JP2010009144A - Shape calculation method and program for flexible object - Google Patents

Shape calculation method and program for flexible object Download PDF

Info

Publication number
JP2010009144A
JP2010009144A JP2008165035A JP2008165035A JP2010009144A JP 2010009144 A JP2010009144 A JP 2010009144A JP 2008165035 A JP2008165035 A JP 2008165035A JP 2008165035 A JP2008165035 A JP 2008165035A JP 2010009144 A JP2010009144 A JP 2010009144A
Authority
JP
Japan
Prior art keywords
shape
flexible object
movement
affected
movement position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008165035A
Other languages
Japanese (ja)
Inventor
Masayoshi Hashima
正芳 橋間
Shinichi Sazawa
真一 佐沢
Hideki Abe
秀城 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008165035A priority Critical patent/JP2010009144A/en
Publication of JP2010009144A publication Critical patent/JP2010009144A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that it takes a long time to calculate the shape of a flexible object when an initial shape necessary for calculating the shape of the flexible object in moving and deforming the flexible object is not close to the shape to be calculated (a state that the flexible object is stable at the position). <P>SOLUTION: The prediction of the moving position of the influenced material point of a flexible object moving after receiving an influence according to the movement of the set material point of the flexible object forced to move is performed, and the shape of the flexible object based on the deforming operation is calculated by an equation of motion by using the moving position of the forced moving material point and the predicted moving position of the influenced position as the initial shape of the flexible object. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ハーネスなどの柔軟物体の3次元モデルにおける形状算出に係り、特に柔軟物体の一部を移動して変形操作した時の柔軟物体の形状算出方法及びプログラムに関するものである。   The present invention relates to shape calculation in a three-dimensional model of a flexible object such as a harness, and more particularly to a method and program for calculating the shape of a flexible object when a part of the flexible object is moved and deformed.

機械製品や装置には、ワイヤ、ハーネス、ケーブルなどの柔軟物体が組み込まれており、設計では、柔軟物体と、他の剛体などの部品を3次元モデル上に配置し、それらの位置、間隔を調整しながら配置設計を行う。以下では柔軟物体をハーネスと表現し、ハーネスの3次元形状モデルをハーネスモデルと表現する。一方、機械製品や装置の柔軟物体以外の剛体等の部品の3次元形状モデルを部品モデルと表現する。   Machine products and devices incorporate flexible objects such as wires, harnesses, and cables. In the design, flexible objects and other rigid bodies are placed on the 3D model, and their positions and intervals are set. Perform layout design while adjusting. Hereinafter, a flexible object is expressed as a harness, and a three-dimensional shape model of the harness is expressed as a harness model. On the other hand, a three-dimensional shape model of a part such as a rigid body other than a flexible object of a machine product or apparatus is expressed as a part model.

機械製品や装置の配置設計においては、柔軟物体の一部を動かす、あるいは柔軟物体との結合部を有する構成部品が移動した時に結合部の移動に従って柔軟物体の形状が変化する。この変形操作後の形状を認識・確認して配置などの設計を行う必要がある。   In the layout design of a mechanical product or apparatus, when a part of a flexible object is moved or a component having a coupling part with the flexible object moves, the shape of the flexible object changes according to the movement of the coupling part. It is necessary to recognize and confirm the shape after the deformation operation and to design the arrangement.

線状材で構成されたワイヤ様構造物の形状特性、拘束条件を与え、ワイヤ様構造物を強制変位させた場合の予測形状を有限要素法により算出することが知られている。(特許文献1)その他、ハーネスの形状算出方法として、バネマスモデル化法やエネルギー最小化法などがある。しかしながら、これらの方法はいずれも初期形状を必要とし、初期形状が算出したい形状(柔軟物体がその位置において安定した状態)に近いほど、高速に計算できる。そのため、形状算出の演算工数は初期形状に大きく依存し、初期形状がハーネスモデルの形状算出に重要である。   It is known to give a shape characteristic and constraint condition of a wire-like structure composed of a linear material, and to calculate a predicted shape when the wire-like structure is forcibly displaced by a finite element method. (Patent Document 1) In addition, there are a spring mass modeling method, an energy minimization method, and the like as harness shape calculation methods. However, both of these methods require an initial shape, and can be calculated faster as the initial shape is closer to the shape to be calculated (the flexible object is stable at that position). Therefore, the calculation man-hours for shape calculation greatly depend on the initial shape, and the initial shape is important for the shape calculation of the harness model.

先ず始めに設計対象のバネマス系での表現について説明する。バネマス系は質量を有する質点とその間を接続するバネで物体を表現し解析を行うものである。   First, the expression in the spring mass system to be designed will be described. In the spring mass system, an object is expressed and analyzed by mass points having mass and springs connecting the mass points.

図4はバネマス系でのハーネスモデルの表現を示す図である。設計対象の柔軟物体をバネバス系で表現する。ここではハーネスモデルをN個の質点と(N−1)個のバネとで表現し、各質点の質量をm(i=1〜N)、その位置をP(i=1〜N)として質点i(m,P)と、その間をバネ係数k(i=1〜(N−1))のバネで表現する。各質点には重力やバネ力がかかり、安定状態に落ち着いた状態を運動方程式により質点の位置を算出し、柔軟物体の形状を算出する。 FIG. 4 is a diagram showing the expression of the harness model in the spring mass system. A flexible object to be designed is represented by a spring bus system. Here harness model and N mass point is expressed by the (N-1) pieces of the spring, the mass of each mass point m i (i = 1~N), the position P i (i = 1~N) The mass point i (m i , P i ) and the space between them are represented by a spring having a spring coefficient k i (i = 1 to (N−1)). Gravity and spring force are applied to each mass point, the position of the mass point is calculated by the equation of motion when the state is settled in a stable state, and the shape of the flexible object is calculated.

以下ではバネマス系で表したハーネスモデルの形状算出をバネマス法と表現する。バネマス法での変形操作に対する形状算出は、ハーネスモデルの1つの形状(質点とその位置)と、変形操作して移動する質点とその移動量を設定し、その形状を初期値として、ハーネスモデルが釣り合い状態になるまで運動方程式による形状算出演算を繰り返し行い算出する。釣り合い状態は、特定の点を固定(例えば、両端点を固定)して、一つの位置、例えば空中に置いた場合の形状である。   Hereinafter, the shape calculation of the harness model expressed in the spring mass system is expressed as a spring mass method. The shape calculation for the deformation operation by the spring mass method is performed by setting one shape (mass point and its position) of the harness model, the mass point to be moved by the deformation operation, and its movement amount. The shape calculation calculation based on the equation of motion is repeatedly performed until a balanced state is obtained. The balanced state is a shape when a specific point is fixed (for example, both end points are fixed) and placed in one position, for example, in the air.

図5は従来のバネマス系のハーネスモデルの初期形状算出手順を示す図である。1)変形操作前の形状、2)変形操作の設定、3)変形操作時の初期形状、4)変形操作後の形状算出を示している。
1)変形操作前の形状
1つの位置に置かれたN個の質点(m,P)と(Nー1)個のバネ(バネ力k)で表されたハーネスモデルである。ここでは、質点1と質点Nを固定しハーネスを空中に置いた状態とする。
2)変形操作の設定
変形操作により移動する質点とその移動位置(移動量)を設定する。ここでは端の質点Nを移動量「d」移動する変形操作を行う。
3)変形操作時の初期形状
変形操作により移動する質点の移動先の位置と、残り質点は変形前の位置で定まる形状を初期形状とする。ここでは、移動する端点Nは移動量「d」を移動した位置に設定し、端N以外の質点は変形前の質点位置にある。
4)変形操作後のハーネスモデルの形状算出
3)で設定したハーネスモデルの質点とその位置を初期形状として、運動方程式により変形操作後の釣り合い状態の形状を算出する。3)で設定した初期形状は釣り合い状態の形状とは大いに異なるため運動方程式での形状算出に時間を要する。
特開2004−139974
FIG. 5 is a diagram showing a procedure for calculating an initial shape of a conventional spring mass harness model. 1) Shape before deformation operation, 2) Setting of deformation operation, 3) Initial shape at the time of deformation operation, 4) Shape calculation after deformation operation.
1) Shape before deformation operation A harness model represented by N mass points (m i , P i ) and (N−1) springs (spring force k j ) placed at one position. Here, the mass point 1 and the mass point N are fixed and the harness is placed in the air.
2) Setting of deformation operation The mass point to be moved by the deformation operation and its movement position (movement amount) are set. Here, a deformation operation is performed to move the end mass point N by the movement amount “d”.
3) Initial shape at the time of the deformation operation The initial shape is determined by the position of the moving destination of the mass point moved by the deformation operation and the remaining mass point determined by the position before the deformation. Here, the moving end point N is set to the position where the moving amount “d” is moved, and the mass points other than the end N are in the mass point position before deformation.
4) Calculation of shape of harness model after deformation operation Using the mass point and position of the harness model set in 3) as an initial shape, the shape of the balanced state after the deformation operation is calculated using an equation of motion. Since the initial shape set in 3) is very different from the balanced shape, it takes time to calculate the shape using the equation of motion.
JP2004-139974

ハーネスモデルを移動し、変形操作した時のハーネスモデルの形状算出に必要な初期形状は算出したい形状(柔軟物体がその位置において安定した状態)に近くないと、計算に時間がかかる問題がある。   If the initial shape necessary for calculating the shape of the harness model when the harness model is moved and deformed is not close to the shape to be calculated (a state where the flexible object is stable at the position), there is a problem that the calculation takes time.

本発明は、バネマス法による柔軟物体の変形操作後のハーネス形状算出において、演算量を削減し効率良くハーネスモデルの形状算出を行う形状算出方法及びそのプログラムを提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a shape calculation method and a program for calculating the shape of a harness model efficiently by reducing the amount of calculation in calculating the shape of a harness after a flexible object is deformed by a spring mass method.

設定した柔軟物体の強制移動する質点の移動位置及び強制移動する質点の移動により影響を受け移動する質点の予測移動位置を柔軟物体の初期形状として運動方程式により柔軟物体の変形操作による形状を算出する。柔軟物体はバネマス系で表現し、初期位置、強制移動位置、被影響移動位置の各位置はバネマス系の質点とする。   Calculate the shape by the deformation operation of the flexible object by the equation of motion using the set moving position of the forced moving point of the flexible object and the predicted moving position of the moving mass point affected by the moving of the moving mass point as the initial shape of the flexible object . The flexible object is expressed in a spring mass system, and the initial position, the forced movement position, and the affected movement position are the mass points of the spring mass system.

本発明により、柔軟物体の強制移動質点の位置と予測した被影響質点の位置で定まる形状は変形操作後の形状に近い形状となり、この形状を運動方程式の初期値として変形操作による柔軟物体の釣り合い状態の形状を算出するので、釣り合い状態になるまでの繰り返し回数を削減でき、形状算出時間を短縮することができる。   According to the present invention, the shape determined by the position of the forced moving mass point of the flexible object and the predicted position of the affected mass point is close to the shape after the deformation operation, and this shape is used as the initial value of the equation of motion to balance the flexible object by the deformation operation. Since the shape of the state is calculated, the number of repetitions until the balanced state is reached can be reduced, and the shape calculation time can be shortened.

(実施例1)
図1はハーネスモデルの予測初期形状算出手順を示す図である。
S1:ハーネスモデルをバネマス系(質点数=N,質点の位置=P,質点の質量=m,i=1〜N/バネ係数k,j=1〜(N−1))で表現し、以下を設定する。
ア.変形操作前の形状(質点とその位置)の設定
イ.ハーネスモデルの変形操作として移動する質点(以下、強制移動質点と表現)とその移動量(ベクトル)の設定
S2:強制移動質点の移動により影響を受け移動する質点(以下、被影響質点と表現)の移動位置を予測算出する。被影響質点の予測移動位置の算出ついては後述する。(図2、図3)
S3:強制移動質点とその移動位置、被影響質点とその予測移動位置を初期値として運動方程式によりハーネスモデルの形状を算出する。
Example 1
FIG. 1 is a diagram showing a predicted initial shape calculation procedure of a harness model.
S1: A harness model is expressed by a spring mass system (number of mass points = N, mass point position = P i , mass of mass points = m i , i = 1 to N / spring coefficient k j , j = 1 to (N−1)). And set the following.
A. Setting of shape (mass point and its position) before deformation operation b. Set the mass point that moves as a deformation operation of the harness model (hereinafter referred to as forced movement mass point) and the amount of movement (vector) S2: The mass point affected by the movement of the forced movement mass point (hereinafter referred to as affected mass point) The predicted movement position is calculated. The calculation of the predicted movement position of the affected mass point will be described later. (Fig. 2, Fig. 3)
S3: The shape of the harness model is calculated from the equation of motion using the forced movement mass point and its movement position, the affected mass point and its predicted movement position as initial values.

図2はハーネスモデルの変形操作とその予測初期形状算出(その1)を示す図である。1)変形操作前の形状、2)変形操作の設定、3)強制移動質点に対応した被影響質点の移動位置予測、4)変形操作後の予測初期形状を示す。
1)変形操作前の形状
ハーネスを1つの位置に置き、バネマス系で表現する。ここではN個の質点(その質量mその位置p(i=1〜N))と(Nー1)個のバネのバネマス系で表されたハーネスモデルの質点1と質点Nを固定し、ハーネスを空中に置いた状態とする。
2)変形操作の設定
変形操作により移動する強制移動質点とその移動位置(移動量)を設定する。ここでは端の質点Nを移動量「d」移動する変形操作を行う。
3)強制移動質点に対応した被影響質点の移動位置予測
強制移動質点の移動により影響を受け移動する被影響質点の移動位置(移動量)を予測する。ここでは、強制移動質点Nから影響を受ける被影響質点の移動量「d」(i=1〜(N−1))を、例えば(式1)で示す移動量(ベクトル)とする。これは強制移動質点Nに近い程影響を受け移動量を多くする。
FIG. 2 is a diagram showing a deforming operation of the harness model and calculating a predicted initial shape (part 1). 1) Shape before deformation operation, 2) Setting of deformation operation, 3) Movement position prediction of affected mass point corresponding to forced movement mass point, 4) Initial prediction shape after deformation operation.
1) The shape harness before the deformation operation is placed at one position and expressed by a spring mass system. Here, to secure the N-number of mass points (the mass m i that position p i (i = 1 to N)) and (N-1) number of material points 1 and the material point N harness model represented by spring-mass system of the spring Let the harness be in the air.
2) Setting of deformation operation A forced movement mass point to be moved by the deformation operation and its movement position (movement amount) are set. Here, a deformation operation is performed to move the end mass point N by the movement amount “d”.
3) Predicting the movement position of the affected mass point corresponding to the forced movement mass point Predict the movement position (movement amount) of the affected mass point affected by the movement of the forced movement mass point. Here, the movement amount “d i ” (i = 1 to (N−1)) of the affected mass point affected by the forced movement mass point N is, for example, a movement amount (vector) represented by (Expression 1). This is influenced as the forced movement mass point N is closer, and the movement amount is increased.

Figure 2010009144
4)変形操作後の予測初期形状
変形操作後のハーネスの形状の算出の運動方程式に与える初期値(初期形状)であり、3)に示した点線で表された形状を予測初期形状である。
Figure 2010009144
4) Predicted initial shape after deforming operation The initial value (initial shape) given to the equation of motion for calculating the shape of the harness after the deforming operation, and the shape represented by the dotted line shown in 3) is the predicted initial shape.

この予測初期形状を初期値として運動方程式に入力しハーネスモデルの釣り合い状態の形状を算出する。   The predicted initial shape is input as an initial value to the equation of motion, and the shape of the harness model in a balanced state is calculated.

図3はハーネスモデルの変形操作とその予測初期形状算出(その2)を示す図である。 配置設計においては、変形操作は繰り返して実行される。1)一次変形操作、2)二次変形操作を示し、二次変形操作時に一次変形操作による結果を活用する方法を示している。
1)一次変形操作
ア.バネマスモデルの端点Nを「da」移動する変形操作を行う。
イ.運動方程式により一次変形操作後のハーネスモデルの形状を算出する。強制移動質点とその移動量(ここでは質点Nが「da」移動)に対し、被影響質点の変形前の位置と形状算出後の位置より移動量da(i=1〜(N−1))を保持する。
2)二次変形操作
一次変形操作による形状算出結果よりさらに移動させた二次変形操作を設定する。ここでは質点Nが「db」移動した場合を示している。
ア.二次変形操作により強制移動質点に対し、被影響質点の移動予測を行う。保持してある一次変形操作による形状算出結果より二次変形操作により強制移動質点とその移動量を取得する。
イ.二次変形操作により強制移動質点の移動量と一次変形操作による移動量より影響を受ける被影響質点(質点iの予測移動量=d)の予測移動量を例えば、(式2)で行う。ここでは質点jが強制移動質点である。また、F(x)はxを変数とする関数であり、ハーネスモデルの形状、材料特性、拘束条件等により関数F(x)を設定する。すなわち、二次変形操作が一次変形操作の強制移動質点と異なる質点を移動する場合、あるいは強制移動による影響で移動する質点を問わず以前の変形操作により移動した質点の移動量を活用する。
FIG. 3 is a diagram showing a deforming operation of the harness model and calculating the predicted initial shape (part 2). In the layout design, the deformation operation is repeatedly executed. 1) primary deformation operation, 2) secondary deformation operation, and a method of utilizing the result of the primary deformation operation during the secondary deformation operation.
1) Primary deformation operation a. A deformation operation of moving the end point N of the spring mass model by “da” is performed.
I. The shape of the harness model after the primary deformation operation is calculated from the equation of motion. For a forced movement mass point and its movement amount (here, the mass point N is “da” movement), the movement amount da i (i = 1 to (N−1)) from the position before the deformation of the affected mass point and the position after the shape calculation. ).
2) Secondary deformation operation A secondary deformation operation that is moved further than the shape calculation result by the primary deformation operation is set. Here, a case where the mass point N moves “db” is shown.
A. The movement of the affected mass point is predicted for the forced movement mass point by the secondary deformation operation. The forced movement mass point and its movement amount are acquired by the secondary deformation operation from the shape calculation result by the held primary deformation operation.
I. The predicted movement amount of the affected mass point (predicted movement amount of the mass point i = d i ) affected by the movement amount of the forced movement mass point by the secondary deformation operation and the movement amount by the primary deformation operation is performed by, for example, (Expression 2). Here, the mass point j is a forced movement mass point. F (x) is a function having x as a variable, and the function F (x) is set according to the shape of the harness model, material characteristics, constraint conditions, and the like. That is, when the secondary deformation operation moves a mass point different from the forced movement mass point of the primary deformation operation, or regardless of the mass point that moves due to the influence of the forced movement, the movement amount of the mass point moved by the previous deformation operation is utilized.

Figure 2010009144
同一質点を移動させた場合は、例えば、端点Nを移動量「db」移動した場合の被影響質点の予測移動量は(式3)となる。
Figure 2010009144
When the same mass point is moved, for example, the predicted movement amount of the affected mass point when the end point N is moved by “db” is (Equation 3).

Figure 2010009144
上記二変形操作による強制移動質点の位置、影響を受ける被影響質点の位置を基に運動方程式により二次変形操作後の形状を算出する。各質点の一次変形操作による移動量と二次変形操作による移動量の相関性は高いので、一次変形操作の形状算出結果を二次変形操作での移動量として活用することにより効率良く運動方程式の演算量を削減できる。
Figure 2010009144
The shape after the secondary deformation operation is calculated by the equation of motion based on the position of the forced moving mass point by the two deformation operation and the position of the affected mass point to be affected. Since the movement amount of each mass point by the primary deformation operation and the movement amount by the secondary deformation operation are highly correlated, the equation of motion can be efficiently expressed by utilizing the shape calculation result of the primary deformation operation as the movement amount in the secondary deformation operation. The amount of calculation can be reduced.

変形操作は必要により変形操作を繰り返し行う場合、各質点の以前の移動量を評価して以降の変形操作時の移動量として選択する。   When the deformation operation is repeatedly performed as necessary, the previous movement amount of each mass point is evaluated and selected as the movement amount in the subsequent deformation operation.

図1はハーネスモデルの予測初期形状算出手順を示す図である。FIG. 1 is a diagram showing a predicted initial shape calculation procedure of a harness model. 図2はハーネスモデルの変形操作とその予測初期形状算出(その1)を示す図である。FIG. 2 is a diagram showing a deforming operation of the harness model and calculating a predicted initial shape (part 1). 図3はハーネスモデルの変形操作とその予測初期形状算出(その2)を示す図である。FIG. 3 is a diagram showing a deforming operation of the harness model and calculating the predicted initial shape (part 2). 図4はバネマス系でのハーネスモデルの表現を示す図である。FIG. 4 is a diagram showing the expression of the harness model in the spring mass system. 図5は従来のバネマス系でのハーネスモデルの形状算出手順を示す図である。FIG. 5 is a diagram showing a procedure for calculating the shape of a harness model in a conventional spring mass system.

Claims (6)

変形操作した柔軟物体の形状を算出する方法であって、
前記柔軟物体の一部を変形して強制移動する位置とその移動量の設定を行い、
前記強制移動位置の移動により前記強制移動位置以外で影響を受け移動する前記柔軟物体の被影響位置の移動位置の予測を行い、
前記強制移動位置の移動位置と前記被影響位置の予測移動位置を初期形状として前記柔軟物体の変形操作による前記柔軟物体の形状を算出することを特徴とする柔軟物体の形状算出方法。
A method for calculating the shape of a deformed flexible object,
Set the position and amount of forced movement by deforming a part of the flexible object,
Predicting the movement position of the affected position of the flexible object that is affected and moved other than the forced movement position by the movement of the forced movement position,
A flexible object shape calculation method comprising: calculating a shape of the flexible object by an operation of deforming the flexible object using an initial shape as a movement position of the forced movement position and a predicted movement position of the affected position.
請求項1記載の前記被影響位置の移動位置予測は、前記強制移動位置の移動量と前記被影響位置の移動量を基に予測移動位置を算出することを特徴とする請求項1記載の柔軟物体の形状算出方法。   The flexible movement position prediction according to claim 1, wherein the movement position prediction of the affected position calculates a predicted movement position based on a movement amount of the forced movement position and a movement amount of the affected position. An object shape calculation method. 請求項1記載の前記被影響位置の移動位置予測は、前記強制移動位置の時系列の移動量を基に前記被影響位置の移動位置を予測することを特徴とする請求項1記載の柔軟物体の形状算出方法。   The flexible object according to claim 1, wherein the movement position prediction of the affected position predicts the movement position of the affected position based on a time-series movement amount of the forced movement position. Shape calculation method. 請求項1記載の形状算出は前記柔軟物体をバネマス系で表現して行い、
前記強制移動位置及び前記被影響位置の設定は前記表現したバネマス系の質点位置で行うことを特徴とする請求項1記載の柔軟物体の形状算出方法。
The shape calculation according to claim 1 is performed by expressing the flexible object in a spring mass system,
2. The flexible object shape calculation method according to claim 1, wherein the setting of the forced movement position and the affected position is performed at the expressed mass point position of the spring mass system.
請求項2記載の前記被影響位置の移動位置予測は、前記被影響位置と前記強制移動位置との距離に反比例した位置に前記被影響位置の移動位置を予測することを特徴とする請求項2記載の柔軟物体の形状算出方法。   3. The movement position prediction of the affected position according to claim 2, wherein the movement position of the affected position is predicted at a position inversely proportional to a distance between the affected position and the forced movement position. The shape calculation method of the flexible object as described. 変形操作した柔軟物体の形状を算出するプログラムであって、
前記プログラムは、
操作者より入力された柔軟物体の形状と変形して移動する強制移動位置とその移動量より、
前記強制移動位置の移動により前記強制移動位置以外で影響を受け移動する前記柔軟物体の被影響位置の移動位置の予測を行う手順と、
前記強制移動位置の移動位置と前記被影響位置の予測移動位置の形状を初期形状として前記柔軟物体の変形操作による前記柔軟物体の形状を算出する手順と、
を実現することを特徴とする柔軟物体の形状算出プログラム。

A program for calculating the shape of a deformed flexible object,
The program is
From the shape of the flexible object input by the operator, the forced movement position to move by deformation and the amount of movement,
A procedure for predicting the movement position of the affected position of the flexible object that is affected and moved by the movement of the forced movement position other than the forced movement position;
A procedure for calculating the shape of the flexible object by the deformation operation of the flexible object, with the shape of the movement position of the forced movement position and the shape of the predicted movement position of the affected position as an initial shape;
A flexible object shape calculation program characterized by realizing the above.

JP2008165035A 2008-06-24 2008-06-24 Shape calculation method and program for flexible object Pending JP2010009144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008165035A JP2010009144A (en) 2008-06-24 2008-06-24 Shape calculation method and program for flexible object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008165035A JP2010009144A (en) 2008-06-24 2008-06-24 Shape calculation method and program for flexible object

Publications (1)

Publication Number Publication Date
JP2010009144A true JP2010009144A (en) 2010-01-14

Family

ID=41589594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008165035A Pending JP2010009144A (en) 2008-06-24 2008-06-24 Shape calculation method and program for flexible object

Country Status (1)

Country Link
JP (1) JP2010009144A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01297771A (en) * 1988-05-26 1989-11-30 Dainippon Printing Co Ltd Designing device for three-dimensional model
JPH07254075A (en) * 1994-03-16 1995-10-03 Fujitsu Ltd Method for deforming three-dimensional object and modeling system
JP2002073701A (en) * 2000-08-30 2002-03-12 Toyota Central Res & Dev Lab Inc Assembling apparatus and method
JP2004139974A (en) * 2002-09-25 2004-05-13 Yazaki Corp Wiring design assisting method of wire-like structure, its device and its program
JP2005018545A (en) * 2003-06-27 2005-01-20 Toyota Motor Corp Design data generating device and method
JP2005100913A (en) * 2002-11-19 2005-04-14 Yazaki Corp Method for assisting wiring design of wiring structure, its apparatus and program
JP2005258641A (en) * 2004-03-10 2005-09-22 Yazaki Corp Design support method, device and program for laying linear structure
JP2010009143A (en) * 2008-06-24 2010-01-14 Fujitsu Ltd Deformed shape calculation method and program of flexible object

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01297771A (en) * 1988-05-26 1989-11-30 Dainippon Printing Co Ltd Designing device for three-dimensional model
JPH07254075A (en) * 1994-03-16 1995-10-03 Fujitsu Ltd Method for deforming three-dimensional object and modeling system
JP2002073701A (en) * 2000-08-30 2002-03-12 Toyota Central Res & Dev Lab Inc Assembling apparatus and method
JP2004139974A (en) * 2002-09-25 2004-05-13 Yazaki Corp Wiring design assisting method of wire-like structure, its device and its program
JP2005100913A (en) * 2002-11-19 2005-04-14 Yazaki Corp Method for assisting wiring design of wiring structure, its apparatus and program
JP2005018545A (en) * 2003-06-27 2005-01-20 Toyota Motor Corp Design data generating device and method
JP2005258641A (en) * 2004-03-10 2005-09-22 Yazaki Corp Design support method, device and program for laying linear structure
JP2010009143A (en) * 2008-06-24 2010-01-14 Fujitsu Ltd Deformed shape calculation method and program of flexible object

Similar Documents

Publication Publication Date Title
EP3500406B1 (en) Continuum robot and control method of continuum robot
JP6097130B2 (en) Method for simulating polymer materials
CN107548336B (en) Motor for controlling and/or regulating robot
JP6085224B2 (en) Calculation method of interaction potential between fillers
Lee et al. Explicit dynamic finite element analysis of an automated grasping process using highly damped compliant fingers
JP2011120787A (en) Method for estimating the muscle power of worker and device to forecast work load applied to him/her
US10216874B2 (en) Robot simulation device
JP6353290B2 (en) Polymer material model creation method
JP2008234039A (en) Simulation system and simulation method for long flexible structure, program and information recording medium
Taghipour et al. Characterization and computational modeling of electrical wires and wire bundles subject to bending loads
US11514211B2 (en) Method and system for performing a simulation of a retraction cable motion
Toros Parameters determination of Yoshida Uemori model through optimization process of cyclic tension-compression test and V-bending springback
JP6910729B2 (en) Simulation method, simulation device, and program
KR101233432B1 (en) Method for estimating external force 0n robotic system using time-delay estimation
CN113534679A (en) System monitoring model generation method, processor chip and industrial system
JP2019159782A (en) Global search device and program for continuous optimization problem
JP2014067329A (en) Simulation device, simulation method and program
JP2018132431A (en) Strength evaluation method, method for producing structure, strength evaluation device, and strength evaluation program
JP2007265266A (en) Viscoelastic response performance prediction method, rubber product design method, and viscoelastic response performance prediction device
JP2010009144A (en) Shape calculation method and program for flexible object
JP5405252B2 (en) Learning control system and learning control method
JP5223489B2 (en) Method for calculating deformation shape of flexible object
JP6383309B2 (en) Control device and control method
KR101209779B1 (en) Method for estimating load of robot
JP2008298429A (en) Material status estimating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130528