JP2010007136A - Optical element holding method - Google Patents

Optical element holding method Download PDF

Info

Publication number
JP2010007136A
JP2010007136A JP2008168545A JP2008168545A JP2010007136A JP 2010007136 A JP2010007136 A JP 2010007136A JP 2008168545 A JP2008168545 A JP 2008168545A JP 2008168545 A JP2008168545 A JP 2008168545A JP 2010007136 A JP2010007136 A JP 2010007136A
Authority
JP
Japan
Prior art keywords
optical element
optical
element holding
dummy member
holding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008168545A
Other languages
Japanese (ja)
Inventor
Hiroshi Moroboshi
浩 諸星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2008168545A priority Critical patent/JP2010007136A/en
Publication of JP2010007136A publication Critical patent/JP2010007136A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical element holding method which prevents sticking between optical elements, so as to facilitate attachment/detachment, and also has no risk of damages in optical surfaces. <P>SOLUTION: The optical element holding method where, in an optical element 31 having optical surfaces 31A and an outer circumferential face 31B, a thin film is formed on the outer circumferential face 31B comprises a process in which, between the mutual optical surfaces 31A of the plurality of optical elements 31 arranged along the direction of the optical axis, dummy members 32 having fine ruggedness are interposed in such a manner that the contact surfaces 32A confronted with the respective optical surfaces 31A are not made into mirror surfaces. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光学素子の周壁に薄膜を形成する際の光学素子保持方法に関する。   The present invention relates to an optical element holding method when a thin film is formed on a peripheral wall of an optical element.

従来、光学素子の周壁に均一な薄膜を形成する装置として、装置内に設けた回転駆動機構により、光学素子を重ね合わせて保持した保持装置が連動して回転されて、保持された光学素子の周壁が、蒸着源に対向された状態で回転されながら周壁に薄膜が形成される装置が知られている(例えば、特許文献1参照。)。   Conventionally, as a device for forming a uniform thin film on the peripheral wall of an optical element, a holding device that holds the optical elements in an overlapping manner is rotated in conjunction with a rotation driving mechanism provided in the device, and the held optical elements are An apparatus is known in which a thin film is formed on a peripheral wall while the peripheral wall is rotated while facing the vapor deposition source (see, for example, Patent Document 1).

特許文献1に記載の装置では、第1及び第2のレンズ支持部材の間に薄膜が形成される複数のレンズが重ねて保持されている。このとき、各光学素子は、その光学面同士が接触した状態で第1及び第2のレンズ支持部材によって押圧保持されている。
特開2006−200015号公報
In the apparatus described in Patent Document 1, a plurality of lenses on which a thin film is formed are overlapped and held between the first and second lens support members. At this time, each optical element is pressed and held by the first and second lens support members in a state where their optical surfaces are in contact with each other.
JP 2006-200015 A

しかしながら、上記のような方法で光学素子を保持して、真空法によって薄膜を成膜する場合、互いに接触した光学素子の光学面上の隙間も真空状態となる。そのため、成膜後に大気解放すると、光学面においてオプチカルコンタクトが発生し、光学素子同士が強固に貼り付いて着脱が非常に困難になる場合があるという問題がある。
また、光学素子を回転駆動する際に、光学面においてすべりが生じ、光学面が損傷されるおそれがあるという問題もある。
However, when the optical element is held by the above-described method and a thin film is formed by the vacuum method, the gap on the optical surface of the optical elements that are in contact with each other is also in a vacuum state. Therefore, when air is released after film formation, there is a problem that optical contact is generated on the optical surface, and the optical elements are firmly attached to each other, which makes it very difficult to attach and detach.
Further, when the optical element is rotationally driven, there is a problem that the optical surface slips and the optical surface may be damaged.

本発明は上記事情に鑑みて成されたものであり、光学素子同士の貼り付きを防止して着脱を容易にし、かつ光学面の損傷のおそれのない光学素子保持方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an optical element holding method that prevents sticking of optical elements, facilitates attachment / detachment, and does not cause damage to the optical surface. To do.

本発明は、光学面と外周面とを有する光学素子の前記外周面に薄膜を成膜するときの光学素子保持方法であって、光軸方向にそって配列された複数の前記光学素子の互いの前記光学面の間に、各々の前記光学面に対向する接触面が鏡面とならないように微小凹凸を有するダミー部材を介在させる工程を有することを特徴とする。   The present invention is an optical element holding method for forming a thin film on the outer peripheral surface of an optical element having an optical surface and an outer peripheral surface, wherein a plurality of the optical elements arranged along the optical axis direction are mutually connected. The method further comprises a step of interposing a dummy member having minute irregularities so that a contact surface facing each optical surface does not become a mirror surface between the optical surfaces.

本発明の光学素子保持方法によれば、光学素子の光学面とダミー部材の接触面との間に常に微小間隙が確保され、真空環境下における成膜後、光学面と接触面との間に空気が進入してオプチカルコンタクトによる貼り付きが防止される。   According to the optical element holding method of the present invention, a minute gap is always ensured between the optical surface of the optical element and the contact surface of the dummy member, and after film formation in a vacuum environment, between the optical surface and the contact surface. Air enters and sticking due to optical contact is prevented.

前記ダミー部材の接触面は、微小凹凸を有する砂目に加工されてもよい。この場合、すべりによって光学面を損傷せずに貼り付きを好適に防ぐことができる。   The contact surface of the dummy member may be processed into a grain having fine irregularities. In this case, sticking can be suitably prevented without damaging the optical surface by sliding.

前記砂目が、800番以上3000番以下であってもよい。この場合、光学面の損傷の発生をより低く抑えることができる。   The grain number may be 800 or more and 3000 or less. In this case, the occurrence of damage to the optical surface can be suppressed to a lower level.

本発明の光学素子保持方法によれば、光学素子同士の貼り付きを防止して着脱を容易にし、かつ光学面の損傷のおそれのない光学素子保持方法を提供することができる。   According to the optical element holding method of the present invention, it is possible to provide an optical element holding method that prevents the optical elements from sticking to each other, facilitates attachment / detachment, and does not cause damage to the optical surface.

本発明の第1実施形態について、図1から図3を参照して説明する。図1は、本実施形態の光学素子保持方法が適用される薄膜形成装置の一例の構成を示す図である。
図1に示す薄膜形成装置1は、薄膜形成槽2と、薄膜形成槽2の内部に配置されて光学素子が取付けられるドーム部3と、ドーム部3に取付けられる光学素子保持部4と、ドーム部3の下方に設置された蒸着源5とを備えて構成されている。
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram illustrating a configuration of an example of a thin film forming apparatus to which the optical element holding method of the present embodiment is applied.
A thin film forming apparatus 1 shown in FIG. 1 includes a thin film forming tank 2, a dome part 3 that is disposed inside the thin film forming tank 2 and to which an optical element is attached, an optical element holding part 4 that is attached to the dome part 3, and a dome. And a vapor deposition source 5 installed below the unit 3.

薄膜形成槽2は公知の構成からなり、薄膜の成膜時には、内部が真空状態にされて蒸着法によって成膜が行われる。   The thin film forming tank 2 has a known configuration, and when forming a thin film, the inside is evacuated and the film is formed by vapor deposition.

ドーム部3は、略球面状の天井部6と、略円筒状の側壁部7とを有している。
天井部6の内面には、複数の凹部6Aが形成されている。各凹部6Aには、光学素子保持部4が、その軸線(具体的には、後述する挟持軸部材13B)が側壁部7の中心軸を通る天井部6の断面に対する接線と略平行となるように取付けられる。
The dome part 3 has a substantially spherical ceiling part 6 and a substantially cylindrical side wall part 7.
A plurality of recesses 6 </ b> A are formed on the inner surface of the ceiling portion 6. In each recess 6 </ b> A, the optical element holding portion 4 has an axis (specifically, a pinching shaft member 13 </ b> B described later) that is substantially parallel to a tangent to the cross section of the ceiling portion 6 that passes through the central axis of the side wall portion 7. Mounted on.

側壁部7は、中心軸が薄膜形成槽2の中心軸と一致するように配置されている。側壁部7の下端7Aには、リング状の歯車8が周方向に沿って設けられており、歯車8は駆動歯車9を介してモータ等の駆動機構10の回転軸10Aと噛み合わされている。これによって、ドーム部3は、駆動機構10によって側壁部7の中心軸回りに回転可能に構成されている。
なお、側壁部7を略円筒形に形成するのに代えて、天井部6を複数の支柱で支え、各支柱間にカバーを設けて側壁部7が形成されてもよい。
The side wall portion 7 is arranged so that the central axis coincides with the central axis of the thin film forming tank 2. A ring-shaped gear 8 is provided at the lower end 7A of the side wall portion 7 along the circumferential direction, and the gear 8 is engaged with a rotating shaft 10A of a driving mechanism 10 such as a motor via a driving gear 9. Accordingly, the dome portion 3 is configured to be rotatable around the central axis of the side wall portion 7 by the drive mechanism 10.
Instead of forming the side wall portion 7 in a substantially cylindrical shape, the side wall portion 7 may be formed by supporting the ceiling portion 6 with a plurality of columns and providing a cover between the columns.

図2は、光学素子保持部4の拡大図である。光学素子保持部4は、凹部6Aに着脱自在に固定される支持部材11と、支持部材11に取付けられて光学素子を挟持して保持する第1挟持部12及び第2挟持部13と、挟持された光学素子を回転させる従動歯車14とを備えて構成されている。   FIG. 2 is an enlarged view of the optical element holding unit 4. The optical element holding part 4 includes a support member 11 that is detachably fixed to the recess 6A, a first holding part 12 and a second holding part 13 that are attached to the support member 11 and hold the optical element. And a driven gear 14 for rotating the optical element.

支持部材11は棒状の部材であり、一端に突起部11Aが設けられている。光学素子保持部4は、天井部6の凹部6Aの内面に設けられた穴に支持部材の一端を嵌合することによって、自重で突起部11Aと凹部6Aの内面とが係合し、凹部6A内に位置決めされた状態で着脱自在に固定される。   The support member 11 is a rod-shaped member, and is provided with a protrusion 11A at one end. The optical element holding part 4 engages the protrusion 11A and the inner surface of the recess 6A by its own weight by fitting one end of the support member into the hole provided in the inner surface of the recess 6A of the ceiling part 6, and the recess 6A. It is detachably fixed in a state where it is positioned inside.

第1挟持部12及び第2挟持部13は、それぞれ支持部材11に取付けられる固定部12A、13Aと、固定部12A、13Aに取付けられる挟持軸部材12B,13Bとを備えて構成されている。固定部12A、13Aには、孔が設けられている。挟持軸部材12B,13Bは当該孔に挿入され、それぞれベアリング15によって回転自在に固定されて対向配置されている。突起部11A側の第1挟持部12は、突起部11Aと固定部12Aとの間に配置されたバネ等の付勢手段16によって、第2挟持部13に向かって付勢されている。   The 1st clamping part 12 and the 2nd clamping part 13 are each provided with fixing | fixed part 12A, 13A attached to the supporting member 11, and clamping shaft member 12B, 13B attached to fixing | fixed part 12A, 13A. Holes are provided in the fixing portions 12A and 13A. The sandwiching shaft members 12B and 13B are inserted into the holes and are rotatably fixed by bearings 15 so as to face each other. The first holding part 12 on the protruding part 11A side is urged toward the second holding part 13 by an urging means 16 such as a spring arranged between the protruding part 11A and the fixing part 12A.

従動歯車14は、挟持軸部材13Bの第1挟持部12と反対側の端部に、挟持軸部材13Bと同軸に取付けられている。従動歯車14は、天井部6の上方に設けられたリング状の固定歯車17と噛み合い、側壁部7の回転に伴って回転して挟持軸部材13Bを回転させる。
固定歯車17は、複数の支柱18によって吊り下げられ、支柱18は、連結部材19で連結された状態で、薄膜形成槽2の内面上部に取付けられている。
The driven gear 14 is attached coaxially to the sandwiching shaft member 13B at the end of the sandwiching shaft member 13B opposite to the first sandwiching portion 12. The driven gear 14 meshes with a ring-shaped fixed gear 17 provided above the ceiling portion 6, and rotates with the rotation of the side wall portion 7 to rotate the sandwiching shaft member 13 </ b> B.
The fixed gear 17 is suspended by a plurality of support pillars 18, and the support pillars 18 are attached to the upper part of the inner surface of the thin film forming tank 2 in a state of being connected by a connecting member 19.

蒸着源5は、側壁部7の軸線上の位置に、天井部6の凹部6Aと対向するように配置されている。そして、天井部6の曲面上のどの位置においても蒸着源5との距離が等しいように天井部6の形状が設定されている。蒸着源5の材料は、成膜する薄膜によって適宜選択される。
蒸着源5の付近には公知の電子銃20が配置されており、電子銃20から放出された電子ビームが蒸着源5の成膜材料を加熱して蒸発させるようになっている。
The vapor deposition source 5 is disposed at a position on the axis of the side wall portion 7 so as to face the concave portion 6 </ b> A of the ceiling portion 6. And the shape of the ceiling part 6 is set so that the distance to the vapor deposition source 5 is equal at any position on the curved surface of the ceiling part 6. The material of the vapor deposition source 5 is appropriately selected depending on the thin film to be formed.
A known electron gun 20 is disposed in the vicinity of the evaporation source 5, and an electron beam emitted from the electron gun 20 heats and evaporates the film forming material of the evaporation source 5.

蒸着源5と凹部6Aとの間には、シャッター21が設けられている。シャッター21は回転軸21Aに固定されており、回転軸21Aを回転させることによって、蒸着源5と凹部6Aとの間から退避可能に構成されている。   A shutter 21 is provided between the vapor deposition source 5 and the recess 6A. The shutter 21 is fixed to a rotating shaft 21A, and is configured to be retractable from between the vapor deposition source 5 and the recess 6A by rotating the rotating shaft 21A.

上記のように構成された薄膜形成装置1を用いて成膜を行う際に、本発明の光学素子保持方法を行う手順を説明する。
まず、図3に示すように、光学素子31と、光学素子31とほぼ同じ径のダミー部材32を、それぞれ複数用意する。
A procedure for performing the optical element holding method of the present invention when performing film formation using the thin film forming apparatus 1 configured as described above will be described.
First, as shown in FIG. 3, a plurality of optical elements 31 and a plurality of dummy members 32 having substantially the same diameter as the optical elements 31 are prepared.

本実施形態の光学素子31は、ガラス材質、例えばサファイアからなる径4ミリメートル(mm)、厚さ1.5mmの円盤状の素子であり、軸線方向の光学面31A、外周面31B共に研磨されて全面が鏡面状態になっている。なお、これは一例であり、本発明で使用する光学素子については、材質、形状共に制限はない。   The optical element 31 of the present embodiment is a disk-shaped element made of a glass material, for example, sapphire having a diameter of 4 millimeters (mm) and a thickness of 1.5 mm. Both the optical surface 31A in the axial direction and the outer peripheral surface 31B are polished. The entire surface is in a mirror state. This is merely an example, and the optical element used in the present invention is not limited in material and shape.

ダミー部材32は、白板からなる円盤状の部材で、径及び厚さは光学素子と同一に設定されている。そして、後述するように光学素子31の光学面31Aと接触する軸線方向両端の接触面32Aは、表面に微小凹凸を有する2000番(#2000)の砂目に加工されている。   The dummy member 32 is a disk-shaped member made of a white plate, and the diameter and thickness are set to be the same as those of the optical element. Then, as will be described later, the contact surfaces 32A at both ends in the axial direction that come into contact with the optical surface 31A of the optical element 31 are processed into a number 2000 (# 2000) grain having fine irregularities on the surface.

接触面32Aの加工は、#800以上#3000以下が好ましい。接触面32Aが#800より粗いと光学面31Aにキズが生じる恐れがあり、#3000より細かいと、オプチカルコンタクトに準じた状態となり、ダミー部材32が光学素子31に貼り付く可能性がある。   The processing of the contact surface 32A is preferably # 800 or more and # 3000 or less. If the contact surface 32A is rougher than # 800, the optical surface 31A may be scratched. If the contact surface 32A is smaller than # 3000, the optical surface 31 conforms to the optical contact, and the dummy member 32 may stick to the optical element 31.

上記の光学素子31とダミー部材32とを、軸線(光学素子31においては光軸)方向に交互にかつ同軸に並べ、密着させる。これによって、隣り合う光学素子31の間にダミー部材32が介装され、光学素子31の光学面31Aとダミー部材32の接触面32Aとが接触する(ダミー部材介在工程)。このとき、並べた光学素子31及びダミー部材32の両端は、第1挟持部12及び第2挟持部13の挟持軸部材12B,13Bと接触するため、ダミー部材32としておくのが好ましい。   The optical element 31 and the dummy member 32 are arranged alternately and coaxially in the axial direction (optical axis in the optical element 31) and are brought into close contact with each other. Thereby, the dummy member 32 is interposed between the adjacent optical elements 31, and the optical surface 31A of the optical element 31 and the contact surface 32A of the dummy member 32 come into contact (dummy member interposing step). At this time, since both ends of the optical element 31 and the dummy member 32 arranged in contact with the sandwiching shaft members 12B and 13B of the first sandwiching portion 12 and the second sandwiching portion 13 are preferably used as the dummy member 32.

次に、図2に示すように、光学素子31及びダミー部材32を第1挟持部12及び第2挟持部13の挟持軸部材12Bと13Bとの間に挟む。このとき、挟持された光学素子31及びダミー部材32が、挟持軸部材12B及び13Bと同軸になるように設置する。第1挟持部12は付勢手段16によって、第2挟持部13に向かって付勢され、第1挟持部12と第2挟持部13との間に光学素子31及びダミー部材32が挟持される。付勢手段16の付勢力は、挟持された光学素子31及びダミー部材32と挟持軸部材12B、13Bとが相対回転しないように保持できる程度の強さに設定される。   Next, as shown in FIG. 2, the optical element 31 and the dummy member 32 are sandwiched between the sandwiching shaft members 12 </ b> B and 13 </ b> B of the first sandwiching section 12 and the second sandwiching section 13. At this time, the sandwiched optical element 31 and the dummy member 32 are installed so as to be coaxial with the sandwiching shaft members 12B and 13B. The first clamping unit 12 is urged toward the second clamping unit 13 by the urging means 16, and the optical element 31 and the dummy member 32 are clamped between the first clamping unit 12 and the second clamping unit 13. . The urging force of the urging means 16 is set to a strength that can hold the clamped optical element 31 and the dummy member 32 and the clamping shaft members 12B and 13B so as not to rotate relative to each other.

光学素子31及びダミー部材32が挟持された光学素子保持部4は、支持部材11を天井部6の凹部6Aに固定することによって、凹部6A内に取付けられる。このとき、光学素子31及びダミー部材32の回転軸、すなわち、挟持軸部材12B、13Bが、天井部6の曲面の接線と一致するように光学素子保持部4が配置され、光学素子31の外周面31Bが下方の蒸着源5に対向する。   The optical element holding part 4 between which the optical element 31 and the dummy member 32 are sandwiched is fixed in the recess 6A by fixing the support member 11 to the recess 6A of the ceiling part 6. At this time, the optical element holding part 4 is arranged so that the rotation axes of the optical element 31 and the dummy member 32, that is, the sandwiching shaft members 12 </ b> B and 13 </ b> B coincide with the tangent line of the curved surface of the ceiling part 6. The surface 31B faces the lower deposition source 5.

駆動機構10を駆動して駆動歯車9を回転させると、歯車8が回転し、ドーム部3が側壁部7の中心軸回りに回転する。ドーム部3の天井部6に取付けられた光学素子保持部4は、ドーム部3と共に回転する。このとき、従動歯車14が固定歯車17と噛み合って回転し、従動歯車14が取付けられた第2挟持部13の挟持軸部材13Bが回転する。それにともなって、同軸に支持された光学素子31、ダミー部材32、及び第1挟持部12の挟持軸部材12Bが軸線回りに回転する。すなわち、光学素子31及びダミー部材32は、軸線回りに回転しつつ蒸着源5に対して公転する。   When the drive mechanism 10 is driven to rotate the drive gear 9, the gear 8 rotates and the dome portion 3 rotates around the central axis of the side wall portion 7. The optical element holding part 4 attached to the ceiling part 6 of the dome part 3 rotates together with the dome part 3. At this time, the driven gear 14 meshes with the fixed gear 17 and rotates, and the clamping shaft member 13B of the second clamping unit 13 to which the driven gear 14 is attached rotates. Accordingly, the optical element 31, the dummy member 32, and the clamping shaft member 12 </ b> B of the first clamping unit 12 that are supported coaxially rotate around the axis. That is, the optical element 31 and the dummy member 32 revolve with respect to the vapor deposition source 5 while rotating around the axis.

ついで、電子銃20から蒸着源5に向けて電子ビームを放出させると、蒸着源5の成膜材料が加熱されて蒸発する。シャッター21の回転軸21Aを回転させてシャッターを蒸着源5と凹部6Aとの間から退避させると、蒸発した成膜材料が天井部6に向かって直進し、光学素子31およびダミー部材32の外周面に到達する。このようにして、光学素子31の外周面31Bに均一な厚さの薄膜が形成される。   Next, when an electron beam is emitted from the electron gun 20 toward the vapor deposition source 5, the film forming material of the vapor deposition source 5 is heated and evaporated. When the rotating shaft 21A of the shutter 21 is rotated to retract the shutter from between the vapor deposition source 5 and the recess 6A, the evaporated film forming material advances straight toward the ceiling 6 and the outer periphery of the optical element 31 and the dummy member 32 Reach the plane. In this way, a thin film having a uniform thickness is formed on the outer peripheral surface 31B of the optical element 31.

上記の手順で、薄膜形成槽2内の温度を300℃、到達真空度2×10−4Paの条件下で蒸着源5として金を用い、厚さ100ナノメートル(nm)の薄膜を成膜したところ、光学素子31とダミー部材32との間にオプチカルコンタクトによる貼り付きは発生しなかった。そして、光学素子保持部から光学素子31及びダミー部材32を取り外す際に、光学素子31の光学面31Aを損傷することなく容易に着脱することができた。 According to the above procedure, a thin film having a thickness of 100 nanometers (nm) is formed using gold as the vapor deposition source 5 under the conditions that the temperature in the thin film formation tank 2 is 300 ° C. and the ultimate vacuum is 2 × 10 −4 Pa. As a result, sticking due to optical contact did not occur between the optical element 31 and the dummy member 32. And when removing the optical element 31 and the dummy member 32 from an optical element holding | maintenance part, it was able to attach or detach easily, without damaging the optical surface 31A of the optical element 31. FIG.

本発明の光学素子保持方法によれば、光軸方向に配列された複数の光学素子31の隣り合う光学面31Aの間に接触面32Aが鏡面でなく微小凹凸を有するダミー部材32が介装されるので、接触面32Aと光学面31Aとの間に常に微小間隙が確保される。したがって、真空環境下で成膜を行った場合でも、成膜後、接触面32Aと光学面31Aとの間に空気が進入してオプチカルコンタクトによる貼り付きが防止され、容易に着脱することができる。   According to the optical element holding method of the present invention, the contact member 32A is not a mirror surface, but a dummy member 32 having minute irregularities is interposed between adjacent optical surfaces 31A of a plurality of optical elements 31 arranged in the optical axis direction. Therefore, a minute gap is always ensured between the contact surface 32A and the optical surface 31A. Therefore, even when film formation is performed in a vacuum environment, after the film formation, air enters between the contact surface 32A and the optical surface 31A to prevent sticking due to optical contact and can be easily attached and detached. .

また、接触面が#2000の砂目に加工されているので、すべりによって光学面31Aを損傷せずに貼り付きを好適に防ぐことができる。   Moreover, since the contact surface is processed into a # 2000 grain, it is possible to suitably prevent sticking without damaging the optical surface 31A due to slippage.

次に本発明の第2実施形態の光学素子保持方法について、図4及び図5を参照して説明する。本実施形態の光学素子保持方法と、上記第1実施形態の光学素子保持方法との異なる点は、光学素子及びダミー部材の形状である。
なお、上記第1実施形態に既出の各構成については、同一の符号を付して重複する説明を省略する。
Next, an optical element holding method according to a second embodiment of the present invention will be described with reference to FIGS. The difference between the optical element holding method of the present embodiment and the optical element holding method of the first embodiment is the shapes of the optical element and the dummy member.
In addition, about each structure already mentioned in the said 1st Embodiment, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

図4は、本実施形態において使用される光学素子41及びダミー部材42を示す図である。光学素子41は、ガラス材質(商品名S−LAH58:株式会社オハラ製)からなる径10mm、厚さ1.0mmの素子であり、光学面41Aが凹状の球面(R10凹、R20凹)となっている。   FIG. 4 is a diagram showing the optical element 41 and the dummy member 42 used in the present embodiment. The optical element 41 is an element having a diameter of 10 mm and a thickness of 1.0 mm made of a glass material (trade name S-LAH58: manufactured by OHARA INC.), And the optical surface 41A is a concave spherical surface (R10 concave, R20 concave). ing.

ダミー部材42は、ダミー部材32と同様白板から形成されており、接触面42Aは、球面創成機によって光学面41Aに対応する凸状の球面(R10凸、R20凸)に加工されている。ダミー部材42の径及び厚さは光学素子41と同一であり、接触面42Aの表面は#2000程度の砂目状となっている。   The dummy member 42 is formed of a white plate like the dummy member 32, and the contact surface 42A is processed into a convex spherical surface (R10 convex, R20 convex) corresponding to the optical surface 41A by a spherical surface generator. The diameter and thickness of the dummy member 42 are the same as those of the optical element 41, and the surface of the contact surface 42A has a grain shape of about # 2000.

上述の光学素子41及びダミー部材42を、光軸方向に並べて、図5に示すように第1実施形態と同様の手順で光学素子保持部4に挟持して保持する。このとき、図5に示すように、挟持軸部材12B、13Bに接触するダミー部材として、片面が平面に加工されたものを用いてもよい。このようにすると、光学素子41及びダミー部材42をより安定した状態で保持することができる。   The optical element 41 and the dummy member 42 described above are arranged in the optical axis direction, and are sandwiched and held by the optical element holding unit 4 in the same procedure as in the first embodiment as shown in FIG. At this time, as shown in FIG. 5, as a dummy member that contacts the sandwiching shaft members 12 </ b> B and 13 </ b> B, a member whose one surface is processed into a flat surface may be used. In this way, the optical element 41 and the dummy member 42 can be held in a more stable state.

上記の手順で、薄膜形成槽2内の温度を270℃、到達真空度2×10−4Paの条件下で蒸着源5としてフッ化マグネシウム(MgF)を用い、厚さ130ナノメートル(nm)の薄膜を成膜したところ、光学素子41とダミー部材42との間にオプチカルコンタクトによる貼り付きは発生しなかった。そして、光学素子保持部から光学素子41及びダミー部材42を取り外す際に、光学素子41の光学面41Aを損傷することなく容易に着脱することができた。 In the above procedure, magnesium fluoride (MgF 2 ) was used as the vapor deposition source 5 under the conditions of a temperature in the thin film formation tank 2 of 270 ° C. and an ultimate vacuum of 2 × 10 −4 Pa, and a thickness of 130 nm (nm) As a result, no sticking due to optical contact occurred between the optical element 41 and the dummy member 42. And when removing the optical element 41 and the dummy member 42 from the optical element holding part, the optical surface 41A of the optical element 41 could be easily attached and detached without damaging it.

本実施形態の光学素子保持方法においても上述の第1実施形態の光学素子保持方法と同様の効果を得ることができる。
そして、ダミー部材42の接触面42Aが、光学素子41の光学面41Aの形状に対応する球面に加工されているので、球面状の光学面を有する光学素子であっても、好適に保持することができる。
Also in the optical element holding method of the present embodiment, the same effect as the optical element holding method of the first embodiment described above can be obtained.
Since the contact surface 42A of the dummy member 42 is processed into a spherical surface corresponding to the shape of the optical surface 41A of the optical element 41, even an optical element having a spherical optical surface can be suitably held. Can do.

本実施形態においては、光学素子の光学面が凹状でダミー部材の接触面が凸状である例を説明したが、光学素子の光学面が凸状である場合も、ダミー部材の接触面を対応する凹状に形成することによって、同様に好適な保持を行うことができる。   In the present embodiment, the example in which the optical surface of the optical element is concave and the contact surface of the dummy member is convex has been described, but the contact surface of the dummy member is also supported when the optical surface of the optical element is convex. By forming a concave shape, suitable holding can be performed similarly.

以上、本発明の実施形態を説明したが、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上述の実施例においては、ダミー部材が白板で形成されている例を説明したが、これに代えて、他のガラス素材や金属等を用いてダミー部材が形成されてもよい。ただし、光学素子の光学面を損傷しにくくする観点からは、光学素子の硬度より低い硬度を有する材料を用いてダミー部材が形成されることが好ましい。
Although the embodiments of the present invention have been described above, the technical scope of the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above-described embodiment, an example in which the dummy member is formed of a white plate has been described. However, instead of this, the dummy member may be formed using another glass material, metal, or the like. However, from the viewpoint of making it difficult to damage the optical surface of the optical element, the dummy member is preferably formed using a material having a hardness lower than the hardness of the optical element.

本発明の第1実施形態の光学素子保持方法が適用される薄膜形成装置の一例の構成を示す図である。It is a figure which shows the structure of an example of the thin film formation apparatus with which the optical element holding | maintenance method of 1st Embodiment of this invention is applied. 同薄膜形成装置の光学素子保持部の構成を示す図である。It is a figure which shows the structure of the optical element holding | maintenance part of the thin film forming apparatus. 同光学素子保持部に挟持される光学素子及びダミー部材を示す図である。It is a figure which shows the optical element and dummy member clamped by the optical element holding | maintenance part. 本発明の第2実施形態の光学素子保持方法において使用される光学素子及びダミー部材を示す側面図である。It is a side view which shows the optical element and dummy member which are used in the optical element holding | maintenance method of 2nd Embodiment of this invention. 同光学素子及び同ダミー部材が光学素子保持部に挟持された状態を示す図である。It is a figure which shows the state by which the optical element and the dummy member were clamped by the optical element holding | maintenance part.

符号の説明Explanation of symbols

31、41 光学素子
31A、41A 光学面
31B 外周面
32、42 ダミー部材
32A、42A 接触面
31, 41 Optical elements 31A, 41A Optical surface 31B Outer peripheral surfaces 32, 42 Dummy members 32A, 42A Contact surface

Claims (3)

光学面と外周面とを有する光学素子の前記外周面に薄膜を成膜するときの光学素子保持方法であって、
光軸方向にそって配列された複数の前記光学素子の互いの前記光学面の間に、各々の前記光学面に対向する接触面が鏡面とならないように微小凹凸を有するダミー部材を介在させる工程を有することを特徴とする光学素子保持方法。
An optical element holding method for forming a thin film on the outer peripheral surface of an optical element having an optical surface and an outer peripheral surface,
A step of interposing a dummy member having minute irregularities between the optical surfaces of the plurality of optical elements arranged along the optical axis direction so that a contact surface facing each optical surface does not become a mirror surface An optical element holding method comprising:
前記ダミー部材の接触面は、微小凹凸を有する砂目に加工されていることを特徴とする請求項1に記載の光学素子保持方法。   The optical element holding method according to claim 1, wherein the contact surface of the dummy member is processed into a grain having fine irregularities. 前記砂目が、800番以上3000番以下であることを特徴とする請求項2に記載の光学素子保持方法。   The optical element holding method according to claim 2, wherein the grain size is from 800 to 3000.
JP2008168545A 2008-06-27 2008-06-27 Optical element holding method Pending JP2010007136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008168545A JP2010007136A (en) 2008-06-27 2008-06-27 Optical element holding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008168545A JP2010007136A (en) 2008-06-27 2008-06-27 Optical element holding method

Publications (1)

Publication Number Publication Date
JP2010007136A true JP2010007136A (en) 2010-01-14

Family

ID=41587947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008168545A Pending JP2010007136A (en) 2008-06-27 2008-06-27 Optical element holding method

Country Status (1)

Country Link
JP (1) JP2010007136A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149377A (en) * 1985-12-24 1987-07-03 Matsushita Electric Ind Co Ltd Method for painting rim of optical parts
JP3059133U (en) * 1998-11-16 1999-07-02 東豊工業株式会社 Disk storage tray
JP2005272190A (en) * 2004-03-24 2005-10-06 Central Glass Co Ltd Insertion material for glass sheet
JP2006085887A (en) * 2004-08-16 2006-03-30 Showa Denko Kk Silicon substrate for magnetic recording medium, manufacturing method thereof, and magnetic recording medium
JP2006200015A (en) * 2005-01-21 2006-08-03 Olympus Corp Lens-holding device
JP2007207996A (en) * 2006-02-01 2007-08-16 Canon Inc Substrate holding device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149377A (en) * 1985-12-24 1987-07-03 Matsushita Electric Ind Co Ltd Method for painting rim of optical parts
JP3059133U (en) * 1998-11-16 1999-07-02 東豊工業株式会社 Disk storage tray
JP2005272190A (en) * 2004-03-24 2005-10-06 Central Glass Co Ltd Insertion material for glass sheet
JP2006085887A (en) * 2004-08-16 2006-03-30 Showa Denko Kk Silicon substrate for magnetic recording medium, manufacturing method thereof, and magnetic recording medium
JP2006200015A (en) * 2005-01-21 2006-08-03 Olympus Corp Lens-holding device
JP2007207996A (en) * 2006-02-01 2007-08-16 Canon Inc Substrate holding device

Similar Documents

Publication Publication Date Title
JP5606471B2 (en) Substrate rotation holding device and substrate processing apparatus
JP4957139B2 (en) Mold manufacturing method
JP2007243060A (en) Gas-phase growth equipment
JP7347939B2 (en) Grinding repair device and grinding repair method for silicon wafer surface
WO2002099159A1 (en) Method and device for forming film
JP2010007136A (en) Optical element holding method
WO2018131182A1 (en) Device for edge finishing brittle material substrate and method for edge finishing brittle material substrate
JP2012227251A (en) Method of processing wafer
JP2011161611A (en) Method for mounting carrier
JP5005205B2 (en) Vacuum deposition equipment
JP2010006693A (en) Method of shaping aspherical optical element
JP6446242B2 (en) Stamper mounting roll and manufacturing method of stamper mounting roll
JP2005240182A (en) System and method for continuous arc vapor deposition by a plurality of usable targets
KR20220104632A (en) Optical element holder, optical element holding device, and vapor deposition apparatus
JP5753516B2 (en) Substrate imaging device and substrate imaging method
US20070291247A1 (en) Apparatus for exposing an edge portion of a wafer
JPH09232410A (en) Substrate rotating/holding device and rotary substrate processing device
JP2007150036A (en) Tool for plasma etching, and plasma etching method of semiconductor wafer using same
TW202040722A (en) Processing device and processing method
JP2021518213A (en) A method of aligning the centers of optical elements in the optical system of an endoscope
JP6422026B2 (en) Sheet glass holder and sheet glass manufacturing method
JP2007098542A (en) Double-sided polishing device
JP2006116697A (en) Holding device and polishing method for optical element
KR101125507B1 (en) Substrate processing equipment
KR101845091B1 (en) Substrate imaging apparatus and substrate imaging method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110418

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20120731

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Effective date: 20120731

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Effective date: 20121204

Free format text: JAPANESE INTERMEDIATE CODE: A02