JP2010008258A - Strength evaluation method of wood and repair diagnosing method of structure - Google Patents

Strength evaluation method of wood and repair diagnosing method of structure Download PDF

Info

Publication number
JP2010008258A
JP2010008258A JP2008168618A JP2008168618A JP2010008258A JP 2010008258 A JP2010008258 A JP 2010008258A JP 2008168618 A JP2008168618 A JP 2008168618A JP 2008168618 A JP2008168618 A JP 2008168618A JP 2010008258 A JP2010008258 A JP 2010008258A
Authority
JP
Japan
Prior art keywords
wood
drill
value
resistance value
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008168618A
Other languages
Japanese (ja)
Other versions
JP5179970B2 (en
Inventor
Toshihiro Kusunoki
楠  寿博
Nagahito Kobayashi
長仁 木林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2008168618A priority Critical patent/JP5179970B2/en
Publication of JP2010008258A publication Critical patent/JP2010008258A/en
Application granted granted Critical
Publication of JP5179970B2 publication Critical patent/JP5179970B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a strength evaluation method of wood which enables the evaluation of the compression strength of evaluation target wood, and a repair diagnosing method of a structure. <P>SOLUTION: Average resistance values and compression strength values in interpenetration of a drill 22 are separately measured with respect to the test pieces cut from a plurality of woods: from these correlation data, the relational expression of the average resistance values and the compression strength values in interpenetration of the drill 22 into the woods is calculated. Next, the drill 22 of a resist graph 10 is interpenetrated in the evaluation target wood T and the average resistance value in interpenetration is set as an evaluated resistance value. Then, the compression strength value of the evaluation target wood is calculated on the basis of the evaluated resistance value and the preliminarily obtained relational expression. By this method, the compression strength of the evaluation target wood only cleared in the presence of a deteriorated place heretofore is evaluated. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、木造構造物の改修の要否判定に用いられる木材強度評価方法及び構造物の改修診断方法に関する。   The present invention relates to a wood strength evaluation method and a structural repair diagnosis method used for determining whether or not a wooden structure needs to be repaired.

木造構造物の改修工事の増加に伴い、改修工事前に対象構造物の健全性(改修要否)を診断することが求められている。特に、使用されている構造部材(木材)をできるだけ残して改修工事を行いたい場合では、劣化状況を踏まえた構造部材の強度性能(例えば圧縮強度)の把握が必要となる。しかし、構造部材の強度性能まで含めた健全性の評価方法は確立されていない。   With the increase in renovation work for wooden structures, it is required to diagnose the soundness (necessity of renovation) of the target structure before renovation work. In particular, when it is desired to perform repair work while leaving as much structural material (wood) as possible used, it is necessary to grasp the strength performance (for example, compressive strength) of the structural member in consideration of the deterioration state. However, a soundness evaluation method including the strength performance of the structural member has not been established.

木材の劣化状況のみを客観的に評価する方法の例としては、ピン打込み深さ測定法、超音波測定法、釘引き抜き抵抗測定法が挙げられる。ピン打込み深さ測定法は、一定の力で木材にピン(長さ4cm、または、7cm)を打込み、木材内部へのピンの貫入深さにより健全性を判断するものである。超音波測定法は、木材を挟んだ2つのセンサ間の超音波伝播時間を測定し、伝播速度の大小から健全性を判断するものである。釘引き抜き抵抗測定法は、一定の力で打込んだ釘の引き抜き抵抗力から健全性を判断するものである。   Examples of methods for objectively evaluating only the degradation state of wood include a pin driving depth measuring method, an ultrasonic measuring method, and a nail pulling resistance measuring method. In the pin driving depth measurement method, a pin (length 4 cm or 7 cm) is driven into wood with a constant force, and soundness is judged by the penetration depth of the pin into the wood. In the ultrasonic measurement method, the ultrasonic propagation time between two sensors sandwiching wood is measured, and the soundness is judged from the magnitude of the propagation speed. The nail pull-out resistance measurement method determines soundness from the pull-out resistance force of a nail that has been driven with a constant force.

一方、他の評価方法として、木材の腐朽評価方法が挙げられる(例えば、特許文献1、2参照)。特許文献1の木材劣化診断方法では、評価対象木材をインパクトハンマーで打撃して、得られた計測波形から打撃速度と最大打撃力を求めて劣化度を診断している。特許文献2の木材腐朽評価方法では、評価対象木材の一部を試料片として採取し、培地とともに密封容器に収容して、所定期間経過後に密封容器内から発生する水素の濃度に基づいて木材の腐朽度を評価している。   On the other hand, as another evaluation method, there is a wood decay evaluation method (for example, see Patent Documents 1 and 2). In the wood deterioration diagnosis method of Patent Document 1, the evaluation target wood is hit with an impact hammer, and the hitting speed and the maximum hitting force are obtained from the obtained measurement waveform to diagnose the degree of deterioration. In the wood decay evaluation method of Patent Document 2, a part of an evaluation target wood is collected as a sample piece, accommodated in a sealed container together with a culture medium, and based on the concentration of hydrogen generated from the sealed container after a predetermined period of time. The degree of decay is evaluated.

しかし、上記評価方法は、いずれも構造部材の劣化部分を特定するのみで、当該構造部材の強度性能まで把握するものではなかった。
特開2002−257700 特開2004−286590
However, all of the above evaluation methods only specify the deteriorated portion of the structural member, and do not grasp the strength performance of the structural member.
JP 2002-257700 A JP 2004-286590 A

本発明は、評価対象木材の圧縮強度を評価することができる木材強度評価方法及び構造物の改修診断方法を得ることを目的とする。   It is an object of the present invention to obtain a wood strength evaluation method and a structure repair diagnosis method capable of evaluating the compressive strength of an evaluation target wood.

本発明の請求項1に係る木材強度評価方法は、評価対象木材にドリルを貫入したときの抵抗値と、予め得られている木材へのドリル貫入時の平均抵抗値と木材の圧縮強度値との関係式とに基づいて、評価対象木材の圧縮強度値を求める。   The wood strength evaluation method according to claim 1 of the present invention includes a resistance value when a drill is inserted into the evaluation target wood, an average resistance value obtained when the drill is inserted into the wood, and a compressive strength value of the wood. Based on the relational expression, the compression strength value of the evaluation target wood is obtained.

上記構成によれば、木材について、ドリル貫入時の平均抵抗値と、圧縮強度値との相関データによって、予め関係式が求められている。そして、評価対象木材にドリルを貫入して得られた抵抗値を関係式に代入するだけで、評価対象木材の圧縮強度の予測値が得られる。これにより、従来、劣化箇所の有無のみしか分からなかった評価対象木材で、圧縮強度測定を行わずに、圧縮強度を評価することができる。   According to the said structure, a relational expression is previously calculated | required by the correlation data of the average resistance value at the time of drill penetration, and a compressive strength value about wood. And the predicted value of the compressive strength of evaluation object wood is obtained only by substituting the resistance value obtained by penetrating the evaluation object wood into the relational expression. Thereby, conventionally, it is possible to evaluate the compressive strength without performing the compressive strength measurement on the evaluation target wood which has been known only in the presence or absence of the deteriorated portion.

本発明の請求項2に係る木材強度評価方法は、前記貫入時の平均抵抗値は、前記ドリルを前記評価対象木材の互いに直交する2方向から交差しないように貫入させ、得られた2つの抵抗値をさらに平均して平均抵抗値とする。   In the wood strength evaluation method according to claim 2 of the present invention, the average resistance value at the time of penetration is the two resistances obtained by penetrating the drill so that the drill does not intersect from two directions perpendicular to each other. The values are further averaged to obtain an average resistance value.

上記構成によれば、木材の繊維方向、半径方向、及び接線方向の互いに直交する方向で、ドリル貫入時の抵抗値に多少のばらつきがあっても、平均化することで、方向による測定値のばらつきを低減することができる。   According to the above configuration, even if there is some variation in the resistance value at the time of drill penetration in the fiber direction, the radial direction, and the tangential direction of the wood, even if there is some variation in the resistance value at the time of drill penetration, Variations can be reduced.

本発明の請求項3に係る構造物の改修診断方法は、請求項1又は請求項2に記載の木材強度評価方法で得られた評価対象木材の圧縮強度値と、木材の基準圧縮強度値とを比較して、前記評価対象木材を備えた構造物の改修の要否を診断する。   According to claim 3 of the present invention, there is provided a method for diagnosing a structural repair, wherein the compression strength value of the evaluation target wood obtained by the wood strength evaluation method according to claim 1 or claim 2, and the reference compression strength value of the wood Are compared to diagnose the necessity of repair of the structure including the evaluation target wood.

上記構成によれば、評価対象木材にドリルを貫入して抵抗値を測定することにより、評価対象木材をほとんど破損することなく圧縮強度値が推定でき、この圧縮強度値を用いて、構造物の改修の要否まで容易に診断可能となる。   According to the above configuration, by inserting a drill into the evaluation target wood and measuring the resistance value, it is possible to estimate the compressive strength value without almost damaging the evaluation target wood, and using this compressive strength value, Diagnosis can be easily made up to the necessity of repair.

本発明は、上記構成としたので、評価対象木材の圧縮強度を評価することができる。   Since this invention was set as the said structure, the compressive strength of evaluation object timber can be evaluated.

本発明の木材強度評価方法及び構造物の改修診断方法の実施形態を図面に基づき説明する。ここでは、ドイツのInstrumenta_Mechanik_Labor_GmbH社製で、型式IML-RESI_F300のドリル貫入抵抗測定機レジストグラフ(Resistograph:登録商標)を用いた評価方法について説明する。   Embodiments of a wood strength evaluation method and a structure repair diagnosis method according to the present invention will be described with reference to the drawings. Here, an evaluation method using a resist penetration graph (Resistograph: registered trademark) manufactured by Instrumenta_Mechanik_Labor_GmbH of Germany and model IML-RESI_F300 will be described.

図1に示すように、レジストグラフ10は、評価対象木材Tに向かう方向を長手方向とする略直方体状の箱体からなる本体部12と、本体部12の底面側に設けられ、測定者が把持して本体部12を支持する把持部14とを有している。   As shown in FIG. 1, the resist graph 10 is provided on a main body portion 12 made of a substantially rectangular parallelepiped box whose longitudinal direction is the direction toward the evaluation target wood T, and on the bottom surface side of the main body portion 12. And a grip portion 14 that grips and supports the main body portion 12.

本体部12の内側には、評価対象木材Tに向かう方向を軸方向とするドリル22と、ドリル22の回転駆動(矢印R方向)及び直進駆動(矢印X方向)を行う駆動部(図示省略)が収納されている。ドリル22は、直径1.5mmの鋼鉄製シャフトの先に3mm幅の錐が付いた特殊合金ドリルである。また、ドリル22は、本体部12の評価対象木材Tと対向する面に形成された開口を通って、評価対象木材Tに向けて移動可能となっている。   Inside the main body 12, a drill 22 whose axial direction is the direction toward the evaluation target wood T, and a drive unit (not shown) that performs rotation drive (arrow R direction) and straight drive (arrow X direction) of the drill 22. Is stored. The drill 22 is a special alloy drill in which a 3 mm wide cone is attached to the tip of a steel shaft having a diameter of 1.5 mm. Further, the drill 22 is movable toward the evaluation target wood T through an opening formed on the surface of the main body 12 facing the evaluation target wood T.

また、本体部12の内側には、ドリル22を評価対象木材Tに貫入させたときに受ける内部抵抗(貫入抵抗)を測定して数値化する測定部(図示省略)と、測定部で得られた測定値を記憶するための記憶部(図示省略)とが設けられている。なお、測定部で測定されたドリル22の貫入抵抗は、記憶部に記憶されるだけでなく、本体部12の上部に設けられたチャートレコーダ18に波形グラフとして出力される。   In addition, a measurement unit (not shown) that measures and quantifies internal resistance (penetration resistance) received when the drill 22 penetrates the evaluation target wood T is obtained inside the main body unit 12, and is obtained by the measurement unit. And a storage unit (not shown) for storing the measured values. The penetration resistance of the drill 22 measured by the measurement unit is not only stored in the storage unit, but also output as a waveform graph to the chart recorder 18 provided on the upper portion of the main body unit 12.

ドリル22の評価対象木材Tへの貫入時の座標分解能は0.1mmとなっている。なお、ドリル22の長さは、上記型式では300mmとなっているが、用途に応じてレジストグラフ10の型式を選択することで、400mm、500mmが選択できる。また、ドリル22が移動する前述の開口の周囲3箇所には、評価対象木材Tに当接される円錐状の楔部20が設けられている。   The coordinate resolution when the drill 22 penetrates into the evaluation target wood T is 0.1 mm. The length of the drill 22 is 300 mm in the above model, but 400 mm and 500 mm can be selected by selecting the model of the resist graph 10 according to the application. Further, conical wedge portions 20 that are in contact with the evaluation target wood T are provided at three locations around the above-described opening through which the drill 22 moves.

一方、把持部14の底部には、充電器が接続され、レジストグラフ10の駆動部に電源供給を行うバッテリー部16が設けられている。また、把持部14には、測定者が把持部14を把持して押すことでON、OFFが切り替わり、レジストグラフ10の動作開始又は動作停止を行うスイッチ24が設けられている。   On the other hand, a battery unit 16 is provided at the bottom of the gripping unit 14 and is connected to a charger and supplies power to the drive unit of the resist graph 10. Further, the grip 14 is provided with a switch 24 that is switched ON and OFF when the measurer grips and presses the grip 14 and starts or stops the operation of the resist graph 10.

レジストグラフ10は、評価対象木材Tの硬さに応じて2種類の測定レベル(レベル1、レベル2)が選択可能となっている。概ねレベル1は針葉樹木材、レベル2は広葉樹木材が対象となっている。   In the resist graph 10, two types of measurement levels (level 1 and level 2) can be selected according to the hardness of the evaluation target wood T. In general, Level 1 covers coniferous timber and Level 2 covers hardwood timber.

図2には、レジストグラフ10を用いて、測定厚さ100mmの木材にドリル22を貫入させたときの貫入抵抗値の測定結果の一例がグラフで示されている。なお、図2のグラフは、得られたデータをスムージング処理して表示しているため、滑らかな曲線となっているが、実際のグラフは、上下に貫入抵抗値がばらついたものとなる。   FIG. 2 is a graph showing an example of the measurement result of the penetration resistance value when the drill 22 is penetrated into wood having a measurement thickness of 100 mm using the resist graph 10. The graph of FIG. 2 is a smooth curve because the obtained data is displayed after smoothing processing, but the actual graph has a variation in penetration resistance values in the vertical direction.

グラフの横軸は、評価対象木材Tの表面からのドリル22の貫入深度であり、縦軸は、ドリル22貫入時に測定される貫入抵抗値である。なお、横軸の1目盛りは10mmに相当するが、縦軸の1目盛りは単位が設定されたものではなく、ドリル22の貫入抵抗を相対的に比較するための値として用いられている。   The horizontal axis of the graph is the penetration depth of the drill 22 from the surface of the evaluation target wood T, and the vertical axis is the penetration resistance value measured when the drill 22 penetrates. One scale on the horizontal axis corresponds to 10 mm, but one scale on the vertical axis is not set as a unit, and is used as a value for relatively comparing the penetration resistance of the drill 22.

図2のグラフは、劣化の無い健全木材について測定したものである。ここで、複数のピークが見られる貫入深度は木材の年輪に相当する位置であり、当該位置が硬いことを表している。なお、腐朽等による劣化部分がある木材を用いたときは、劣化部分の貫入深度において、貫入抵抗値がゼロか、ゼロに近い状態のまま推移するため、劣化箇所を判定することが可能である。   The graph of FIG. 2 is measured for healthy wood without deterioration. Here, the penetration depth at which a plurality of peaks are seen is a position corresponding to an annual ring of wood, and indicates that the position is hard. In addition, when using wood that has deteriorated parts due to decay, etc., the penetration resistance value remains zero or close to zero at the penetration depth of the deteriorated part, so it is possible to determine the deteriorated part. .

次に、試験片の作成方法について説明する。なお、この試験片は、レジストグラフ10(図1参照)による貫入抵抗と、後述する圧縮強度との相関データを得るために準備するものである。   Next, a method for creating a test piece will be described. This test piece is prepared in order to obtain correlation data between the penetration resistance according to the resist graph 10 (see FIG. 1) and the compressive strength described later.

図3(a)には、試験片を得るために選定された解体時の木造構造物30の大梁32が示されている。ここで、大梁32は、べいまつの集成材で構成されており、腐朽領域A(図の網掛け領域)と、腐朽領域Aに比べて健全(腐朽が比較的進んでいない状態)と思われる健全領域Bとが存在しているものとして説明する。   FIG. 3A shows a large beam 32 of the wooden structure 30 at the time of dismantling selected for obtaining a test piece. Here, the girder 32 is made of beige laminated wood, and is considered to be sounder (a state in which the decay has not progressed relatively) compared to the decay area A (shaded area in the figure) and the decay area A. A description will be given assuming that the healthy region B exists.

腐朽領域Aの有無の判断は、貫入抵抗測定等により行う客観的な方法による判断でなくともよく、目視、打診、触診、臭覚といった経験的な判断で行ってもよい。これは、健全領域Bの貫入抵抗値に比較して低い貫入抵抗値が得られればよいためである。ここで、試験片を得るため、腐朽領域A及び健全領域Bを含む直方体状のブロック34を大梁32から切り出す。   The determination of the presence or absence of the decay area A may not be based on an objective method performed by penetration resistance measurement or the like, but may be performed based on empirical determination such as visual inspection, percussion, palpation, and smell. This is because a low penetration resistance value may be obtained as compared with the penetration resistance value of the healthy region B. Here, in order to obtain a test piece, a rectangular parallelepiped block 34 including the decay area A and the healthy area B is cut out from the large beam 32.

続いて、図3(b)に示すように、切り出されたブロック34は、さらに複数のブロック36、38に切り分けられ、さらに、ブロック36、38を構成する各ラミナの層毎に、接着層を含まないように、板材36A〜36E、板材38A〜38Eが切り出される。切り出された板材36A〜36E、板材38A〜38Eの厚さは20〜25mmとなっている。   Subsequently, as shown in FIG. 3B, the cut block 34 is further divided into a plurality of blocks 36 and 38, and an adhesive layer is formed for each lamina layer constituting the blocks 36 and 38. The plate materials 36A to 36E and the plate materials 38A to 38E are cut out so as not to be included. The thicknesses of the cut plate materials 36A to 36E and plate materials 38A to 38E are 20 to 25 mm.

続いて、図3(c)に示すように、個々の板材36A〜36E、板材38A〜38Eを短冊切りにして、棒状材40A〜40Eを作成する。そして、各棒状材40A〜40Eの腐朽領域A及び健全領域Bから、それぞれ20mm×20mm×40mmの試験片を切り出す。なお、この試験片は、同じ部位で隣接した2枚を1セットとして切り出し、一方を第1試験片42、他方を第2試験片44とする。   Subsequently, as shown in FIG. 3C, the individual plate members 36A to 36E and the plate members 38A to 38E are cut into strips to produce rod-shaped members 40A to 40E. Then, test pieces of 20 mm × 20 mm × 40 mm are cut out from the decay area A and the healthy area B of each rod-like material 40A to 40E. In addition, this test piece cuts out two sheets which adjoined in the same site | part as one set, and makes one the 1st test piece 42 and the other the 2nd test piece 44.

ここで、貫入抵抗と圧縮強度の相関に着目した理由について説明する。貫入抵抗は、ドリル22を木材に貫入したときの貫入しにくさを表している。このため、ドリル22の貫入抵抗は、一般に木材の密度が高くなるほど大きくなる。一方、木材の圧縮強度は、一般に木材の密度が高くなるほど大きくなる。   Here, the reason for paying attention to the correlation between the penetration resistance and the compressive strength will be described. The penetration resistance represents the difficulty of penetration when the drill 22 is penetrated into wood. For this reason, the penetration resistance of the drill 22 generally increases as the density of the wood increases. On the other hand, the compressive strength of wood generally increases as the density of the wood increases.

これらの関係から、貫入抵抗が大きいときは圧縮強度も大きく、貫入抵抗と圧縮強度はほぼ比例関係として評価出来ると考えられる。この関係式を予め測定により求めておけば、現地での測定が容易な貫入抵抗から、現地での測定が困難な圧縮強度が予測できると考えた。   From these relationships, it is considered that when the penetration resistance is large, the compressive strength is also large, and the penetration resistance and the compressive strength can be evaluated as a substantially proportional relationship. If this relational expression was obtained by measurement in advance, it was thought that the compressive strength, which was difficult to measure locally, could be predicted from the penetration resistance that was easy to measure locally.

次に、第1試験片42を用いた貫入抵抗測定方法について説明する。   Next, a penetration resistance measuring method using the first test piece 42 will be described.

図4に示すように、木材は、繊維方向(矢印L方向)、半径方向(矢印R方向)、接線方向(矢印T方向)の互いに直交する3軸を有する。木材の強度的性質は、これらの軸方向によって大きく異なるが、さらに年輪として認識される色の濃い夏材部(夏から初秋にかけて成長した部分:晩材ともいう)と、色の薄い春材部(春から初夏にかけて成長した部分:早材ともいう)で強度的性質が異なっている。   As shown in FIG. 4, the wood has three axes orthogonal to each other in the fiber direction (arrow L direction), the radial direction (arrow R direction), and the tangential direction (arrow T direction). The strength properties of wood vary greatly depending on the axial direction of these, but the dark summer wood part (the part that grew from summer to early autumn: also called late wood), which is recognized as an annual ring, and the light spring part (Parts grown from spring to early summer: also called early wood) have different strength properties.

この木材の強度的性質の異方性を考慮して、第1試験片42へのドリル22(図1参照)の貫入方向を2方向(矢印D1、D2方向)とする。なお、矢印D1方向と矢印D2方向は、平面視にて略直交となるように設定している。また、図4において、a=b=20mm、c=40mmとなっている。   In consideration of the anisotropy of the strength property of the wood, the penetration direction of the drill 22 (see FIG. 1) into the first test piece 42 is set to two directions (arrows D1 and D2 directions). The direction of the arrow D1 and the direction of the arrow D2 are set so as to be substantially orthogonal in a plan view. In FIG. 4, a = b = 20 mm and c = 40 mm.

第1試験片42の貫入抵抗測定では、まず、レジストグラフ10(図1参照)のドリル22を第1試験片42の側面(L−R面)に垂直で、且つなるべく断面中心を通るように矢印D1方向に貫入して、貫入抵抗測定を行う。   In the penetration resistance measurement of the first test piece 42, first, the drill 22 of the resist graph 10 (see FIG. 1) is perpendicular to the side surface (LR plane) of the first test piece 42 and passes through the center of the cross section as much as possible. The penetration resistance is measured by penetrating in the direction of arrow D1.

続いて、矢印D1方向の測定によって形成された貫通穴と交差せず、第1試験片42の側面(L−T面)に垂直で且つなるべく断面中心を通るように、ドリル22を矢印D2方向に貫入して貫入抵抗測定を行う。得られた測定データは、それぞれ積分平均され、D1、D2方向の平均貫入抵抗値(X1、X2とする)が得られる。   Subsequently, the drill 22 is moved in the direction of the arrow D2 so as not to intersect with the through hole formed by the measurement in the direction of the arrow D1 but perpendicular to the side surface (LT plane) of the first test piece 42 and through the center of the cross section as much as possible. The penetration resistance is measured by penetrating into. The obtained measurement data is integrated and averaged to obtain average penetration resistance values (X1 and X2) in the D1 and D2 directions.

ここで、実際には、図4のような貫入方向と年輪方向の関係になるとは限らず、年輪方向が各試験片の断面に対して様々な角度をとることになる。この角度の影響、即ち角度の違いによる測定値のばらつきを低減するため、略直交する2方向(D1、D2方向)の平均貫入抵抗値X1、X2をさらに平均して平均抵抗値Mを得る。M=(X1+X2)/2である。この平均抵抗値Mを第1試験片42の貫入抵抗値として用いる。   Here, in practice, the relationship between the penetration direction and the annual ring direction as shown in FIG. 4 is not necessarily established, and the annual ring direction takes various angles with respect to the cross section of each test piece. In order to reduce the influence of this angle, that is, the variation in the measured value due to the difference in angle, the average penetration resistance values X1 and X2 in two substantially orthogonal directions (D1 and D2 directions) are further averaged to obtain an average resistance value M. M = (X1 + X2) / 2. This average resistance value M is used as the penetration resistance value of the first test piece 42.

なお、試験片としてべいまつを用いているため、レジストグラフ10の測定感度は、基本的にレベル1を用いればよいが、ここではレベル2の測定感度でも測定を行う。   In addition, since a pine is used as a test piece, the measurement sensitivity of the resist graph 10 may basically be level 1, but the measurement is also performed with the measurement sensitivity of level 2 here.

次に、第2試験片44を用いた圧縮強度測定方法について説明する。   Next, a compressive strength measuring method using the second test piece 44 will be described.

圧縮強度測定は、JIS−Z2101(木材の試験方法)に準じた試験方法により行う。なお、第2試験片44の長手方向は繊維方向と平行となっており、圧縮強度値σは、第2試験片44の横断面積をA[mm]、最大荷重をPm[N]として、σ=Pm/A[N/mm]で求める。 The compressive strength is measured by a test method according to JIS-Z2101 (wood test method). In addition, the longitudinal direction of the second test piece 44 is parallel to the fiber direction, and the compressive strength value σ is set such that the cross-sectional area of the second test piece 44 is A [mm 2 ] and the maximum load is Pm [N]. It calculates | requires by (sigma) = Pm / A [N / mm < 2 >].

次に、貫入抵抗と圧縮強度の関係式を求める方法について説明する。   Next, a method for obtaining a relational expression between penetration resistance and compressive strength will be described.

第1試験片42で得られた平均抵抗値Mを横軸とし、第2試験片44で得られた圧縮強度値σを縦軸として、複数の第1試験片42及び第2試験片44で得られたデータを用いて回帰分析を行う。これにより得られた回帰式(一次回帰直線)を貫入抵抗と圧縮強度の関係式とする。なお、参考として、5%下限直線についても求める。   With the average resistance value M obtained with the first test piece 42 as the horizontal axis and the compressive strength value σ obtained with the second test piece 44 as the vertical axis, the plurality of first test pieces 42 and second test pieces 44 Regression analysis is performed using the obtained data. The regression equation (primary regression line) obtained in this way is used as a relational expression between penetration resistance and compressive strength. For reference, the 5% lower limit straight line is also obtained.

ここで、図5には、木材の貫入抵抗と圧縮強度の関係式を求める上記の手順をまとめたフローチャートが示されている。図5において、まず、ステップS1として、腐朽した構造物又は健全な構造物の木材から試験片を切り出す。続いて、ステップS2として、試験片を第1試験片42と第2試験片44に切り分ける。   Here, FIG. 5 shows a flowchart summarizing the above procedure for obtaining the relational expression between the penetration resistance of wood and the compressive strength. In FIG. 5, first, as step S <b> 1, a test piece is cut out from a decayed or sound structure wood. Subsequently, as step S <b> 2, the test piece is cut into a first test piece 42 and a second test piece 44.

続いて、ステップS3では、第1試験片42の貫入抵抗をレジストグラフ10で測定する。一方、ステップS4では、第2試験片44の圧縮強度を圧縮試験により測定する。   Subsequently, in step S <b> 3, the penetration resistance of the first test piece 42 is measured with the resist graph 10. On the other hand, in step S4, the compressive strength of the second test piece 44 is measured by a compression test.

続いて、ステップS5として、貫入抵抗測定の平均抵抗値Mと、圧縮強度値σとの複数の相関データから一次回帰式を求める。これらの手順を事前に行うことにより、レジストグラフ10(図1参照)の貫入抵抗と圧縮強度の関係式を準備する。   Subsequently, as step S5, a linear regression equation is obtained from a plurality of correlation data of the average resistance value M of penetration resistance measurement and the compressive strength value σ. By performing these procedures in advance, a relational expression between the penetration resistance and the compressive strength of the resist graph 10 (see FIG. 1) is prepared.

ここで、図6、図7に、例として、レジストグラフ10のレベル1、レベル2測定におけるn=104(組)の平均抵抗値Mと圧縮強度値σの測定データを示す。なお、図6、図7は、レジストグラフ10の感度設定をレベル1、2として、同一の第1試験片42を貫入抵抗測定したものであって、測定数n=104(共用)である。また、圧縮強度値は、レベル1、レベル2共に、第2試験片44で得られた圧縮強度値を用いている。   Here, FIGS. 6 and 7 show measurement data of the average resistance value M and the compressive strength value σ of n = 104 (set) in the level 1 and level 2 measurement of the resist graph 10 as an example. 6 and 7 show the penetration resistance measurement of the same first test piece 42 with the sensitivity setting of the resist graph 10 set to levels 1 and 2, and the measurement number n = 104 (shared). In addition, as the compressive strength value, the compressive strength value obtained by the second test piece 44 is used for both Level 1 and Level 2.

図6及び図7の図中に記載した回帰式により、ドリル22の貫入抵抗に対する評価対象木材Tの圧縮強度を算定(推定)することができる(図中のRは相関係数である)。なお、試験片(第1試験片42、第2試験片44)は、完全に腐朽劣化したものばかりでなく、健全部分を多く含むもの、あるいは、試験片全体がほとんど健全であるものも含まれるが、健全部分の有無に関わらず、求められた平均抵抗値に対して当該部分の圧縮強度は一義的に決まる。このため、本実施形態の測定結果は、健全材にも適用が可能である。   The compressive strength of the evaluation target wood T with respect to the penetration resistance of the drill 22 can be calculated (estimated) by the regression equation described in FIGS. 6 and 7 (R in the drawings is a correlation coefficient). Note that the test pieces (the first test piece 42 and the second test piece 44) include not only those that are completely decayed but also those that contain many healthy parts or those that are almost entirely healthy. However, regardless of the presence or absence of a healthy portion, the compressive strength of the portion is uniquely determined with respect to the obtained average resistance value. For this reason, the measurement result of this embodiment is applicable also to healthy material.

また、図6、図7は、べいまつの構造用集成材の試験片を用いた測定結果であるが、上記のように求められた平均抵抗値に対して圧縮強度が一義的に決まるので、樹種の違い(軟らかいもの、堅いもの)によって、これらの関係式が大きく異なることは無いものと考える。このため、他樹種を用いてもドリル22の貫入抵抗と圧縮強度の関係が得られると考える。特に、レジストグラフ10のレベル2の感度を用いれば、比較的堅い部類の木材の健全性評価に適用が可能となる。   Moreover, although FIG. 6, FIG. 7 is a measurement result using the test piece of a beige structural laminated material, since compressive strength is uniquely determined with respect to the average resistance value calculated | required as mentioned above, I think that these relational expressions do not differ greatly depending on the tree species (soft or hard). For this reason, it is considered that the relationship between the penetration resistance of the drill 22 and the compressive strength can be obtained even when other tree species are used. In particular, if the sensitivity of level 2 of the resist graph 10 is used, it can be applied to the soundness evaluation of relatively hard categories of wood.

図6、図7の測定に用いたn=104組の試験片の含水率は、抵抗式含水率計を用いて測定したところ、11〜14%となっていた。これは、木材が劣化していても、採集(切り出し)した時点で既に乾燥しているためと思われる。   The moisture content of the n = 104 test pieces used in the measurements of FIGS. 6 and 7 was 11 to 14% when measured using a resistance moisture meter. This seems to be because, even when the wood is deteriorated, it is already dried when it is collected (cut out).

次に、本発明の実施形態の作用について説明する。ここでは、図5のフローチャートに従って、予め貫入抵抗と圧縮強度の関係式(回帰式)が準備されているものとする。   Next, the operation of the embodiment of the present invention will be described. Here, it is assumed that a relational expression (regression formula) between the penetration resistance and the compressive strength is prepared in advance according to the flowchart of FIG.

図8には、木材の強度評価方法及び構造物の改修診断方法のフローチャートが示されている。まず、ステップS1として、改修診断が必要とされた現地の木造構造物の評価対象木材Tにレジストグラフ10(図1参照)のドリル22を貫入して、平均抵抗値M(評価抵抗値)を得る。ここで、ドリル22の貫入は、評価対象木材Tの互いに直交する2方向について行い、得られた2つの抵抗値の平均値を評価抵抗値とする。   FIG. 8 shows a flowchart of a wood strength evaluation method and a structural repair diagnosis method. First, as step S1, a drill 22 of a resist graph 10 (see FIG. 1) is inserted into an evaluation target wood T of a local wooden structure that requires renovation diagnosis, and an average resistance value M (evaluation resistance value) is obtained. obtain. Here, penetration of the drill 22 is performed in two directions orthogonal to each other of the evaluation target wood T, and an average value of the two obtained resistance values is set as an evaluation resistance value.

続いて、ステップS2として、貫入抵抗値と圧縮強度の関係式に評価抵抗値を代入し、評価対象木材Tの圧縮強度値σを求める。なお、貫入抵抗と圧縮強度の関係式は、基本的に一次回帰式を用いるが、5%下限の直線式を用いることも可能である。   Subsequently, as step S2, the evaluation resistance value is substituted into the relational expression between the penetration resistance value and the compression strength, and the compression strength value σ of the evaluation target wood T is obtained. As a relational expression between penetration resistance and compressive strength, a linear regression equation is basically used, but a linear equation with a lower limit of 5% can also be used.

続いて、ステップS3として、ステップS2で得られた評価対象木材Tの圧縮強度値σと木材の基準圧縮強度値とを比較して、評価対象木材Tを備えた現地の木造構造物の改修の要否を診断する。ここでは、木材の基準圧縮強度値として、平成12年建設省告示第1452号の木材の基準強度Fc(圧縮強度)を用いる。なお、基準強度Fcは樹種、区分、等級によって異なるので、評価対象木材Tの樹種、区分、等級に合わせて設定する。   Subsequently, as step S3, the compression strength value σ of the evaluation target wood T obtained in step S2 is compared with the reference compression strength value of the wood, and the repair of the local wooden structure including the evaluation target wood T is performed. Diagnose necessity. Here, the standard strength Fc (compressive strength) of wood of 2000 Ministry of Construction Notification No. 1452 is used as the standard compressive strength value of wood. Since the reference strength Fc varies depending on the tree type, classification, and grade, it is set according to the tree type, classification, and grade of the evaluation target wood T.

例えば、本実施形態で用いたべいまつの甲種構造材一級では、Fc=27.0[N/mm]となっている。これにより、前述の回帰式で得られた圧縮強度値σが27.0[N/mm]より小さい値のときは、現地の評価対象木材が交換または補強が必要と診断する。また、得られた圧縮強度値σが27.0[N/mm]以上のときは、交換又は補強は不要と診断する。 For example, Fuku = 27.0 [N / mm 2 ] is obtained for the first grade structural material grade 1 used in this embodiment. Thus, when the compressive strength value σ obtained by the above regression equation is a value smaller than 27.0 [N / mm 2 ], it is diagnosed that the local evaluation target wood needs to be replaced or reinforced. Moreover, when the obtained compressive strength value (sigma) is 27.0 [N / mm < 2 >] or more, it diagnoses that replacement | exchange or reinforcement is unnecessary.

以上説明したように、本発明の木材強度評価方法及び構造物の改修診断方法によれば、木材について、レジストグラフ10のドリル22貫入時の平均抵抗値Mと、圧縮強度値σとの相関データによって、予め回帰式が求められている。そして、評価対象木材Tにドリル22を貫入して得られた評価抵抗値を回帰式に代入するだけで、評価対象木材Tの圧縮強度の推定値が得られる。これにより、従来、劣化箇所の有無のみしか分からなかった評価対象木材Tで、サンプルを採取して強度試験を行うことなく圧縮強度を評価することができる。   As described above, according to the wood strength evaluation method and the structural repair diagnosis method of the present invention, correlation data between the average resistance value M when the drill 22 penetrates the resist graph 10 and the compressive strength value σ for wood. Thus, the regression equation is obtained in advance. And the estimated value of the compressive strength of the evaluation object wood T is obtained only by substituting the evaluation resistance value obtained by penetrating the drill 22 into the evaluation object wood T into the regression equation. Thereby, it is possible to evaluate the compressive strength without taking a sample and performing a strength test with the evaluation target wood T that has conventionally only known the presence or absence of a deteriorated portion.

また、木材の繊維方向、半径方向、及び接線方向の互いに直交する方向で、ドリル22貫入抵抗値に多少のばらつきがあっても、平均化することで、方向による測定値のばらつきを低減することができる。   Moreover, even if there is some variation in the penetration resistance value of the drill 22 in the direction perpendicular to each other in the fiber direction, radial direction, and tangential direction of the wood, the variation in the measured value depending on the direction is reduced by averaging. Can do.

さらに、評価対象木材Tにドリル22を貫入して平均抵抗値Mを測定するだけで圧縮強度値σが推定でき、得られた圧縮強度値σと木材の基準強度とを比較して現地の木造構造物の改修の要否まで診断可能となるので、改修診断が容易となる。   Furthermore, the compressive strength value σ can be estimated by simply inserting the drill 22 into the evaluation target wood T and measuring the average resistance value M, and the obtained compressive strength value σ is compared with the reference strength of the wood to compare the wooden structure in the field. Since it is possible to diagnose whether or not the structure needs to be repaired, the repair diagnosis becomes easy.

また、貫入抵抗値の測定では、評価対象木材Tに直径3mm程度の穴が形成されるのみで、穴の周囲にもともと存在する節や傷、表面汚れ等に混ざり、穴がほとんど認識されないため、非破壊検査に近い状態で強度推定及び改修診断が行える。   Moreover, in the measurement of penetration resistance value, only a hole with a diameter of about 3 mm is formed in the evaluation target wood T, and it is mixed with nodes, scratches, surface dirt, etc. that originally exist around the hole, and the hole is hardly recognized. Strength estimation and repair diagnosis can be performed in a state close to nondestructive inspection.

また、評価対象木材Tが大断面の部材であっても、簡単な現地測定の結果から、部材内部を含めて精度良く圧縮強度を推定できるので、現地で評価対象木材Tを切り出して実験室で試験を行う場合に比べて、解体、搬送、実験等のコストが不要となる。さらに、評価対象木材Tの強度推定を短時間で行えるので、耐震補強の計画、実施が迅速に行える。   Moreover, even if the evaluation target wood T is a member having a large cross section, the compression strength can be accurately estimated including the inside of the member from the result of simple field measurement. Compared to the case where the test is performed, the cost of dismantling, transportation, experiment, etc. becomes unnecessary. Furthermore, since the strength of the evaluation target wood T can be estimated in a short time, the earthquake-resistant reinforcement can be planned and executed quickly.

なお、本発明は上記の実施形態に限定されない。   In addition, this invention is not limited to said embodiment.

評価対象木材Tの樹種は、べいまつに限らず、杉、ひのき、からまつなどの各種針葉樹や、けやき、栗などの各種広葉樹を含め、レジストグラフ10での測定が可能な木材のほとんどを対象とすることが出来る。   The tree species of the target wood T is not limited to the torch, but includes most coniferous trees such as cedar, hinoki and karamatsu, and various hardwoods such as zelkova and chestnut, and most of the wood that can be measured with the resist graph 10. Can be targeted.

本実施形態では、貫入抵抗値と圧縮強度値の相関データ数n=104としたが、これに限らず、任意にデータ数を設定できる。精度良い回帰式を得るという観点からは、n数は多いほど望ましく、且つ貫入抵抗値の分布が広くなるように試験片を準備する必要がある。   In the present embodiment, the number of correlation data n between the penetration resistance value and the compressive strength value is 104, but the present invention is not limited to this, and the number of data can be arbitrarily set. From the viewpoint of obtaining an accurate regression equation, it is desirable that the number of n is larger, and it is necessary to prepare a test piece so that the distribution of penetration resistance values becomes wider.

本発明の実施形態に係るレジストグラフの概略図である。It is the schematic of the resist graph which concerns on embodiment of this invention. 本発明の実施形態に係るレジストグラフで得られるドリルの貫入深度に対する貫入抵抗値のグラフである。It is a graph of the penetration resistance value with respect to the penetration depth of the drill obtained by the resist graph which concerns on embodiment of this invention. (a)〜(c)本発明の実施形態に係る試験片の切り出し方法を示す工程図である。(A)-(c) It is process drawing which shows the cutting-out method of the test piece which concerns on embodiment of this invention. 本発明の実施形態に係る試験片の斜視図である。It is a perspective view of the test piece which concerns on embodiment of this invention. 本発明の実施形態に係る木材の貫入抵抗と圧縮強度の関係式の作成方法を示すフローチャートである。It is a flowchart which shows the preparation method of the relational expression of the penetration resistance of wood and compressive strength which concerns on embodiment of this invention. 本発明の実施形態に係る試験片をレジストグラフのレベル1の感度で測定したときの平均抵抗値と圧縮強度の関係を示すグラフである。It is a graph which shows the relationship between an average resistance value and compressive strength when the test piece which concerns on embodiment of this invention is measured by the sensitivity of the level 1 of a resist graph. 本発明の実施形態に係る試験片をレジストグラフのレベル2の感度で測定したときの平均抵抗値と圧縮強度の関係を示すグラフである。It is a graph which shows the relationship between an average resistance value and compressive strength when the test piece which concerns on embodiment of this invention is measured by the sensitivity of the level 2 of a resist graph. 本発明の実施形態に係る木材の強度評価方法及び構造物の改修診断方法を示すフローチャートである。It is a flowchart which shows the strength evaluation method of the wood which concerns on embodiment of this invention, and the repair diagnostic method of a structure.

符号の説明Explanation of symbols

10 レジストグラフ
22 ドリル(ドリル)
42 第1試験片(第1試験片)
44 第2試験片(第2試験片)
T 評価対象木材(評価対象木材)
10 Registration Graph 22 Drill (Drill)
42 First test piece (first test piece)
44 Second specimen (second specimen)
T Wood to be evaluated (wood to be evaluated)

Claims (3)

評価対象木材にドリルを貫入したときの抵抗値と、
予め得られている木材へのドリル貫入時の平均抵抗値と木材の圧縮強度値との関係式とに基づいて、評価対象木材の圧縮強度値を求める木材強度評価方法。
The resistance value when a drill penetrates the target wood,
A wood strength evaluation method for obtaining a compression strength value of an evaluation target wood based on a relational expression between an average resistance value at the time of drill penetration into wood and a compression strength value of wood obtained in advance.
前記貫入時の平均抵抗値は、前記ドリルを前記評価対象木材の互いに直交する2方向から交差しないように貫入させ、得られた2つの抵抗値をさらに平均して平均抵抗値とする請求項1に記載の木材強度評価方法。   The average resistance value at the time of penetration penetrates the drill so that it does not cross from two directions orthogonal to each other, and the two resistance values obtained are further averaged to obtain an average resistance value. The wood strength evaluation method described in 1. 請求項1又は請求項2に記載の木材強度評価方法で得られた評価対象木材の圧縮強度値と、木材の基準圧縮強度値とを比較して、前記評価対象木材を備えた構造物の改修の要否を診断する構造物の改修診断方法。









The compression strength value of the evaluation target wood obtained by the wood strength evaluation method according to claim 1 or 2 is compared with the reference compression strength value of the wood, and the structure having the evaluation target wood is repaired. A repair diagnosis method for structures that diagnoses the necessity of maintenance.









JP2008168618A 2008-06-27 2008-06-27 Wood strength evaluation method and structural repair diagnosis method Expired - Fee Related JP5179970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008168618A JP5179970B2 (en) 2008-06-27 2008-06-27 Wood strength evaluation method and structural repair diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008168618A JP5179970B2 (en) 2008-06-27 2008-06-27 Wood strength evaluation method and structural repair diagnosis method

Publications (2)

Publication Number Publication Date
JP2010008258A true JP2010008258A (en) 2010-01-14
JP5179970B2 JP5179970B2 (en) 2013-04-10

Family

ID=41588951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008168618A Expired - Fee Related JP5179970B2 (en) 2008-06-27 2008-06-27 Wood strength evaluation method and structural repair diagnosis method

Country Status (1)

Country Link
JP (1) JP5179970B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121887A (en) * 2014-12-24 2016-07-07 住友林業株式会社 Hardness tester for wood, and for woody material
JP2017078690A (en) * 2015-10-22 2017-04-27 株式会社竹中工務店 Density calculation method of wooden component, and young's modulus calculation method of wooden component
JP2018054400A (en) * 2016-09-28 2018-04-05 株式会社コシイプレザービング Decay diagnosing device of test wood, decay diagnosing method using the device and method for repairing wood equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2739928C1 (en) * 2020-04-30 2020-12-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Поволжский государственный технологический университет" Method for instant diagnostics of resonance properties of wood after long maintenance in ceiling structure of old structures

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399986A (en) * 1977-02-10 1978-08-31 Hitachi Koki Kk Measuring apparatus for hardness of woods
JPS57188157U (en) * 1981-05-26 1982-11-29
JPS57197468A (en) * 1981-05-29 1982-12-03 Shimizu Constr Co Ltd Wood strength measurer
JPS5816542U (en) * 1981-07-24 1983-02-01 株式会社フジクラ hardness measuring instrument
JPH074176A (en) * 1993-06-14 1995-01-10 Hitachi Constr Mach Co Ltd Natural ground collapse search method in shield driving construction work
JPH10267922A (en) * 1997-03-27 1998-10-09 Inax Corp Diagnozing method of timber
JP2000326304A (en) * 1999-03-15 2000-11-28 Nakajima:Kk Method for precutting wood and device therefor
JP2002039929A (en) * 2000-07-19 2002-02-06 Forestry & Forest Products Research Institute Method and apparatus for estimation of internal strength of wood material
JP2002257700A (en) * 2001-02-27 2002-09-11 Mitsubishi Heavy Ind Ltd Apparatus for diagnosing deterioration of lumber and method for the same
JP2004085426A (en) * 2002-08-28 2004-03-18 Maeda Corp Prior evaluation method when various soils are applied as banking materials, and improving method
JP2004092028A (en) * 2002-08-29 2004-03-25 Maeda Corp Method for controlling quality of fill
JP2004286590A (en) * 2003-03-20 2004-10-14 Yoshihisa Fujii Wood decay evaluation method and apparatus
JP2004294154A (en) * 2003-03-26 2004-10-21 Taiheiyo Cement Corp Method for diagnosing soundness of wet type fire-resistant coating material layer
JP2006053045A (en) * 2004-08-11 2006-02-23 National Institute For Rural Engineering Method and apparatus for inspecting inside of tree in non-destructive manner using acoustic tomography

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399986A (en) * 1977-02-10 1978-08-31 Hitachi Koki Kk Measuring apparatus for hardness of woods
JPS57188157U (en) * 1981-05-26 1982-11-29
JPS57197468A (en) * 1981-05-29 1982-12-03 Shimizu Constr Co Ltd Wood strength measurer
JPS5816542U (en) * 1981-07-24 1983-02-01 株式会社フジクラ hardness measuring instrument
JPH074176A (en) * 1993-06-14 1995-01-10 Hitachi Constr Mach Co Ltd Natural ground collapse search method in shield driving construction work
JPH10267922A (en) * 1997-03-27 1998-10-09 Inax Corp Diagnozing method of timber
JP2000326304A (en) * 1999-03-15 2000-11-28 Nakajima:Kk Method for precutting wood and device therefor
JP2002039929A (en) * 2000-07-19 2002-02-06 Forestry & Forest Products Research Institute Method and apparatus for estimation of internal strength of wood material
JP2002257700A (en) * 2001-02-27 2002-09-11 Mitsubishi Heavy Ind Ltd Apparatus for diagnosing deterioration of lumber and method for the same
JP2004085426A (en) * 2002-08-28 2004-03-18 Maeda Corp Prior evaluation method when various soils are applied as banking materials, and improving method
JP2004092028A (en) * 2002-08-29 2004-03-25 Maeda Corp Method for controlling quality of fill
JP2004286590A (en) * 2003-03-20 2004-10-14 Yoshihisa Fujii Wood decay evaluation method and apparatus
JP2004294154A (en) * 2003-03-26 2004-10-21 Taiheiyo Cement Corp Method for diagnosing soundness of wet type fire-resistant coating material layer
JP2006053045A (en) * 2004-08-11 2006-02-23 National Institute For Rural Engineering Method and apparatus for inspecting inside of tree in non-destructive manner using acoustic tomography

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121887A (en) * 2014-12-24 2016-07-07 住友林業株式会社 Hardness tester for wood, and for woody material
JP2017078690A (en) * 2015-10-22 2017-04-27 株式会社竹中工務店 Density calculation method of wooden component, and young's modulus calculation method of wooden component
JP2018054400A (en) * 2016-09-28 2018-04-05 株式会社コシイプレザービング Decay diagnosing device of test wood, decay diagnosing method using the device and method for repairing wood equipment

Also Published As

Publication number Publication date
JP5179970B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
Tannert et al. In situ assessment of structural timber using semi-destructive techniques
Kloiber et al. Prediction of mechanical properties by means of semi-destructive methods: A review
Feio Inspection and diagnosis of historical timber structures: NDT correlations and structural behaviour
Kloiber et al. Mechanical properties of wood examined by semi-destructive devices
JP5179970B2 (en) Wood strength evaluation method and structural repair diagnosis method
Kloiber et al. Comparative evaluation of acoustic techniques for detection of damages in historical wood
CA2361979A1 (en) Pole testing system
Riggio et al. Hardness test
Drdácký et al. In Situ Compression Stress-Deformation Measurements along the Timber Depth Profile
Lear et al. Resistance drilling
Kloiber et al. Experimental verification of a new tool for wood mechanical resistance measurement
Jaskowska-Lemańska et al. Impact of the direction of non-destructive test with respect to the annual growth rings of pine wood
Teder et al. Overview of some non-destructive methods for in-situ assessment of structural timber
CN106839960A (en) It is a kind of for timber structure Tenon node size and the lossless detection method of internal flaw
Divos et al. Evaluation of historical wooden structures using nondestructive methods
Walach et al. The impact of moisture content of wood on the results of non-destructive tests
Faggiano et al. Combined non-destructive and destructive tests for the mechanical characterization of old structural timber elements
Senalik et al. Detection and assessment of wood decay in glulam beams using a decay rate approach
Brashaw et al. Condition assessment of timber bridges. 2, Evaluation of several stress-wave tools
Zamperini The study of timber structures based on in situ investigation
Šmak et al. Dowelled joints in timber structures experiment-design-realization
Kruglowa In-situ assessment of density and material properties in timber structures by non-destructive and semi-destructive testing
Kappel et al. Inspection of timber construction by measuring drilling resistance using Resistograph F300-S
Kloiber et al. Comparison of results of measuring by current NDT methods with results obtained through a new device for wood mechanical resistance measuring
JP3616814B2 (en) Method and apparatus for estimating internal strength of wood material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130110

LAPS Cancellation because of no payment of annual fees