を停止する。さらに換気ファン60を停止する。 In step S20, when an abnormality occurs in the fluid required for the operation of the fuel cell device 100, the fuel cell device 100 starts shutdown control. Subsequently, in step S21, the heat medium pump P2 is operated. The fuel gas pump B1 is stopped to stop the fuel supply, and the blower B2 is stopped to stop the air supply. Further, the reforming water pump P1 is stopped to stop the supply of reforming water. Further, the ventilation fan 60 is stopped.
 ステップS22で示されるように、燃料電池装置100は改質入口温度T1と燃料電池モジュール1の中心温度T2が第4の所定温度以下になるまで冷却を続ける。この場合の第4の所定温度は、たとえば、メンテナンスを実行できる程度に十分冷却された温度である。 As shown in step S22, the fuel cell device 100 continues cooling until the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 become equal to or lower than the fourth predetermined temperature. The fourth predetermined temperature in this case is, for example, a temperature sufficiently cooled so that maintenance can be performed.
 改質入口温度T1および燃料電池モジュール1の中心温度T2が第4の所定温度以下になると、ステップS23に移行して熱媒ポンプP2を停止する。次にステップS24で機器を停止させ、ステップS25にて燃料電池装置100は待機状態に移行する。このように、熱媒ポンプP2を循環させることで燃料電池装置100の冷却を促進する。さらに燃料ガスポンプB1、ブロワB2、改質水ポンプP1および換気ファン60を停止することにより、セルスタック11や改質器12の破損や、燃料電池モジュール1の排ガスや残留ガスの排出を抑制する。 When the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 become equal to or lower than the fourth predetermined temperature, the process proceeds to step S23 and the heat medium pump P2 is stopped. Next, the device is stopped in step S24, and the fuel cell device 100 shifts to the standby state in step S25. In this way, the cooling of the fuel cell device 100 is promoted by circulating the heat medium pump P2. Further, by stopping the fuel gas pump B1, the blower B2, the reforming water pump P1 and the ventilation fan 60, damage to the cell stack 11 and the reformer 12 and emission of exhaust gas and residual gas of the fuel cell module 1 are suppressed.
 次に、燃料電池装置100は、第1異常判定基準と異なる第2判定基準を満たした場合、第3シャットダウン制御を実行する。このような異常としては、たとえば、第1の熱循環系HC1や第2の熱循環系HC2の熱媒体に関する異常が例示できる。たとえば、熱媒ポンプP2の回転異常が発生した場合は、第3シャットダウン制御を実行する。なお、第3シャットダウン制御は、直接的に熱媒体の異常を検知できる補機動作、流量、電圧に関する異常だけでなく、間接的に熱媒体の異常を推察できる温度、水位に関する異常を含むなど、異常判定基準は適宜設定してよい。第3シャットダウン制御の動作を図7のフローチャートを用いて説明する。 Next, the fuel cell device 100 executes the third shutdown control when the second determination criterion different from the first abnormality determination criterion is satisfied. Examples of such anomalies include anomalies related to the heat medium of the first heat circulation system HC1 and the second heat circulation system HC2. For example, when a rotation abnormality of the heat medium pump P2 occurs, the third shutdown control is executed. The third shutdown control includes not only anomalies related to auxiliary equipment operation, flow rate, and voltage that can directly detect abnormalities in the heat medium, but also abnormalities related to temperature and water level that can indirectly infer abnormalities in the heat medium. The abnormality judgment criteria may be set as appropriate. The operation of the third shutdown control will be described with reference to the flowchart of FIG.
 ステップS30において、第1の熱循環系HC1や第2の熱循環系HC2の熱媒体に異常が発生した場合は、燃料電池装置100はシャットダウン制御を開始する。続いて、ステップS31において、熱媒ポンプP2を停止する。また、換気ファン60を停止する。さらに、改質水ポンプP1を停止して、改質水の供給を停止し、また、燃料ガスポンプB1を停止して原燃料ガスの供給を停止し、ブロワB2を停止して空気の供給を停止する。 In step S30, when an abnormality occurs in the heat medium of the first heat circulation system HC1 or the second heat circulation system HC2, the fuel cell device 100 starts shutdown control. Subsequently, in step S31, the heat medium pump P2 is stopped. Also, the ventilation fan 60 is stopped. Further, the reforming water pump P1 is stopped to stop the supply of reforming water, the fuel gas pump B1 is stopped to stop the supply of raw fuel gas, and the blower B2 is stopped to stop the air supply. To do.
 ステップS32で示されるように、改質入口温度T1と燃料電池モジュール1の中心温度T2が第5の所定温度以下になるまで、補機である、燃料ガスポンプB1、ブロワB2、改質水ポンプP1、熱媒ポンプP2、および換気ファン60を停止する。この場合の第5の所定温度は、たとえば、メンテナンスを実行できる程度に十分冷却された温度である。 As shown in step S32, the fuel gas pump B1, the blower B2, and the reforming water pump P1 are auxiliary machines until the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 become equal to or lower than the fifth predetermined temperature. , The heat medium pump P2, and the ventilation fan 60 are stopped. The fifth predetermined temperature in this case is, for example, a temperature sufficiently cooled so that maintenance can be performed.
 改質入口温度T1および燃料電池モジュール1の中心温度T2が第5の所定温度以下になると、ステップS33に移行して機器を停止させ、ステップ34にて燃料電池装置100は待機状態に移行する。このように、燃料ガスポンプB1、ブロワB2、改質水ポンプP1を停止させることで、燃料電池モジュール1の高温排ガスや残留ガスが第1熱交換器2に流入することにより発生する熱媒体の過熱や沸騰を防止する。さらに、熱媒ポンプP2を停止させることで、熱媒体漏出時には漏れの拡大を防止するとともに、換気ファン60を停止させることで、漏れた水の飛散を防止する。 When the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 become equal to or lower than the fifth predetermined temperature, the process proceeds to step S33 to stop the equipment, and the fuel cell device 100 shifts to the standby state in step 34. By stopping the fuel gas pump B1, the blower B2, and the reforming water pump P1 in this way, the heat medium is overheated by the high-temperature exhaust gas and residual gas of the fuel cell module 1 flowing into the first heat exchanger 2. And prevent boiling. Further, by stopping the heat medium pump P2, the expansion of the leak is prevented when the heat medium leaks, and by stopping the ventilation fan 60, the leakage of the leaked water is prevented.
 次にメンテナンスにより燃料電池装置100を短時間停止させたい場合に実行する第4シャットダウン制御の動作を図8のフローチャートを用いて説明する。 Next, the operation of the fourth shutdown control to be executed when the fuel cell device 100 is to be stopped for a short time due to maintenance will be described with reference to the flowchart of FIG.
 メンテナンスを行う操作者は、燃料電池装置100が動作中に、操作基板40より燃料電池装置100をメンテナンスモードに移行させることができる。また、メンテナンスモードにおいて、操作基板40の操作より、燃料電池装置100は第4シャットダウン制御を開始することができる。 The operator who performs maintenance can shift the fuel cell device 100 to the maintenance mode from the operation board 40 while the fuel cell device 100 is operating. Further, in the maintenance mode, the fuel cell device 100 can start the fourth shutdown control by operating the operation board 40.
 ステップ40において、メンテナンスを行う操作者は、操作基板40よりシャットダウン制御を開始する。次にステップS41において、改質入口温度T1および燃料電池モジュール1の中心温度T2が第6の所定温度を超えているか判断する。この場合の第6の所定温度は、たとえば、改質器12やセルスタック11に悪影響を及ぼさない温度で設定することができる。 In step 40, the operator performing maintenance starts shutdown control from the operation board 40. Next, in step S41, it is determined whether the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 exceed the sixth predetermined temperature. In this case, the sixth predetermined temperature can be set, for example, at a temperature that does not adversely affect the reformer 12 and the cell stack 11.
 第6の所定温度以下の場合は、機器を停止するステップS43に移行し、改質入口温度T1と燃料電池モジュール1の中心温度T2の少なくとも一方が、第6の所定温度を超えている場合は、ステップS42に移行する。 If the temperature is equal to or lower than the sixth predetermined temperature, the process proceeds to step S43 for stopping the equipment, and if at least one of the reforming inlet temperature T1 and the center temperature T2 of the fuel cell module 1 exceeds the sixth predetermined temperature. , Step S42.
 ステップS42において、燃料電池装置100を冷却するために、換気ファン60、改質水ポンプP1、熱媒ポンプP2を動作させるとともに、ブロワB2を動作させて、配管Fから空気を供給する。このとき、燃料ガスポンプB1を停止させ、配管Gからの原燃料ガスの供給を停止する。ステップS42は第5所定時間t10継続する。 In step S42, in order to cool the fuel cell device 100, the ventilation fan 60, the reforming water pump P1, and the heat medium pump P2 are operated, and the blower B2 is operated to supply air from the pipe F. At this time, the fuel gas pump B1 is stopped, and the supply of raw fuel gas from the pipe G is stopped. Step S42 continues for the fifth predetermined time t10.
 第5所定時間t10を経過後、ステップS43において、ブロワB2、改質水ポンプP1、熱媒ポンプP2、および換気ファン60を停止して機器を停止させる。 After the lapse of the fifth predetermined time t10, in step S43, the blower B2, the reforming water pump P1, the heat medium pump P2, and the ventilation fan 60 are stopped to stop the equipment.
 次にステップS44において、燃料電池装置100は待機状態に移行し、待機状態に移行した時刻Taを記憶する。 Next, in step S44, the fuel cell device 100 shifts to the standby state, and stores the time Ta at which the transition to the standby state occurs.
 ステップS45において、メンテナンス終了後等に再起動指示を受け付けると、ステップS46に移行して、再起動指示を受け付けた時刻Tbを取得する When a restart instruction is received after the maintenance is completed in step S45, the process proceeds to step S46 and the time Tb at which the restart instruction is received is acquired.
 次にステップS47において、再起動指示を受け付けた時刻Tbと待機状態に移行した時刻Taより、再起動指示が第6所定時間t11以内に行われたか判定する。所定時間以内の場合は、ステップS48に移行して再起動し、所定時間を超えている場合は、ステップS49に移行して燃料電池装置100が十分に冷却されるまで待機する。 Next, in step S47, it is determined whether the restart instruction is given within the sixth predetermined time t11 from the time Tb at which the restart instruction is received and the time Ta at which the standby state is entered. If it is within the predetermined time, the process proceeds to step S48 and restarts, and if the time exceeds the predetermined time, the process proceeds to step S49 and waits until the fuel cell device 100 is sufficiently cooled.
 このように、シャットダウン動作をする場合に、燃料ガスポンプB1、ブロワB2、改質水ポンプP1、熱媒ポンプP2、および換気ファン60の駆動、及び停止を適宜選択することで、燃料電池装置100を保護することができ燃料電池装置100の信頼性を高めることができる。さらに、メンテナンスの指示によるシャットダウンの場合、シャットダウン完了後の時間を計測し、第6所定時間t11以内であれば再起動を可能とすることによって、メンテナンスによる燃料電池装置100の発電停止時間を短縮することができる。 In this way, when performing the shutdown operation, the fuel cell device 100 can be operated by appropriately selecting the drive and stop of the fuel gas pump B1, the blower B2, the reforming water pump P1, the heat medium pump P2, and the ventilation fan 60. It can be protected and the reliability of the fuel cell device 100 can be improved. Further, in the case of shutdown by a maintenance instruction, the time after the shutdown is completed is measured, and the fuel cell device 100 can be restarted within the sixth predetermined time t11 to shorten the power generation stop time of the fuel cell device 100 due to maintenance. be able to.
 本開示は次の実施の形態が可能である。 The following embodiments are possible for this disclosure.
 本開示の燃料電池装置は、筐体内に、燃料電池と、該燃料電池の運転に必要な複数の補機と、制御装置と、を備え前記制御装置は、前記燃料電池のシャットダウンを実行する際に、シャットダウンの種類に応じて、前記補機のうち、稼動させる補機と稼動停止する補機とを設定してシャットダウンを実行する構成ある。 The fuel cell device of the present disclosure includes a fuel cell, a plurality of auxiliary devices necessary for operating the fuel cell, and a control device in a housing, and the control device is used when the fuel cell is shut down. In addition, among the auxiliary machines, the auxiliary machine to be operated and the auxiliary machine to be stopped are set according to the type of shutdown, and the shutdown is executed.
 本開示の燃料電池装置によると、燃料電池装置のシャットダウン時に燃料電池装置を保護することができ、燃料電池装置の信頼性を高めることができる。 According to the fuel cell device of the present disclosure, the fuel cell device can be protected when the fuel cell device is shut down, and the reliability of the fuel cell device can be improved.
 本開示は、その精神または主要な特徴から逸脱することなく、他のいろいろな形態で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本開示の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束されない。さらに、特許請求の範囲に属する変形や変更は全て本開示の範囲内のものである。 This disclosure can be carried out in various other forms without departing from its spirit or key characteristics. Therefore, the above-described embodiment is merely an example in all respects, and the scope of the present disclosure is shown in the claims and is not bound by the text of the specification. Furthermore, all modifications and changes that fall within the scope of claims are within the scope of the present disclosure.
 1   燃料電池モジュール
 2   第1熱交換器
 3   蓄熱タンク
 4   第2熱交換器
 6   改質水タンク
 10  収納容器
 11  セルスタック
 12  改質器
 20  パワーコンディショナ
 30  制御装置
 40  操作基板
 50  ケース
 51  フレーム
 52  外装パネル
 60  換気ファン
 100 燃料電池装置
 B1  燃料ガスポンプ
 B2  ブロワ
1 Fuel cell module 2 1st heat exchanger 3 Heat storage tank 4 2nd heat exchanger 6 Modified water tank 10 Storage container 11 Cell stack 12 Modifiedr 20 Power conditioner 30 Control device 40 Operation board 50 Case 51 Frame 52 Exterior Panel 60 Ventilation fan 100 Fuel cell device B1 Fuel gas pump B2 Blower

Claims (10)

  1.  筐体内に、
     燃料電池と、
     該燃料電池の運転に必要な複数の補機と、
     制御装置と、を備え
     前記制御装置は、前記燃料電池のシャットダウンを実行する際に、シャットダウンの種類に応じて、前記補機のうち、稼動させる補機と稼動停止する補機とを設定してシャットダウンを実行する燃料電池装置。
    In the housing
    With a fuel cell
    A plurality of auxiliary machines necessary for operating the fuel cell,
    A control device is provided, and when the fuel cell is shut down, the control device sets, among the auxiliary machines, an auxiliary machine to be operated and an auxiliary machine to be stopped according to the type of shutdown. A fuel cell device that performs a shutdown.
  2.  前記複数の補機が、
     前記燃料電池に燃料ガスを供給する燃料ガスポンプと、
     前記燃料電池に水を供給する水ポンプと、
     前記燃料電池に空気を供給するブロワと、
     前記燃料電池からの排ガスと熱交換するための熱交換器に、熱媒を循環させる熱媒ポンプと、
     前記筐体内を換気する換気ファンと、を備える、請求項1記載の燃料電池装置。
    The plurality of auxiliary machines
    A fuel gas pump that supplies fuel gas to the fuel cell,
    A water pump that supplies water to the fuel cell,
    A blower that supplies air to the fuel cell and
    A heat medium pump that circulates a heat medium in a heat exchanger for heat exchange with the exhaust gas from the fuel cell,
    The fuel cell device according to claim 1, further comprising a ventilation fan for ventilating the inside of the housing.
  3.  前記燃料電池に関連する温度が第1の所定温度以下を満たさない場合に、前記シャットダウンにおいて、上記燃料ガスポンプ、前記水ポンプ、前記ブロワ、前記熱媒ポンプおよび前記換気ファンに異常が生じていない場合には、すべてを稼動させつつシャットダウンを実行する請求項2記載の燃料電池装置。 When the temperature related to the fuel cell does not satisfy the first predetermined temperature or less, and the fuel gas pump, the water pump, the blower, the heat medium pump, and the ventilation fan are not abnormal in the shutdown. The fuel cell device according to claim 2, wherein the fuel cell device is shut down while operating everything.
  4.  前記シャットダウンを実行して第1所定時間経過後に、前記燃料電池に関連する温度が第1の所定温度以下を満たさない場合に、前記燃料ガスポンプ、前記水ポンプおよび前記ブロワを停止して、シャットダウンを継続する請求項3記載の燃料電池装置。 If the temperature associated with the fuel cell does not meet the first predetermined temperature or lower after the first predetermined time has elapsed after executing the shutdown, the fuel gas pump, the water pump, and the blower are stopped to shut down. The fuel cell device according to claim 3 to be continued.
  5.  前記燃料電池に関連する温度が第2の所定温度以下を満たした場合に、前記燃料ガスポンプ、前記ブロワ、前記熱媒ポンプおよび前記換気ファンを第2の所定時間稼動させて、前記シャットダウンを継続する請求項3または4記載の燃料電池装置。 When the temperature associated with the fuel cell satisfies the second predetermined temperature or less, the fuel gas pump, the blower, the heat medium pump, and the ventilation fan are operated for a second predetermined time to continue the shutdown. The fuel cell device according to claim 3 or 4.
  6.  前記第2の所定時間経過後に、前記燃料ガスポンプを停止させる請求項5記載の燃料電池装置。 The fuel cell device according to claim 5, wherein the fuel gas pump is stopped after the lapse of the second predetermined time.
  7.  前記第2の所定時間経過後に、前記ブロワの稼動を増大させる請求項5または6記載の燃料電池装置。 The fuel cell device according to claim 5 or 6, wherein the operation of the blower is increased after the lapse of the second predetermined time.
  8.  前記シャットダウンにおいて、第1異常判定基準を満たし、かつ前記燃料電池に関連する温度が第1の所定温度以下を満たさない場合に、前記熱媒ポンプを稼動させつつシャットダウンを実行する請求項2記載の燃料電池装置。 The second aspect of claim 2, wherein the shutdown is executed while operating the heat medium pump when the first abnormality determination criterion is satisfied and the temperature related to the fuel cell does not satisfy the first predetermined temperature or less in the shutdown. Fuel cell device.
  9.  前記シャットダウンにおいて、前記第1異常判定基準とは異なる第2異常判定基準を満たし、かつ前記燃料電池に関連する温度が第1の所定温度以下を満たさない場合に、前記補機をすべて停止してシャットダウンを実行する請求項2記載の燃料電池装置。 In the shutdown, when the second abnormality determination standard different from the first abnormality determination criterion is satisfied and the temperature related to the fuel cell does not satisfy the first predetermined temperature or less, all the auxiliary machines are stopped. The fuel cell device according to claim 2, wherein the shutdown is performed.
  10.  前記シャットダウンが、メンテナンスの指示によるシャットダウンの場合、シャットダウン完了後の時間を計測し、第3の所定時間以内であれば、再起動を可能とする請求項3記載の燃料電池装置。 The fuel cell device according to claim 3, wherein when the shutdown is due to a maintenance instruction, the time after the shutdown is completed is measured, and if the shutdown is within the third predetermined time, the shutdown is possible.
PCT/JP2020/009820 2019-03-29 2020-03-06 Fuel cell apparatus WO2020203059A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021511306A JP7138777B2 (en) 2019-03-29 2020-03-06 fuel cell device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-068634 2019-03-29
JP2019068634 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203059A1 true WO2020203059A1 (en) 2020-10-08

Family

ID=72667682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009820 WO2020203059A1 (en) 2019-03-29 2020-03-06 Fuel cell apparatus

Country Status (2)

Country Link
JP (1) JP7138777B2 (en)
WO (1) WO2020203059A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193936A (en) * 2008-02-18 2009-08-27 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system
JP2010010050A (en) * 2008-06-30 2010-01-14 Aisin Seiki Co Ltd Fuel cell system
JP2010010029A (en) * 2008-06-30 2010-01-14 Panasonic Corp Fuel cell system and its control circuit
JP2013218811A (en) * 2012-04-05 2013-10-24 Panasonic Corp Fuel cell system
JP2015185507A (en) * 2014-03-26 2015-10-22 パナソニック株式会社 Fuel battery
JP2018125099A (en) * 2017-01-30 2018-08-09 京セラ株式会社 Fuel cell device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193936A (en) * 2008-02-18 2009-08-27 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system
JP2010010050A (en) * 2008-06-30 2010-01-14 Aisin Seiki Co Ltd Fuel cell system
JP2010010029A (en) * 2008-06-30 2010-01-14 Panasonic Corp Fuel cell system and its control circuit
JP2013218811A (en) * 2012-04-05 2013-10-24 Panasonic Corp Fuel cell system
JP2015185507A (en) * 2014-03-26 2015-10-22 パナソニック株式会社 Fuel battery
JP2018125099A (en) * 2017-01-30 2018-08-09 京セラ株式会社 Fuel cell device

Also Published As

Publication number Publication date
JP7138777B2 (en) 2022-09-16
JPWO2020203059A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
JP5150664B2 (en) FUEL CELL COGENERATION SYSTEM AND METHOD OF OPERATING FUEL CELL COGENERATION SYSTEM
JP6013129B2 (en) Fuel cell cogeneration system, control program and control method thereof
JP7101758B2 (en) Fuel cell device, control device and control program
WO2020203059A1 (en) Fuel cell apparatus
JP2020017507A (en) Fuel cell device, control unit, and control program
JP6734206B2 (en) Fuel cell device, fuel cell system, and control device
JP6942259B2 (en) Fuel cell device
JP7436180B2 (en) fuel cell system
JP5618525B2 (en) Fuel cell device
JP7424794B2 (en) fuel cell system
JP7503896B2 (en) Fuel Cell Device
JP7431012B2 (en) Cogeneration system
JP7290543B2 (en) fuel cell device
JP7341734B2 (en) fuel cell device
JP2010230260A (en) Air conditioner
JP7306938B2 (en) fuel cell device
JP7306851B2 (en) fuel cell device
JP7461130B2 (en) fuel cell device
JP2006236734A (en) Fuel cell system
JP7335798B2 (en) FUEL CELL SYSTEM AND FUEL CELL SYSTEM OPERATING METHOD
JP7430991B2 (en) fuel cell device
JP7221036B2 (en) FUEL CELL DEVICE, CONTROL METHOD AND CONTROL PROGRAM FOR FUEL CELL DEVICE
JP2020016368A (en) Cogeneration system
JP2013041712A (en) Fuel cell system and control method thereof
JP6731778B2 (en) Fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783489

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511306

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783489

Country of ref document: EP

Kind code of ref document: A1