JP2010008305A - Strain inspection device of glass bottle - Google Patents

Strain inspection device of glass bottle Download PDF

Info

Publication number
JP2010008305A
JP2010008305A JP2008169888A JP2008169888A JP2010008305A JP 2010008305 A JP2010008305 A JP 2010008305A JP 2008169888 A JP2008169888 A JP 2008169888A JP 2008169888 A JP2008169888 A JP 2008169888A JP 2010008305 A JP2010008305 A JP 2010008305A
Authority
JP
Japan
Prior art keywords
bottle
polarizing plate
light
glass bottle
line sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008169888A
Other languages
Japanese (ja)
Other versions
JP4886741B2 (en
Inventor
Kanako Matsuzawa
佳奈子 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Glass Co Ltd
Original Assignee
Toyo Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Glass Co Ltd filed Critical Toyo Glass Co Ltd
Priority to JP2008169888A priority Critical patent/JP4886741B2/en
Publication of JP2010008305A publication Critical patent/JP2010008305A/en
Application granted granted Critical
Publication of JP4886741B2 publication Critical patent/JP4886741B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate and automate the inspection of the permanent strain of a glass bottle caused by the insufficiency of a slow cooling process. <P>SOLUTION: The problem is solved by the following process: Polarizing plates are respectively provided under the bottom part of the glass bottle and above the mouth part of the glass bottle in opposed relationship so that the directions x and y of the polarizing surfaces of them cross each other at a right angle and a light source is provided on the side opposite to the bottle of one polarizing plate while a line sensor camera is provided on the side opposite to the bottle of the other polarizing plate. The bottom part of the rotating bottle is irradiated with light from the light source while the light transmitted through one polarizing plate, the bottom part of the bottle and the other polarizing plate is detected by the line sensor camera and the strain of the bottle is inspected on the basis of the detection quantity of light. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、徐冷工程が不十分であることに起因し、成形後のガラスびんのガラス内に残る永久歪み(残留応力)を自動的に検査するのに適したガラスびんの歪み検査装置に関する。   The present invention relates to a glass bottle distortion inspection apparatus suitable for automatically inspecting permanent distortion (residual stress) remaining in a glass of a glass bottle after molding due to an insufficient slow cooling process. .

ガラスびんの傷や歪みを検査する方法として、直交ニコル法、セナルモン法などが知られている。
直交ニコル法は、下記特許文献1〜3に示されるように、偏波面の方向x、yが直交するように対面して設けた2枚の偏光板の間にあるガラスびんに対して、一方の偏光板の外側から光を照射し、他方の偏光板の外側にある受光素子で受光し、その電圧の変化により傷や歪みなどの瑕疵を検査するものである。瑕疵がない場合、びんを通過する光に乱れはなく偏波面が直交する偏光板の作用により受光素子に光はほとんど到達しないが、瑕疵がある場合は光が散乱したり偏波方向が変わったりするので、受光素子に光が到達し、瑕疵の存在を知ることができる。
この方法は、検査の自動化には向いているが、種々の要因により、受光素子が出力する電圧と瑕疵の物理量(例えば内部応力)の相関が必ずしも良好でなく、定量測定には不向きであるとされていた。したがって、正常値と異常値の格差が非常に大きい場合には、閾値を正常値よりも相当に大きく設定し、異常値を大雑把に検出する簡便な検査方法として用いられていた。
Known methods for inspecting glass bottles for scratches and distortion include the crossed Nicols method and the Senarmont method.
In the crossed Nicols method, as shown in the following Patent Documents 1 to 3, one polarization is applied to a glass bottle between two polarizing plates provided so that the directions x and y of the polarization planes are orthogonal to each other. Light is irradiated from the outside of the plate, light is received by a light receiving element outside the other polarizing plate, and wrinkles such as scratches and distortion are inspected by a change in the voltage. If there is no wrinkle, the light passing through the bottle is not disturbed, and the light beam hardly reaches the light receiving element due to the action of the polarizing plate whose polarization plane is orthogonal, but if there is a wrinkle, the light is scattered or the polarization direction is changed. As a result, the light reaches the light receiving element and the presence of soot can be known.
This method is suitable for inspection automation, but due to various factors, the correlation between the voltage output from the light receiving element and the physical quantity of the soot (for example, internal stress) is not necessarily good, and is not suitable for quantitative measurement. It had been. Therefore, when the difference between the normal value and the abnormal value is very large, the threshold value is set to be considerably larger than the normal value, and this is used as a simple inspection method for roughly detecting the abnormal value.

セナルモン法は、歪みの定量測定を行うための検査法である。アナライザーの角度スケールを0度に合わせ、視野全体が暗く黒色に見えるところに観察物を入れ回転させながら歪みを定量したい部分が最も明るく見える位置を探し固定する。次に、アナライザー回転フレームをゆっくり回転させ最も暗くなった位置で角度を読み取る。その回転角度を計算式に当てはめ歪み量を求めるものである。
したがって、この方法は測定者が操作する必要があり、測定者によって個人差が出る可能性があり、検査の自動化にも不向きである。
特開昭49−29879号公報 特開昭49−51995号公報 実開昭54−124592号公報
The Senalmon method is an inspection method for performing quantitative measurement of strain. The angle scale of the analyzer is adjusted to 0 degree, and an observation object is put in a place where the entire visual field appears dark and black, and the position where distortion is to be quantified is searched and fixed while rotating. Next, the analyzer rotation frame is slowly rotated to read the angle at the darkest position. The amount of distortion is obtained by applying the rotation angle to a calculation formula.
Therefore, this method needs to be operated by the measurer, and there may be individual differences depending on the measurer, and is not suitable for automation of the inspection.
JP 49-29879 A JP 49-51995 A Japanese Utility Model Publication No. 54-124592

本発明は、徐冷工程が不十分であることに起因する永久歪みの検査等において、直交ニコル法を用いたガラスびんの歪み検査装置でありながら、受光素子が出力する電圧と歪み量(内部応力)の間の相関をよくし、閾値を適正に設定して正確な検査を可能とすることを課題とするものである。   The present invention is a glass bottle distortion inspection apparatus using the crossed Nicols method for inspecting permanent distortion caused by an insufficient slow cooling process. It is an object of the present invention to improve the correlation between (stress) and to set an appropriate threshold to enable accurate inspection.

〔請求項1〕
本発明は、ガラスびん底部下側と口部上方に、偏波面の方向x、yが直交するように偏光板を対面して設け、一方の偏光板の前記びんと反対側に光源を、他方の偏光板の前記びんと反対側にラインセンサカメラを設け、前記光源から回転するびん底部に対して光を照射し、前記一方の偏光板、びん底部及び他方の偏光板を透過した光をラインセンサカメラで受光し、その受光量によりびんの歪みを検査する検査装置であって、
前記ラインセンサカメラの受光素子列の方向が前記びんの半径方向を向き、かつ前記偏波面の方向x、yに対して傾いていることを特徴とするガラスびん歪み検査装置である。
[Claim 1]
The present invention provides a polarizing plate on the lower side of the bottom of the glass bottle and the upper side of the mouth so that the polarization plane directions x and y are orthogonal to each other, and a light source is provided on the opposite side of the one polarizing plate to the bottle. A line sensor camera is provided on the side of the polarizing plate opposite to the bottle to irradiate light to the bottom of the rotating bottle from the light source, and the light transmitted through the one polarizing plate, the bottom of the bottle, and the other polarizing plate is lined. An inspection device that receives light with a sensor camera and inspects bottle distortion based on the amount of light received,
The glass bottle distortion inspection apparatus is characterized in that a direction of a light receiving element array of the line sensor camera is directed in a radial direction of the bottle and is inclined with respect to directions x and y of the polarization plane.

〔請求項2〕
また本発明は、前記ラインセンサカメラの受光素子列の方向が、前記偏波面の方向x及びyと45°傾いている直線Lに一致しているか、該直線Lに対して30°以内の傾きである請求項1のガラスびん歪み検査装置である。
[Claim 2]
Further, according to the present invention, the direction of the light receiving element array of the line sensor camera is coincident with a straight line L inclined by 45 ° with respect to the directions x and y of the polarization plane, or inclined within 30 ° with respect to the straight line L. The glass bottle distortion inspection apparatus according to claim 1.

ガラスびんの強度に影響を与えるような大きな永久歪み(不十分な徐冷工程に起因するもの)はびん底部に発生するので、本発明ではびん底部の歪みを検査する。
直交ニコル法でガラスびん底部を検査する場合、図2、3に示すように、偏光板の偏波面の方向xyと同じ方向に、十字形の暗い部分12(斜線部分)が生じる。これは、偏光がびん底面のある部分を透過するとき、偏波面がびんの当該部分の直径方向であると、大きな歪みがあっても、その偏波面の方向が変化しにくいためであると考えられる。
図2に示すように、偏光板の偏波面の方向xyとラインセンサカメラの受光素子列を同じ方向にすると、ラインセンサカメラで暗い部分12を測定することとなり、正確な測定ができず、ラインセンサカメラが出力する電圧と歪み量(内部応力)の間の相関が悪くなる。
Since a large permanent strain (caused by an insufficient slow cooling process) that affects the strength of the glass bottle is generated at the bottom of the bottle, the present invention examines the strain at the bottom of the bottle.
When the bottom of the glass bottle is inspected by the crossed Nicols method, as shown in FIGS. 2 and 3, a cross-shaped dark portion 12 (shaded portion) is generated in the same direction as the polarization plane direction xy of the polarizing plate. This is because when the polarized light is transmitted through the part with the bottom of the bottle, if the plane of polarization is in the diameter direction of the part of the bottle, the direction of the plane of polarization hardly changes even if there is a large distortion. It is done.
As shown in FIG. 2, when the direction xy of the polarization plane of the polarizing plate and the light receiving element array of the line sensor camera are set in the same direction, the dark portion 12 is measured by the line sensor camera, and accurate measurement cannot be performed. The correlation between the voltage output from the sensor camera and the amount of distortion (internal stress) becomes worse.

図3に示すように、偏光板の偏波面の方向xyとラインセンサの受光素子列を傾けることで、ラインセンサカメラが出力する電圧と歪み量(内部応力)の間の相関がよくなる。
ラインセンサカメラの受光素子列を、前記偏波面の方向x及びyと45°傾いている直線Lに一致するようにするのが最も好ましいが、直線Lに対して30°以内の傾きであれば、重要なびん底部外周付近を正確に検査できる。30度を超えると、重要なびん底部外周付近が暗い部分12に係ってしまう可能性があるので好ましくない。
As shown in FIG. 3, by inclining the direction xy of the polarization plane of the polarizing plate and the light receiving element array of the line sensor, the correlation between the voltage output from the line sensor camera and the amount of distortion (internal stress) is improved.
Most preferably, the light-receiving element array of the line sensor camera coincides with the straight line L inclined by 45 ° with respect to the directions x and y of the plane of polarization. It is possible to accurately inspect the vicinity of the important bottle bottom. If it exceeds 30 degrees, there is a possibility that the vicinity of the outer periphery of the important bottle bottom may be related to the dark portion 12, which is not preferable.

ガラスびんの徐冷に伴って発生する歪みには永久歪み(残留応力)と、一時的な歪み(熱応力)があり、徐冷炉下流のまだ冷えていない状態のガラスびんには残留応力と熱応力の双方があるが、室温に冷えた状態では残留応力だけが残る。
ガラスびんの徐冷工程における歪みの大きさをシミュレートした結果、永久歪み(残留応力)のピークはびん底内面の外周部分(内面裾コーナー部4付近)に発生し、中央部分の永久歪みは非常に小さいことがわかった。
図3において、びん底面の中央部分12が暗い部分となっているが、前記のように中央部分の永久歪みは非常に小さいので、歪み検査には支障がない。
There are permanent strains (residual stress) and temporary strains (thermal stress) as the glass bottles are slowly cooled. Residual stresses and thermal stresses are not yet cooled in the downstream of the slow cooling furnace. However, only the residual stress remains when cooled to room temperature.
As a result of simulating the magnitude of strain in the slow cooling process of the glass bottle, the peak of permanent distortion (residual stress) occurs in the outer peripheral part of the inner surface of the bottle bottom (near the inner hem corner part 4), and the permanent distortion in the central part is I found it very small.
In FIG. 3, the central portion 12 on the bottom surface of the bottle is a dark portion. However, as described above, since the permanent distortion at the central portion is very small, there is no hindrance to the distortion inspection.

本発明のガラスびん歪み検査装置は、直交ニコル法を用いているので、自動化が容易である。また、受光素子が出力する電圧と歪み量(内部応力)の間の相関が良いので、閾値を適正に設定して正確な検査が可能となる。   Since the glass bottle distortion inspection apparatus of the present invention uses the orthogonal Nicol method, it is easy to automate. In addition, since there is a good correlation between the voltage output from the light receiving element and the amount of distortion (internal stress), it is possible to accurately inspect by setting the threshold value appropriately.

以下、実施例に関する図面に基づいて、本発明を詳細に説明する。図1は実施例のガラスびん歪み検査装置の側面図、図2、図3は偏光板9の上方からガラスびんを見た状態の模式図、図4は実施例の検査装置測定結果とセナルモン法測定結果の関係図である。   Hereinafter, the present invention will be described in detail with reference to the drawings relating to the embodiments. 1 is a side view of the glass bottle distortion inspection apparatus of the embodiment, FIGS. 2 and 3 are schematic views of the glass bottle viewed from above the polarizing plate 9, and FIG. 4 is a measurement result of the inspection apparatus of the embodiment and the Senarmon method. It is a related figure of a measurement result.

図1に示すガラスびん歪み検査装置は、支持台5、回転駆動ローラ6、光源(面光源)7、偏光板8、9、及びラインセンサカメラ10から成る。
徐冷炉出口からコンベア(図示せず)により移動してきたガラスびん1は、支持台5に取り込まれて回転可能に支持され、回転駆動ローラ6により回転する。このような支持台や回転駆動ローラは周知のものである。ガラスびん底部2の下側には偏光板8が、その下側(ガラスびんと反対側)には面光源7が設けられ、ガラスびん口部3の上方には偏光板9を取り付けたラインセンサカメラ10が設けられている。したがって、ラインセンサカメラ10は、偏光板9のびんと反対側に位置する。偏光板8、9の偏波面の方向x、yは直交している。光源7から回転するびん底部2に対して光を照射し、偏光板8、びん底部2及び偏光板9を透過した光をラインセンサカメラ10で受光し、その受光量によりびんの歪みを検査する。
The glass bottle distortion inspection apparatus shown in FIG. 1 includes a support 5, a rotation driving roller 6, a light source (surface light source) 7, polarizing plates 8 and 9, and a line sensor camera 10.
The glass bottle 1 that has moved from the outlet of the slow cooling furnace by a conveyor (not shown) is taken into the support base 5 and is rotatably supported, and is rotated by the rotation driving roller 6. Such a support base and a rotation driving roller are well known. A line sensor in which a polarizing plate 8 is provided on the lower side of the glass bottle bottom 2, a surface light source 7 is provided on the lower side (the side opposite to the glass bottle), and a polarizing plate 9 is attached above the glass bottle opening 3. A camera 10 is provided. Therefore, the line sensor camera 10 is located on the side opposite to the bottle of the polarizing plate 9. The directions x and y of the polarization planes of the polarizing plates 8 and 9 are orthogonal to each other. The bottle bottom 2 rotating from the light source 7 is irradiated with light, the light transmitted through the polarizing plate 8, the bottle bottom 2 and the polarizing plate 9 is received by the line sensor camera 10, and the distortion of the bottle is inspected by the amount of the received light. .

図3に示すように、ラインセンサカメラ10の受光素子の列の方向Sは、偏光板8、9の偏波面の方向x及びyと45°傾いている直線Lの方向に一致している。図3中符号11はラインセンサカメラ10の受光素子が受光する領域(カメラ受光領域)である。また符号12は前記の暗い部分である。カメラ受光領域11は、(特に重要なびん底部外周付近が)暗い部分11に係らないので、正確な検査が可能となる。   As shown in FIG. 3, the direction S of the light receiving elements in the line sensor camera 10 coincides with the direction of the straight line L inclined 45 ° with respect to the directions x and y of the polarization planes of the polarizing plates 8 and 9. Reference numeral 11 in FIG. 3 denotes an area (camera light receiving area) where the light receiving element of the line sensor camera 10 receives light. Reference numeral 12 denotes the dark portion. Since the camera light receiving area 11 is not related to the dark part 11 (particularly near the outer periphery of the bottle bottom, which is important), an accurate inspection can be performed.

ラインセンサカメラ10は、ガラスびん1が少なくとも1回転する間光を受光し、その結果をコンピュータなどの制御装置や記録装置(図示せず)に送信し、制御装置は予め設定された閾値に基づいて合否判定を行い、不良品と判定した場合は周知の排除装置(図示せず)に排除信号を送り、排除装置は不良品をラインから排除する。このような判定手段及び排除手段は周知である。   The line sensor camera 10 receives light while the glass bottle 1 rotates at least once, and transmits the result to a control device such as a computer or a recording device (not shown). The control device is based on a preset threshold value. If it is determined that the product is defective, a rejection signal is sent to a well-known rejection device (not shown), and the rejection device excludes the defective product from the line. Such determination means and exclusion means are well known.

図4は、8本の常温に冷えたガラスびん(梅酒などの果実酒を熟成・保存するびん、以下同じ)について、実施例の装置(直交ニコル法)と、セナルモン法の双方で測定を行い、その結果をグラフに表したものである。同図において、直交ニコル法の測定結果は透過光量を表している。
セナルモン法の測定結果の単位「nm」は、複屈折の大きさ(位相差)で、応力に比例するものである(光弾性)。
この結果、本実施例装置とセナルモン法の測定値の相関係数は0.984で、非常によい相関関係にあり、その測定結果の差は測定誤差程度であるので、本実施例装置は定量測定が可能であることが実証された。
Figure 4 shows the measurement of eight glass bottles cooled to room temperature (bottles for ripening and storing fruit wine such as plum wine, the same shall apply hereinafter) using both the apparatus of the example (orthogonal Nicol method) and the Senarmon method. The result is shown in a graph. In the figure, the measurement result of the orthogonal Nicol method represents the amount of transmitted light.
The unit “nm” of the measurement result of the Senalmon method is the magnitude of birefringence (phase difference) and is proportional to the stress (photoelasticity).
As a result, the correlation coefficient between the measured value of the apparatus of this example and the Senalmon method is 0.984, which is a very good correlation, and the difference between the measurement results is about the measurement error. It was proved that measurement was possible.

ラインセンサカメラの受光素子の出力信号はコンピュータなどの制御装置に送られ、合否判定が行われる。
合否判定のための閾値は、求める品質が保証されるように、適宜に設定すればよいが、例えば、次のように設定することができる。
(1)残留応力のピーク位置における歪みに問題のないびん(良品)を用意し、そのピーク位置における受光素子の出力がAである場合、A+αを閾値1とし、これを越える出力を検出した受光素子を異常検出素子とする。
(2)異常検出素子数の閾値2を適宜に設定し、異常検出素子の数が閾値2を越えた場合、不良品と判定する。
例えば、出力Aが120(/256)の場合、140(/256)を閾値1に設定し、閾値2を500に設定すれば、検査中(少なくともびんが1回転する間)に140(/256)を越える数値を出力した受光素子の数が500を越えた場合に不良品と判定される。
The output signal of the light receiving element of the line sensor camera is sent to a control device such as a computer, and pass / fail judgment is performed.
The threshold value for the pass / fail determination may be set as appropriate so as to ensure the required quality, but can be set as follows, for example.
(1) When a bottle (non-defective product) that does not cause distortion at the peak position of the residual stress is prepared, and the output of the light receiving element at the peak position is A, A + α is set as the threshold value 1, and the light received by detecting the output exceeding this The element is an abnormality detection element.
(2) The threshold value 2 for the number of abnormality detection elements is set appropriately, and if the number of abnormality detection elements exceeds the threshold value 2, it is determined as a defective product.
For example, when the output A is 120 (/ 256), if 140 (/ 256) is set to the threshold value 1 and the threshold value 2 is set to 500, 140 (/ 256) during the inspection (at least during one rotation of the bottle). ) When the number of light receiving elements that output a numerical value exceeding 500 exceeds 500, it is determined as a defective product.

実施例のガラスびん歪み検査装置の側面図である。It is a side view of the glass bottle distortion inspection apparatus of an Example. 偏光板9の上方からガラスびんを見た状態の模式図である。It is a schematic diagram of the state which looked at the glass bottle from the upper direction of the polarizing plate. 偏光板9の上方からガラスびんを見た状態の模式図である。It is a schematic diagram of the state which looked at the glass bottle from the upper direction of the polarizing plate. 実施例の検査装置測定結果とセナルモン法測定結果の関係図である。It is a related figure of the test | inspection apparatus measurement result of an Example, and a Senalmon method measurement result.

符号の説明Explanation of symbols

1 ガラスびん
2 底部
3 口部
4 内面裾コーナー部
5 支持台
6 回転駆動ローラ
7 光源
8 偏光板
9 偏光板
10 ラインセンサカメラ
11 カメラ受光領域
12 暗い部分
DESCRIPTION OF SYMBOLS 1 Glass bottle 2 Bottom part 3 Mouth part 4 Inner hem corner part 5 Support stand 6 Rotation drive roller 7 Light source 8 Polarizing plate 9 Polarizing plate 10 Line sensor camera 11 Camera light-receiving area 12 Dark part

Claims (2)

ガラスびん底部下側と口部上方に、偏波面の方向x、yが直交するように偏光板を対面して設け、一方の偏光板の前記びんと反対側に光源を、他方の偏光板の前記びんと反対側にラインセンサカメラを設け、前記光源から回転するびん底部に対して光を照射し、前記一方の偏光板、びん底部及び他方の偏光板を透過した光をラインセンサカメラで受光し、その受光量によりびんの歪みを検査する検査装置であって、
前記ラインセンサカメラの受光素子列の方向が前記びんの半径方向を向き、かつ前記偏波面の方向x、yに対して傾いていることを特徴とするガラスびん歪み検査装置。
A polarizing plate is provided on the lower side of the bottom of the glass bottle and the upper side of the mouth so that the polarization plane directions x and y are orthogonal to each other, a light source is provided on the opposite side of the one polarizing plate to the bottle, and the other polarizing plate is provided. A line sensor camera is provided on the opposite side of the bottle, and the bottom of the bottle rotating from the light source is irradiated with light, and the light transmitted through the one polarizing plate, the bottom of the bottle, and the other polarizing plate is received by the line sensor camera. And an inspection device for inspecting bottle distortion based on the amount of received light,
A glass bottle distortion inspection apparatus, wherein a direction of a light receiving element array of the line sensor camera faces a radial direction of the bottle and is inclined with respect to directions x and y of the polarization plane.
前記ラインセンサカメラの受光素子列の方向が、前記偏波面の方向x及びyと45°傾いている直線Lに一致しているか、該直線Lに対して30°以内の傾きである請求項1のガラスびん歪み検査装置。   2. The direction of the light receiving element array of the line sensor camera coincides with a straight line L inclined by 45 ° with respect to the directions x and y of the polarization plane, or is inclined within 30 ° with respect to the straight line L. Glass bottle distortion inspection equipment.
JP2008169888A 2008-06-30 2008-06-30 Glass bottle distortion inspection equipment Active JP4886741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008169888A JP4886741B2 (en) 2008-06-30 2008-06-30 Glass bottle distortion inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008169888A JP4886741B2 (en) 2008-06-30 2008-06-30 Glass bottle distortion inspection equipment

Publications (2)

Publication Number Publication Date
JP2010008305A true JP2010008305A (en) 2010-01-14
JP4886741B2 JP4886741B2 (en) 2012-02-29

Family

ID=41588985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008169888A Active JP4886741B2 (en) 2008-06-30 2008-06-30 Glass bottle distortion inspection equipment

Country Status (1)

Country Link
JP (1) JP4886741B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103163153A (en) * 2013-03-28 2013-06-19 重庆绿色智能技术研究院 Automatic light examining machine
JP2014041080A (en) * 2012-08-23 2014-03-06 Photoscience Japan Corp Device and method for detecting deterioration of glass container exposed to ultraviolet light

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109085120B (en) * 2018-06-20 2020-12-29 北京大恒图像视觉有限公司 Full-automatic detection machine for cylinder or cylinder-like container

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244222A (en) * 1988-08-04 1990-02-14 Nissan Motor Co Ltd Photoelasticity measuring apparatus
JPH04157344A (en) * 1990-10-19 1992-05-29 Nippon Sheet Glass Co Ltd Apparatus for automatically measuring glass distortion
JPH06241919A (en) * 1993-02-18 1994-09-02 Mitsui Petrochem Ind Ltd Method and device for measuring residual stress and strain in bottle
JP2002513463A (en) * 1996-06-04 2002-05-08 イネックス・インコーポレイテッド・ドゥーイング・ビジネス・アズ・イネックス・ビジョン・システムズ・インコーポレイテッド System and method for detecting stress in a molded container

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244222A (en) * 1988-08-04 1990-02-14 Nissan Motor Co Ltd Photoelasticity measuring apparatus
JPH04157344A (en) * 1990-10-19 1992-05-29 Nippon Sheet Glass Co Ltd Apparatus for automatically measuring glass distortion
JPH06241919A (en) * 1993-02-18 1994-09-02 Mitsui Petrochem Ind Ltd Method and device for measuring residual stress and strain in bottle
JP2002513463A (en) * 1996-06-04 2002-05-08 イネックス・インコーポレイテッド・ドゥーイング・ビジネス・アズ・イネックス・ビジョン・システムズ・インコーポレイテッド System and method for detecting stress in a molded container

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041080A (en) * 2012-08-23 2014-03-06 Photoscience Japan Corp Device and method for detecting deterioration of glass container exposed to ultraviolet light
CN103163153A (en) * 2013-03-28 2013-06-19 重庆绿色智能技术研究院 Automatic light examining machine

Also Published As

Publication number Publication date
JP4886741B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
US10776660B2 (en) Method and apparatus for contrast enhanced photography of wind turbine blades
CN103698393A (en) Magneto-optical imaging nondestructive detection method of weld defects
US8978485B2 (en) Apparatus and method for inspecting rubbing-cloth
CN204495772U (en) Face of weld and sub-surperficial tiny flaw magneto-optic imaging non-destructive pick-up unit
US20150069247A1 (en) Method and system for real time inspection of a silicon wafer
JP4886741B2 (en) Glass bottle distortion inspection equipment
CN103424363B (en) Non-rotating optically-active solution measuring instrument and adopt this measuring instrument to measure the method for optically-active solution specific rotation
WO2017032000A1 (en) Apparatus and method for detecting hot-melt welder temperature of polyethylene pressure pipe
CN109085239A (en) A kind of wheel shaft comprehensive diagnos platform
JPH08271433A (en) Tablet inspection equipment
CN101464255B (en) Quantitative stress-strain polarimetry machine
CN111610198A (en) Defect detection device and method thereof
CN106645289A (en) Nondestructive detection system and method based on infrared magneto-optic imaging
CN206772898U (en) A kind of magneto-optic imaging non-destructive detection means
JP2007292563A (en) Testing apparatus and testing method
CN206756429U (en) LCD and LCM automatic optical detection device
JPH0821709A (en) Measuring device for surface shape
TWI413765B (en) Object characteristic measurement method and system
CN204855396U (en) Small -size roll surface inspection device
KR101936367B1 (en) A fatigue degree inspection apparatus and an inspection method thereof using an electromagnetic induction sensor
KR20130002622A (en) System for measuring defect and method therefor
CN205719542U (en) A kind of vibration detection formula bearing testers
CN109507281A (en) For roll eddy current and the sensitivity correction method of surface wave joint flaw detection
CN209639665U (en) A kind of tooling examined for frame size
JP2004337993A (en) Polishing tool pressure distribution measuring method and polishing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4886741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350