JP2007265266A - Viscoelastic response performance prediction method, rubber product design method, and viscoelastic response performance prediction device - Google Patents

Viscoelastic response performance prediction method, rubber product design method, and viscoelastic response performance prediction device Download PDF

Info

Publication number
JP2007265266A
JP2007265266A JP2006092222A JP2006092222A JP2007265266A JP 2007265266 A JP2007265266 A JP 2007265266A JP 2006092222 A JP2006092222 A JP 2006092222A JP 2006092222 A JP2006092222 A JP 2006092222A JP 2007265266 A JP2007265266 A JP 2007265266A
Authority
JP
Japan
Prior art keywords
response performance
viscoelastic
viscoelastic response
performance prediction
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006092222A
Other languages
Japanese (ja)
Inventor
Keizo Akutagawa
恵造 芥川
Atsushi Yamamoto
淳 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2006092222A priority Critical patent/JP2007265266A/en
Publication of JP2007265266A publication Critical patent/JP2007265266A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of predicting viscoelastic response performance of a rubber product using a finite element analysis (FEA), a design method and a viscoelastic response performance prediction device. <P>SOLUTION: This viscoelastic response performance prediction method for predicting the viscoelastic response performance of the rubber product using the finite element analysis is characterized by predicting the viscoelastic response performance of the rubber product using a constitutive equation expressing distortion dependency of viscoelastic characteristics of the rubber product using a parameter representing temperature dependency. Mathematical expressions 20, 21 are preferable as the constitutive equation expressing the distortion dependency of the viscoelastic characteristics, and a mathematical expression 33 is preferable as the parameter representing temperature dependency. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、粘弾性応答性能予測方法、ゴム製品設計方法、及び粘弾性応答性能予測装置に係り、特に、有限要素解析法(FEA)を用いてゴム製品の粘弾性応答性能を予測する粘弾性応答性能予測方法、該粘弾性応答性能予測方法を用いたゴム製品設計方法、及び粘弾性応答性能予測装置に関する。   The present invention relates to a viscoelastic response performance prediction method, a rubber product design method, and a viscoelastic response performance prediction apparatus, and in particular, viscoelasticity that predicts viscoelastic response performance of a rubber product using a finite element analysis method (FEA). The present invention relates to a response performance prediction method, a rubber product design method using the viscoelastic response performance prediction method, and a viscoelastic response performance prediction apparatus.

ゴム製品を設計するに際して、三次元有限要素解析法(FEA)を利用してその弾性的な応答性能を予測し、その解析ないしシミュレーション結果を応用する手法は、既に数十年に亙る実例がある(例えば、特許文献1〜3参照)。このFEA計算に用いられるゴム材料の応力−歪の関係を解析に反映させるエネルギーの構成方程式としては、線形弾性方程式から一般化Mooney−Rivlin方程式へと移行している。   In designing rubber products, there are already several decades of examples of predicting elastic response performance using 3D finite element analysis (FEA) and applying the analysis or simulation results. (For example, see Patent Documents 1 to 3). As a constitutive equation of energy for reflecting the stress-strain relationship of the rubber material used for the FEA calculation in the analysis, the linear elastic equation is shifted to the generalized Mooney-Rivlin equation.

即ち、ゴムの変形による歪エネルギーWは三次元軸上におけるxyz方向の変形を表すλ1、λ2、λ3、という3つの伸張比の関数として表現できる(図2)。この考え方は、三次元的広がりを持った物体の変形を記述する際の基礎となる。さらに、数式(1)〜(3)に示す様にλ1、λ2、λ3の変形を歪エネルギーとして表す場合にGreenテンソルの歪不変量I1、I2、I3を用いることで複雑かつ様々な三次元変形を簡単な歪エネルギー関数で表現することができる。 That is, the strain energy W due to the deformation of the rubber can be expressed as a function of three stretching ratios λ 1 , λ 2 , and λ 3 representing the deformation in the xyz direction on the three-dimensional axis (FIG. 2). This idea is the basis for describing the deformation of an object with a three-dimensional extent. Furthermore, when the deformations of λ 1 , λ 2 , and λ 3 are expressed as strain energy as shown in the mathematical expressions (1) to (3), the distortion invariants I 1 , I 2 , and I 3 of the Green tensor are complicated Various three-dimensional deformations can be expressed by a simple strain energy function.

Figure 2007265266
Figure 2007265266

また、Rivlinらによって各変形モードにおける応力−歪の関係は歪エネルギーを用いて数式(4)〜(6)のように求められている。   Also, the relationship between stress and strain in each deformation mode is determined by Rivlin et al. Using equations (4) to (6) using strain energy.

Figure 2007265266
Figure 2007265266

ここで、σはエンジニアリング応力、τはせん断応力を表す。数式(4)〜(6)の関係式からI1とI2の関数で表される歪エネルギー関数Wの方程式が得られれば、各変形モードにおける応力−歪の関係ならびにせん断弾性率Gが求まる。従来、ゴム製品のFEAに用いられて来た歪エネルギー関数Wの多くは、数式(7)に示す一般化形式のMooney−Rivlin式を用いている。 Here, σ represents engineering stress and τ represents shear stress. If the equation of the strain energy function W expressed by the functions of I 1 and I 2 is obtained from the relational expressions of the equations (4) to (6), the stress-strain relationship and the shear modulus G in each deformation mode can be obtained. . Conventionally, many of the strain energy functions W that have been used for FEA of rubber products use the generalized form of the Mooney-Rivlin equation shown in Equation (7).

Figure 2007265266
Figure 2007265266

また、ゴム材料に対して非圧縮性を仮定するとI3−1となるので、数式(7)はI1とI2の関数として数式(8)となる。 Further, assuming that the rubber material is incompressible, it becomes I 3 −1, and therefore Equation (7) becomes Equation (8) as a function of I 1 and I 2 .

Figure 2007265266
Figure 2007265266

数式(8)のべき指数項をいくつまで取り入れて式を構成するかによって様々な歪エネルギー関数が提案されている。たとえば一次項のみを取り入れた場合は数式(9)で表せる。   Various strain energy functions have been proposed depending on how many exponent terms in the formula (8) are incorporated to form the formula. For example, when only the primary term is taken, it can be expressed by Equation (9).

Figure 2007265266
Figure 2007265266

この数式(9)は、分子統計熱力学を基にした網目理論から導かれる歪エネルギー関数と一致し、この場合はC1,0=(1/2)ρRT/MCとなる。ここで、ρはゴムの密度、Rは気体定数、Tは絶対温度、MCは架橋点間分子量を表す。さらに、二次項までの近似の場合は数式(10)となる。 This equation (9) agrees with the strain energy function derived from the network theory based on molecular statistical thermodynamics, and in this case, C 1,0 = (1/2) ρRT / M C. Here, ρ represents the density of rubber, R represents a gas constant, T represents an absolute temperature, and M C represents a molecular weight between crosslinking points. Furthermore, in the case of approximation up to a quadratic term, Equation (10) is obtained.

Figure 2007265266
Figure 2007265266

この数式(10)は数式(4)に代入することで一般に広く用いられているMooney−Rivlin式を与える。この場合、Mooney−Rivlin式の係数C1、C2との関係はC1,0=C1、C0,1=C2となる。さらに、高い次数の項を導入することで、実験的に得られる応力−歪曲線をより正確に表すことができるようになる。 This formula (10) is assigned to the formula (4) to give a commonly used Mooney-Rivlin formula. In this case, the relationship between the coefficients C 1 and C 2 of the Mooney-Rivlin equation is C 1,0 = C 1 and C 0,1 = C 2 . Furthermore, by introducing a high-order term, an experimentally obtained stress-strain curve can be expressed more accurately.

しかしながら、上記のゴム材料の構成方程式は、ゴム分子鎖の伸張に基づく分子統計熱力学より発展した網目変形理論を基礎としており、タイヤをはじめとする多くの工業用ゴム材料として用いられている充填系ゴムの応力―歪の関係を、粘弾性特性を含めて、正確に表すものではない。充填剤の添加は、0〜100%の歪領域において、貯蔵弾性率、tanδといった粘弾性特性に非線形性を与えることが、Payne効果として知られている。通常の転輪状態にあるタイヤの変形もこの領域における歪が大部分を占めており、特にタイヤ転がり抵抗を制御する上でもこの歪領域の粘弾性制御が重要となってくる。   However, the above constitutive equations for rubber materials are based on the network deformation theory developed from molecular statistical thermodynamics based on the elongation of rubber molecular chains, and are used as many industrial rubber materials including tires. It does not accurately represent the stress-strain relationship of rubber-based rubber, including viscoelastic properties. It is known as the Payne effect that the addition of a filler gives non-linearity to viscoelastic properties such as storage elastic modulus and tan δ in a strain region of 0 to 100%. The deformation in a tire in a normal rolling wheel state is also mostly strained in this region, and viscoelasticity control in this strained region is particularly important for controlling tire rolling resistance.

ここで、ゴムの応力―歪の関係を粘弾性特性として表す構成方程式が提案されている(特許文献4)。
特開平11−237332号公報 特開2003−72327号公報 特開2002−1929242号公報 特開2005−04933号公報
Here, a constitutive equation representing the stress-strain relationship of rubber as viscoelastic properties has been proposed (Patent Document 4).
Japanese Patent Laid-Open No. 11-237332 JP 2003-72327 A Japanese Patent Laid-Open No. 2002-1929242 JP 2005-04933 A

しかしながら、特許文献4に記載の技術では、粘弾性特性の温度依存性を表すには、構成方程式に含まれるパラメータを、各温度について実験的に求めなければならない、という問題がある。   However, the technique described in Patent Document 4 has a problem that parameters included in the constitutive equation must be experimentally obtained for each temperature in order to express the temperature dependence of the viscoelastic characteristics.

本発明は、上記の問題点を解決するためになされたもので、実験に頼らなくともゴム製品の粘弾性特性の温度依存性を表すことができ、ゴム製品の粘弾性応答性能を簡易に精度よく予測することができる粘弾性応答性能予測方法、ゴム製品設計方法、及び粘弾性応答性能予測装置を提供することを目的とする。   The present invention has been made to solve the above problems, and can represent the temperature dependence of the viscoelastic properties of rubber products without relying on experiments, and can easily and accurately measure the viscoelastic response performance of rubber products. It is an object to provide a viscoelastic response performance prediction method, a rubber product design method, and a viscoelastic response performance prediction device that can be well predicted.

上記の目的を達成するために本発明に係る粘弾性応答性能予測方法は、有限要素解析法を用いてゴム製品の粘弾性応答性能を予測する粘弾性応答性能予測方法であって、温度依存性を表すパラメータを用いて前記ゴム製品の粘弾性特性の歪依存性を表した構成方程式を用いて、該ゴム製品の粘弾性応答性能を予測することを特徴としている。   In order to achieve the above object, a viscoelastic response performance prediction method according to the present invention is a viscoelastic response performance prediction method for predicting the viscoelastic response performance of a rubber product using a finite element analysis method, and is temperature dependent. The viscoelastic response performance of the rubber product is predicted using a constitutive equation that represents the strain dependence of the viscoelastic property of the rubber product using a parameter representing the above.

また、本発明に係る粘弾性応答性能予測装置は、有限要素解析法を用いてゴム製品の粘弾性応答性能を予測する粘弾性応答性能予測装置であって、温度依存性を表すパラメータを用いて前記ゴム製品の粘弾性特性の歪依存性を表した構成方程式を用いて、該ゴム製品の粘弾性応答性能を予測する。   The viscoelastic response performance prediction apparatus according to the present invention is a viscoelastic response performance prediction apparatus that predicts the viscoelastic response performance of a rubber product using a finite element analysis method, and uses a parameter that represents temperature dependence. The viscoelastic response performance of the rubber product is predicted using a constitutive equation representing the strain dependence of the viscoelastic properties of the rubber product.

本発明の粘弾性応答性能予測方法及び粘弾性応答性能予測装置によれば、ゴム製品の小歪領域をも対処可能な粘弾性特性の歪依存性を表す構成方程式を用いている。よって、充填剤を添加して、小歪領域において、貯蔵弾性率、tanδといった粘弾性特性に非線形性を与えても、小歪領域をも対処可能な粘弾性特性の歪依存性を表す構成方程式を用いるので、ゴム製品の粘弾性応答性能を精度よく予測することができる。なお、小歪領域は小変形域(0.1%〜100%)であり、小歪領域をも対処可能な粘弾性特性の歪依存性を表す構成方程式は、大変形領域(100%〜400%)ばかりでなく小変形域(0.1%〜100%)の対処可能である。   According to the viscoelastic response performance prediction method and the viscoelastic response performance prediction apparatus of the present invention, the constitutive equation representing the strain dependency of the viscoelastic property that can cope with the small strain region of the rubber product is used. Therefore, a constitutive equation representing the strain dependence of the viscoelastic properties that can deal with the small strain region even if the filler is added to give non-linearity to the viscoelastic properties such as storage modulus and tan δ in the small strain region Therefore, the viscoelastic response performance of the rubber product can be accurately predicted. The small strain region is a small deformation region (0.1% to 100%), and the constitutive equation representing the strain dependence of the viscoelastic property capable of coping with the small strain region is a large deformation region (100% to 400%). %) As well as small deformation regions (0.1% to 100%) can be dealt with.

また、粘弾性特性の歪依存性を表す構成方程式には、温度依存性を表すパラメータが用いられているため、粘弾性特性の温度依存性を表すことができる。   Moreover, since the parameter showing temperature dependence is used for the constitutive equation showing the strain dependence of a viscoelastic characteristic, the temperature dependence of a viscoelastic characteristic can be represented.

従って、温度依存性を表すパラメータを用いて粘弾性特性の歪依存性を表した構成方程式を有限要素解析法に適用して、ゴム製品の粘弾性応答性能を予測することにより、実験に頼らなくともゴム製品の粘弾性特性の温度依存性を表すことができ、予測対象の温度におけるゴム製品の粘弾性応答性能を簡易に精度よく予測することができる。   Therefore, by applying a constitutive equation representing the strain dependence of viscoelastic properties to the finite element analysis method using parameters representing temperature dependence, it is possible to predict the viscoelastic response performance of rubber products without relying on experiments. Both can express the temperature dependence of the viscoelastic properties of the rubber product, and can easily and accurately predict the viscoelastic response performance of the rubber product at the temperature to be predicted.

本発明に係る粘弾性特性の歪依存性を表す構成方程式は、貯蔵弾性率を表す方程式及び貯蔵弾性率と損失弾性率との損失正接を表す方程式を含むことができる。   The constitutive equation representing the strain dependence of the viscoelastic property according to the present invention may include an equation representing the storage elastic modulus and an equation representing the loss tangent between the storage elastic modulus and the loss elastic modulus.

また、この貯蔵弾性率G'を下記の数式で表すことができる。   Further, the storage elastic modulus G ′ can be expressed by the following mathematical formula.

Figure 2007265266
Figure 2007265266

ただし、γはせん断歪、A、C、及びnはフィラーネットワーク構造に依存する物理定数、G'∞は分子伸びきり効果による粘弾性応答の変化の各々を表す。   Here, γ represents shear strain, A, C, and n represent physical constants depending on the filler network structure, and G′∞ represents each change in viscoelastic response due to the molecular extension effect.

また、フィラーネットワーク構造に依存する物理定数A、n、及びG'∞を、下記の数式で表すことができる。   In addition, physical constants A, n, and G′∞ depending on the filler network structure can be expressed by the following mathematical formula.

Figure 2007265266
Figure 2007265266

Figure 2007265266
Figure 2007265266

Figure 2007265266
Figure 2007265266

ただし、A0及びn0はフィラーネットワーク構造に依存する物理定数、Rは気体定数、EAはAの活性化エネルギー、Enはnの活性化エネルギー、G'∞0はG'∞の活性化エネルギー、ΔTは温度の各々を表し、ここで、Tgをゴム高分子のガラス転移温度、C2を任意温度定数とすると、ΔTは下記の式で表される。
ΔT=C2+T−Tg
これにより、粘弾性特性の歪依存性を表す構成方程式に含まれる貯蔵弾性率G'を表す式で用いられるパラメータA、n、及びG'∞に温度依存性を持たせることができるため、実験に頼らなくとも、ゴム製品の貯蔵弾性率の温度依存性を表すことができ、予測対象の温度における粘弾性特性を簡単に計算することが可能となる。
Where A 0 and n 0 are physical constants depending on the filler network structure, R is a gas constant, E A is the activation energy of A, E n is the activation energy of n, and G′∞ 0 is the activity of G′∞. ΔT represents each temperature, where ΔT is represented by the following equation, where Tg is the glass transition temperature of the rubber polymer and C2 is an arbitrary temperature constant.
ΔT = C2 + T-Tg
Thereby, since the parameters A, n, and G′∞ used in the formula representing the storage elastic modulus G ′ included in the constitutive equation representing the strain dependence of the viscoelastic property can be given temperature dependence, Even if it does not depend on, the temperature dependence of the storage elastic modulus of a rubber product can be expressed, and it becomes possible to easily calculate the viscoelastic property at the temperature to be predicted.

また、上記の損失正接tanδを下記の数式で表すことができる。   The loss tangent tan δ can be expressed by the following mathematical formula.

Figure 2007265266
Figure 2007265266

ただし、γはせん断歪、a、c、b、及びdはフィラーネットワーク構造に依存する物理定数、tanδ|γ→0は歪0におけるtanδの各々を表す。   Where γ is a shear strain, a, c, b, and d are physical constants depending on the filler network structure, and tan δ | γ → 0 represents each of tan δ at strain 0.

また、フィラーネットワーク構造に依存する物理定数a、b、d及び歪0におけるtanδを、下記の数式で表すことができる。   Further, the physical constants a, b, d depending on the filler network structure and tan δ at the strain 0 can be expressed by the following mathematical formula.

Figure 2007265266
Figure 2007265266

Figure 2007265266
Figure 2007265266

Figure 2007265266
Figure 2007265266

Figure 2007265266
Figure 2007265266

ただし、Eaはaの活性化エネルギー、Ebはbの活性化エネルギー、Edはdの活性化エネルギー、EDはDの活性化エネルギー、a0、b0、d0、及びD0は、フィラーネットワーク構造に依存する物理定数の各々を表す。 Where E a is the activation energy of a, E b is the activation energy of b, E d is the activation energy of d, E D is the activation energy of D, a 0 , b 0 , d 0 , and D 0 Represents each of the physical constants depending on the filler network structure.

これにより、粘弾性特性の歪依存性を表す構成方程式に含まれる損失正接tanδを表す式で用いられるパラメータa、b、d、及びtanδ|γ→0に温度依存性を持たせることができるため、実験に頼らなくともゴム製品の損失正接の温度依存性を表すことができ、予測対象の温度におけるゴム製品の粘弾性特性を簡易に計算することが可能となる。   As a result, the parameters a, b, d, and tan δ | γ → 0 used in the expression representing the loss tangent tan δ included in the constitutive equation representing the strain dependence of the viscoelastic property can be given temperature dependence. The temperature dependence of the loss tangent of the rubber product can be expressed without depending on the experiment, and the viscoelastic property of the rubber product at the predicted temperature can be easily calculated.

また、上記のせん断歪γは、歪の不変量をI1とすると、以下の数式で表される。
γ2=I1−3
従って、貯蔵弾性率G'及び損失正接tanδは、以下の数式で表される。
Further, the above-described shear strain γ is expressed by the following mathematical expression, where I 1 is the invariant of strain.
γ 2 = I 1 -3
Accordingly, the storage elastic modulus G ′ and the loss tangent tan δ are expressed by the following mathematical expressions.

Figure 2007265266
Figure 2007265266

また、本発明に係るゴム製品設計方法は、上述した本発明の粘弾性応答性能予測方法を使用してゴム製品を設計することを特徴としている。   The rubber product design method according to the present invention is characterized in that a rubber product is designed using the viscoelastic response performance prediction method of the present invention described above.

以上詳述した本発明のゴム製品の粘弾性特性の歪依存性を表す構成方程式を用いて該ゴム製品の粘弾性応答性能を予測することにより、所要のシミュレーションを経て、該ゴム製品の所望の性能を達成する為の最適なゴム材料を設計することが可能となり、効率的且つ精度の良い有用なゴム製品の設計方法を提供することができる。   By predicting the viscoelastic response performance of the rubber product using the constitutive equation representing the strain dependence of the viscoelastic properties of the rubber product of the present invention described in detail above, a desired simulation of the rubber product is performed through a required simulation. It is possible to design an optimal rubber material for achieving the performance, and it is possible to provide an efficient and accurate method for designing a useful rubber product.

以上説明したように、本発明の粘弾性応答性能予測方法、ゴム製品設計方法、粘弾性応答性能予測装置によれば、温度依存性を表すパラメータを用いて粘弾性特性の歪依存性を表した構成方程式を有限要素解析法に適用して、ゴム製品の粘弾性応答性能を予測することにより、実験に頼らなくともゴムの粘弾性特性の温度依存性を表すことができ、予測対象の温度におけるゴム製品の粘弾性応答性能を簡易に精度よく予測することができる、という効果が得られる。   As described above, according to the viscoelastic response performance prediction method, the rubber product design method, and the viscoelastic response performance prediction apparatus of the present invention, the strain dependency of the viscoelastic property is expressed using the parameter indicating the temperature dependency. By applying the constitutive equation to the finite element analysis method and predicting the viscoelastic response performance of rubber products, the temperature dependence of the viscoelastic properties of rubber can be expressed without relying on experiments. An effect is obtained that the viscoelastic response performance of a rubber product can be easily and accurately predicted.

以下、本発明の実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に示すように、本発明の実施の形態に係る粘弾性応答性能の予測を実行する粘弾性応答性能の予測装置50は、粘弾性応答性能予測を実行するための粘弾性応答性能予測プログラムにより後述する処理を実行するコンピュータ演算処理システムにより構成されている。なお、この様なコンピュータシステムは、例えば、CPU、ROM、RAM、ハードデイスク、入出力端末、その他所要のユニット等を備えている。上記の粘弾性応答性能予測プログラムは、予めハードデイスク等に記憶されている。   As shown in FIG. 1, a viscoelastic response performance prediction device 50 for performing viscoelastic response performance prediction according to an embodiment of the present invention is a viscoelastic response performance prediction program for executing viscoelastic response performance prediction. Thus, the computer processing system is configured to execute processing described later. Such a computer system includes, for example, a CPU, a ROM, a RAM, a hard disk, an input / output terminal, and other necessary units. The viscoelastic response performance prediction program is stored in advance on a hard disk or the like.

本発明の実施の形態における粘弾性応答性能予測方法では、ゴム製品の小歪領域における粘弾性特性の歪依存性を表す構成方程式を用いているが、以下、この構成方程式について説明する。   In the viscoelastic response performance prediction method according to the embodiment of the present invention, a constitutive equation representing the strain dependence of the viscoelastic property in the small strain region of the rubber product is used. This constitutive equation will be described below.

充填系ゴムの非線形構成方程式はC.K.L.Davies,D.De,A.G.Thomas(DDT)らによって以下の数式(22)として提案されている。なお、式中のパラメータと弾性率の歪依存性の関係が実験的に検証されている。   A nonlinear constitutive equation of the filling rubber is proposed as the following formula (22) by C.K.L.Davies, D.De, A.G.Thomas (DDT) et al. The relationship between the parameters in the equation and the strain dependence of the elastic modulus has been experimentally verified.

Figure 2007265266
Figure 2007265266

ここで、nは弾性率の歪依存性の大きさで充填剤の粒径や充填量の関数、Aはポリマーの網目や充填剤の体積分率の関数、Cは弾性率の減少が始まる歪、Kはポリマー分子の伸びきりの大きさを表す。   Here, n is the strain dependence of the elastic modulus and is a function of the particle size and filling amount of the filler, A is a function of the polymer network and the volume fraction of the filler, and C is the strain at which the elastic modulus starts to decrease. , K represents the full size of the polymer molecule.

一方、Krausは充填剤のネットワーク生成により発現するPayne効果の考え方を基礎として、充填系ゴムにおいて低変形域でのせん断性率G'0と大変形域でのせん断性率G'∞の差を充填剤のネットワーク生成による弾性率としている、Krausのモデルによるとネットワーク生成による弾性率の大きさは個々の充填剤粒子の接点数と接触点での弾性率の積に比例するとして数式(23)を提案している。 On the other hand, Kraus is based on the idea of the Payne effect that is manifested by the formation of a filler network. The difference between the shear property G ′ 0 in the low deformation region and the shear property G′∞ in the large deformation region is shown for the filled rubber. According to Kraus's model, which is the elastic modulus due to the network generation of the filler, the magnitude of the elastic modulus due to the network generation is proportional to the product of the number of contacts of each filler particle and the elastic modulus at the contact point (23) Has proposed.

Figure 2007265266
Figure 2007265266

ここで、Nconは充填剤粒子が弾性的に接触している接点数、K0は接点での弾性定数、Rは充填剤粒子の重心点間距離を表している。 Here, N con represents the number of contact points with which the filler particles are in elastic contact, K 0 is an elastic constant at the contact points, and R represents the distance between the center points of the filler particles.

そして、C.K.L.Davies,D.De,A.G.Thomas(DDT)らによる非線形構成方程式である数式(22)とKrausの充填剤ネットワーク方程式である数式(23)とを次のように組み合わせることで充填系ゴムの貯蔵弾性率G'、損失弾性率G''、tanδといった粘弾性特性の歪依存性を表す構成方程式が導出される。即ち、数式(22)と数式(23)との比較から充填剤粒子が弾性的に接触している接点数Nconは、数式(22)を用いて数式(24)のように表すことができる。 The storage of filled rubber is performed by combining the following equation (22), which is a nonlinear constitutive equation by CKLDavies, D. De, AGThomas (DDT), and equation (23), which is Kraus's filler network equation. A constitutive equation representing the strain dependence of viscoelastic properties such as elastic modulus G ′, loss elastic modulus G ″, and tan δ is derived. That is, the number of contacts N con in which the filler particles are in elastic contact with each other can be expressed as Equation (24) using Equation (22) from the comparison between Equation (22) and Equation (23). .

Figure 2007265266
Figure 2007265266

ここで、K0は接点での弾性定数、Rは充填剤粒子の重心点間距離、αは定数と置いた。さらに、Krausは同様の考え方に基づいて損失弾性率G''を表す式として数式(25)を提案している。 Here, K 0 is the elastic constant at the contact point, R is the distance between the center of gravity of the filler particles, and α is a constant. Furthermore, Kraus has proposed Formula (25) as a formula representing the loss elastic modulus G ″ based on the same concept.

Figure 2007265266
Figure 2007265266

ここで、C1は定数、kbは充填剤ネットワークの崩壊速度定数、Nconは充填剤粒子が弾性的に接触している接点数、fbは歪の寄与を表す。一方、Kraus理論ではG''は充填剤ネットワークの崩壊と回復速度のみに比例すると定義していることから、G''は歪が0の場合に限りなく0に近づいてしまうことになる。これは実験的に観察されるG''の挙動と異なっており数式(25)の補正が必要なことを示唆している。 Here, C 1 is a constant, k b is a decay rate constant of the filler network, N con is the number of contact points with which the filler particles are in elastic contact, and f b is a strain contribution. On the other hand, in Kraus theory, G ″ is defined to be proportional to only the collapse and recovery rate of the filler network, and therefore G ″ approaches zero as long as the strain is zero. This is different from the experimentally observed G ″ behavior and suggests that the correction of Equation (25) is necessary.

これに関して、D.Ulmerは数式(25)に対してG''のもう一つの寄与として充填剤の接触点数Nconに比例する項を付加しG''の歪依存性に関して数式(26)を提案している。 In this regard, D.C. Ulmer has added a term proportional to the number of contact points N con of the filler as another contribution of G ″ to Equation (25), and proposes Equation (26) regarding the strain dependence of G ″.

Figure 2007265266
Figure 2007265266

ここで、C2は第二項の寄与率を表す定数を表し、fbはせん断歪γのm乗で表される。そして、数式(24)及び数式(26)から、ゴム製品の小歪領域における粘弾性特性の歪依存性を表す構成方程式としての非線形弾性方程式及び非線形粘弾性方程式が導き出される。即ち、非線形弾性方程式は、貯蔵弾性率を表す方程式であり、具体的には、貯蔵弾性率G'は、数式(27)から得られる。また、非線形粘弾性方程式は、損失弾性率を表す方程式であり、具体的には、損失弾性率G''は数式(28)より得られる。 Here, C 2 represents a constant representing the contribution ratio of the second term, and f b is represented by the mth power of the shear strain γ. Then, from the mathematical formula (24) and the mathematical formula (26), a nonlinear elastic equation and a nonlinear viscoelastic equation are derived as constitutive equations representing the strain dependence of the viscoelastic property in the small strain region of the rubber product. That is, the nonlinear elastic equation is an equation representing the storage elastic modulus, and specifically, the storage elastic modulus G ′ is obtained from Equation (27). The nonlinear viscoelastic equation is an equation representing the loss elastic modulus, and specifically, the loss elastic modulus G ″ is obtained from Equation (28).

Figure 2007265266
Figure 2007265266

ここで、D、b、B、C、及びPはフィラーネットワーク構造に依存する物理定数を表す。さらに、G'∞、G''∞の項はC.K.L.Davies,D.De,A.G.Thomas(DDT)の考え方から分子伸びきり効果を表す。伸びきり前の低歪領域において、この項を無視した場合、非線形粘弾性方程式である、貯蔵弾性率と損失弾性率との損失正接tanδの歪依存性は、tanδ=G''/G'の関係から数式(29)で表すことができる。   Here, D, b, B, C, and P represent physical constants that depend on the filler network structure. Furthermore, the terms of G′∞ and G ″ ∞ represent the molecular extension effect from the concept of C.K.L.Davies, D.De, A.G.Thomas (DDT). If this term is ignored in the low strain region before stretching, the strain dependence of the loss tangent tan δ between the storage elastic modulus and the loss elastic modulus, which is a nonlinear viscoelastic equation, is tan δ = G ″ / G ′. From the relationship, it can be expressed by Equation (29).

Figure 2007265266
Figure 2007265266

ここで、a、b、c、及びdはフィラーネットワーク構造に依存する物理定数、tanδ|γ→0は歪0におけるtanδを表す。   Here, a, b, c, and d are physical constants depending on the filler network structure, and tan δ | γ → 0 represents tan δ at zero strain.

ところで、γ2=I1−3の関係があるので、数式(27)〜(29)をせん断歪γの関数として書き換えると以下の数式(30)〜(32)で表すことができる。 By the way, since there is a relationship of γ 2 = I 1 −3, when the equations (27) to (29) are rewritten as a function of the shear strain γ, they can be expressed by the following equations (30) to (32).

Figure 2007265266
Figure 2007265266

ここで、上記の数式(30)及び(32)に含まれる各パラメータの温度依存性は、以下に示す改良側アレニウスプロットによって最も良く表わされることから、以下の数式(33)を用いて各パラメータの温度依存性を表す。   Here, the temperature dependence of each parameter included in the above equations (30) and (32) is best expressed by the improved Arrhenius plot shown below. Therefore, each parameter is expressed using the following equation (33). Represents the temperature dependence of.

Figure 2007265266
Figure 2007265266

ただし、Rは気体定数、Ekはkの活性化エネルギー、Tは温度、Tgはガラス転移温度、C2は任意温度定数の各々を表す。 Where R is a gas constant, E k is an activation energy of k, T is a temperature, Tg is a glass transition temperature, and C2 is an arbitrary temperature constant.

フィラーネットワーク構造に依存する物理定数A、n、a、b、d及び歪0におけるtanδに対して、上記の数式(33)を適用すると、以下の数式(34)〜(39)に示すように、各パラメータに温度依存性を持たせることができるため、連続的に温度依存性を表すことを可能とした。   When the above equation (33) is applied to the physical constants A, n, a, b, d depending on the filler network structure and tan δ at the strain 0, as shown in the following equations (34) to (39): Since each parameter can have temperature dependency, it is possible to express temperature dependency continuously.

Figure 2007265266
Figure 2007265266

ただし、Rは気体定数、EAはAの活性化エネルギー、Enはnの活性化エネルギー、aの活性化エネルギー、Ebはbの活性化エネルギー、Edはdの活性化エネルギー、EDはtanδ|γ→0の活性化エネルギー、a0、b0、d0、及びD0は、フィラーネットワーク構造に依存する物理定数、ΔTは温度の各々を表し、Tgをゴム高分子のガラス転移温度、C2を任意温度定数とすると、ΔT=C2+T−Tgである。 Where R is the gas constant, E A is the activation energy of A, E n is the activation energy of n, a is the activation energy, E b is the activation energy of b, E d is the activation energy of d, E D is the activation energy of tan δ | γ → 0, a 0 , b 0 , d 0 , and D 0 are physical constants depending on the filler network structure, ΔT represents each temperature, and Tg is a glass of rubber polymer When the transition temperature, C2, is an arbitrary temperature constant, ΔT = C2 + T−Tg.

また、G'∞については、網目の影響を受けるパラメータなのでエントロピー弾性に対する式として、数式(40)を適用する。   Since G′∞ is a parameter affected by the mesh, Equation (40) is applied as an equation for entropy elasticity.

Figure 2007265266
Figure 2007265266

ただし、G'∞0はG'∞の活性化エネルギーを表す。 However, G′∞ 0 represents the activation energy of G′∞.

なお、パラメータcとCとは、ほとんど温度依存性を示さないことから定数として扱う。   The parameters c and C are treated as constants because they hardly show temperature dependence.

上述した数式(34)〜(40)によって得られる各パラメータの温度依存性を示す直線と、各パラメータの温度依存性の実測値(図3〜図5のプロット)との比較結果を図3〜図5に示す。   FIG. 3 shows a comparison result between a straight line indicating the temperature dependence of each parameter obtained by the mathematical expressions (34) to (40) described above and an actual measurement value (plots of FIGS. 3 to 5) of the temperature dependence of each parameter. As shown in FIG.

なお、Rを気体定数、C=c=0.002、C2=52とした。   Note that R is a gas constant, C = c = 0.002, and C2 = 52.

数式(34)〜(40)により得られた直線は、実測値のプロットに対して良い一致を示しているといえ、数式(34)〜(40)は、各パラメータの温度依存性を良く表していることがわかる。   It can be said that the straight lines obtained by the mathematical formulas (34) to (40) are in good agreement with the plot of the actual measurement values, and the mathematical formulas (34) to (40) well represent the temperature dependence of each parameter. You can see that

また、上記の数式(34)〜(40)を適用して、ゴム製品の貯蔵弾性率G'、損失弾性率G''、及び損失正接tanδを計算した曲線と、それらの実測値(図6のプロット)とを比較した結果を図6に示す。なお、損失弾性率G''の曲線は、貯蔵弾性率G'の曲線と損失正接tanδの曲線とを乗算することによって計算した。   Further, by applying the above formulas (34) to (40), a curve obtained by calculating the storage elastic modulus G ′, the loss elastic modulus G ″, and the loss tangent tan δ of the rubber product, and actual measurement values thereof (FIG. 6). FIG. 6 shows the result of comparison with the plot of FIG. The loss elastic modulus G ″ curve was calculated by multiplying the storage elastic modulus G ′ curve by the loss tangent tan δ curve.

計算された何れの曲線も、実測値のプロットと良く一致し、高い精度で充填系ゴムの貯蔵弾性率G'、損失弾性率G''、及び損失正接tanδの温度依存性を表すことが可能であることが確かめられる。   Any calculated curve is in good agreement with the measured value plot, and it is possible to express the temperature dependence of the storage elastic modulus G ′, loss elastic modulus G ″, and loss tangent tan δ of the filled rubber with high accuracy. It can be confirmed that.

従来の粘弾性構成方程式では、ゴムの貯蔵弾性率G'、損失弾性率G''、及び損失正接tanδを表す式に含まれる各パラメータについて、各温度にあわせて計測した実験結果に対して、パラメータフィッティングを行ってパラメータを決定していたため、離散的にしか温度依存性を表すことができなかったが、上記の数式(34)〜(40)を適用して、ゴムの貯蔵弾性率G'、損失弾性率G''、及び損失正接tanδを表す式に含まれるパラメータに温度依存性を持たせることで、連続的に温度依存性を表すことを可能にし、所望の温度の粘弾性特性を内挿又は外挿といった方法で表すことができるようにした。これにより、上記の数式(34)〜(40)において、予測対象の温度を代入して、粘弾性特性の温度依存性を計算すればよいため、各温度における粘弾性特性を簡単に表すことができ、FEM等の予測設計技術に適用して、各温度における粘弾性特性応答性能を簡単に予測することが可能となる。   In the conventional viscoelastic constitutive equation, for each parameter included in the equation representing the storage elastic modulus G ′, loss elastic modulus G ″, and loss tangent tan δ of rubber, for the experimental results measured according to each temperature, Since the parameters were determined by performing the parameter fitting, the temperature dependence could be expressed only discretely. However, by applying the above equations (34) to (40), the storage elastic modulus G ′ of the rubber , The loss elastic modulus G ″, and the loss tangent tan δ by making the parameter included in the equation temperature dependent, it is possible to express the temperature dependency continuously, and the viscoelastic characteristics at a desired temperature can be expressed. It can be expressed by a method such as interpolation or extrapolation. Thereby, in the above mathematical formulas (34) to (40), it is only necessary to calculate the temperature dependence of the viscoelastic property by substituting the temperature to be predicted, so that the viscoelastic property at each temperature can be simply expressed. The viscoelastic characteristic response performance at each temperature can be easily predicted by applying to a predictive design technique such as FEM.

また、ゴムの貯蔵弾性率G'、損失弾性率G''、及び損失正接tanδの温度依存性を精度高く表すことが可能となりFEM等の予測設計技術に応用することで、従来の予測方法よりもより精度の高くゴム製品やタイヤの性能を予測することが可能となる。   In addition, it is possible to express the temperature dependence of storage elastic modulus G ′, loss elastic modulus G ″, and loss tangent tan δ of rubber with high accuracy. It is possible to predict the performance of rubber products and tires with higher accuracy.

また、これらの方程式は様々な温度で計測した実験結果にも適用が可能であることからゴム製品の使用温度での粘弾性歪依存性の結果に対して適用も可能である。さらに、歪履歴や温度履歴を受けたゴムの歪依存性は変化することから、歪履歴や温度履歴を受けたあとでの粘弾性歪依存性の結果に対して適用できる。   Moreover, since these equations can be applied to the experimental results measured at various temperatures, the equations can also be applied to the results of viscoelastic strain dependence at the use temperature of the rubber product. Furthermore, since the strain dependency of the rubber that has received the strain history and the temperature history changes, it can be applied to the result of the viscoelastic strain dependency after receiving the strain history and the temperature history.

また、上述した温度依存性を持たせたパラメータを用いた粘弾性構成方程式を、インバースエンジニアリングに応用することで、製品使用条件から製品の性能を最大限に出すための粘弾性特性を予測し、材料開発へフィードバックして、材料最適化を図ることも可能となる。   In addition, by applying the viscoelastic constitutive equation using the temperature-dependent parameters described above to inverse engineering, predict viscoelastic properties to maximize the performance of the product from the product usage conditions, It is also possible to optimize materials by feeding back to material development.

また、ゴムのシミュレーションを経て、該ゴム製品の所望の性能を達成する為の最適なゴム材料を、設計することが可能となり、効率的且つ精度の良い有用なゴム製品の設計方法を提供することができる。   It is also possible to design an optimal rubber material for achieving the desired performance of the rubber product through rubber simulation, and to provide an efficient and accurate method for designing a useful rubber product. Can do.

以上説明したように、本実施の形態に係る粘弾性応答性能予測方法によれば、温度依存性を表すパラメータを用いて粘弾性特性の歪依存性を表した構成方程式を有限要素解析法に適用して、ゴム製品の粘弾性応答性能を予測することにより、予測対象の温度における貯蔵弾性率及び損失正接を表すパラメータを実験的に求める必要がなく、実験に頼らなくともゴム製品の粘弾性特性の温度依存性を表すことができ、予測対象の温度におけるゴム製品の粘弾性応答性能を簡易に精度よく予測することができる。   As described above, according to the viscoelastic response performance prediction method according to the present embodiment, the constitutive equation representing the strain dependency of the viscoelastic property using the parameter indicating the temperature dependency is applied to the finite element analysis method. Thus, by predicting the viscoelastic response performance of the rubber product, it is not necessary to experimentally determine the parameters indicating the storage modulus and loss tangent at the temperature to be predicted, and the viscoelastic properties of the rubber product can be obtained without relying on the experiment. The viscoelastic response performance of the rubber product at the prediction target temperature can be easily and accurately predicted.

また、ゴム製品の小歪領域をも対処可能な粘弾性特性の歪依存性を表す構成方程式を有限要素解析法に適用することにより、ゴム製品の粘弾性応答性能を精度よく予測することができる。   In addition, the viscoelastic response performance of rubber products can be accurately predicted by applying a constitutive equation representing the strain dependence of viscoelastic properties that can cope with the small strain region of rubber products to the finite element analysis method. .

また、貯蔵弾性率G'及び損失正接tanδを表す式のパラメータの温度依存性を改良型アレニウスプロットで表すことにより、各パラメータの温度依存性を精度よく表すことができ、また、各パラメータの温度依存性を精度よく表すことにより、貯蔵弾性率G'及び損失正接tanδの温度依存性を精度よく表すことができる。   Further, by expressing the temperature dependence of the parameters of the equations representing the storage elastic modulus G ′ and the loss tangent tan δ with an improved Arrhenius plot, the temperature dependence of each parameter can be accurately represented, and the temperature of each parameter By expressing the dependency with high accuracy, the temperature dependency of the storage elastic modulus G ′ and the loss tangent tan δ can be expressed with high accuracy.

また、粘弾性特性の歪依存性を表す構成方程式に含まれる貯蔵弾性率G'及び損失正接tanδを精度よく表すことにより、構成方程式を有限要素解析法に適用して、ゴム製品の粘弾性応答性能をより精度よく予測することができる。   In addition, by accurately expressing the storage modulus G ′ and loss tangent tan δ included in the constitutive equation representing the strain dependence of the viscoelastic properties, the constitutive equation is applied to the finite element analysis method, and the viscoelastic response of the rubber product Performance can be predicted more accurately.

本発明の実施の形態に係る粘弾性応答性能の予測装置を示した概略図である。It is the schematic which showed the prediction apparatus of the viscoelastic response performance which concerns on embodiment of this invention. 次元軸上におけるxyz方向の変形を表す伸張比λ1、λ2、λ3と応力t1、t2、t3との関係を示した図である。FIG. 6 is a diagram showing a relationship between stretch ratios λ1, λ2, λ3 and stresses t1, t2, t3 representing deformation in the xyz direction on a dimensional axis. (A)〜(C)それぞれは、パラメータn、A、G'∞を数式(34)、(35)、(40)を用いて計算した直線と実測値とを示す図である。(A)-(C) is a figure which shows the straight line and actual value which calculated parameters n, A, and G'infinity using Numerical formula (34), (35), (40), respectively. (A)、(B)それぞれは、パラメータa、bを数式(36)、(37)を用いて計算した直線と実測値とを示す図である。(A), (B) is a figure which shows the straight line which calculated parameters a and b using Numerical formula (36), (37), and an actual value, respectively. (A)、(B)それぞれは、パラメータd、tanδ|γ→0を数式(38)、(39)を用いて計算した直線と実測値とを示す図である。(A) and (B) are diagrams respectively showing a straight line obtained by calculating the parameters d and tan δ | γ → 0 using Equations (38) and (39), and an actual measurement value. (A)、(B)、(C)それぞれは、充填系ゴムの貯蔵弾性率G'、損失弾性率G''、損失正接tanδの温度依存性を数式(30)〜(32)、(34)〜(39)を用いて計算した曲線と実測値とを示す図である。Each of (A), (B), and (C) shows the temperature dependence of the storage elastic modulus G ′, loss elastic modulus G ″, and loss tangent tan δ of the filled rubber in the formulas (30) to (32), (34 It is a figure which shows the curve and actual value which were calculated using ()-(39).

符号の説明Explanation of symbols

50 弾性応答性能予測装置 50 Elastic response performance prediction device

Claims (9)

有限要素解析法を用いてゴム製品の粘弾性応答性能を予測する粘弾性応答性能予測方法であって、
温度依存性を表すパラメータを用いて前記ゴム製品の粘弾性特性の歪依存性を表した構成方程式を用いて、該ゴム製品の粘弾性応答性能を予測することを特徴とする粘弾性応答性能予測方法。
A viscoelastic response performance prediction method for predicting viscoelastic response performance of rubber products using a finite element analysis method,
Viscoelastic response performance prediction characterized by predicting viscoelastic response performance of a rubber product using a constitutive equation representing strain dependency of the viscoelastic property of the rubber product using a parameter representing temperature dependency Method.
前記構成方程式は、貯蔵弾性率を表す方程式及び該貯蔵弾性率と損失弾性率との損失正接を表す方程式を含む請求項1記載の粘弾性応答性能予測方法。   The viscoelastic response performance prediction method according to claim 1, wherein the constitutive equation includes an equation representing a storage elastic modulus and an equation representing a loss tangent between the storage elastic modulus and a loss elastic modulus. 前記貯蔵弾性率G‘は下記の数式で表される請求項2記載の粘弾性応答性能予測方法。
Figure 2007265266
ただし、γはせん断歪、A、C、及びnはフィラーネットワーク構造に依存する物理定数、G‘∞は分子伸びきり効果による粘弾性応答の変化の各々を表す。
The viscoelastic response performance prediction method according to claim 2, wherein the storage elastic modulus G ′ is represented by the following mathematical formula.
Figure 2007265266
Here, γ represents shear strain, A, C, and n represent physical constants depending on the filler network structure, and G′∞ represents each change in viscoelastic response due to the molecular extension effect.
前記フィラーネットワーク構造に依存する物理定数A、n、及びG‘∞は、下記の数式で表される請求項3記載の粘弾性応答性能予測方法。
Figure 2007265266
Figure 2007265266
Figure 2007265266
ただし、A0及びn0は、フィラーネットワーク構造に依存する物理定数、Rは気体定数、EAはAの活性化エネルギー、Enはnの活性化エネルギー、G‘∞0はG‘∞の活性化エネルギー、ΔTは温度の各々を表し、Tgをゴム高分子のガラス転移温度、C2を任意温度定数とすると、ΔT=C2+T−Tgである。
The viscoelastic response performance prediction method according to claim 3, wherein physical constants A, n, and G′∞ depending on the filler network structure are represented by the following mathematical formulas.
Figure 2007265266
Figure 2007265266
Figure 2007265266
However, A 0 and n 0 are physical constants which depend on the filler network structure, R represents gas constant, E A is the activation energy of the A, E n is n activation energy, G'∞ 0's G'∞ Activation energy, ΔT represents each of the temperatures, where Tg is the glass transition temperature of the rubber polymer and C2 is an arbitrary temperature constant, ΔT = C2 + T−Tg.
前記損失正接tanδは下記の数式で表される請求項2〜請求項4の何れか1項記載の粘弾性応答性能予測方法。
Figure 2007265266
ただし、γはせん断歪、a、c、b、及びdはフィラーネットワーク構造に依存する物理定数、tanδ|γ→0は歪0におけるtanδの各々を表す。
The viscoelastic response performance prediction method according to claim 2, wherein the loss tangent tan δ is expressed by the following mathematical formula.
Figure 2007265266
Where γ is a shear strain, a, c, b, and d are physical constants depending on the filler network structure, and tan δ | γ → 0 represents each of tan δ at strain 0.
前記フィラーネットワーク構造に依存する物理定数a、b、d及び歪0におけるtanδは、下記の数式で表される請求項5記載の粘弾性応答性能予測方法。
Figure 2007265266
Figure 2007265266
Figure 2007265266
Figure 2007265266
ただし、Eaはaの活性化エネルギー、Ebはbの活性化エネルギー、Edはdの活性化エネルギー、EDはtanδ|γ→0の活性化エネルギー、a0、b0、d0、及びD0は、フィラーネットワーク構造に依存する物理定数の各々を表す。
6. The viscoelastic response performance prediction method according to claim 5, wherein tan δ at physical constants a, b, d and strain 0 depending on the filler network structure is represented by the following mathematical formula.
Figure 2007265266
Figure 2007265266
Figure 2007265266
Figure 2007265266
Where E a is the activation energy of a, E b is the activation energy of b, E d is the activation energy of d, E D is the activation energy of tan δ | γ → 0, a 0 , b 0 , d 0 , And D 0 represent each of the physical constants depending on the filler network structure.
前記せん断歪γは、歪の不変量をI1とすると、以下の数式で表される請求項3〜請求項6の何れか1項記載の粘弾性応答性能予測方法。
γ2=I1−3
The viscoelastic response performance prediction method according to any one of claims 3 to 6, wherein the shear strain γ is represented by the following mathematical formula, where I 1 is an invariant of strain.
γ 2 = I 1 -3
請求項1〜請求項7の何れか1項記載の粘弾性応答性能予測方法を使用してゴム製品を設計することを特徴とするゴム製品設計方法。   A rubber product design method, wherein a rubber product is designed using the viscoelastic response performance prediction method according to any one of claims 1 to 7. 有限要素解析法を用いてゴム製品の粘弾性応答性能を予測する粘弾性応答性能予測装置であって、
温度依存性を表すパラメータを用いて前記ゴム製品の粘弾性特性の歪依存性を表した構成方程式を用いて、該ゴム製品の粘弾性応答性能を予測する粘弾性応答性能予測装置。
A viscoelastic response performance prediction device for predicting the viscoelastic response performance of a rubber product using a finite element analysis method,
A viscoelastic response performance prediction device that predicts viscoelastic response performance of a rubber product using a constitutive equation that represents strain dependency of the viscoelastic property of the rubber product using a parameter that represents temperature dependency.
JP2006092222A 2006-03-29 2006-03-29 Viscoelastic response performance prediction method, rubber product design method, and viscoelastic response performance prediction device Pending JP2007265266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006092222A JP2007265266A (en) 2006-03-29 2006-03-29 Viscoelastic response performance prediction method, rubber product design method, and viscoelastic response performance prediction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006092222A JP2007265266A (en) 2006-03-29 2006-03-29 Viscoelastic response performance prediction method, rubber product design method, and viscoelastic response performance prediction device

Publications (1)

Publication Number Publication Date
JP2007265266A true JP2007265266A (en) 2007-10-11

Family

ID=38638159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006092222A Pending JP2007265266A (en) 2006-03-29 2006-03-29 Viscoelastic response performance prediction method, rubber product design method, and viscoelastic response performance prediction device

Country Status (1)

Country Link
JP (1) JP2007265266A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222656A (en) * 2008-03-18 2009-10-01 Yokohama Rubber Co Ltd:The Prediction method of hat generation of running belt, prediction method of running resistance force, prediction method of running heat generation of rotation body, and prediction method of rolling resistance
WO2012046740A1 (en) * 2010-10-05 2012-04-12 株式会社ブリヂストン Method for predicting elastic response performance of rubber product, method for design, and device for predicting elastic response performance
JP2012238168A (en) * 2011-05-11 2012-12-06 Sumitomo Rubber Ind Ltd Rubber material simulation method
EP2535828A1 (en) * 2011-06-16 2012-12-19 Sumitomo Rubber Industries, Ltd. Method for simulating the loss tangent of rubber compound
JP2016071519A (en) * 2014-09-29 2016-05-09 東洋ゴム工業株式会社 Device and method for analyzing filler mixed with high polymer material, and computer program
JP7416175B1 (en) 2022-11-10 2024-01-17 Dic株式会社 Prediction program, information processing device, and prediction method
JP7517119B2 (en) 2020-12-02 2024-07-17 住友ゴム工業株式会社 Method, program and system for predicting viscoelastic properties of vulcanized rubber

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222656A (en) * 2008-03-18 2009-10-01 Yokohama Rubber Co Ltd:The Prediction method of hat generation of running belt, prediction method of running resistance force, prediction method of running heat generation of rotation body, and prediction method of rolling resistance
WO2012046740A1 (en) * 2010-10-05 2012-04-12 株式会社ブリヂストン Method for predicting elastic response performance of rubber product, method for design, and device for predicting elastic response performance
JP2012078296A (en) * 2010-10-05 2012-04-19 Bridgestone Corp Method for predicting elastic response performance of rubber product, design method and elastic response performance prediction device
CN103154703A (en) * 2010-10-05 2013-06-12 株式会社普利司通 Method for predicting elastic response performance of rubber product, method for design, and device for predicting elastic response performance
US9405869B2 (en) 2010-10-05 2016-08-02 Bridgestone Corporation Rubber product elastic response performance prediction method, design method, and elastic response performance prediction apparatus
JP2012238168A (en) * 2011-05-11 2012-12-06 Sumitomo Rubber Ind Ltd Rubber material simulation method
EP2535828A1 (en) * 2011-06-16 2012-12-19 Sumitomo Rubber Industries, Ltd. Method for simulating the loss tangent of rubber compound
US9081921B2 (en) 2011-06-16 2015-07-14 Sumitomo Rubber Industries, Ltd. Method for simulating rubber compound
JP2016071519A (en) * 2014-09-29 2016-05-09 東洋ゴム工業株式会社 Device and method for analyzing filler mixed with high polymer material, and computer program
JP7517119B2 (en) 2020-12-02 2024-07-17 住友ゴム工業株式会社 Method, program and system for predicting viscoelastic properties of vulcanized rubber
JP7416175B1 (en) 2022-11-10 2024-01-17 Dic株式会社 Prediction program, information processing device, and prediction method
JP7468770B1 (en) 2022-11-10 2024-04-16 Dic株式会社 Prediction program, information processing device, and prediction method

Similar Documents

Publication Publication Date Title
JP2007265266A (en) Viscoelastic response performance prediction method, rubber product design method, and viscoelastic response performance prediction device
EP3447717A1 (en) Systems and methods for determining properties of composite materials for predicting behaviour of structures
Faghidian et al. On the analytical and meshless numerical approaches to mixture stress gradient functionally graded nano-bar in tension
WO2013042600A1 (en) Stress-strain relation simulation method, stress-strain relation simulation system, and stress-strain relation simulation program which use chaboche model
JP6085224B2 (en) Calculation method of interaction potential between fillers
EP2535828B1 (en) Method for simulating the loss tangent of rubber compound
JP5474726B2 (en) Elastic response performance prediction method, design method, and elastic response performance prediction apparatus for rubber products
Tomita et al. Computational evaluation of strain-rate-dependent deformation behavior of rubber and carbon-black-filled rubber under monotonic and cyclic straining
WO2014003184A1 (en) Program for outputting stress-strain curve equations and device for the same, evaluation method for physical properties of elastic materials, and design method for elastic materials
JP2007272416A (en) Method for predicting elastic responsiveness of rubber product, design method and elastic responsiveness prediction device
JP2011242336A (en) Simulation method of rubber material
JP2006250811A (en) Method for evaluating composite material of rubber and resin
Li et al. The influence of plasticity mismatch on the growth and coalescence of spheroidal voids on the bimaterial interface
JP4299735B2 (en) Method for predicting and designing elastic response performance of rubber products
JP2018101354A (en) Simulation method of polymer material
JP5001883B2 (en) Rubber material simulation method
Wineman Nonlinear viscoelastic membranes
US20130226522A1 (en) Rubber product elastic response performance prediction method, design method, and elastic response performance prediction apparatus
Luo et al. Mullins effect modelling and experiment for anti-vibration systems
JP2010008396A (en) Coefficient calculator, coefficient calculation method, and coefficient calculation program
JP4299733B2 (en) Viscoelastic response performance prediction method
JP5056474B2 (en) Coefficient calculation device, coefficient calculation method, and coefficient calculation program
Goyal et al. Effect of notch on low cycle fatigue behaviour of 316 LN stainless steel
JP2022100977A (en) Method for simulating polymer material
Hossain et al. Extension of the Arruda‐Boyce model to the modelling of the curing process of polymers