JP2010008087A - Signal processing circuit and rolling bearing device - Google Patents

Signal processing circuit and rolling bearing device Download PDF

Info

Publication number
JP2010008087A
JP2010008087A JP2008164645A JP2008164645A JP2010008087A JP 2010008087 A JP2010008087 A JP 2010008087A JP 2008164645 A JP2008164645 A JP 2008164645A JP 2008164645 A JP2008164645 A JP 2008164645A JP 2010008087 A JP2010008087 A JP 2010008087A
Authority
JP
Japan
Prior art keywords
signal
processing circuit
output
signal processing
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008164645A
Other languages
Japanese (ja)
Other versions
JP5320851B2 (en
Inventor
Nobuyuki Rito
伸幸 利藤
Nobutsuna Motohashi
信綱 本橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2008164645A priority Critical patent/JP5320851B2/en
Publication of JP2010008087A publication Critical patent/JP2010008087A/en
Application granted granted Critical
Publication of JP5320851B2 publication Critical patent/JP5320851B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/723Shaft end sealing means, e.g. cup-shaped caps or covers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a signal processing circuit which suppresses ripple noise and a rolling bearing device equipped with this circuit. <P>SOLUTION: The signal processing circuit 10 for processing signals output from displacement sensors 7 arranged as a group of one pair in a hub unit 100 and providing it to an ECU, includes an amplification part 11 for differentially amplifying two signals based on the signals output from the one pair of displacement sensors, and outputting a smooth signal whose keytone is a sinusoidal waveform, a rectification part 12 for rectifying the output from the amplification part 11 and extracting a direct current component, and an adjustment part 13 for linearizing the output of the rectification part 12. In this case, since the two signals whose amplitudes and phases are different from each other according to a displacement amount are not rectified directly, and rectification is performed on the basis of the smooth signal which is obtained by performing the differential amplification of the two signals and whose keytone is a sinusoidal waveform, a waveform before rectification is prevented from containing a waveform part which would be an origin of low-frequency ripple noise. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、転がり軸受装置に設けられた変位センサから出力される信号を処理する回路に関する。   The present invention relates to a circuit for processing a signal output from a displacement sensor provided in a rolling bearing device.

近年、自動車の分野において、走行の際の運転制御を行うために、車輪に作用する荷重の情報が必要とされている。かかる情報を得るため、車輪用の転がり軸受装置(ハブユニット)に変位センサが設けられている(例えば、特許文献1参照)。   In recent years, in the field of automobiles, information on loads acting on wheels has been required in order to perform operation control during traveling. In order to obtain such information, a displacement sensor is provided in the wheel rolling bearing device (hub unit) (see, for example, Patent Document 1).

このような転がり軸受装置においては、車体側の固定軌道輪に転動体を介して、可動軌道輪である内軸が回転自在に支持され、この内軸に車輪が取り付けられる。複数個(一対二組で軸方向へ二列に設けられる。)の変位センサは、内軸の端部の外周に対向して設けられており、車輪に荷重が作用した際に発生する内軸の径方向・軸方向の変位を、インダクタンスの変化として出力する。そして、これらの変位センサに接続された信号処理回路は、インダクタンスの変化に基づいて、変位を示す直流信号を生成し、当該信号をECU(電子制御ユニット)に提供する。これによってECUは、車輪に作用する荷重を求めることができる。   In such a rolling bearing device, an inner shaft that is a movable raceway is rotatably supported by a fixed raceway on the vehicle body via a rolling element, and a wheel is attached to the inner shaft. A plurality of displacement sensors (provided in a pair of two pairs in the axial direction) are provided opposite to the outer periphery of the end of the inner shaft, and the inner shaft is generated when a load is applied to the wheel. The displacement in the radial and axial directions is output as a change in inductance. And the signal processing circuit connected to these displacement sensors produces | generates the DC signal which shows a displacement based on the change of an inductance, and provides the said signal to ECU (electronic control unit). Thereby, the ECU can determine the load acting on the wheel.

特開2007−127253号公報JP 2007-127253 A

上記のような信号処理回路において、一対の変位センサから出力される信号は、互いに振幅や位相の異なるsin波形の2信号である。かかる2信号から直流成分を取り出す整流の処理には、半周期ごとに他方の信号と組み合わせたX,Y信号を生成し、これらを差動増幅するという手法が用いられている。より具体的には、2信号のうち一方の信号の山の部分(半周期)の後に他方の信号の谷の部分(半周期)を繋いでX信号とし、逆に、他方の信号の山の部分の後に一方の信号の谷の部分を繋いでY信号とする波形のすげ替えを行い、X,Y信号を差動増幅回路に入力する、という処理が行われる。   In the signal processing circuit as described above, signals output from the pair of displacement sensors are two signals having sin waveforms with different amplitudes and phases. In such rectification processing for extracting a DC component from the two signals, a method of generating X and Y signals combined with the other signal every half cycle and differentially amplifying them is used. More specifically, the peak portion (half cycle) of one of the two signals is connected to the valley portion (half cycle) of the other signal to form an X signal. A process is performed in which the waveform of the Y signal is switched by connecting the valley portion of one signal after the portion, and the X and Y signals are input to the differential amplifier circuit.

しかしながら、振幅や位相の相異なる2信号に対して上記のような波形のすげ替えを行うと、繋ぎ目の部分が滑らかでなくなる。そして、このような繋ぎ目を有する波形から信号処理により得られた直流出力は、周波数の低いリプルノイズを含んでおり、直線的な出力とはならないという問題点があった。
かかる従来の問題点に鑑み、本発明は、リプルノイズを抑制する信号処理回路及びこれを備えた転がり軸受装置を提供することを目的とする。
However, when the above-described waveform replacement is performed on two signals having different amplitudes and phases, the joint portion is not smooth. A DC output obtained by signal processing from a waveform having such a joint includes ripple noise with a low frequency, and there is a problem that the output is not linear.
In view of such a conventional problem, an object of the present invention is to provide a signal processing circuit for suppressing ripple noise and a rolling bearing device including the signal processing circuit.

本発明は、回転体の軸の変位を検出するために一対一組で配置された変位センサから出力される信号を処理する信号処理回路であって、一対の前記変位センサから出力される信号に基づく2信号を差動増幅して、sin波形を基調とする滑らかな信号を出力する増幅部と、前記増幅部からの出力を整流して直流成分を抽出する整流部と、前記整流部の出力を線形化する調整部とを備えたものである。   The present invention is a signal processing circuit that processes signals output from a pair of displacement sensors arranged to detect a displacement of an axis of a rotating body, and converts the signals output from the pair of displacement sensors. Amplifying unit that differentially amplifies two signals based on the output and outputs a smooth signal based on a sin waveform; a rectifying unit that rectifies an output from the amplifying unit to extract a DC component; and an output of the rectifying unit And an adjusting unit for linearizing the.

上記のように構成された信号処理回路は、変位量に応じて振幅・位相が互いに異なる2信号を整流の対象とはせずに、2信号を差動増幅して得たsin波形を基調とする滑らかな信号を基に、整流を行う。従って、整流前の波形に、周波数の低いリプルノイズの基になる波形部分が含まれることを、防止することができる。
なお、ここで言うsin波形とは形状を指しているのであって、cos波形を排除する意味ではない。cos波形もsin波形と同じである。
The signal processing circuit configured as described above is based on a sin waveform obtained by differentially amplifying two signals without subjecting the two signals having different amplitudes and phases depending on the amount of displacement to rectification. Rectification is performed based on the smooth signal. Therefore, it is possible to prevent the waveform before rectification from including a waveform portion that is the basis of ripple noise having a low frequency.
Note that the sin waveform here refers to a shape, and does not mean to exclude the cos waveform. The cos waveform is the same as the sin waveform.

また、上記信号処理回路において、整流部は、基準となるクロック信号からのsin波形の位相シフトに追従した信号を生成し、当該信号に基づいて整流を行うようにしてもよい。
この場合、位相シフトに追従したタイミングで整流が行われるので、整流の切替点に波形の段差が生じない。そのため、その後段の増幅において損失が無く、段差のある場合と比較して増幅効率が向上する。
In the signal processing circuit, the rectifier may generate a signal that follows the phase shift of the sin waveform from the reference clock signal, and perform rectification based on the signal.
In this case, since rectification is performed at the timing following the phase shift, there is no waveform step at the rectification switching point. Therefore, there is no loss in subsequent amplification, and the amplification efficiency is improved as compared with the case where there is a step.

また、本発明の転がり軸受装置は、変位センサ及び、上述のような信号処理回路を備えたものである。
この場合、転がり軸受装置によって回転自在に支持される回転体の軸の変位を、リプルノイズの抑制された信号処理回路によって、正確に検出することができる。
The rolling bearing device of the present invention includes a displacement sensor and the signal processing circuit as described above.
In this case, the displacement of the shaft of the rotating body that is rotatably supported by the rolling bearing device can be accurately detected by the signal processing circuit in which the ripple noise is suppressed.

本発明の信号処理回路及びこれを備えた転がり軸受装置によれば、整流前の波形に、周波数の低いリプルノイズの基になる波形部分が含まれることを、防止することができるので、信号処理回路におけるリプルノイズを抑制することができる。   According to the signal processing circuit of the present invention and the rolling bearing device including the signal processing circuit, it is possible to prevent the waveform before rectification from including a waveform portion that is the basis of low-frequency ripple noise. Ripple noise can be suppressed.

以下、本発明の実施形態に係る信号処理回路及び転がり軸受装置について、図面を参照して説明する。まず、転がり軸受装置の全体構造から説明する。   Hereinafter, a signal processing circuit and a rolling bearing device according to an embodiment of the present invention will be described with reference to the drawings. First, the overall structure of the rolling bearing device will be described.

《転がり軸受装置の全体構造》
図1は、転がり軸受装置の一種であるハブユニットの断面図である。このハブユニット100は車両に取り付けられるものであり、取り付けた状態では、図1における右側が車両のアウター側(車両の外側)であり、左側が車両のインナー側(車両の内側)である。
図1において、ハブユニット100の中心軸Cに沿った方向をY軸方向とし、これに直交する紙面に垂直な方向をX軸方向とし、Y軸方向及びX軸方向の双方に直交する鉛直方向をZ軸方向とする。従って、このハブユニット100が自動車に取り付けられた状態においてX軸方向は車輪の前後水平方向となり、Y軸方向は車輪の左右水平方向(軸方向)となり、Z軸方向は上下方向となる。
<< Overall structure of rolling bearing device >>
FIG. 1 is a cross-sectional view of a hub unit which is a kind of rolling bearing device. The hub unit 100 is attached to a vehicle. In the attached state, the right side in FIG. 1 is the outer side of the vehicle (outside of the vehicle), and the left side is the inner side of the vehicle (inside of the vehicle).
In FIG. 1, the direction along the central axis C of the hub unit 100 is defined as the Y-axis direction, the direction perpendicular to the paper surface perpendicular thereto is defined as the X-axis direction, and the vertical direction perpendicular to both the Y-axis direction and the X-axis direction. Is the Z-axis direction. Therefore, in a state where the hub unit 100 is attached to the automobile, the X-axis direction is the front-rear horizontal direction of the wheel, the Y-axis direction is the left-right horizontal direction (axial direction) of the wheel, and the Z-axis direction is the vertical direction.

このハブユニット100は、主たる構造部分として、外輪1、内軸2、内輪部材3、ナット4、及び、転動体5を備えている。外輪1は、筒状部1aと、この筒状部1aの一部の外周面から径方向外方へ伸びたフランジ部1bとを有している。このフランジ部1bは、車体側の固定部材(図示せず。)に固定され、これによってハブユニット100が車体に固定される。内軸2は、外輪1内に挿通される主軸部2aと、車両アウター側にあって径方向外方へ延びるフランジ部2bとを有している。このフランジ部2bが、車輪のホイールやブレーキディスクの取付部となる。   The hub unit 100 includes an outer ring 1, an inner shaft 2, an inner ring member 3, a nut 4, and a rolling element 5 as main structural parts. The outer ring 1 has a cylindrical part 1a and a flange part 1b extending radially outward from a part of the outer peripheral surface of the cylindrical part 1a. The flange portion 1b is fixed to a vehicle body side fixing member (not shown), whereby the hub unit 100 is fixed to the vehicle body. The inner shaft 2 has a main shaft portion 2a that is inserted into the outer ring 1 and a flange portion 2b that is on the outer side of the vehicle and extends radially outward. This flange part 2b becomes an attachment part of the wheel of a wheel or a brake disc.

内軸2の車両インナー側には、筒状の内輪部材3が外嵌され、さらに、内軸2の端部に形成された雄ねじ部2dにナット4が螺着されることにより、内輪部材3が内軸2に固定されている。転動体5は、周方向に複数個配置された玉からなる複列の構成となっている。各列の玉は保持器(図示せず。)によって周方向に所定間隔で保持されている。転動体5に対して、外側軌道面1c及び内側軌道面2c,3cは斜めに角度を成し、アンギュラ玉軸受が構成されている。   A cylindrical inner ring member 3 is fitted on the inner side of the inner shaft 2 on the vehicle inner side, and a nut 4 is screwed onto a male screw portion 2d formed on the end of the inner shaft 2, whereby the inner ring member 3 is fitted. Is fixed to the inner shaft 2. The rolling elements 5 have a double-row configuration including a plurality of balls arranged in the circumferential direction. The balls in each row are held at predetermined intervals in the circumferential direction by a cage (not shown). The outer raceway surface 1c and the inner raceway surfaces 2c and 3c form an angle with respect to the rolling element 5, and an angular ball bearing is configured.

このハブユニット100において、外輪1は、車体側の固定部材に固定される固定軌道輪である。また、内軸2と内輪部材3とは、外輪1に転動体5を介して回転自在に支持された回転軌道輪である。外輪1、内軸2及び内輪部材3は、互いに同軸(中心軸C)に配置されている。   In the hub unit 100, the outer ring 1 is a fixed race that is fixed to a fixing member on the vehicle body side. Further, the inner shaft 2 and the inner ring member 3 are rotating raceways that are rotatably supported by the outer ring 1 via rolling elements 5. The outer ring 1, the inner shaft 2 and the inner ring member 3 are arranged coaxially (center axis C).

一方、ハブユニット100は、センサ機能に関する構成要素として、内輪部材3のインナ側端部に外嵌された筒状のターゲット部材(被検出部)6と、当該ターゲット部材6との間に径方向のギャップを有しつつ対向して、径方向外方に配置された変位センサ7とを備えている。変位センサ7は、円筒状のケース8に取り付けられ、このケース8が外輪1に取り付けられている。また、ケース8の左端側の開口を塞ぐキャップ9が取り付けられている。ターゲット部材6は、内軸2及び内輪部材3と同軸に配置され、これらと一体に回転する。変位センサ7は、車輪から回転軌道輪(内軸2,内輪部材3)に作用する荷重を求めるために設けられており、ターゲット部材6の変位に伴って変化するインダクタンスを構成するコイルを備えている。   On the other hand, the hub unit 100 is a radial component between the target member 6 and a cylindrical target member (detected portion) 6 that is externally fitted to the inner side end of the inner ring member 3 as a component related to the sensor function. And a displacement sensor 7 disposed opposite to each other in the radial direction. The displacement sensor 7 is attached to a cylindrical case 8, and the case 8 is attached to the outer ring 1. A cap 9 that closes the opening on the left end side of the case 8 is attached. The target member 6 is disposed coaxially with the inner shaft 2 and the inner ring member 3 and rotates integrally therewith. The displacement sensor 7 is provided to obtain a load acting on the rotating raceway (inner shaft 2 and inner ring member 3) from the wheel, and includes a coil that constitutes an inductance that changes in accordance with the displacement of the target member 6. Yes.

なお、図1において、ターゲット部材6は、全体的には円筒状の部材であるが、その外周面に周溝6aが形成されている。この周溝6aの存在により、軸方向にターゲット部材6が変位を生じると、2列の変位センサ7とターゲット部材6との間のギャップの大きさが変化し、変位をインダクタンスの変化として検出することができる。   In FIG. 1, the target member 6 is a cylindrical member as a whole, but a circumferential groove 6a is formed on the outer peripheral surface thereof. When the target member 6 is displaced in the axial direction due to the presence of the circumferential groove 6a, the size of the gap between the two rows of the displacement sensors 7 and the target member 6 changes, and the displacement is detected as a change in inductance. be able to.

図2は、図1の左端側から見た変位センサ7の配置図である。図2に示すように、変位センサ7はX軸、Z軸に沿って一対二組配置されている。さらに、これら一対二組の変位センサ7が、図1の軸方向(Y方向)に2列に設けられている。
ここで、変位センサ7を、場所を示す符号(X軸の前方:f、X軸の後方r、Z軸の上方:t、Z軸の下方b、車両インナー側:i、車両アウター側o)を用いて表すと、図2に示す8個の変位センサfi,fo、ri、ro、ti、to、bi、boが存在する。各変位センサの出力を、例えば変位センサfiの出力であれば[fi]というように表すとすれば、変位は以下のように求めることができる。
FIG. 2 is a layout view of the displacement sensor 7 viewed from the left end side of FIG. As shown in FIG. 2, two pairs of displacement sensors 7 are arranged along the X axis and the Z axis. Further, these two pairs of displacement sensors 7 are provided in two rows in the axial direction (Y direction) of FIG.
Here, the displacement sensor 7 is indicated by a sign indicating the location (front of the X axis: f, rearward r of the X axis, upper side of the Z axis: t, lower side of the Z axis b, vehicle inner side: i, vehicle outer side o). , There are eight displacement sensors fi, fo, ri, ro, ti, to, bi, bo shown in FIG. For example, if the output of each displacement sensor is expressed as [fi] if it is the output of the displacement sensor fi, the displacement can be obtained as follows.

すなわち、車両インナー側でのラジアル変位Xiは、[fi]、[ri]の差動出力、例えば[fi]−[ri]に基づいて、求めることができる。
車両インナー側でのラジアル変位Ziは、[bi]、[ti]の差動出力、例えば[bi]−[ti]に基づいて、求めることができる。
同様に、車両アウター側でのラジアル変位Xoは、[fo]−[ro]に基づいて、車両アウター側でのラジアル変位Zoは、[bo]−[to]に基づいて、それぞれ求めることができる。
That is, the radial displacement Xi on the vehicle inner side can be obtained based on the differential outputs of [fi] and [ri], for example, [fi] − [ri].
The radial displacement Zi on the vehicle inner side can be obtained based on a differential output of [bi] and [ti], for example, [bi]-[ti].
Similarly, the radial displacement Xo on the vehicle outer side can be determined based on [fo]-[ro], and the radial displacement Zo on the vehicle outer side can be determined based on [bo]-[to]. .

一方、アキシャル変位Yは、[fi]、[fo]の差動出力、[ri]、[ro]の差動出力、[ti]、[to]の差動出力、又は、[bi]、[bo]の差動出力に基づいて、求めることができる。また、[fi]、[ri]、[ti]、[bi]の総和と、[fo]、[ro]、[to]、[bo]の総和との差動出力に基づいて、求めることもできる。   On the other hand, the axial displacement Y is a differential output of [fi] and [fo], a differential output of [ri] and [ro], a differential output of [ti] and [to], or [bi], [ bo] can be obtained based on the differential output. It can also be obtained based on the differential output of the sum of [fi], [ri], [ti], [bi] and the sum of [fo], [ro], [to], [bo]. it can.

《第1実施形態に係る信号処理回路》
次に、上記のような変位を求めるために2つ変位センサ7の出力する信号を処理する信号処理回路(第1実施形態)について、図3の回路図に基づいて説明する。信号処理回路は、ハブユニット100の一部としてハブユニット100に搭載してもよいし、ハブユニット100からケーブル等を介して接続される別の個体であるとしてもよい。
<< Signal Processing Circuit According to First Embodiment >>
Next, a signal processing circuit (first embodiment) for processing signals output from the two displacement sensors 7 in order to obtain the above displacement will be described based on the circuit diagram of FIG. The signal processing circuit may be mounted on the hub unit 100 as a part of the hub unit 100, or may be another individual connected from the hub unit 100 via a cable or the like.

図3において、この信号処理回路10は、一対の変位センサ7から出力される信号に基づく2信号を差動増幅してsin波形を基調とする滑らかな信号を出力する増幅部11と、増幅部11からの出力を整流して直流成分を抽出する整流部12と、整流部12の出力を線形化する調整部13とを備えている。増幅部11には一対の変位センサ7から2信号(IN−,IN+)が入力される。また、調整部13の出力は、図示しないECUに提供される。   In FIG. 3, the signal processing circuit 10 includes an amplifying unit 11 that differentially amplifies two signals based on signals output from the pair of displacement sensors 7 and outputs a smooth signal based on a sin waveform, and an amplifying unit. 11 includes a rectification unit 12 that rectifies the output from 11 and extracts a DC component, and an adjustment unit 13 that linearizes the output of the rectification unit 12. Two signals (IN−, IN +) are input from the pair of displacement sensors 7 to the amplifying unit 11. Moreover, the output of the adjustment part 13 is provided to ECU which is not shown in figure.

図3の回路図に示す信号処理回路10は、オペアンプ(符号省略)、抵抗又は可変抵抗R、コンデンサCの他、アナログスイッチ12bにより、構成されている。まず、増幅部11は、一対の変位センサ7におけるインダクタンスの変化を電圧信号に変える共振回路11aと、インピーダンス変換を行うバッファ回路11bと、2信号の差動増幅を行う差動増幅回路11cとによって構成されている。共振回路11aには、クロック信号と同期した発振信号が付与されている。   The signal processing circuit 10 shown in the circuit diagram of FIG. 3 includes an operational amplifier (not shown), a resistor or variable resistor R, a capacitor C, and an analog switch 12b. First, the amplification unit 11 includes a resonance circuit 11a that changes a change in inductance in the pair of displacement sensors 7 into a voltage signal, a buffer circuit 11b that performs impedance conversion, and a differential amplification circuit 11c that performs differential amplification of two signals. It is configured. An oscillation signal synchronized with the clock signal is given to the resonance circuit 11a.

整流部12は、信号電圧の反転を行う反転回路12aと、アナログスイッチ12bと、差動増幅回路12cとによって構成されている。アナログスイッチ12bには、増幅部11から出力される信号そのものと、これを反転回路12aで反転させた信号とが入力される。また、アナログスイッチ12bにはクロック信号(CLK)が供給されており、クロック信号に同期してスイッチの切替が行われる。
調整部13は、オフセット・ゲイン調整回路である。
The rectifying unit 12 includes an inverting circuit 12a that inverts a signal voltage, an analog switch 12b, and a differential amplifier circuit 12c. The analog switch 12b receives the signal itself output from the amplifying unit 11 and a signal obtained by inverting the signal by the inverting circuit 12a. The analog switch 12b is supplied with a clock signal (CLK), and the switch is switched in synchronization with the clock signal.
The adjustment unit 13 is an offset / gain adjustment circuit.

図4は、図3の回路上の各部における信号波形を示す波形図の一例であり、変位量が基準値からみて+の状態から減少し、さらに、−の状態に転じて増大していく状態を示している。クロック信号は、図示のような一定周波数のパルス信号である。また、変位センサ7からの入力信号「IN+」、「IN−」は、位相及び振幅が相反するものとなっている。すなわち、変位量が+のとき、「IN+」は変位量が大きいほど電圧位相がクロック信号より進み、振幅が増加するが、「IN−」は変位量が大きいほど電圧位相がクロック信号より遅れ、振幅は減少する。逆に、変位量が−のとき、「IN+」は変位量が大きいほど電圧位相がクロック信号より遅れ、振幅が減少するが、「IN−」は変位量が大きいほど電圧位相がクロック信号より進み、振幅は増大する。
なお、このような位相と振幅との関係は、共振回路11aの共振周波数とクロック信号の周波数との大・小の関係により逆になる場合もある。
FIG. 4 is an example of a waveform diagram showing signal waveforms at various parts on the circuit of FIG. 3, in which the amount of displacement decreases from the + state when viewed from the reference value, and further increases toward the − state. Is shown. The clock signal is a pulse signal having a constant frequency as shown. Further, the input signals “IN +” and “IN−” from the displacement sensor 7 have opposite phases and amplitudes. That is, when the amount of displacement is +, the voltage phase of “IN +” advances from the clock signal and the amplitude increases as the amount of displacement increases, whereas the voltage phase of “IN−” lags behind the clock signal as the amount of displacement increases. The amplitude decreases. On the contrary, when the displacement amount is −, “IN +” has a voltage phase that is delayed from the clock signal and decreases in amplitude as the displacement amount is large, but “IN−” has a voltage phase that advances from the clock signal as the displacement amount is large. The amplitude increases.
The relationship between the phase and the amplitude may be reversed depending on the relationship between the resonance frequency of the resonance circuit 11a and the frequency of the clock signal.

2つの入力信号「IN+」、「IN−」は、差動増幅回路11cによって差動増幅され、そのままアナログスイッチ12bへの入力信号となる。また、これを反転した信号もアナログスイッチ12bへの入力信号となる。これら2つの入力信号のうち一方を「アナログスイッチIN+」、他方を「アナログスイッチIN−」とすると、これらは、図示のような、sin波形を基調とする滑らかな信号波形となり、2信号の位相・振幅の合致点は、変位量0の中立点(基準値)となる。   The two input signals “IN +” and “IN−” are differentially amplified by the differential amplifier circuit 11c and are directly input to the analog switch 12b. A signal obtained by inverting this is also an input signal to the analog switch 12b. If one of these two input signals is “analog switch IN +” and the other is “analog switch IN−”, these become a smooth signal waveform based on a sin waveform as shown, and the phase of the two signals -The coincidence point of the amplitude is a neutral point (reference value) where the displacement amount is zero.

アナログスイッチ12bはクロック信号に同期して半周期ごとにスイッチ切替を行う。その結果、入力信号は全波整流されて出力され、図示の「アナログスイッチOUT+」及び「アナログスイッチOUT−」となる。さらに、これらの2信号が差動増幅回路12cによって差動増幅され、図示の「差動増幅OUT」となる。この信号は、アナログスイッチ12bの入力から直流成分を抽出したものとなり、クロック信号の半周期ごとに、変位量の符号(正負)及び絶対値にそれぞれ対応した符号及びピーク値を持っている。また、この信号には、アナログスイッチ12bの入力に含まれていたクロック信号との位相のずれが、クロック信号半周期ごとの段差として現れることになる。この段差は急峻であり、高周波成分によって構成される。   The analog switch 12b performs switch switching every half cycle in synchronization with the clock signal. As a result, the input signal is full-wave rectified and output, and becomes “analog switch OUT +” and “analog switch OUT−” shown in the figure. Further, these two signals are differentially amplified by the differential amplifier circuit 12c to become the “differential amplifier OUT” shown in the figure. This signal is obtained by extracting a DC component from the input of the analog switch 12b, and has a sign and a peak value corresponding to the sign (positive / negative) and absolute value of the displacement amount for each half cycle of the clock signal. Further, in this signal, a phase shift from the clock signal included in the input of the analog switch 12b appears as a step for each half cycle of the clock signal. This step is steep and is constituted by a high frequency component.

調整部13(オフセットゲイン調整回路)は、ローパスフィルタの機能、及び、ECU(図示せず。)に所定の電圧範囲の信号を与える機能を有しており、「差動増幅OUT」信号から高周波成分を除去し、線形化する。従って、その出力信号である「オフセットゲインOUT」は、図示のように、前述の中立点(ゼロ点)を通過する直線となる。こうして、リプルノイズの無い直線的な出力が得られる。   The adjustment unit 13 (offset gain adjustment circuit) has a function of a low-pass filter and a function of giving a signal in a predetermined voltage range to an ECU (not shown). Remove components and linearize. Accordingly, the output signal “offset gain OUT” is a straight line passing through the neutral point (zero point) as shown in the figure. Thus, a linear output without ripple noise is obtained.

上記のように構成された信号処理回路10によれば、振幅・位相が互いに異なっている2信号(IN+,IN−)をいきなり整流の対象とはせずに、2信号を差動増幅して得たsin波形を基調とする滑らかな信号(「アナログスイッチIN+」、「アナログスイッチIN−」)を基に、整流を行う。従って、整流前の波形に、周波数の低いリプルノイズの基になる波形部分が含まれることを、防止することができる。すなわち、リプルノイズを抑制する信号処理回路を提供することができる。   According to the signal processing circuit 10 configured as described above, two signals (IN +, IN−) having different amplitudes and phases are not subjected to rectification, but the two signals are differentially amplified. Rectification is performed based on smooth signals ("analog switch IN +" and "analog switch IN-") based on the obtained sin waveform. Therefore, it is possible to prevent the waveform before rectification from including a waveform portion that is the basis of ripple noise having a low frequency. That is, a signal processing circuit that suppresses ripple noise can be provided.

なお、他の視点から述べると、アナログスイッチ12bの持つクロストーク及びキャパシタ成分は、スイッチング時のリプルノイズを増大させるものであるが、本実施形態においてアナログスイッチ12bは共振回路11aと分離して配置されているので、インピーダンス分離がなされており、これによって、リプルノイズを抑制することができる。   From another point of view, the crosstalk and capacitor component of the analog switch 12b increase ripple noise during switching. In this embodiment, the analog switch 12b is arranged separately from the resonance circuit 11a. Therefore, impedance separation is performed, and thereby ripple noise can be suppressed.

また、このような信号処理回路10を用いることによって、ハブユニット100により回転自在に支持される内軸2の変位、すなわち車輪に作用している力(タイヤ力)を、リプルノイズを抑制しつつ、正確に検出することができる。   Further, by using such a signal processing circuit 10, the displacement of the inner shaft 2 that is rotatably supported by the hub unit 100, that is, the force (tire force) acting on the wheel, while suppressing ripple noise, It can be detected accurately.

《第2実施形態に係る信号処理回路》
次に、他の回路構成による信号処理回路(第2実施形態)について、図5の回路図に基づいて説明する。図において、この信号処理回路10の増幅部11及び調整部13は、第1実施形態(図3)と同一である。また、整流部12の反転回路12a、アナログスイッチ12b及び差動増幅回路12cも、第1実施形態と同様である。第1実施形態との相違は、位相クロック追従回路12dが設けられている点である。この回路12dは、増幅部11から出力される位相の位相シフト(基準となるクロック信号からのずれ)に追従した信号を生成するものであり、整流部12は、当該信号に基づいて整流を行うことになる。
<< Signal Processing Circuit According to Second Embodiment >>
Next, a signal processing circuit (second embodiment) having another circuit configuration will be described with reference to the circuit diagram of FIG. In the figure, the amplification unit 11 and the adjustment unit 13 of the signal processing circuit 10 are the same as those in the first embodiment (FIG. 3). The inverting circuit 12a, the analog switch 12b, and the differential amplifier circuit 12c of the rectifying unit 12 are the same as those in the first embodiment. The difference from the first embodiment is that a phase clock tracking circuit 12d is provided. The circuit 12d generates a signal that follows the phase shift (shift from the reference clock signal) of the phase output from the amplifying unit 11, and the rectifying unit 12 performs rectification based on the signal. It will be.

具体的には、位相クロック追従回路12dは、抵抗R、コンデンサC、コンパレータCOMP、フリップフロップ回路FF、エクスクルーシブオア回路EXORを図示のように接続して構成されている。位相クロック追従回路12dには増幅部11における差動増幅回路11cの出力信号が入力される、また、アナログスイッチ12bは、位相クロック追従回路12dの出力信号に同期してスイッチ切替を行う。   Specifically, the phase clock tracking circuit 12d is configured by connecting a resistor R, a capacitor C, a comparator COMP, a flip-flop circuit FF, and an exclusive OR circuit EXOR as illustrated. The output signal of the differential amplifier circuit 11c in the amplifier 11 is input to the phase clock tracking circuit 12d, and the analog switch 12b performs switch switching in synchronization with the output signal of the phase clock tracking circuit 12d.

図6は、図5の回路上の各部における信号波形を示す波形図の一例であり、変位量が基準値からみて+の状態から減少し、さらに、−の状態に転じて増大していく状態を示している。図において、クロック信号、変位センサ7からの入力信号「IN+」、「IN−」、及び、アナログスイッチ12bへの入力信号「アナログスイッチIN+」、「アナログスイッチIN−」は、第1実施形態(図4)と同様である。   FIG. 6 is an example of a waveform diagram showing signal waveforms at various parts on the circuit of FIG. 5, in which the amount of displacement decreases from the + state as viewed from the reference value, and further increases toward the − state. Is shown. In the figure, the clock signal, the input signals “IN +” and “IN−” from the displacement sensor 7, and the input signals “analog switch IN +” and “analog switch IN−” to the analog switch 12 b are the first embodiment ( This is similar to FIG.

位相クロック追従回路12dのコンパレータCOMPは、「アナログスイッチIN+」の信号を、所定値と比較して、図示の2値信号「COMP OUT」を得る。この「COMP OUT」信号は、「アナログスイッチIN+」と同様に、クロック信号とは位相が微妙にずれる。フリップフロップ回路FFには、この「COMP OUT」信号とクロック信号とが入力される。フリップフロップ回路FFの出力「FF OUT」は、クロック信号に比して「COMP OUT」信号の立ち上がりが早い場合には0となり、この状態から、クロック信号に比して「COMP OUT」信号の立ち上がりが遅くなる状態に転じると、1となる。   The comparator COMP of the phase clock tracking circuit 12d compares the signal of the “analog switch IN +” with a predetermined value to obtain the illustrated binary signal “COMP OUT”. The phase of the “COMP OUT” signal is slightly shifted from that of the clock signal, similarly to the “analog switch IN +”. The “COMP OUT” signal and the clock signal are input to the flip-flop circuit FF. The output “FF OUT” of the flip-flop circuit FF becomes 0 when the rise of the “COMP OUT” signal is earlier than that of the clock signal, and from this state, the rise of the “COMP OUT” signal as compared with the clock signal. Becomes 1 when the state becomes slower.

エクスクルーシブオア回路EXORは、「FF OUT」と「COMP OUT」との排他的論理和をとり、図示のような「EXOR OUT」信号を出力する。
このようにして、位相クロック追従回路12dは、入力信号「アナログスイッチIN+」の位相シフトに追従する「EXOR OUT」信号を出力し、アナログスイッチ12bは当該信号に同期してスイッチ切替を行う。フリップフロップ回路FFは極性信号を生成する役目を担っており、位相シフト追従によって失われるクロック信号との位相関係の「離縁」を修復すべく、極性原点を再生している。
The exclusive OR circuit EXOR calculates the exclusive OR of “FF OUT” and “COMP OUT” and outputs an “EXOR OUT” signal as shown in the figure.
In this way, the phase clock follower circuit 12d outputs an “EXOR OUT” signal that follows the phase shift of the input signal “analog switch IN +”, and the analog switch 12b performs switch switching in synchronization with the signal. The flip-flop circuit FF plays a role of generating a polarity signal, and regenerates the polarity origin in order to repair the “separation” of the phase relationship with the clock signal lost due to the phase shift tracking.

そして、アナログスイッチ12bは「EXOR OUT」信号に同期してスイッチ切替を行う。その結果、入力信号の位相に同期した全波整流が行われ、図示の「アナログスイッチOUT+」及び「アナログスイッチOUT−」となる。さらに、これらの2信号が差動増幅回路12cによって差動増幅され、図示の「差動増幅OUT」となる。この信号は、アナログスイッチ12bの入力から直流成分を抽出したものとなり、変位量の符号(正負)及び絶対値にそれぞれ対応した符号及びピーク値を持っている。また、この信号には、整流の切替点に段差が生じない。そのため、増幅損失が無く、段差のある場合と比較して後段(調整部13)における増幅効率が向上する。   Then, the analog switch 12b performs switch switching in synchronization with the “EXOR OUT” signal. As a result, full-wave rectification is performed in synchronization with the phase of the input signal, resulting in “analog switch OUT +” and “analog switch OUT−” shown in the figure. Further, these two signals are differentially amplified by the differential amplifier circuit 12c to become the “differential amplifier OUT” shown in the figure. This signal is obtained by extracting a DC component from the input of the analog switch 12b, and has a sign and a peak value corresponding to the sign (positive / negative) and absolute value of the displacement amount, respectively. Further, in this signal, there is no step at the rectification switching point. Therefore, there is no amplification loss, and the amplification efficiency in the subsequent stage (adjustment unit 13) is improved as compared with the case where there is a step.

調整部13は、「差動増幅OUT」信号から高周波成分を除去し、線形化する。従って、その出力信号である「オフセットゲインOUT」は、図示のように、中立点(ゼロ点)を通過する直線となる。こうして、リプルノイズの無い直線的な出力が得られる。   The adjustment unit 13 removes a high frequency component from the “differential amplification OUT” signal and linearizes it. Therefore, the output signal “offset gain OUT” is a straight line passing through the neutral point (zero point) as shown in the figure. Thus, a linear output without ripple noise is obtained.

上記のような第2実施形態では、第1実施形態と同様に、リプルノイズを抑制する信号処理回路10を提供することができる。
また、位相シフトに追従したタイミングで整流が行われるので、整流の切替点に波形の段差が生じない。そのため、その後段の増幅において損失が無く、段差のある場合と比較して増幅効率が向上する。
In the second embodiment as described above, similarly to the first embodiment, it is possible to provide the signal processing circuit 10 that suppresses ripple noise.
Further, since the rectification is performed at the timing following the phase shift, there is no waveform step at the rectification switching point. Therefore, there is no loss in subsequent amplification, and the amplification efficiency is improved as compared with the case where there is a step.

なお、上記各実施形態の信号処理回路は、ハブユニット100に取り付けられた変位センサ7の出力信号を処理するものとして説明したが、ハブユニット100に限らず、回転体の軸の変位を検出するために一対一組で配置された変位センサから出力される信号を処理する信号処理回路として、適用可能である。   In addition, although the signal processing circuit of each said embodiment demonstrated as what processes the output signal of the displacement sensor 7 attached to the hub unit 100, it detects not only the hub unit 100 but the displacement of the axis | shaft of a rotary body. Therefore, the present invention can be applied as a signal processing circuit that processes signals output from a displacement sensor arranged in a one-to-one pair.

転がり軸受装置の一種であるハブユニットの断面図である。It is sectional drawing of the hub unit which is a kind of rolling bearing apparatus. 図1の左端側から見た変位センサの配置図である。FIG. 2 is a layout diagram of a displacement sensor viewed from the left end side of FIG. 1. 第1実施形態に係る信号処理回路の回路図である。1 is a circuit diagram of a signal processing circuit according to a first embodiment. 図3の回路上の各部における信号波形を示す波形図の一例である。It is an example of the wave form diagram which shows the signal waveform in each part on the circuit of FIG. 第2実施形態に係る信号処理回路の回路図である。It is a circuit diagram of the signal processing circuit which concerns on 2nd Embodiment. 図5の回路上の各部における信号波形を示す波形図の一例である。FIG. 6 is an example of a waveform diagram showing signal waveforms at various parts on the circuit of FIG. 5.

符号の説明Explanation of symbols

2 内軸
7 変位センサ
10 信号処理回路
11 増幅部
12 整流部
13 調整部
100 転がり軸受装置
2 Inner shaft 7 Displacement sensor 10 Signal processing circuit 11 Amplifying unit 12 Rectifying unit 13 Adjusting unit 100 Rolling bearing device

Claims (3)

回転体の軸の変位を検出するために一対一組で配置された変位センサから出力される信号を処理する信号処理回路であって、
一対の前記変位センサから出力される信号に基づく2信号を差動増幅して、sin波形を基調とする滑らかな信号を出力する増幅部と、
前記増幅部からの出力を整流して直流成分を抽出する整流部と、
前記整流部の出力を線形化する調整部と
を備えたことを特徴とする信号処理回路。
A signal processing circuit for processing signals output from displacement sensors arranged in a one-to-one pair to detect displacement of a shaft of a rotating body,
An amplifier that differentially amplifies two signals based on the signals output from the pair of displacement sensors and outputs a smooth signal based on a sin waveform;
A rectification unit that rectifies the output from the amplification unit and extracts a DC component;
A signal processing circuit comprising: an adjustment unit that linearizes an output of the rectification unit.
前記整流部は、基準となるクロック信号からの前記sin波形の位相シフトに追従した信号を生成し、当該信号に基づいて整流を行う請求項1記載の信号処理回路。   The signal processing circuit according to claim 1, wherein the rectifying unit generates a signal that follows a phase shift of the sin waveform from a reference clock signal, and performs rectification based on the signal. 前記変位センサ及び、請求項1又は2に記載の信号処理回路を備えた転がり軸受装置。   A rolling bearing device comprising the displacement sensor and the signal processing circuit according to claim 1.
JP2008164645A 2008-06-24 2008-06-24 Signal processing circuit and rolling bearing device Expired - Fee Related JP5320851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008164645A JP5320851B2 (en) 2008-06-24 2008-06-24 Signal processing circuit and rolling bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008164645A JP5320851B2 (en) 2008-06-24 2008-06-24 Signal processing circuit and rolling bearing device

Publications (2)

Publication Number Publication Date
JP2010008087A true JP2010008087A (en) 2010-01-14
JP5320851B2 JP5320851B2 (en) 2013-10-23

Family

ID=41588788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008164645A Expired - Fee Related JP5320851B2 (en) 2008-06-24 2008-06-24 Signal processing circuit and rolling bearing device

Country Status (1)

Country Link
JP (1) JP5320851B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202737A (en) * 2011-03-24 2012-10-22 Jtekt Corp Signal processing circuit and roller bearing device
CN114253249A (en) * 2021-12-13 2022-03-29 潍柴动力股份有限公司 Inductive position sensor simulation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198418A (en) * 1993-12-28 1995-08-01 Matsushita Electric Ind Co Ltd Signal processing circuit
JP2006009866A (en) * 2004-06-23 2006-01-12 Ntn Corp Wheel bearing with built-in load sensor
JP2006234690A (en) * 2005-02-25 2006-09-07 Calsonic Kansei Corp Torque sensor
JP2007127253A (en) * 2005-11-07 2007-05-24 Jtekt Corp Rolling bearing device with sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198418A (en) * 1993-12-28 1995-08-01 Matsushita Electric Ind Co Ltd Signal processing circuit
JP2006009866A (en) * 2004-06-23 2006-01-12 Ntn Corp Wheel bearing with built-in load sensor
JP2006234690A (en) * 2005-02-25 2006-09-07 Calsonic Kansei Corp Torque sensor
JP2007127253A (en) * 2005-11-07 2007-05-24 Jtekt Corp Rolling bearing device with sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202737A (en) * 2011-03-24 2012-10-22 Jtekt Corp Signal processing circuit and roller bearing device
CN114253249A (en) * 2021-12-13 2022-03-29 潍柴动力股份有限公司 Inductive position sensor simulation device

Also Published As

Publication number Publication date
JP5320851B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
EP2116813B1 (en) Rotation detection device and bearing with rotation detection device
US9234908B2 (en) Rotation detecting device and bearing equipped with rotation detecting device
US8167499B2 (en) Rolling bearing device with sensor
JP6165541B2 (en) Rotation detection device and bearing with rotation detection device
JP4888074B2 (en) Rolling bearing device for wheels
JP2006010477A (en) Bearing device for wheel with built-in load sensor
JP5320851B2 (en) Signal processing circuit and rolling bearing device
JP2006208049A (en) Rotation angle detection apparatus
JP2008224440A (en) Bearing rotation detecting apparatus
JP4962126B2 (en) Rolling bearing device with sensor
JP2004332796A (en) Bearing for wheel with load sensor built therein
JP5195336B2 (en) Displacement sensor device and rolling bearing device
JP2009097950A (en) Measuring device and measurement method of shaft torque in drive shaft
JP2008128812A (en) Roller bearing device equipped with sensor
US7702472B2 (en) Rolling bearing device with sensor
JP2007071652A (en) Wheel bearing with sensor
JP6632825B2 (en) Bearing with rotation detector
JP2006258572A (en) Hub unit with displacement sensor
JP5458498B2 (en) State quantity measuring device for rolling bearing units
JP5729068B2 (en) Signal processing circuit and rolling bearing device
JP2008275508A (en) Rolling bearing device with sensor
JP2007321831A (en) Wheel bearing device
JP2008275507A (en) Rolling bearing device with sensor
JP2012122789A (en) Wheel bearing with rotation detection device
JP2014081256A (en) Rolling bearing device with sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Ref document number: 5320851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees