JP2010009835A - Thin coaxial cable - Google Patents

Thin coaxial cable Download PDF

Info

Publication number
JP2010009835A
JP2010009835A JP2008165918A JP2008165918A JP2010009835A JP 2010009835 A JP2010009835 A JP 2010009835A JP 2008165918 A JP2008165918 A JP 2008165918A JP 2008165918 A JP2008165918 A JP 2008165918A JP 2010009835 A JP2010009835 A JP 2010009835A
Authority
JP
Japan
Prior art keywords
conductor
winding
shield
diameter
coaxial cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008165918A
Other languages
Japanese (ja)
Other versions
JP5315815B2 (en
Inventor
Tatsunori Rinka
達則 林下
Hirokazu Takahashi
宏和 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008165918A priority Critical patent/JP5315815B2/en
Publication of JP2010009835A publication Critical patent/JP2010009835A/en
Application granted granted Critical
Publication of JP5315815B2 publication Critical patent/JP5315815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin coaxial cable that has improvements in thinning, flexibility and flex resistance, and limits deterioration of shield property and attenuation. <P>SOLUTION: A thin coaxial cable 1 is constructed of a central conductor 2 having a conductor cross-sectional area between 0.003 mm<SP>2</SP>and 0.09 mm<SP>2</SP>, an insulator 3, a spiral shield conductor 6 and an outer sheath 7, which are arranged coaxially. The spiral shield conductor 6 has a winding angle between 73° and 83° and is formed of two layers differing from each other in a spiral winding direction. A ratio of a strand diameter of the spiral winding conductor 4 forming the shield conductor 6 to a diameter of a shield portion of the cable is between 0.05 and 0.12. If a winding angle of an inner spiral winding conductor 4 of the two-layered spiral shield conductor 6 is θ1, and a winding angle of an outer spiral winding conductor 5 is θ2, then θ1≥θ2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高周波信号を用いた通信機器内の配線等に用いられる細径の同軸ケーブルに関する。   The present invention relates to a small-diameter coaxial cable used for wiring or the like in communication equipment using a high-frequency signal.

携帯電話、ノートパソコン(無線LAN)、ゲーム機、車載用無線機器(ETC、GPS等)等の無線通信手段を備えた電子機器では、アンテナと送受信回路が必要となる。通常、アンテナ部分は電子機器の筐体近傍に配置され、送受信回部分はマザーボード等の回路基板上に形成されて機器本体の内部側に配置される構造となることが多い。この場合、アンテナ部分と送受信回路部分とは、高周波用の同軸ケーブルを用いて接続されるが、この同軸ケーブルとしては、細径、低減衰、高柔軟、高耐屈曲性等が必要とされる。   In an electronic device provided with wireless communication means such as a mobile phone, a notebook personal computer (wireless LAN), a game machine, an in-vehicle wireless device (ETC, GPS, etc.), an antenna and a transmission / reception circuit are required. In general, the antenna portion is often arranged in the vicinity of the housing of the electronic device, and the transmission / reception circuit portion is often formed on a circuit board such as a mother board and arranged inside the device main body. In this case, the antenna portion and the transmission / reception circuit portion are connected using a high-frequency coaxial cable. The coaxial cable needs to have a small diameter, low attenuation, high flexibility, high bending resistance, and the like. .

近年の電子機器の小型化、開閉機能の多様化、使用周波数の広帯域・高周波化で、これらのニーズを備えた同軸ケーブルの提供が困難となっている。従来、この種の同軸ケーブルとしては、細径の中心導体、絶縁体、シールド導体、外被を同軸構造で配し、シールド導体を編組導体で形成するのが一般的である(例えば、特許文献1参照)。しかし、シールド導体に編組導体を用いると、同軸ケーブルのさらなる細径化が難しく、また、ケーブルの端末加工性を考慮すると柔軟性や耐屈曲性が低下し、生産性やコストの点でも改善が求められている。   With recent downsizing of electronic devices, diversification of opening and closing functions, and widening and high frequency of use frequency, it has become difficult to provide coaxial cables having these needs. Conventionally, as this type of coaxial cable, a thin central conductor, an insulator, a shield conductor, and a jacket are generally arranged in a coaxial structure, and the shield conductor is formed of a braided conductor (for example, Patent Documents). 1). However, if a braided conductor is used for the shield conductor, it is difficult to further reduce the diameter of the coaxial cable, and considering the cable end workability, the flexibility and bending resistance are reduced, and the productivity and cost are also improved. It has been demanded.

これに対し、シールド導体を横巻きで形成することにより、細径化、柔軟性、耐屈曲性、耐コストを改善することも提案されている(例えば、特許文献2参照)。ただ、シールド導体を横巻き導体で形成すると、編組導体に比べて減衰量が悪化することから、絶縁体を耐熱性のあるフッ素化された樹脂材料で形成することにより、減衰量の悪化を補っている。
特開平8−102222号公報 特開2007−188782号公報
On the other hand, it has also been proposed to improve the reduction in diameter, flexibility, bending resistance, and cost resistance by forming the shield conductor by lateral winding (see, for example, Patent Document 2). However, if the shield conductor is made of a laterally wound conductor, the amount of attenuation is worse than that of a braided conductor, so forming the insulator with a heat-resistant fluorinated resin material compensates for the deterioration of the amount of attenuation. ing.
JP-A-8-102222 JP 2007-188782 A

特許文献2に開示のように、細径化、柔軟性、耐屈曲性向上させるため、シールド導体を1層の横巻き導体で形成すると、ケーブルを曲げたり捻ったりした際に、導体間に隙間ができたりしてシールドが不十分になることがあり、編組導体に比べてシールド特性が劣る。これを改善するために、横巻き導体を同方向に2層に巻いてシールド導体とすると、シールド特性は編組導体と同程度に改善されるものの減衰量が低下し、通常の編組導体の場合より悪化するという問題がある。   As disclosed in Patent Document 2, if the shield conductor is formed of a single layer of laterally wound conductors in order to reduce the diameter, improve flexibility, and bend resistance, there is a gap between the conductors when the cable is bent or twisted. The shield may be insufficient, and the shielding characteristics are inferior to the braided conductor. In order to improve this, if the horizontal winding conductor is wound in two layers in the same direction to make a shield conductor, the shielding characteristic is improved to the same extent as the braided conductor, but the attenuation is reduced, compared with the case of a normal braided conductor. There is a problem of getting worse.

本発明は、上述した実情に鑑みてなされたもので、細径化、柔軟性、耐屈曲性向上と共に、シールド特性及び減衰量の低下が抑制された細径同軸ケーブルの提供を目的とする。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a small-diameter coaxial cable in which a decrease in shield characteristics and attenuation is suppressed, as well as an increase in diameter, flexibility, and bending resistance.

本発明による細径同軸ケーブルは、導体断面積が0.003mm〜0.09mmの中心導体、絶縁体、横巻きシールド導体および外被を同軸構造で配した細径同軸ケーブルで、横巻きシールド導体は、巻き角度が73°〜83°で、横巻き方向が互いに異なる2層で形成され、シールド導体を形成する横巻き導体の素線径は、ケーブルのシールド部分の径の0.05〜0.12倍であることを特徴とする。なお、2層の横巻きシールド導体の内側横巻き導体の巻き角度をθ1、外側横巻き導体の巻き角度をθ2としたとき、θ1≧θ2とするのが好ましい。 Thin coaxial cable according to the present invention, the center conductor of the conductor cross-sectional area of 0.003mm 2 ~0.09mm 2, insulator, at laterally wound shield conductor and the outer diameter coaxial cable arranged to be a coaxial structure, transverse wound The shield conductor is formed of two layers having winding angles of 73 ° to 83 ° and different in the horizontal winding direction. The strand diameter of the horizontal winding conductor forming the shield conductor is 0.05 of the diameter of the shield portion of the cable. It is characterized by being -0.12 times. When the winding angle of the inner horizontal winding conductor of the two-layer horizontal winding shield conductor is θ1, and the winding angle of the outer horizontal winding conductor is θ2, it is preferable that θ1 ≧ θ2.

本発明の細径同軸ケーブルによれば、編組構造のシールド導体を有する細径同軸ケーブルと同程度のシールド特性を得ることができると共に、信号の減衰量を編組構造のシールド導体より10%程度低減することが可能となる。また、柔軟性に優れ機器内の配線が容易で、コスト的にも安価なものとすることができる。   According to the thin coaxial cable of the present invention, it is possible to obtain the same shielding characteristics as those of the thin coaxial cable having a braided shield conductor and reduce the signal attenuation by about 10% compared to the shield conductor of the braided structure. It becomes possible to do. Further, it is excellent in flexibility, and wiring in the device is easy, and the cost can be reduced.

図により本発明の実施の形態を説明する。図1(A)は本発明による細径同軸ケーブルの断面図、図1(B)は同斜視図、図2は側面の模式図、図3は本発明による細径同軸ケーブルの評価結果を説明する図、図4は本発明による細径同軸ケーブルのシールド特性を説明する図である。図中、1は細径同軸ケーブル、2は中心導体、3は絶縁体、4は内側の横巻き導体、5は外側の横巻き導体、6はシールド導体、7は外被を示す。   Embodiments of the present invention will be described with reference to the drawings. 1A is a cross-sectional view of a thin coaxial cable according to the present invention, FIG. 1B is a perspective view thereof, FIG. 2 is a schematic side view thereof, and FIG. 3 illustrates the evaluation results of the thin coaxial cable according to the present invention. FIG. 4 is a diagram for explaining the shielding characteristics of the thin coaxial cable according to the present invention. In the figure, 1 is a thin coaxial cable, 2 is a central conductor, 3 is an insulator, 4 is an inner horizontal winding conductor, 5 is an outer horizontal winding conductor, 6 is a shield conductor, and 7 is a jacket.

本発明による細径同軸ケーブル1は、図1(A),図1(B)に示すように、中心導体2を絶縁体3で囲い、その外側に2層の横巻き導体4,5からなるシールド導体6を配し、その外側を外被7で被覆して構成される。中心導体2、絶縁体3、シールド導体6および外被7は、ケーブル全長に亘って同軸形状に形成され、特性インピーダンスが均一になるように形成されている。   As shown in FIGS. 1A and 1B, a thin coaxial cable 1 according to the present invention includes a central conductor 2 surrounded by an insulator 3 and two layers of laterally wound conductors 4 and 5 on the outside thereof. The shield conductor 6 is disposed, and the outer side is covered with a jacket 7. The center conductor 2, the insulator 3, the shield conductor 6, and the jacket 7 are formed in a coaxial shape over the entire length of the cable so that the characteristic impedance is uniform.

中心導体2は、単線または撚り線で形成することができ、撚り線の場合は通常7本撚りで形成される。単線の場合は、撚り線に比べて導体断面積を同じにすると、線径が多少細くなり、より細径化することができ、また、コネクタ等の接点部に半田付けしやすいという利点がある。他方、撚り線は単線と比べると可撓性が優れ、断線しにくいという利点がある。本発明においては、その用途に応じて、単線または撚り線のいずれにも適用することができる。   The center conductor 2 can be formed by a single wire or a stranded wire, and in the case of a stranded wire, it is usually formed by seven strands. In the case of a single wire, if the conductor cross-sectional area is made the same as that of the stranded wire, the wire diameter becomes somewhat smaller, and the diameter can be further reduced, and there is an advantage that it can be easily soldered to a contact portion such as a connector. . On the other hand, the stranded wire is advantageous in that it is superior in flexibility and hard to break as compared with a single wire. In this invention, it can apply to any of a single wire or a strand wire according to the use.

本発明においては、中心導体2として、導体断面積で0.003mm〜0.09mm程度で、AWG( American Wire Gauge )の#28〜#42に相当する細径の導線を用いた同軸ケーブルを対象としている。中心導体2の線材としては、例えば、錫メッキ軟銅線が用いられ、外径0.05mmの素線を7本撚って、外径0.15mm(0.014mm AWG#36相当)の中心導体とし、あるいは、外径0.102mmの素線を7本撚って、外径0.31mm(0.057mm AWG#29相当)の中心導体とする。 In the present invention, the center conductor 2, in 0.003 mm 2 ~0.09Mm 2 about a conductor cross-sectional area, AWG (American Wire Gauge) of # 28 to the coaxial cable using the small-diameter wires corresponding to # 42 Is targeted. As the wire for the center conductor 2, for example, a tinned annealed copper wire is used, and seven strands having an outer diameter of 0.05 mm are twisted, and the center of the outer diameter is 0.15 mm (equivalent to 0.014 mm 2 AWG # 36). A conductor is used, or seven strands having an outer diameter of 0.102 mm are twisted to form a central conductor having an outer diameter of 0.31 mm (equivalent to 0.057 mm 2 AWG # 29).

絶縁体3は、フッ素樹脂、架橋ポリオレフィン、フッ素化されたFEP(テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体)、フッ素化されたPFA(テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体)を用いることができる。絶縁体3の厚さおよび外径は、所定の特性インピーダンス(50Ω)を得るためには、中心導体外径0.15mmの場合は、0.14mm厚、絶縁体外径0.43mmとされ、中心導体外径0.31mmの場合は、0.30mm厚、絶縁体外径0.90mmとされる。なお、フッ素化されたフッ素樹脂(FEP,PFA)とは、末端基をフッ素化(例えばCFをつける)したフッ素樹脂である。 As the insulator 3, a fluororesin, a cross-linked polyolefin, a fluorinated FEP (tetrafluoroethylene-hexafluoropropylene copolymer), and a fluorinated PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer) are used. Can do. In order to obtain a predetermined characteristic impedance (50Ω), the thickness and the outer diameter of the insulator 3 are 0.14 mm in the case of the center conductor outer diameter of 0.15 mm and the outer diameter of the insulator is 0.43 mm. When the conductor outer diameter is 0.31 mm, the thickness is 0.30 mm and the insulator outer diameter is 0.90 mm. The fluorinated fluororesin (FEP, PFA) is a fluororesin having terminal groups fluorinated (for example, CF 3 attached).

シールド導体6は、2層の横巻き(螺旋状に巻く形態)導体で形成され、内側の横巻き導体4と外側の横巻き導体5からなり、横巻き導体4と5は互いに交叉して接触し、巻き方向が異なるように巻き付けられる。なお、内側の横巻き導体4と外側の横巻き導体5の巻き方向は、互いの巻き方向が異なっていれば、右巻きあるいは左巻きであるかは任意である。   The shield conductor 6 is formed of two layers of laterally wound (form wound in a spiral) conductor, and is composed of an inner laterally wound conductor 4 and an outer laterally wound conductor 5, and the laterally wound conductors 4 and 5 are in contact with each other. And wound in different winding directions. The winding direction of the inner horizontal winding conductor 4 and the outer horizontal winding conductor 5 may be right-handed or left-handed as long as the winding directions are different from each other.

図2は、シールド導体の巻き付け状態を説明する図である。シールド導体6は、内側の横巻き導体4を巻き付け角度θ1(以下、巻き角度という)、外側の横巻き導体5を巻き角度θ2で巻き付けている。なお、「巻き角度」とは、ケーブルの軸方向に直交する横断線との角度を言うものとする。細径同軸ケーブルの横巻きシールド導体は、コネクタ等への接続の端末加工時にバラけるのを防止するには、一般に、上記の巻き角度θ1,θ2は、70°〜85°の範囲が好ましいとされている。本発明においては、さらに好ましい形態として、横巻きの巻き角度θ1,θ2は、73°〜83°としている。   FIG. 2 is a diagram for explaining a winding state of the shield conductor. The shield conductor 6 winds the inner horizontal winding conductor 4 at a winding angle θ1 (hereinafter referred to as a winding angle) and the outer horizontal winding conductor 5 at a winding angle θ2. The “winding angle” refers to an angle with a transverse line orthogonal to the axial direction of the cable. Generally, the winding angles θ1 and θ2 are preferably in the range of 70 ° to 85 ° in order to prevent the horizontally wound shield conductor of the small-diameter coaxial cable from being broken at the time of terminal processing of connection to a connector or the like. Has been. In the present invention, as a more preferable form, the winding angles θ1 and θ2 of the horizontal winding are 73 ° to 83 °.

横巻き導体の巻き角度θ1,θ2は、小さいほどケーブルを曲げたときに、各横巻き導体の巻間隔が広がるように動き、曲げにより力に耐えることができる。しかし、シールド導体6を2層巻とした場合、ケーブルを曲げた際に、外側の横巻き導体5にかかる力は、内側の横巻き導体4にかかる力よりは大きくなる。したがって、外側の横巻き導体の巻き角度θ2を、内側の横巻き導体4の巻き角度θ1より多少小さくするのが望ましい。すなわち、θ1≧θ2とすることにより、外側の横巻き導体5と内側の横巻き導体4との曲げに対する耐力を同じにし、機械的信頼性を確保することができる。   The smaller the winding angle θ1, θ2 of the horizontal winding conductor, the larger the winding interval between the horizontal winding conductors when the cable is bent. However, when the shield conductor 6 has a two-layer winding, when the cable is bent, the force applied to the outer horizontal winding conductor 5 is larger than the force applied to the inner horizontal winding conductor 4. Therefore, it is desirable that the winding angle θ2 of the outer horizontal winding conductor is slightly smaller than the winding angle θ1 of the inner horizontal winding conductor 4. That is, by satisfying θ1 ≧ θ2, the resistance to bending of the outer horizontal winding conductor 5 and the inner horizontal winding conductor 4 can be made the same, and mechanical reliability can be ensured.

また、ケーブルを捻回するときには、内側の横巻き導体4の巻き付けが緩む方向の場合は、外側の横巻き導体5の巻き付けは反対に締まる方向となる。しかし、上記のように、θ1≧θ2とすることにより、外側の横巻き導体5の導体長が長くなり、内側の横巻き導体4が緩んで外側に盛り上がることに対して、外側の横巻き導体5の締まり量が少なくなる。この結果、ケーブル捻回時における内側の横巻き導体4と外側の横巻き導体5との摩擦力が小さくなり、断線に対する耐力が向上して、機械的信頼性を高めることができる。   Further, when the cable is twisted, when the winding of the inner horizontal winding conductor 4 is in the direction of loosening, the winding of the outer horizontal winding conductor 5 is in the opposite direction. However, as described above, by setting θ1 ≧ θ2, the conductor length of the outer horizontal winding conductor 5 becomes longer and the inner horizontal winding conductor 4 loosens and rises outward, whereas the outer horizontal winding conductor 5 tightening amount is reduced. As a result, the frictional force between the inner horizontal winding conductor 4 and the outer horizontal winding conductor 5 when the cable is twisted is reduced, the resistance to disconnection is improved, and the mechanical reliability can be increased.

横巻き導体4および5は、例えば、中心導体2と同様な錫メッキ軟銅線を用いることができる。上記の中心導体外径0.15mmのものに対しては、例えば、内側横巻き導体4および外側横巻き導体5のいずれも、素線径が0.05mmのもの数十本(例えば、60本位)を並列状にしてピッチ7mm(θ1=78°、θ2=75°)で巻き付けて形成することができる。この場合、シールド導体を形成する横巻き導体の素線径は、ケーブルのシールド部分の径(以下、シールド巻径という)に対して、内側横巻き導体4では(0.05/0.53)=0.094倍、外側横巻き導体5では(0.05/0.63)=0.079倍となっている。   For the laterally wound conductors 4 and 5, for example, a tin-plated annealed copper wire similar to the central conductor 2 can be used. For the above-mentioned one having an outer diameter of 0.15 mm for the central conductor, for example, the inner horizontal winding conductor 4 and the outer horizontal winding conductor 5 both have dozens of wires having a wire diameter of 0.05 mm (for example, about 60 wires). ) In parallel and wound at a pitch of 7 mm (θ1 = 78 °, θ2 = 75 °). In this case, the strand diameter of the horizontal winding conductor forming the shield conductor is (0.05 / 0.53) in the inner horizontal winding conductor 4 with respect to the diameter of the shield portion of the cable (hereinafter referred to as shield winding diameter). = 0.094 times, and in the case of the outer laterally wound conductor 5, (0.05 / 0.63) = 0.079 times.

また、中心導体外径0.31mmのものに対しては、内側横巻き導体4に素線径が0.05mmのものを用い、外側横巻き導体5に素線径が0.064mmのものを用いて、ピッチ12mm(θ1=76°、θ2=73°)で巻き付けて形成される。この場合、シールド導体を形成する横巻き導体の素線径は、シールド巻径に対して、内側横巻き導体4では(0.05/1.0)=0.05倍、外側横巻き導体5では(0.064/1.128)=0.057倍となっている。   Also, for the central conductor having an outer diameter of 0.31 mm, the inner horizontal winding conductor 4 having a strand diameter of 0.05 mm is used, and the outer lateral winding conductor 5 having a strand diameter of 0.064 mm. It is formed by winding at a pitch of 12 mm (θ1 = 76 °, θ2 = 73 °). In this case, the strand diameter of the horizontal winding conductor forming the shield conductor is (0.05 / 1.0) = 0.05 times as large as the outer horizontal winding conductor 5 in the inner horizontal winding conductor 4 with respect to the shield winding diameter. Then, (0.064 / 1.128) = 0.057 times.

なお、中心導体2を導体断面積0.03mm(AWG#42相当)では、所定の特性インピーダンス(50Ω)を得るためには、絶縁体3の外径が0.2mmとされる。この場合、内側横巻き導体4の素線径が0.03mm以下とするのが望ましい。この場合、シールド導体を形成する横巻き導体の素線径は、シールド巻径に対して、内側横巻き導体4では(0.03/0.26)=0.115倍、外側横巻き導体5では(0.03/0.32)=0.09倍となる。 When the center conductor 2 has a conductor cross-sectional area of 0.03 mm 2 (equivalent to AWG # 42), the outer diameter of the insulator 3 is set to 0.2 mm in order to obtain a predetermined characteristic impedance (50Ω). In this case, it is desirable that the strand diameter of the inner laterally wound conductor 4 is 0.03 mm or less. In this case, the wire diameter of the horizontal winding conductor forming the shield conductor is (0.03 / 0.26) = 0.115 times in the inner horizontal winding conductor 4 with respect to the shield winding diameter, and the outer horizontal winding conductor 5 Then, (0.03 / 0.32) = 0.09 times.

上記のように、細径化された同軸ケーブルとして、シールド導体を形成する横巻き導体の素線径は、シールド巻径の0.05〜0.12倍とする。なお、横巻き導体の素線径が、シールド巻径の0.05倍未満の細さでは、シールド特性の確保が難しくなり、シールド導体の抵抗値も高くなり、減衰特性の点で不利となる。また、横巻き導体の素線径が、シールド巻径の0.12倍を超える太さでは、繰り返しの曲げにより切断されやすくなり、機械的信頼性の点で不利となる。   As described above, the strand diameter of the horizontally wound conductor forming the shield conductor in the reduced coaxial cable is set to 0.05 to 0.12 times the shield wound diameter. If the wire diameter of the horizontal winding conductor is less than 0.05 times the shield winding diameter, it is difficult to ensure the shielding characteristics, the resistance value of the shielding conductor is increased, and this is disadvantageous in terms of attenuation characteristics. . Further, when the wire diameter of the horizontally wound conductor exceeds 0.12 times the shield winding diameter, the wire is easily cut by repeated bending, which is disadvantageous in terms of mechanical reliability.

外被7は、押出機による押出し成形により形成することができ、外被材料には上記のFEP,PFAのほかPTFE(ポリテトラフルオロエチレン)、ETFE(テトラフルオロエチレン−エチレン共重合体)を用いることができる。なお、これらのフッ素樹脂は、薄肉加工性が良好であるため、これらを外被として用いることで同軸ケーブルを細径化しやすい。また、動摩擦係数が低いため耐屈曲性がよくなることから、捻回部分を有する電子機器の同軸ケーブルに適している。   The jacket 7 can be formed by extrusion molding using an extruder, and as the jacket material, PTFE (polytetrafluoroethylene) and ETFE (tetrafluoroethylene-ethylene copolymer) are used in addition to the FEP and PFA described above. be able to. Since these fluororesins have good thin-wall processability, it is easy to reduce the diameter of the coaxial cable by using these fluororesins as a jacket. In addition, since the dynamic friction coefficient is low, the bending resistance is improved, so that it is suitable for a coaxial cable of an electronic device having a twisted portion.

外被7の厚さは、上記の中心導体外径0.15mmのものに対しては、例えば、PFAを用い、厚さ0.09mm、外被外径0.81mmで形成することができる。なお、中心導体外径0.31mmのものに対しては、厚さ0.12mm、外被外径1.35mmとすることができる。   The thickness of the jacket 7 can be formed with a thickness of 0.09 mm and a jacket outer diameter of 0.81 mm, for example, using PFA for the above-mentioned center conductor outer diameter of 0.15 mm. In addition, with respect to the central conductor having an outer diameter of 0.31 mm, the thickness can be set to 0.12 mm and the jacket outer diameter is 1.35 mm.

図3は、上述した本発明品と、従来標準品(編組シールド)、比較例(横巻き1層シールド、同方向2層シールド)についての、特性を比較評価した図である。なお、いずれの評価品も中心導体は、外径0.102mmの錫メッキ軟銅線を7本撚って、外径0.31mm(0.057mm AWG#29相当)のものを用い、絶縁体3の外径は0.9mmでフッ素化されたPFA(編組標準品は、通常のフッ素樹脂)で形成し、シールド導体6には錫メッキ軟銅線を用い、外被7は通常のPFAで外径1.35mmとなるように押出し成形で形成した。 FIG. 3 is a diagram comparing and evaluating the characteristics of the above-described product of the present invention, a conventional standard product (braided shield), and a comparative example (horizontal winding one-layer shield, same-direction two-layer shield). In each evaluation product, the center conductor is a twist of seven tin-plated annealed copper wires having an outer diameter of 0.102 mm and an outer diameter of 0.31 mm (equivalent to 0.057 mm 2 AWG # 29). 3 is made of fluorinated PFA with an outer diameter of 0.9 mm (standard braided product is ordinary fluororesin), tin-plated annealed copper wire is used for the shield conductor 6, and the outer sheath 7 is made of ordinary PFA. It was formed by extrusion molding so as to have a diameter of 1.35 mm.

シールド導体については、従来標準品(編組)は素線径0.05mmで1層、比較例(1層横巻き)は素線径0.1mmで1層、比較例(2層同方向横巻き)は内側素線径0.05mm、外側素線径0.064mm、本発明品(2層異方向横巻き)は内側素線径0.05mm、外側素線径0.064mmとした。   As for the shield conductor, the conventional standard product (braided) has a strand diameter of 0.05 mm and one layer, and the comparative example (one layer horizontal winding) has one strand with a strand diameter of 0.1 mm and the comparative example (two layers in the same direction horizontal winding) ) Is an inner strand diameter of 0.05 mm, an outer strand diameter of 0.064 mm, and the product of the present invention (two-layer horizontal winding in different directions) has an inner strand diameter of 0.05 mm and an outer strand diameter of 0.064 mm.

評価の結果、特性インピーダンスは、いずれの評価品も50Ω±2を確保できた。シールド特性(漏れ電圧の少なさ)は、図4に示すように、比較例(1層横巻き)は、従来の標準品(編組)に比べて劣る。しかし、比較例(2層同方向横巻き)および本発明品(2層異方向横巻き)は、従来の標準品(編組)と同程度のシールド特性を確保することができた。コストについては、比較例(1層横巻き)が最も安価で、従来標準品(編組)が最も高価で、比較例(2層同方向横巻き)と本発明品は、その中間であった。   As a result of the evaluation, the characteristic impedance of each evaluated product was able to ensure 50Ω ± 2. As shown in FIG. 4, the shield characteristic (low leakage voltage) is inferior to the conventional standard product (braid) in the comparative example (one-layer horizontal winding). However, the comparative example (two-layer same-direction horizontal winding) and the product of the present invention (two-layer different-direction horizontal winding) were able to ensure the same level of shielding characteristics as the conventional standard product (braid). Regarding cost, the comparative example (one-layer horizontal winding) was the cheapest, the conventional standard product (braided) was the most expensive, and the comparative example (two-layer same-direction horizontal winding) and the product of the present invention were in the middle.

信号の減衰量については、比較例(1層横巻き)は、従来標準品(編組)に比べて低減されて良好な結果を示すが、シールド特性を改善した比較例(2層同方向横巻き)においては、周波数が高く(6.0GHz)なると損失が大きくなった。しかし、本発明の場合は、従来標準品(編組)に比べて10%程度低減し、比較例(1層横巻き)と同程度に抑制することができた。この高周波信号の減衰は、シールド導体同士の接触抵抗と表皮効果が影響する。このため、本発明のように、2層の横巻きシールド導体の巻き角度θ1,θ2が73°〜83°で、巻き方向が逆方向であると、2層のシールド導体同士が小さい接触抵抗で接していて、かつ、表皮効果の影響が小さい状態にあると考えられる。   Regarding the signal attenuation, the comparative example (one-layer horizontal winding) is reduced compared to the conventional standard product (braided) and shows good results, but the comparative example with improved shielding characteristics (two-layer horizontal winding in the same direction) ), The loss increased as the frequency increased (6.0 GHz). However, in the case of the present invention, it was reduced by about 10% compared with the conventional standard product (braided), and was able to be suppressed to the same extent as the comparative example (one-layer horizontal winding). The attenuation of the high-frequency signal is affected by the contact resistance between the shield conductors and the skin effect. For this reason, as in the present invention, when the winding angles θ1 and θ2 of the two-layer horizontally wound shield conductors are 73 ° to 83 ° and the winding direction is the reverse direction, the two layers of shield conductors have a small contact resistance. It is considered that the skin is in contact and the influence of the skin effect is small.

すなわち、本発明の同軸ケーブルによれば、シールド特性を編組シールドした同軸ケーブルと同程度に保つことができると共に、信号の減衰量を低減することが可能となる。また、コストも編組シールド構造の同軸ケーブルよりは、安価なものとすることができ、横巻きによる柔軟性に優れ機器内の配線を容易とし、細径化を可能とする。   That is, according to the coaxial cable of the present invention, it is possible to keep the shield characteristics at the same level as the braided shielded coaxial cable, and to reduce the signal attenuation. In addition, the cost can be lower than that of a coaxial cable having a braided shield structure, and it is excellent in flexibility by lateral winding, facilitating wiring in the device, and enabling a reduction in diameter.

本発明による細径同軸ケーブルの概略を説明する図である。It is a figure explaining the outline of the thin coaxial cable by this invention. 本発明による細径同軸ケーブルのシールド導体の構成を説明する図である。It is a figure explaining the structure of the shield conductor of the thin coaxial cable by this invention. 本発明による細径同軸ケーブルの評価結果を示す図である。It is a figure which shows the evaluation result of the thin coaxial cable by this invention. 本発明による細径同軸ケーブルのシールド特性の説明する図である。It is a figure explaining the shielding characteristic of the thin coaxial cable by this invention.

符号の説明Explanation of symbols

1…細径同軸ケーブル、2…中心導体、3…絶縁体、4…内側横巻き導体、5…外側横巻き導体、6…シールド導体、7…外被。 DESCRIPTION OF SYMBOLS 1 ... Small diameter coaxial cable, 2 ... Center conductor, 3 ... Insulator, 4 ... Inner side winding conductor, 5 ... Outer side winding conductor, 6 ... Shield conductor, 7 ... Outer jacket.

Claims (2)

導体断面積が0.003mm〜0.09mmの中心導体、絶縁体、横巻きシールド導体および外被を同軸構造で配した細径同軸ケーブルであって、
前記横巻きシールド導体は、巻き角度が73°〜83°で、横巻き方向が互いに異なる2層で形成され、シールド導体を形成する横巻き導体の素線径は、ケーブルのシールド部分の径の0.05〜0.12倍であることを特徴とする細径同軸ケーブル。
Center conductor of the conductor cross-sectional area of 0.003mm 2 ~0.09mm 2, insulator, laterally wound shield conductor and the jacket a small diameter coaxial cable arranged in coaxial structure,
The horizontal winding shield conductor is formed of two layers having a winding angle of 73 ° to 83 ° and different in the horizontal winding direction. The strand diameter of the horizontal winding conductor forming the shield conductor is the diameter of the shield portion of the cable. A thin coaxial cable characterized by being 0.05 to 0.12 times.
前記2層の横巻きシールド導体の内側横巻き導体の巻き角度をθ1、外側横巻き導体の巻き角度をθ2としたとき、θ1≧θ2であることを特徴とする請求項1に記載の細径同軸ケーブル。   2. The small diameter according to claim 1, wherein θ1 ≧ θ2 when the winding angle of the inner horizontal winding conductor of the two-layer horizontal winding shield conductor is θ1 and the winding angle of the outer horizontal winding conductor is θ2. coaxial cable.
JP2008165918A 2008-06-25 2008-06-25 Thin coaxial cable Active JP5315815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008165918A JP5315815B2 (en) 2008-06-25 2008-06-25 Thin coaxial cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008165918A JP5315815B2 (en) 2008-06-25 2008-06-25 Thin coaxial cable

Publications (2)

Publication Number Publication Date
JP2010009835A true JP2010009835A (en) 2010-01-14
JP5315815B2 JP5315815B2 (en) 2013-10-16

Family

ID=41590085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008165918A Active JP5315815B2 (en) 2008-06-25 2008-06-25 Thin coaxial cable

Country Status (1)

Country Link
JP (1) JP5315815B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015762A (en) * 2008-07-02 2010-01-21 Autonetworks Technologies Ltd Coaxial cable
EP3582236A4 (en) * 2017-02-10 2020-11-18 Junkosha Inc. Coaxial cable

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628411A (en) * 1979-08-08 1981-03-20 Bendix Corp Cable
JPH06349345A (en) * 1993-06-04 1994-12-22 Totoku Electric Co Ltd Coaxial cable
JP2003092031A (en) * 2001-09-18 2003-03-28 Junkosha Co Ltd Coaxial cable
JP2004214138A (en) * 2003-01-08 2004-07-29 Auto Network Gijutsu Kenkyusho:Kk Coaxial cable
JP2005317221A (en) * 2004-04-27 2005-11-10 Fujikura Ltd Coaxial cable and information processor
JP2007188782A (en) * 2006-01-13 2007-07-26 Sumitomo Electric Ind Ltd Coaxial cable
JP2008171778A (en) * 2007-01-15 2008-07-24 Junkosha Co Ltd Coaxial cable

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628411A (en) * 1979-08-08 1981-03-20 Bendix Corp Cable
JPH06349345A (en) * 1993-06-04 1994-12-22 Totoku Electric Co Ltd Coaxial cable
JP2003092031A (en) * 2001-09-18 2003-03-28 Junkosha Co Ltd Coaxial cable
JP2004214138A (en) * 2003-01-08 2004-07-29 Auto Network Gijutsu Kenkyusho:Kk Coaxial cable
JP2005317221A (en) * 2004-04-27 2005-11-10 Fujikura Ltd Coaxial cable and information processor
JP2007188782A (en) * 2006-01-13 2007-07-26 Sumitomo Electric Ind Ltd Coaxial cable
JP2008171778A (en) * 2007-01-15 2008-07-24 Junkosha Co Ltd Coaxial cable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015762A (en) * 2008-07-02 2010-01-21 Autonetworks Technologies Ltd Coaxial cable
EP3582236A4 (en) * 2017-02-10 2020-11-18 Junkosha Inc. Coaxial cable

Also Published As

Publication number Publication date
JP5315815B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5421565B2 (en) coaxial cable
JP4229124B2 (en) coaxial cable
JP2010056080A (en) Differential transmission cable, and composite cable containing the same
JP5900275B2 (en) Cable for multi-pair differential signal transmission
WO2010123105A1 (en) Electrical wire and method for producing same
JP2007179985A (en) Coaxial cable
CN112447325B (en) Coaxial cable
JP4044805B2 (en) Flat shielded cable
JP6164844B2 (en) Insulated wire, coaxial cable and multi-core cable
JP2004014337A (en) Extrafine multicore coaxial cable
JP5464080B2 (en) Coaxial cable and multi-core coaxial cable
JP2017033837A (en) Flat cable and flat cable with connector
JP2007280762A (en) Non-halogen coaxial cable, and multicore cable using it
JP5315815B2 (en) Thin coaxial cable
JP4591094B2 (en) Coaxial cable and multi-core coaxial cable
JP7265324B2 (en) insulated wire, cable
JP2006351414A (en) Coaxial cable
JP2009164039A (en) Two-core parallel cable
CN110268483B (en) Coaxial cable
JP2005158415A (en) Coaxial cable
JP2011129261A (en) Quad cable for high-speed differential
JP2019179594A (en) cable
JP7340384B2 (en) Small diameter coaxial cable with excellent flexibility
WO2020004132A1 (en) Coaxial cable
JP2010073463A (en) High-speed differential cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130624

R150 Certificate of patent or registration of utility model

Ref document number: 5315815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250