JP2007272416A - Method for predicting elastic responsiveness of rubber product, design method and elastic responsiveness prediction device - Google Patents

Method for predicting elastic responsiveness of rubber product, design method and elastic responsiveness prediction device Download PDF

Info

Publication number
JP2007272416A
JP2007272416A JP2006095328A JP2006095328A JP2007272416A JP 2007272416 A JP2007272416 A JP 2007272416A JP 2006095328 A JP2006095328 A JP 2006095328A JP 2006095328 A JP2006095328 A JP 2006095328A JP 2007272416 A JP2007272416 A JP 2007272416A
Authority
JP
Japan
Prior art keywords
rubber
response performance
elastic
elastic response
rubber product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006095328A
Other languages
Japanese (ja)
Inventor
Keizo Akutagawa
恵造 芥川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2006095328A priority Critical patent/JP2007272416A/en
Publication of JP2007272416A publication Critical patent/JP2007272416A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for predicting elastic responsiveness of a rubber product by using finite element analysis (FEA), a design method and an elastic responsiveness prediction device. <P>SOLUTION: In the elastic responsiveness predicting method for predicting elastic responsiveness of a rubber product by using finite element analysis (FEA), the elastic responsiveness of the rubber product is predicted by using a constitutive equation indicating temperature and strain dependency of elastic modulus of a rubber material composing the rubber product, to which an inverse Langevin function g having a statistic bridge point-to-bridge point segment link number n as a variable is applied. As the invert Langevin function, the following mathematical expression 1 is preferred, and as the statistic bridge point-to-bridge point segment rink number, the following mathematical expression 2 is preferred, wherein λ is an elongation ratio or compression ratio, α represents a frequency factor of statistic segment movement, ε represents an activated energy of statistic segment movement, R represents a gas constant, and T represents an absolute temperature. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、ゴム製品の弾性応答性能の予測方法、設計方法、及び弾性応答性能予測装置に係り、特に、有限要素解析法(FEA)を用いてゴム製品の弾性応答性能を予測する方法、該予測方法を用いたゴム製品の設計方法、及び弾性応答性能予測装置に関する。   The present invention relates to an elastic response performance prediction method, a design method, and an elastic response performance prediction apparatus for rubber products, and more particularly, a method for predicting an elastic response performance of a rubber product using a finite element analysis method (FEA), The present invention relates to a rubber product design method using a prediction method and an elastic response performance prediction apparatus.

ゴム製品を設計するに際して、三次元有限要素解析法(FEA)を利用してその弾性的な応答性能を予測し、その解析ないしシミュレーション結果を応用する手法は、既に数十年に亙る実例がある(例えば、特許文献1〜3参照)。このFEA計算に用いられるゴム材料の応力−歪の関係を解析に反映させるエネルギーの構成方程式としては、線形弾性方程式からMooney−Rivlin方程式へと移行し、最近では大変形領域での非線形構成方程式の導入が行われている。   In designing rubber products, there are already several decades of examples of predicting elastic response performance using 3D finite element analysis (FEA) and applying the analysis or simulation results. (For example, see Patent Documents 1 to 3). As a constitutive equation of energy that reflects the stress-strain relationship of the rubber material used in the FEA calculation in the analysis, the linear elastic equation is shifted to the Mooney-Rivlin equation. Recently, the nonlinear constitutive equation in the large deformation region Introduction has been made.

しかしながら、これらのゴム材料の構成方程式はゴム分子鎖の伸張に基づく分子統計熱力学より発展したエントロピー弾性に着眼した網目変形理論を基礎としているが、タイヤをはじめとする多くの工業用ゴム製品の材料設計において重要な因子である温度依存性を、物理的意味を持ったパラメータを用いて表すことができる構成方程式は存在していなかった。   However, the constitutive equations of these rubber materials are based on the network deformation theory that focuses on entropic elasticity developed from molecular statistical thermodynamics based on the elongation of rubber molecular chains, but for many industrial rubber products such as tires. There is no constitutive equation that can express temperature dependence, which is an important factor in material design, using parameters with physical meaning.

そこで、温度依存性を、物理的意味を持ったパラメータを用いて表すことができる下記の数式(1)である構成方程式が提案された(特許文献4)。   In view of this, a constitutive equation represented by the following mathematical formula (1) capable of expressing temperature dependence using parameters having physical meaning has been proposed (Patent Document 4).

Figure 2007272416
Figure 2007272416

ここで、上記の数式(1)の構成方程式が提案されたことにより、ゴムのミクロレベルで充填材とゴムの三次元モデルをFEM等の計算に応用することを考える際に、特にゴム部の温度依存性と歪依存性とを表す構成方程式へ適用することで実際の工業用ゴム材料の設計で重要な温度及び歪を考慮したミクロレベルでのシミュレーションが可能となっている。   Here, when the constitutive equation of the above formula (1) has been proposed, when considering the application of the filler and rubber three-dimensional model to the calculation such as FEM at the micro level of the rubber, particularly the rubber portion. By applying it to the constitutive equation representing temperature dependence and strain dependence, it is possible to perform simulation at the micro level considering temperature and strain which are important in the design of actual industrial rubber materials.

また、上記の特許文献4では、上記の数式(1)は、右辺第二項NT∂S/∂I1のエントロピー項Sに対して、下記の数式(2)で表される一般化形式のMooney−Rivlin式を適用することが示されている。 In Patent Document 4 above, the above equation (1) is the right-hand side relative to the second term NT∂S / ∂I 1 of entropy term S, the generalized form represented by the following equation (2) Application of the Mooney-Rivlin equation is shown.

Figure 2007272416
Figure 2007272416

ここで、Ci,j,kはρRT/Mcの情報を含み、ρはゴムの密度、Rは気体定数、Tは絶対温度、Mcは架橋点間分子量を表す。
特開平11−237332号公報 特開2003−72327号公報 特開2002−1929242号公報 特開2005−345413号公報
Here, C i, j, k includes information on ρRT / Mc, ρ represents the density of rubber, R represents a gas constant, T represents an absolute temperature, and Mc represents a molecular weight between crosslinks.
Japanese Patent Laid-Open No. 11-237332 JP 2003-72327 A Japanese Patent Laid-Open No. 2002-1929242 JP 2005-345413 A

しかしながら、特許文献4に記載の技術では、上記の数式(1)のエントロピー項Sに対して適用するとした上記の数式(2)に含まれるCi,j,kは、絶対温度と比例するパラメータとなっているため、それらの係数を実験的に求めなければならない、という問題がある。 However, in the technique described in Patent Document 4, Ci , j, k included in the above equation (2) applied to the entropy term S in the above equation (1) is a parameter proportional to the absolute temperature. Therefore, there is a problem that these coefficients must be obtained experimentally.

本発明は、上記の問題点を解決するためになされたもので、実験に頼らなくともゴムの温度依存性の計算を可能とし、簡易にゴムの弾性応答性能を予測することができる弾性応答性能予測方法、ゴム製品設計方法、及び弾性応答性能予測装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and enables elastic temperature calculation of a rubber to be easily calculated without relying on an experiment, and the elastic response performance of a rubber can be easily predicted. It is an object to provide a prediction method, a rubber product design method, and an elastic response performance prediction device.

上記の目的を達成するために本発明に係る弾性応答性能予測方法は、有限要素解析法(FEA)を用いてゴム製品の変形及び破壊挙動を示す弾性応答性能を予測する弾性応答性能予測方法において、前記ゴム製品を構成するゴム材料の弾性率の温度及び歪依存性を表し、かつ、統計的架橋点間セグメントリンク数を変数とする逆ランジュバン関数を適用した構成方程式を用いて該ゴム製品の弾性応答性能を予測することを特徴としている。   In order to achieve the above object, an elastic response performance prediction method according to the present invention is an elastic response performance prediction method for predicting an elastic response performance indicating deformation and fracture behavior of a rubber product using a finite element analysis method (FEA). The rubber product is expressed using a constitutive equation representing the temperature and strain dependence of the elastic modulus of the rubber material constituting the rubber product, and applying an inverse Langevin function with the number of segment links between statistical cross-linking points as a variable. It is characterized by predicting elastic response performance.

また、本発明に係る弾性応答性能予測装置は、有限要素解析法を用いてゴム製品の変形及び破壊挙動を示す弾性応答性能を予測する弾性応答性能予測装置において、前記ゴム製品を構成するゴム材料の弾性率の温度及び歪依存性を表し、かつ、統計的架橋点間セグメントリンク数を変数とする逆ランジュバン関数を適用した構成方程式を用いて該ゴム製品の弾性応答性能を予測する。   The elastic response performance prediction apparatus according to the present invention is an elastic response performance prediction apparatus that predicts elastic response performance showing deformation and fracture behavior of a rubber product using a finite element analysis method. The elastic response performance of the rubber product is predicted using a constitutive equation that expresses the temperature and strain dependence of the elastic modulus of the rubber and applies an inverse Langevin function with the number of segment links between statistical crosslinks as a variable.

本発明のゴム製品の弾性応答性能予測方法及び弾性応答性能予測装置は、上述の様に、充填系ゴムをミクロレベルで観察する際のゴム部の大変形領域(通常、歪が100〜400%)を含む広汎な変形領域において、弾性率の温度及び歪依存性を表す構成方程式を用いて、ゴム製品の弾性応答性能を有限要素解析法により予測するので、特に実用上で重要な充填系のゴム材料からなるゴム複合製品について、多くの工業用ゴム製品の設計で重要である温度及び歪依存性を物理的な意味を有するパラメータを持って、かつ、ミクロレベルでのゴム部の弾性応答性能を精度よく予測することができる。   As described above, the elastic response performance prediction method and the elastic response performance prediction device of the rubber product according to the present invention have a large deformation region (usually a strain of 100 to 400%) when the filled rubber is observed at a micro level. The elastic response performance of rubber products is predicted by finite element analysis using a constitutive equation representing the temperature and strain dependence of the elastic modulus in a wide range of deformation including For rubber composite products made of rubber materials, the elastic response performance of the rubber part at the micro level with parameters that have physical meaning of temperature and strain dependence, which is important in the design of many industrial rubber products Can be accurately predicted.

また、温度の関数である架橋点間セグメントリンク数を変数とする逆ランジュバン関数を、ゴム材料の弾性率の温度及び歪依存性を表す構成方程式に適用して、ゴム製品の弾性応答性能を予測するため、構成方程式の係数を実験的に求めずに、温度依存性を計算することができ、簡易にゴム製品の弾性応答性能を予測することができる。   In addition, the inverse Langevin function with the number of segment links between crosslinks as a function of temperature as a variable is applied to the constitutive equation representing the temperature and strain dependence of the elastic modulus of rubber materials to predict the elastic response performance of rubber products. Therefore, the temperature dependence can be calculated without experimentally determining the coefficient of the constitutive equation, and the elastic response performance of the rubber product can be easily predicted.

なお、逆ランジュバン関数とは、ゴムの伸張に対して分子の自由度が小さくなると応力が急激に大きくなる現象を表す関数である。また、架橋点間セグメントリンク数とは、物理的意味を持つパラメータで架橋点ゴム分子鎖の温度による運動性を表す統計的セグメント数である。   The inverse Langevin function is a function that represents a phenomenon in which the stress rapidly increases as the degree of molecular freedom with respect to rubber extension decreases. The number of segment links between cross-linking points is a statistical number of segments that represents the mobility due to the temperature of the cross-linking rubber molecular chain as a parameter having a physical meaning.

また、本発明に係るゴム材料の弾性率の温度及び歪依存性を表す構造方程式を、非線形方程式とすることができる。   Moreover, the structural equation representing the temperature and strain dependence of the elastic modulus of the rubber material according to the present invention can be a nonlinear equation.

これにより、弾性率の温度及び歪依存性を表す構成方程式として非線形方程式を用いているので、充填材を添加し且つ発熱や破壊が生じる場合においても、ゴム部において、発熱や破壊が生じると考えられるので、弾性特性に非線形性が与えられ、歪及び温度の広汎な領域において、ゴム製品の弾性応答性能をミクロレベルで充填材部とゴム部を分離して精度よく予測することができる。   As a result, a nonlinear equation is used as a constitutive equation representing the temperature and strain dependence of the elastic modulus, so that even when a filler is added and heat generation or destruction occurs, heat generation or destruction occurs in the rubber part. Therefore, nonlinearity is given to the elastic characteristics, and the elastic response performance of the rubber product can be accurately predicted by separating the filler portion and the rubber portion at a micro level in a wide range of strain and temperature.

また、一般に、ゴム材料の弾性率Gは統計熱力学を用いて次の様に表すことができる。   In general, the elastic modulus G of a rubber material can be expressed as follows using statistical thermodynamics.

Figure 2007272416
Figure 2007272416

即ち、弾性率Gはヘルムホルツの自由エネルギーAをGreenテンソルの歪不変量I1で微分することにより算出される。 That is, the elastic modulus G is calculated by differentiating the Helmholtz free energy A by the strain invariant I 1 of the Green tensor.

また、本発明の上記弾性率(G)の温度及び歪依存性を表す構成方程式は、下記のように表すことができる。   The constitutive equation representing the temperature and strain dependence of the elastic modulus (G) of the present invention can be expressed as follows.

Figure 2007272416
Figure 2007272416

ただし、Rは気体定数、Nは網目数係数、кはエネルギー弾性に寄与する分子間凝集エネルギー、Tは絶対温度、ΔTはゴム高分子のガラス転移温度Tgからの差分、Sはゴム変形時のエントロピー変化の各々を表している。   Where R is a gas constant, N is a mesh number coefficient, к is an intermolecular cohesive energy that contributes to energy elasticity, T is an absolute temperature, ΔT is a difference from the glass transition temperature Tg of the rubber polymer, and S is a rubber deformation time Represents each entropy change.

また、上記の数式(4)の右辺第二項の∂S/∂I1は下記のように表すことができる。 Further, ∂S / ∂I 1 in the second term on the right side of the above mathematical formula (4) can be expressed as follows.

Figure 2007272416
Figure 2007272416

ただし、λは伸張比又は圧縮比を表し、C1はρRT/Mcに関する定数であって、Mooney-Rivlin式のC1係数に相当するパラメータを表しており、また、ρは密度、Mcはゴムの網目点間平均分子量、gは逆ランジュバン関数の各々を表している。 Where λ represents an expansion ratio or compression ratio, C 1 is a constant related to ρRT / Mc, and represents a parameter corresponding to the C 1 coefficient of the Mooney-Rivlin equation, ρ is density, and Mc is rubber. The average molecular weight between mesh points, g, represents each of the inverse Langevin functions.

上記の数式(5)のように、温度の関数である架橋点間セグメントリンク数n及び伸張比λを変数とする逆ランジュバン関数を上記の数式(4)に適用することにより、構成方程式の係数を実験的に求めずに、温度依存性の計算を行うことができる。   By applying an inverse Langevin function using the number of segment links between crosslink points n and the extension ratio λ as variables as a function of temperature to the above formula (4) as in the above formula (5), the coefficient of the constitutive equation The temperature dependence can be calculated without experimentally obtaining.

また、統計的架橋点間セグメントリンク数nは下記のように表すことができる。   Moreover, the number n of segment links between statistical cross-linking points can be expressed as follows.

Figure 2007272416
Figure 2007272416

ただし、αは統計的セグメント運動の頻度因子、εは統計的セグメント運動の活性化エネルギーの各々を表す。なお、εは、公知文献(Y.Abe, P.J.Flory, Journal of Chemical Physics volume 52,p.2814(1976))のように、分子のミクロ構造から予測が可能である。   However, (alpha) represents the frequency factor of statistical segment motion, and (epsilon) represents each of the activation energy of statistical segment motion. Note that ε can be predicted from the microstructure of a molecule as in a known document (Y. Abe, PJ Flory, Journal of Chemical Physics volume 52, p. 2814 (1976)).

統計的架橋点間セグメントリンク数nを上記の数式(6)のように表すことにより、統計的架橋点間セグメントリンク数nが絶対温度Tの関数となるため、統計的架橋点間セグメントリンク数nを、上記数式(4)の逆ランジュバン関数の変数とすることにより、構成方程式の係数を実験的に求めずに、温度依存性の計算を行うことができる。   By expressing the statistical link number n between the cross-linking points as in the above formula (6), the statistical link number n between the statistical cross-linking points is a function of the absolute temperature T. By using n as a variable of the inverse Langevin function of the above equation (4), the temperature dependence can be calculated without experimentally obtaining the coefficient of the constitutive equation.

本発明によれば、上記の数式(1)のエントロピー項Sに対して、上記の数式(2)である一般化形式のMooney−Rivlin式を適用せずに、物理的意味を持つパラメータで架橋点ゴム分子鎖の温度による運動性を表す統計的セグメント数nを変数とする逆ランジュバン関数を適用することにより、上記の数式(2)に含まれるCi,j,kを実験的に求める必要がないため、実験に頼らずに簡易にゴムの温度依存性の計算を行うことができる。 According to the present invention, the generalized form of the Mooney-Rivlin equation (2) above is not applied to the entropy term S of the above equation (1), and the bridge has a physical meaning. It is necessary to experimentally find C i, j, k included in the above equation (2) by applying the inverse Langevin function with the statistical segment number n representing the mobility of the point rubber molecular chain as a variable. Therefore, it is possible to easily calculate the temperature dependence of rubber without relying on experiments.

また、逆ランジュバン関数g(λ、n)を、下記のように表すことができる。   Further, the inverse Langevin function g (λ, n) can be expressed as follows.

Figure 2007272416
Figure 2007272416

また、上述した本発明の弾性率の温度及び歪依存性を表す構成方程式を、下記に示す数式(8)及び(9)で表される応力と歪との関係式に適用して得られる構成方程式を用いて、ゴム製品の弾性応答性能を予測することができる。
Further, a configuration obtained by applying the above-described constitutive equation representing the temperature and strain dependence of the elastic modulus of the present invention to the relational expression between stress and strain expressed by the following mathematical formulas (8) and (9). The equation can be used to predict the elastic response performance of a rubber product.

Figure 2007272416
Figure 2007272416

Figure 2007272416
Figure 2007272416

ただし、σは引張り又は圧縮応力、τはせん断応力、γはせん断歪の各々を表す。   Where σ represents tensile or compressive stress, τ represents shear stress, and γ represents shear strain.

以上、詳述した本発明のゴム製品を構成するゴム材料の弾性率の温度及び歪依存性を表す構成方程式を用いて該ゴム製品の弾性応答性能を予測することにより、所要のシミュレーションを経て、特に、ゴムのミクロレベルでのシミュレーションを経て、該ゴム製品の所望の性能を達成する為の最適なゴム材料を、ミクロレベルで設計することが可能となり、効率的且つ精度の良い有用なゴム製品の設計方法を提供することができる。   As described above, by predicting the elastic response performance of the rubber product using the constitutive equation representing the temperature and strain dependence of the elastic modulus of the rubber material constituting the rubber product of the present invention described in detail, through the required simulation, In particular, it is possible to design an optimal rubber material at the micro level to achieve the desired performance of the rubber product through simulation at the micro level of the rubber, and the useful rubber product is efficient and accurate. The design method can be provided.

以上説明したように、本発明の弾性応答性能予測方法、ゴム製品設計方法、及び弾性応答性能予測装置によれば、温度の関数である架橋点間セグメントリンク数を変数とする逆ランジュバン関数を、ゴム材料の弾性率の温度及び歪依存性を表す構成方程式に適用して、ゴム製品の弾性応答性能を予測するため、構成方程式の係数を実験的に求めずに、温度依存性を計算することができ、簡易にゴム製品の弾性応答性能を予測することができる、という効果が得られる。   As described above, according to the elastic response performance prediction method, the rubber product design method, and the elastic response performance prediction device of the present invention, the inverse Langevin function using the number of segment links between crosslinks as a function of temperature as a variable, Applying to the constitutive equation that expresses the temperature and strain dependence of the elastic modulus of rubber material to predict the elastic response performance of rubber products, calculate the temperature dependence without experimentally calculating the coefficient of the constitutive equation The elastic response performance of the rubber product can be easily predicted.

以下、本発明の実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に示すように、本発明の実施の形態に係る弾性応答性能の予測を実行する弾性応答性能の予測装置50は、弾性応答性能予測を実行するための弾性応答性能の予測プログラムにより後述する処理を実行するコンピュータ演算処理システムにより構成されている。なお、この様なコンピュータシステムは、例えば、CPU、ROM、RAM、ハードデイスク、入出力端末、その他所要のユニット等を備えている。上記の弾性応答性能の予測プログラムは、予めハードデイスク等に記憶されている。   As shown in FIG. 1, an elastic response performance prediction apparatus 50 that performs elastic response performance prediction according to an embodiment of the present invention will be described later with an elastic response performance prediction program for executing elastic response performance prediction. It is comprised by the computer arithmetic processing system which performs a process. Such a computer system includes, for example, a CPU, a ROM, a RAM, a hard disk, an input / output terminal, and other necessary units. The elastic response performance prediction program is stored in advance on a hard disk or the like.

本発明の実施の形態における弾性応答性能の予測方法では、ゴム製品を構成するゴム材料の弾性率の温度及び歪依存性を表す構成方程式、特に好適には上述した数式(4)〜(7)を用いて該ゴム製品の弾性応答性能を予測する。   In the method of predicting elastic response performance in the embodiment of the present invention, a constitutive equation representing the temperature and strain dependence of the elastic modulus of the rubber material constituting the rubber product, particularly preferably the above-described mathematical formulas (4) to (7). Is used to predict the elastic response performance of the rubber product.

上述した数式(6)において、統計的セグメント運動の活性化エネルギーεに対して、4.2kcal/molを適用し、統計的セグメント運動の頻度因子αに対して、54557を代入して得られた直線と、ゴムの統計的架橋点間セグメントリンク数の温度依存性の実測値(図2のプロット)との比較結果を図2に示す。数式(6)により得られた直線は、実測値のプロットに対して良い一致を示しているといえる。なお、活性化エネルギーεの4.2kcal/molという数値は架橋点間ゴム分子鎖セグメント間に生じる回転方向の立体障害を越えるための活性化エネルギーに相当する。この活性化エネルギーは、1次元分子鏡モデルであるIsing鎖モデルや分子動力学(MD)を用いて予測することも可能である。   In the above formula (6), obtained by applying 4.2 kcal / mol to the activation energy ε of the statistical segment motion and substituting 54557 for the frequency factor α of the statistical segment motion. FIG. 2 shows a comparison result between the straight line and the actually measured value of temperature dependency of the number of segment links between the statistical cross-linking points of the rubber (plot in FIG. 2). It can be said that the straight line obtained by Equation (6) shows good agreement with the plot of the actual measurement values. In addition, the numerical value of 4.2 kcal / mol of the activation energy ε corresponds to the activation energy for exceeding the steric hindrance in the rotational direction generated between the rubber molecular chain segments between the crosslinking points. This activation energy can also be predicted using an Ising chain model, which is a one-dimensional molecular mirror model, or molecular dynamics (MD).

また、以下の未充填架橋SBRを用いて歪-応力挙動の温度依存性を測定し、実験値と予測値の比較を行った。使用したゴム配合は、SBR1500:100部、ステアリン酸1部、ZnO3部、促進剤1部、硫黄1.75部である。   In addition, the temperature dependence of the strain-stress behavior was measured using the following unfilled crosslinked SBR, and the experimental value was compared with the predicted value. The rubber formulation used is SBR 1500: 100 parts, 1 part stearic acid, 3 parts ZnO, 1 part accelerator, 1.75 parts sulfur.

また、上記の構成方程式である数式(4)〜(9)を用いて、ゴムの歪応力曲線の温度依存性の予測を行うと共に、以下の未充填架橋SBR純ゴムを用いて歪応力曲線の温度依存性を測定し、上記の予測による予測値と実験値との比較を行った。使用したゴム配合は、SBR1500:100部、ステアリン酸1部、ZnO3部、促進剤1部、硫黄1.75部である。   Further, the temperature dependence of the strain stress curve of the rubber is predicted by using the above-described constitutive equations (4) to (9), and the strain stress curve is calculated using the following unfilled crosslinked SBR pure rubber. The temperature dependence was measured, and the predicted value by the above prediction was compared with the experimental value. The rubber formulation used is SBR 1500: 100 parts, 1 part stearic acid, 3 parts ZnO, 1 part accelerator, 1.75 parts sulfur.

なお、上記数式(4)〜(9)において用いたパラメータの値は、以下の表に示す値である。また、кは、図4に示すような温度依存性を持つ値として使用した。   In addition, the value of the parameter used in said numerical formula (4)-(9) is a value shown in the following tables. К was used as a value having temperature dependence as shown in FIG.

Figure 2007272416
Figure 2007272416

以上のパラメータの値を用いて予測したゴムの弾性応答の予測値と、東洋精機製の引っ張り試験機(引っ張り速度300mm/s)で温度を変化させて測定した歪-応力プロットの結果を図3に示す。   Fig. 3 shows the predicted value of the elastic response of rubber predicted using the values of the above parameters, and the strain-stress plot measured by changing the temperature with a tensile tester manufactured by Toyo Seiki (tensile speed of 300 mm / s). Shown in

統計熱力学的計算から得られた方程式を用いて表した応力歪み曲線の温度依存性は、実測による結果と良く一致しており、ゴムの歪応力曲線の温度依存性を精度良く表しているといえる。また、以上の結果は、ゴム材料の温度依存性を非常に良く表しており、ミクロレベルでの変形及び破壊挙動を示す弾性応答性能を、本構成方程式をFEMに適用することで精度良く表すことができる。   The temperature dependence of the stress-strain curve expressed using the equations obtained from statistical thermodynamic calculations is in good agreement with the actual measurement results, and the temperature dependence of the strain-stress curve of rubber is expressed accurately. I can say that. In addition, the above results show the temperature dependence of the rubber material very well, and the elastic response performance showing deformation and fracture behavior at the micro level can be expressed accurately by applying this constitutive equation to FEM. Can do.

本発明のゴム材料の弾性率の温度及び歪依存性を表す構成方程式は、様々な温度で計測した実験結果にも適用が可能であることから、ゴム製品の使用温度での弾性の歪及び温度依存性の結果に対して適用も可能である。更に、歪履歴や温度履歴を受けたゴムの歪依存性は変化することから、歪履歴や温度履歴を受けた後での弾性の歪及び温度依存性の結果に対して適用できる。   Since the constitutive equation representing the temperature and strain dependence of the elastic modulus of the rubber material of the present invention can be applied to the experimental results measured at various temperatures, the elastic strain and temperature at the use temperature of the rubber product. It can also be applied to dependency results. Furthermore, since the strain dependency of the rubber that has received the strain history and the temperature history changes, it can be applied to the result of the elastic strain and the temperature dependency after receiving the strain history and the temperature history.

また、数式(4)及び(6)において、予測対象の温度を代入した構成方程式を用いてゴムの弾性応答の予測値を計算すればよいため、構成方程式の係数を実験的に求める必要がなく、実験に頼らずにゴムの弾性率の温度依存性を計算でき、簡易にゴムの弾性応答性能を予測することができる。   In addition, in Formulas (4) and (6), it is only necessary to calculate the predicted value of the elastic response of the rubber using a constitutive equation in which the temperature to be predicted is substituted, so there is no need to experimentally obtain the coefficient of the constitutive equation. The temperature dependence of the elastic modulus of rubber can be calculated without relying on experiments, and the elastic response performance of rubber can be easily predicted.

以上説明したように、本実施の形態に係る弾性応答性能の予測方法によれば、温度の関数である架橋点間セグメントリンク数を変数とする逆ランジュバン関数を、ゴム材料の弾性率の温度及び歪依存性を表す構成方程式に適用して、ゴム製品の弾性応答性能を予測するため、物理パラメータである架橋点間セグメントリンク数の温度依存性を考慮することで、構成方程式の係数を実験的に求める必要がなく、実験に頼らなくともゴムの温度依存性を計算することができ、簡易にゴム製品の弾性応答性能を予測することができる。   As described above, according to the prediction method of the elastic response performance according to the present embodiment, the inverse Langevin function using the number of segment links between crosslinks as a function of temperature as a variable, the temperature of the elastic modulus of the rubber material, and In order to predict the elastic response performance of rubber products by applying it to the constitutive equation representing the strain dependence, the coefficient of the constitutive equation is experimentally considered by considering the temperature dependence of the number of segment links between cross-linking points, which is a physical parameter. Therefore, the temperature dependence of rubber can be calculated without relying on experiments, and the elastic response performance of rubber products can be easily predicted.

また、ゴム材料の弾性率の温度及び歪依存性を表す構成方程式をFEMに適用することにより、ゴム製品のミクロレベルでの変形及び破壊挙動を示す弾性応答性能を精度良く表すことができる。   Further, by applying a constitutive equation representing the temperature and strain dependence of the elastic modulus of the rubber material to the FEM, it is possible to accurately represent the elastic response performance showing the deformation and fracture behavior of the rubber product at the micro level.

また、ゴムのミクロレベルでのシミュレーションを経て、該ゴム製品の所望の性能を達成する為の最適なゴム材料を、ミクロレベルで設計することが可能となり、効率的且つ精度の良い有用なゴム製品の設計方法を提供することができる。   In addition, through the simulation at the micro level of rubber, it becomes possible to design the optimal rubber material for achieving the desired performance of the rubber product at the micro level, and the useful rubber product with high efficiency and high accuracy. The design method can be provided.

本発明の実施の形態に係る弾性応答性能の予測装置を示した概略図である。It is the schematic which showed the prediction apparatus of the elastic response performance which concerns on embodiment of this invention. 統計的架橋点間セグメントリンク数の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the number of segment links between statistical bridge points. ゴムの応力歪曲線の温度依存性に関する予測値と実測値とを示すグラフである。It is a graph which shows the predicted value and measured value regarding the temperature dependence of the stress strain curve of rubber. кの温度依存性を示すグラフである。It is a graph which shows the temperature dependence of к.

符号の説明Explanation of symbols

50 弾性応答性能予測装置 50 Elastic response performance prediction device

Claims (8)

有限要素解析法を用いてゴム製品の変形及び破壊挙動を示す弾性応答性能を予測する弾性応答性能予測方法において、
前記ゴム製品を構成するゴム材料の弾性率の温度及び歪依存性を表し、かつ、統計的架橋点間セグメントリンク数を変数とする逆ランジュバン関数を適用した構成方程式を用いて該ゴム製品の弾性応答性能を予測することを特徴とする弾性応答性能予測方法。
In the elastic response performance prediction method for predicting the elastic response performance showing the deformation and fracture behavior of rubber products using the finite element analysis method,
The elasticity of the rubber product is expressed using a constitutive equation that expresses the temperature and strain dependence of the elastic modulus of the rubber material constituting the rubber product and applies the inverse Langevin function with the number of segment links between statistical crosslinks as a variable. An elastic response performance prediction method characterized by predicting response performance.
前記構成方程式が、非線形方程式であることを特徴とする請求項1記載の弾性応答性能予測方法。   The elastic response performance prediction method according to claim 1, wherein the constitutive equation is a nonlinear equation. 前記構成方程式は、下記に示す数式である請求項1又は2記載の弾性応答性能予測方法。
Figure 2007272416
ただし、Gは弾性率、Rは気体定数、Nは網目数係数、кはエネルギー弾性に寄与する分子間凝集エネルギー、Tは絶対温度、ΔTはゴム高分子のガラス転移温度Tgからの差分、Sはゴム変形時のエントロピー変化、I1は歪の不変量の各々を表し、∂S/∂I1は下記に示す数式である。
Figure 2007272416
ただし、λは伸張比又は圧縮比、C1はρRT/Mcに関係する定数、ρは密度、Mcはゴムの網目点間平均分子量、gは逆ランジュバン関数、nは前記統計的架橋点間セグメントリンク数の各々を表す。
The elastic response performance prediction method according to claim 1, wherein the constitutive equation is a mathematical expression shown below.
Figure 2007272416
Where G is the elastic modulus, R is the gas constant, N is the network coefficient, к is the intermolecular cohesive energy that contributes to energy elasticity, T is the absolute temperature, ΔT is the difference from the glass transition temperature Tg of the rubber polymer, S Represents entropy change at the time of rubber deformation, I 1 represents each invariant of strain, and ∂S / ∂I 1 is a mathematical expression shown below.
Figure 2007272416
Where λ is an expansion ratio or compression ratio, C 1 is a constant related to ρRT / Mc, ρ is a density, Mc is an average molecular weight between rubber mesh points, g is an inverse Langevin function, and n is a segment between the statistical cross-linking points. Represents each number of links.
前記統計的架橋点間セグメントリンク数nは、下記に示す数式である請求項3記載の弾性応答性能予測方法。
Figure 2007272416
ただし、αは統計的セグメント運動の頻度因子、εは統計的セグメント運動の活性化エネルギーの各々を表す。
The elastic response performance prediction method according to claim 3, wherein the statistical link point n between cross-linking points is a mathematical expression shown below.
Figure 2007272416
However, (alpha) represents the frequency factor of statistical segment motion, and (epsilon) represents each of the activation energy of statistical segment motion.
前記逆ランジュバン関数g(λ、n)が、下記に示す数式であることを特徴とする請求項3又は4記載の弾性応答性能予測方法。
Figure 2007272416
5. The elastic response performance prediction method according to claim 3, wherein the inverse Langevin function g (λ, n) is a mathematical expression shown below.
Figure 2007272416
前記構成方程式を、下記に示す数式で表される応力と歪との関係式に適用して得られる構成方程式を用いてゴム製品の弾性応答性能を予測することを特徴とする請求項1〜請求項5の何れか1項記載の弾性応答性能予測方法。
Figure 2007272416
Figure 2007272416
ただし、σは引張り又は圧縮応力、τはせん断応力、γはせん断歪の各々を表す。
The elastic response performance of a rubber product is predicted using a constitutive equation obtained by applying the constitutive equation to a relational expression between stress and strain represented by the following mathematical formulas: 6. The elastic response performance prediction method according to any one of items 5.
Figure 2007272416
Figure 2007272416
Where σ represents tensile or compressive stress, τ represents shear stress, and γ represents shear strain.
請求項1〜6の何れか1項記載の弾性応答性能予測方法を使用してゴム製品を設計することを特徴とするゴム製品設計方法。   A rubber product design method, wherein a rubber product is designed using the elastic response performance prediction method according to claim 1. 有限要素解析法を用いてゴム製品の変形及び破壊挙動を示す弾性応答性能を予測する弾性応答性能予測装置において、
前記ゴム製品を構成するゴム材料の弾性率の温度及び歪依存性を表し、かつ、統計的架橋点間セグメントリンク数を変数とする逆ランジュバン関数を適用した構成方程式を用いて該ゴム製品の弾性応答性能を予測する弾性応答性能予測装置。
In the elastic response performance prediction device that predicts the elastic response performance that shows the deformation and fracture behavior of rubber products using the finite element analysis method,
The elasticity of the rubber product is expressed using a constitutive equation that expresses the temperature and strain dependence of the elastic modulus of the rubber material constituting the rubber product and applies the inverse Langevin function with the number of segment links between statistical crosslinks as a variable. Elastic response performance prediction device that predicts response performance.
JP2006095328A 2006-03-30 2006-03-30 Method for predicting elastic responsiveness of rubber product, design method and elastic responsiveness prediction device Pending JP2007272416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006095328A JP2007272416A (en) 2006-03-30 2006-03-30 Method for predicting elastic responsiveness of rubber product, design method and elastic responsiveness prediction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006095328A JP2007272416A (en) 2006-03-30 2006-03-30 Method for predicting elastic responsiveness of rubber product, design method and elastic responsiveness prediction device

Publications (1)

Publication Number Publication Date
JP2007272416A true JP2007272416A (en) 2007-10-18

Family

ID=38675177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006095328A Pending JP2007272416A (en) 2006-03-30 2006-03-30 Method for predicting elastic responsiveness of rubber product, design method and elastic responsiveness prediction device

Country Status (1)

Country Link
JP (1) JP2007272416A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090295A1 (en) * 2009-02-03 2010-08-12 株式会社ブリヂストン Device for predicting rubber material deformation behavior and method for predicting rubber material deformation behavior
WO2010090294A1 (en) * 2009-02-06 2010-08-12 株式会社ブリヂストン Device and method for predicting deformation behavior of rubber materials
JP2011069781A (en) * 2009-09-28 2011-04-07 Bridgestone Corp Deformation behavior predicting method of rubber material, and device used therefor
WO2012046739A1 (en) * 2010-10-05 2012-04-12 株式会社ブリヂストン Method for predicting elastic response performance of rubber product, method for design, and device for predicting elastic response performance
CN103175735A (en) * 2012-12-06 2013-06-26 西南交通大学 Material tensile real constitutive curve testing technology
KR101532166B1 (en) * 2014-02-05 2015-06-26 목포대학교산학협력단 Method for analyzing compress strength of reinforced polyurethane foam using finite element method
CN108960493A (en) * 2018-06-22 2018-12-07 中材科技股份有限公司 The prediction model of glass material performance is established and prediction technique, device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102308195A (en) * 2009-02-03 2012-01-04 株式会社普利司通 Device for predicting deformation behavior of rubber material and method for predicting deformation behavior of rubber material
WO2010090295A1 (en) * 2009-02-03 2010-08-12 株式会社ブリヂストン Device for predicting rubber material deformation behavior and method for predicting rubber material deformation behavior
US9002687B2 (en) 2009-02-03 2015-04-07 Bridgestone Corporation Device for predicting deformation behavior of rubber material and method for predicting deformation behavior of rubber material
JP2010181194A (en) * 2009-02-03 2010-08-19 Bridgestone Corp Device and method for estimating deformation behavior of rubber material
JP4603082B2 (en) * 2009-02-03 2010-12-22 株式会社ブリヂストン Rubber material deformation behavior prediction apparatus and rubber material deformation behavior prediction method
WO2010090294A1 (en) * 2009-02-06 2010-08-12 株式会社ブリヂストン Device and method for predicting deformation behavior of rubber materials
JP2010181342A (en) * 2009-02-06 2010-08-19 Bridgestone Corp Device and method for estimating deformation behavior of rubber material
JP2011069781A (en) * 2009-09-28 2011-04-07 Bridgestone Corp Deformation behavior predicting method of rubber material, and device used therefor
WO2012046739A1 (en) * 2010-10-05 2012-04-12 株式会社ブリヂストン Method for predicting elastic response performance of rubber product, method for design, and device for predicting elastic response performance
CN103154702A (en) * 2010-10-05 2013-06-12 株式会社普利司通 Method for predicting elastic response performance of rubber product, method for design, and device for predicting elastic response performance
JP2012078295A (en) * 2010-10-05 2012-04-19 Bridgestone Corp Method for predicting elastic response performance of rubber product, design method and elastic response performance prediction device
CN103175735A (en) * 2012-12-06 2013-06-26 西南交通大学 Material tensile real constitutive curve testing technology
KR101532166B1 (en) * 2014-02-05 2015-06-26 목포대학교산학협력단 Method for analyzing compress strength of reinforced polyurethane foam using finite element method
CN108960493A (en) * 2018-06-22 2018-12-07 中材科技股份有限公司 The prediction model of glass material performance is established and prediction technique, device

Similar Documents

Publication Publication Date Title
Krairi et al. A thermodynamically-based constitutive model for thermoplastic polymers coupling viscoelasticity, viscoplasticity and ductile damage
US10977398B2 (en) Systems and methods for determining properties of composite materials for predicting behaviour of structures
JP2007272416A (en) Method for predicting elastic responsiveness of rubber product, design method and elastic responsiveness prediction device
Lion Thixotropic behaviour of rubber under dynamic loading histories: experiments and theory
JP5474726B2 (en) Elastic response performance prediction method, design method, and elastic response performance prediction apparatus for rubber products
JP4581758B2 (en) Evaluation method of composite material of rubber and resin
WO2013042600A1 (en) Stress-strain relation simulation method, stress-strain relation simulation system, and stress-strain relation simulation program which use chaboche model
JP4299735B2 (en) Method for predicting and designing elastic response performance of rubber products
WO2014003184A1 (en) Program for outputting stress-strain curve equations and device for the same, evaluation method for physical properties of elastic materials, and design method for elastic materials
JP2007265266A (en) Viscoelastic response performance prediction method, rubber product design method, and viscoelastic response performance prediction device
Meng et al. A combined modeling and experimental study of tensile properties of additively manufactured polymeric composite materials
Behnke et al. The extended non-affine tube model for crosslinked polymer networks: physical basics, implementation, and application to thermomechanical finite element analyses
Laurent et al. Experimental and numerical study on the temperature-dependent behavior of a fluoro-elastomer
JP5623859B2 (en) Elastic response performance prediction method, design method, and elastic response performance prediction apparatus for rubber products
Jobst et al. Experimental and simulative characterization for material and lifetime modelling of a silicone adhesive
Jin et al. Bounded elastic potentials for rubberlike materials with strain‐stiffening effects
JP2010008396A (en) Coefficient calculator, coefficient calculation method, and coefficient calculation program
Goyal et al. Effect of notch on low cycle fatigue behaviour of 316 LN stainless steel
Akano et al. Fatigue failure model for polymeric compliant systems
Ayoub et al. Micromechanical modeling of the effects of crystal content on the visco-hyperelastic-viscoplastic behavior and fracture of semi-crystalline polymers
Mai et al. Experimental Analysis of Fast Crack Growth in Elastomers
Zheng et al. Implementation of a viscoelastic material model to simulate relaxation in glass transition
JP4299733B2 (en) Viscoelastic response performance prediction method
Wineman Dynamic inflation of elastomeric spherical membranes undergoing time dependent chemorheological changes in microstructure
Schichtel Fundamental Investigations into the Properties and Performance of Advanced Materials