JP2010006758A - Luminescent ionic liquid - Google Patents
Luminescent ionic liquid Download PDFInfo
- Publication number
- JP2010006758A JP2010006758A JP2008168997A JP2008168997A JP2010006758A JP 2010006758 A JP2010006758 A JP 2010006758A JP 2008168997 A JP2008168997 A JP 2008168997A JP 2008168997 A JP2008168997 A JP 2008168997A JP 2010006758 A JP2010006758 A JP 2010006758A
- Authority
- JP
- Japan
- Prior art keywords
- formula
- ionic liquid
- ionic
- general formula
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
本発明は、新規発光性イオン性化合物に関するものである。 The present invention relates to a novel luminescent ionic compound.
1992年のWilkesらの報告以来、常温で液体であり、イオン伝導性に優れた物質として、イオン液体が注目を集めている。該イオン液体は、陽イオンと陰イオンが静電気的引力で結合しており、イオンキャリア数が非常に多く、更には粘度も比較的低いため、イオンの移動度が常温でも高く、従って、イオン伝導性が非常に高いという特性を有する。また、イオン液体は、陽イオンと陰イオンのみで構成されているため、沸点が高く(300℃超)、液体状態を保持できる温度範囲が非常に広い。更に、該イオン液体は、蒸気圧が殆どないため、引火性が低く、熱的安定性も非常に優れている(非特許文献1及び2参照)。 Since the report by Wilkes et al. In 1992, an ionic liquid has attracted attention as a substance that is liquid at room temperature and has excellent ionic conductivity. In the ionic liquid, the cation and the anion are combined by electrostatic attraction, the number of ion carriers is very large, and the viscosity is relatively low, so that the ion mobility is high even at room temperature. It has the characteristic that the property is very high. In addition, since the ionic liquid is composed only of cations and anions, the boiling point is high (above 300 ° C.) and the temperature range in which the liquid state can be maintained is very wide. Furthermore, since the ionic liquid has almost no vapor pressure, it has low flammability and excellent thermal stability (see Non-Patent Documents 1 and 2).
これら様々な利点を有するため、イオン液体は、昨今、非水電解液2次電池や電気二重層キャパシタの電解液への適用が検討されており(特許文献1及び2参照)、特に、電気二重層キャパシタの電解液にイオン液体を用いた場合には、イオン液体が電気二重層を形成するためのイオン源としても機能するため、別途支持電解質を添加する必要がないという利点もある。しかしながら、上記イオン液体は、常温で液体であるために通常有機基を含んでおり、燃焼の危険性がある。 Because of these various advantages, application of ionic liquids to electrolytes of non-aqueous electrolyte secondary batteries and electric double layer capacitors has recently been examined (see Patent Documents 1 and 2). When an ionic liquid is used as the electrolytic solution of the multilayer capacitor, the ionic liquid also functions as an ion source for forming an electric double layer, and thus there is an advantage that it is not necessary to add a supporting electrolyte separately. However, since the ionic liquid is a liquid at room temperature, it usually contains an organic group and has a risk of combustion.
これに対して、特開2007−153868号(特許文献3)には、燃焼の危険性が非常に低いイオン液体として、環状ホスファゼン化合物に1級、2級又は3級のアミンを結合させた構造の新規物質が報告されている。 In contrast, JP 2007-153868 (Patent Document 3) discloses a structure in which a primary, secondary, or tertiary amine is bonded to a cyclic phosphazene compound as an ionic liquid having a very low risk of combustion. New substances have been reported.
また、昨今、発光性のイオン液体も報告されており、かかるイオン液体は、種々の用途に適用できる可能性が有る(非特許文献3参照)。 In recent years, luminescent ionic liquids have been reported, and such ionic liquids may be applicable to various uses (see Non-Patent Document 3).
しかしながら、本発明者が検討したところ、上記非特許文献3に記載の発光性イオン液体は、発光収率が低く、特に高温での発光収率が低いことが分かった。 However, as a result of investigations by the present inventors, it has been found that the luminescent ionic liquid described in Non-Patent Document 3 has a low emission yield, particularly a low emission yield at high temperatures.
そこで、本発明の目的は、上記従来技術の問題を解決し、発光収率が高く、特に高温での発光収率が高い新規イオン液体を提供することにある。 Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art and provide a novel ionic liquid having a high light emission yield, particularly a high light emission yield at a high temperature.
本発明者は、上記目的を達成するために鋭意検討した結果、環状ホスファゼン化合物に3級アミンを結合させ、更にビス(トリフルオロメタンスルホニル)イミドイオンでイオン交換した構造の新規物質が、イオン性を有すると共に、発光収率が高く、特には、高温での発光収率が高いことを見出し、本発明を完成させるに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that a novel substance having a structure in which a tertiary amine is bonded to a cyclic phosphazene compound and ion-exchanged with a bis (trifluoromethanesulfonyl) imide ion is ionic. At the same time, the inventors have found that the light emission yield is high, in particular, the light emission yield at high temperature is high, and the present invention has been completed.
即ち、本発明の発光性イオン液体は、下記一般式(I):
本発明の発光性イオン液体の好適例においては、前記一般式(I)中のRが炭素数1〜8のアルキル基である。 In a preferred example of the luminescent ionic liquid of the present invention, R in the general formula (I) is an alkyl group having 1 to 8 carbon atoms.
本発明によれば、発光収率、特には高温での発光収率が高い新規イオン液体を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the novel ionic liquid with a high luminescence yield, especially the luminescence yield at high temperature can be provided.
以下に、本発明を詳細に説明する。本発明の発光性イオン液体は、上記一般式(I)で表されることを特徴とする。式(I)のイオン液体は、リン−窒素間二重結合を複数有する環状ホスファゼン化合物の一種であると共に、イオン性置換基を有するため、イオン性を有する。そして、ホスファゼン骨格を有するため、燃焼時に分解して、窒素ガスやリン酸エステル等を発生し、該窒素ガスやリン酸エステル等が燃焼の進行を抑制するため、燃焼の危険性が低い。また、上記イオン液体は、万が一の燃焼時にはフッ素が活性ラジカルの捕捉剤として機能し、燃焼の危険性を更に低減する。更に、上記イオン液体は、アルキル基を含み、燃焼時に炭化物(チャー)を生成するため酸素の遮断効果もある。また、驚くべきことに、本発明のイオン液体は、従来のイオン液体よりも発光性が高く、特に高温での発光性が高いという特徴を有する。 The present invention is described in detail below. The luminescent ionic liquid of the present invention is represented by the above general formula (I). The ionic liquid of the formula (I) is a kind of cyclic phosphazene compound having a plurality of phosphorus-nitrogen double bonds and has an ionic substituent, and thus has ionicity. And since it has a phosphazene skeleton, it decomposes | disassembles at the time of combustion, generate | occur | produces nitrogen gas, phosphate ester, etc., and since this nitrogen gas, phosphate ester, etc. suppress the progress of combustion, the danger of combustion is low. In the ionic liquid, fluorine functions as a scavenger for active radicals in the unlikely event of combustion, further reducing the risk of combustion. Further, the ionic liquid contains an alkyl group and produces a carbide (char) during combustion, and has an oxygen blocking effect. Surprisingly, the ionic liquid of the present invention has a feature that it has higher luminescent properties than conventional ionic liquids, and particularly has high luminescent properties at high temperatures.
上記一般式(I)中のRは、それぞれ独立してアルキル基であり、好ましくは炭素数1〜8のアルキル基である。アルキル基の炭素数が8を超えると、粘度が高くなる。ここで、Rにおけるアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基等が挙げられる。なお、式(I)において、各Rは、同一でも異なってもよい。 R in the general formula (I) is each independently an alkyl group, preferably an alkyl group having 1 to 8 carbon atoms. When the number of carbon atoms in the alkyl group exceeds 8, the viscosity increases. Here, as the alkyl group in R, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, various pentyl groups, various hexyl groups, various heptyls Group, various octyl groups and the like. In the formula (I), each R may be the same or different.
式(I)のイオン液体のイオン性置換基は、−N+R3と(CF3SO2)2N-とが主として静電気的引力によって結合してなる。そのため、式(I)の化合物は、イオン性を有する。 The ionic substituent of the ionic liquid of formula (I) is formed by bonding —N + R 3 and (CF 3 SO 2 ) 2 N − mainly by electrostatic attraction. Therefore, the compound of formula (I) has ionicity.
本発明のイオン液体の製造方法は、特に限定されない。例えば、有機溶媒中で、下記化学式(II):
(NPR1 2)3 ・・・ (II)
[式中、6つのR1のうち1つが塩素で且つ5つがフッ素である]で表される環状ホスファゼン化合物と、下記一般式(III):
NR3 ・・・ (III)
[式中、Rはそれぞれ独立してアルキル基である]で表される3級のアミンとを反応させることで、下記一般式(IV):
(NPR2 2)3 ・・・ (IV)
[式中、6つのR2のうち1つが下記一般式(V):
−N+R3Cl- ・・・ (V)
(式中、Rはそれぞれ独立してアルキル基である)で表されるイオン性置換基で且つ5つがフッ素である]で表されるイオン性化合物を生成させ、次に、有機溶媒中で、上記一般式(IV)で表わされるイオン性化合物とリチウムビス(トリフルオロメタンスルホニル)イミド[LiN(SO2CF3)2]とをイオン交換反応させることで、上記一般式(I)で表されるイオン液体を生成させることができる。
The method for producing the ionic liquid of the present invention is not particularly limited. For example, in an organic solvent, the following chemical formula (II):
(NPR 1 2 ) 3 ... (II)
[Wherein one of six R 1 is chlorine and five are fluorine], and a cyclic phosphazene compound represented by the following general formula (III):
NR 3 ... (III)
[In the formula, each R is independently an alkyl group] By reacting with a tertiary amine represented by the following general formula (IV):
(NPR 2 2 ) 3 ... (IV)
[Wherein one of the six R 2 is represented by the following general formula (V):
-N + R 3 Cl - ··· ( V)
(Wherein each R is independently an alkyl group) and five are fluorine], and then in an organic solvent, An ionic compound represented by the above general formula (IV) and lithium bis (trifluoromethanesulfonyl) imide [LiN (SO 2 CF 3 ) 2 ] are subjected to an ion exchange reaction, thereby being represented by the above general formula (I). An ionic liquid can be generated.
式(II)の環状ホスファゼン化合物と式(III)の3級のアミンとの反応に使用する有機溶媒としては、芳香族炭化水素、エステル化合物及びエーテル化合物が好ましい。ここで、芳香族炭化水素の中でもトルエンが好ましく、エステル化合物の中でも酢酸エチルが好ましく、エーテル化合物の中でも、ジエチルエーテルが好ましい。これら有機溶媒は、一種単独で用いてもよいし、二種以上を混合して用いてもよい。 As the organic solvent used in the reaction of the cyclic phosphazene compound of the formula (II) and the tertiary amine of the formula (III), aromatic hydrocarbons, ester compounds and ether compounds are preferable. Here, toluene is preferable among aromatic hydrocarbons, ethyl acetate is preferable among ester compounds, and diethyl ether is preferable among ether compounds. These organic solvents may be used individually by 1 type, and 2 or more types may be mixed and used for them.
上記一般式(II)で表される環状ホスファゼン化合物は、例えば、(NPCl2)3で表される市販の環状ホスファゼン化合物を出発物質として、総ての塩素をフッ素化剤によりフッ素化した後、目的とする塩素置換部位にアルコキシ基やアミン基等を導入した後、HClやホスゲン等の塩素化剤により再び塩素化を行う方法や、使用する(NPCl2)3で表される市販のホスファゼン化合物に対して導入するフッ素の当量を計算した上で、必要量のフッ素化剤を添加する方法等で合成することができる。 The cyclic phosphazene compound represented by the general formula (II) is, for example, a commercially available cyclic phosphazene compound represented by (NPCl 2 ) 3 as a starting material, fluorinated all chlorine with a fluorinating agent, After introducing an alkoxy group, an amine group or the like into the target chlorine substitution site, chlorination with a chlorinating agent such as HCl or phosgene, or a commercially available phosphazene compound represented by (NPCl 2 ) 3 It is possible to synthesize by a method of adding a necessary amount of a fluorinating agent after calculating the equivalent amount of fluorine to be introduced.
上記一般式(III)において、Rはそれぞれ独立してアルキル基であり、式(III)のRにおけるアルキル基としては、式(I)のRにおけるアルキル基の項で例示したものを同様に挙げることができる。 In the general formula (III), each R is independently an alkyl group, and examples of the alkyl group in R of the formula (III) include those exemplified in the section of the alkyl group in R of the formula (I). be able to.
上記一般式(III)で表される3級アミンとして、具体的には、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリヘキシルアミン、トリオクチルアミン、ブチルジメチルアミン、ヘキシルジメチルアミン等の脂肪族3級アミンが挙げられる。 Specific examples of the tertiary amine represented by the general formula (III) include aliphatics such as trimethylamine, triethylamine, tripropylamine, tributylamine, trihexylamine, trioctylamine, butyldimethylamine, and hexyldimethylamine. A tertiary amine is mentioned.
式(II)の環状ホスファゼン化合物と式(III)の3級のアミンとの反応において、式(III)のアミンの使用量は、式(II)の環状ホスファゼン化合物中のR1における塩素1 molあたり、1〜1.5 molの範囲が好ましい。また、有機溶媒中での式(II)の環状ホスファゼン化合物の濃度は、1〜5 mol/Lの範囲が好ましく、有機溶媒中での式(III)のアミンの濃度は、1〜5 mol/Lの範囲が好ましい。有機溶媒中での式(II)の環状ホスファゼン化合物の濃度が1〜5 mol/Lの範囲であれば、有機溶媒に易溶であり、有機溶媒中での式(III)のアミンの濃度が1〜5 mol/Lの範囲であれば、生成したイオン性化合物(固体)が速やかに溶媒中で沈殿し、反応を阻害することがない。 In the reaction of the cyclic phosphazene compound of the formula (II) with the tertiary amine of the formula (III), the amount of the amine of the formula (III) used is 1 mol of chlorine in R 1 in the cyclic phosphazene compound of the formula (II). A range of 1 to 1.5 mol is preferred. The concentration of the cyclic phosphazene compound of formula (II) in the organic solvent is preferably in the range of 1 to 5 mol / L, and the concentration of the amine of formula (III) in the organic solvent is 1 to 5 mol / L. A range of L is preferred. If the concentration of the cyclic phosphazene compound of formula (II) in the organic solvent is in the range of 1 to 5 mol / L, it is readily soluble in the organic solvent, and the concentration of the amine of formula (III) in the organic solvent is If it is the range of 1-5 mol / L, the produced | generated ionic compound (solid) will precipitate rapidly in a solvent, and reaction will not be inhibited.
また、式(II)の環状ホスファゼン化合物と式(III)のアミンとの反応における反応温度は、特に制限されるものではなく、室温でも十分に反応が進行するが、15℃〜50℃の範囲で制御することができる。なお、反応が速い場合には、適時温度を下げることが有効であり、反応が遅い場合には、昇温して反応速度を上げることができる。但し、50℃を超えると、原材料であるホスファゼン化合物が揮発し易くなるため、50℃以下で反応を行うことが好ましい。また、反応圧力も特に限定されず、大気圧下で実施することができる。なお、式(II)の環状ホスファゼン化合物と式(III)のアミンとの反応は、外部から反応系に水分が混入しないように、窒素等の不活性ガス雰囲気下で行うことが好ましい。不活性ガス雰囲気下で反応を行うことで、アミン塩酸塩の副生を抑制することができる。 Further, the reaction temperature in the reaction of the cyclic phosphazene compound of the formula (II) and the amine of the formula (III) is not particularly limited, and the reaction proceeds sufficiently even at room temperature, but the range of 15 ° C to 50 ° C Can be controlled. If the reaction is fast, it is effective to lower the temperature in a timely manner. If the reaction is slow, the reaction rate can be increased by raising the temperature. However, when the temperature exceeds 50 ° C., the phosphazene compound that is a raw material is likely to volatilize, so that the reaction is preferably performed at 50 ° C. or less. Further, the reaction pressure is not particularly limited, and the reaction can be performed under atmospheric pressure. The reaction between the cyclic phosphazene compound of the formula (II) and the amine of the formula (III) is preferably carried out in an inert gas atmosphere such as nitrogen so that moisture does not enter the reaction system from the outside. By performing the reaction under an inert gas atmosphere, by-production of amine hydrochloride can be suppressed.
また、式(IV)のイオン性化合物とリチウムビス(トリフルオロメタンスルホニル)イミドとの反応に用いる有機溶媒としては、ハロゲン化炭化水素が好ましく、ハロゲン化炭化水素の中でもクロロホルムが好ましい。なお、使用する有機溶媒は、一種のみでもよいし、二種以上の混合物であってもよい。 The organic solvent used for the reaction between the ionic compound of formula (IV) and lithium bis (trifluoromethanesulfonyl) imide is preferably a halogenated hydrocarbon, and among the halogenated hydrocarbons, chloroform is preferred. In addition, the organic solvent to be used may be only 1 type, and 2 or more types of mixtures may be sufficient as it.
上記一般式(IV)において、6つのR2のうち1つは上記一般式(V)で表されるイオン性置換基であり、他の5つはフッ素である。 In the general formula (IV), one of the six R 2 is an ionic substituent represented by the general formula (V), and the other five are fluorine.
上記一般式(V)において、Rはそれぞれ独立してアルキル基であり、式(V)のRにおけるアルキル基としては、式(I)のRにおけるアルキル基の項で例示したものを同様に挙げることができる。 In the general formula (V), each R is independently an alkyl group, and examples of the alkyl group in R of the formula (V) include those exemplified in the section of the alkyl group in R of the formula (I). be able to.
式(IV)のイオン性化合物とリチウムビス(トリフルオロメタンスルホニル)イミドとの反応にあったって、リチウムビス(トリフルオロメタンスルホニル)イミドの使用量は、式(IV)のイオン性化合物の塩素イオン1 molあたり、1〜1.5 molの範囲が好ましい。また、有機溶媒中での式(IV)のイオン性化合物の濃度は、1〜5 mol/Lの範囲が好ましく、有機溶媒中でのリチウムビス(トリフルオロメタンスルホニル)イミドの濃度は、1.5〜7.5 mol/Lの範囲が好ましい。有機溶媒中での式(IV)のイオン性化合物の濃度が1〜5 mol/Lの範囲であれば、有機溶媒に不溶な固体物質が溶媒中の容積を占領し、反応を阻害することが少ない。一方、有機溶媒中でのリチウムビス(トリフルオロメタンスルホニル)イミドの濃度を式(IV)のイオン性化合物の濃度に対して1.5倍程度過剰に、即ち、1.5〜7.5 mol/Lの範囲にしておけば、塩素イオンとの配位子置換反応が円滑に行なわれる。 In the reaction of the ionic compound of formula (IV) with lithium bis (trifluoromethanesulfonyl) imide, the amount of lithium bis (trifluoromethanesulfonyl) imide used is 1 mol of chloride ion of the ionic compound of formula (IV). A range of 1 to 1.5 mol is preferred. The concentration of the ionic compound of formula (IV) in the organic solvent is preferably in the range of 1 to 5 mol / L, and the concentration of lithium bis (trifluoromethanesulfonyl) imide in the organic solvent is 1.5 to 7.5. A range of mol / L is preferred. If the concentration of the ionic compound of formula (IV) in the organic solvent is in the range of 1 to 5 mol / L, the solid substance insoluble in the organic solvent may occupy the volume in the solvent and inhibit the reaction. Few. On the other hand, the concentration of lithium bis (trifluoromethanesulfonyl) imide in the organic solvent should be about 1.5 times the concentration of the ionic compound of formula (IV), that is, in the range of 1.5 to 7.5 mol / L. For example, the ligand substitution reaction with chlorine ions can be carried out smoothly.
式(IV)のイオン性化合物とリチウムビス(トリフルオロメタンスルホニル)イミドとの反応における反応温度は、特に制限されるものではないが、室温〜50℃の範囲が好ましく、室温でも十分に反応が進行する。また、反応圧力も特に限定されず、大気圧下で実施することができる。 The reaction temperature in the reaction between the ionic compound of formula (IV) and lithium bis (trifluoromethanesulfonyl) imide is not particularly limited, but is preferably in the range of room temperature to 50 ° C., and the reaction proceeds sufficiently even at room temperature. To do. Further, the reaction pressure is not particularly limited, and the reaction can be performed under atmospheric pressure.
上記のようにして式(I)のイオン液体を生成させた後に、得られた反応混合物を濾過して、副生するLiClを除去すること好ましい。ここで、濾過方法は、特に限定されず、公知の濾材を用いて、常圧下で濾過してもよいし、減圧下で濾過してもよい。 After producing the ionic liquid of formula (I) as described above, it is preferable to filter the resulting reaction mixture to remove LiCl produced as a by-product. Here, the filtration method is not particularly limited, and it may be filtered under a normal pressure or a reduced pressure using a known filter medium.
また、LiClを濾過で除去した後、濾液を遠心分離して上澄み液を採取し、更に、得られた上澄み液に活性炭を加えて反応副生物を除去することが好ましい。ここで、遠心分離方法は特に限定されず、公知の遠心分離機を用いて通常の方法で実施できる。なお、遠心分離における回転速度は、特に限定されるものではないが、9000〜12000 rpmの範囲が好ましい。また、使用する活性炭も、特に限定されず、公知の活性炭を使用できる。活性炭の使用量は、特に限定されるものではないが、式(I)のイオン液体1 g当り1〜5 gの範囲が好ましい。 Moreover, after removing LiCl by filtration, the filtrate is centrifuged to collect a supernatant, and activated carbon is preferably added to the obtained supernatant to remove reaction by-products. Here, the centrifugation method is not particularly limited, and can be carried out by a usual method using a known centrifuge. In addition, the rotational speed in centrifugation is not specifically limited, However, The range of 9000-12000 rpm is preferable. Moreover, the activated carbon to be used is not particularly limited, and known activated carbon can be used. The amount of the activated carbon used is not particularly limited, but is preferably in the range of 1 to 5 g per 1 g of the ionic liquid of the formula (I).
活性炭で処理した後は、例えば、活性炭を濾過で取り除き、使用した有機溶媒を留去することで式(I)のイオン液体を単離することができる。 After the treatment with activated carbon, for example, the activated carbon is removed by filtration, and the ionic liquid of formula (I) can be isolated by distilling off the organic solvent used.
上述した本発明のイオン液体は、少なくとも融点が50℃以下であり、好ましくは融点が25℃以下であり、電気二重層キャパシタ用電解液、リチウムイオン電池用電解液、色素増感型太陽電池用電解液、有機合成用の反応溶媒、有機化合物の抽出溶媒、磁性流体等として利用することができる。また、本発明のイオン液体は、驚くべきことに、高い発光性を有し、高温下でも発光するため、例えば、高温条件下での発光材料や、高温プロセスを必要とする高分子や樹脂材料への発光性付与剤等としても有用である。 The ionic liquid of the present invention described above has at least a melting point of 50 ° C. or less, preferably a melting point of 25 ° C. or less, and is used for an electric double layer capacitor electrolyte, a lithium ion battery electrolyte, and a dye-sensitized solar cell. It can be used as an electrolytic solution, a reaction solvent for organic synthesis, an extraction solvent for organic compounds, a magnetic fluid, and the like. In addition, the ionic liquid of the present invention surprisingly has a high light emitting property and emits light even at a high temperature. For example, a light emitting material under a high temperature condition, a polymer or a resin material that requires a high temperature process, and the like. It is also useful as an agent for imparting light-emitting properties.
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
(比較例1)
還流冷却器を備えた三口フラスコ中で、上記化学式(II)で表される環状ホスファゼン化合物 1.5 mL(0.01 mol)と、トリ-n-ブチルアミン[即ち、上記一般式(III)で表され、3つのRの総てがn-ブチル基である3級アミン]1.72 mL(0.01 mol)とを、脱水ジメチルエーテル 30 mLに溶解させ、20℃で3時間撹拌した後、エバポレーターにてジメチルエーテルを留去して、液体 1.72 g(収率 21%)を得た。得られた液体を重クロロホルムに溶解させて、1H-NMR及び13C-NMRで分析したところ、該液体は、下記化学式(a):
In a three-necked flask equipped with a reflux condenser, 1.5 mL (0.01 mol) of a cyclic phosphazene compound represented by the above chemical formula (II) and tri-n-butylamine [that is, represented by the above general formula (III), 3 Tertiary amine in which all R are n-butyl groups] 1.72 mL (0.01 mol) is dissolved in 30 mL of dehydrated dimethyl ether, stirred at 20 ° C. for 3 hours, and then dimethyl ether is distilled off with an evaporator. As a result, 1.72 g of liquid (yield 21%) was obtained. When the obtained liquid was dissolved in deuterated chloroform and analyzed by 1 H-NMR and 13 C-NMR, the liquid was represented by the following chemical formula (a):
(実施例1)
比較例1で得られたイオン液体をクロロホルム 30 mLに溶解させた後、ビス(トリフルオロメタンスルホニル)イミドリチウム[LiN(SO2CF3)2]0.49 gを添加し、室温にて1時間撹拌したところ、LiClが沈殿した。沈殿したLiClを濾過で分離し、更に、遠心分離機を用い、12000 rpmで30分間濾液を遠心分離して、上澄み液を採取した。次に、得られた上澄み液をクロロホルム 30 mLに溶解させ、更に活性炭 5 gを加えて、着色成分を除去した。次に、活性炭を濾過で取り除き、エバポレーターにてクロロホルムを除去し、更に、真空ポンプにて減圧下、150℃で24時間乾燥を行って、液体 1.13 g(収率 16%)を得た。得られた液体を重クロロホルムに溶解させて、1H-NMR及び13C-NMRで分析したところ、該液体は、下記化学式(b):
After dissolving the ionic liquid obtained in Comparative Example 1 in 30 mL of chloroform, 0.49 g of bis (trifluoromethanesulfonyl) imidolithium [LiN (SO 2 CF 3 ) 2 ] was added and stirred at room temperature for 1 hour. However, LiCl precipitated. The precipitated LiCl was separated by filtration, and the filtrate was further centrifuged at 12000 rpm for 30 minutes using a centrifuge, and the supernatant was collected. Next, the obtained supernatant was dissolved in 30 mL of chloroform, and 5 g of activated carbon was further added to remove the coloring components. Next, the activated carbon was removed by filtration, chloroform was removed by an evaporator, and further, drying was performed at 150 ° C. for 24 hours under reduced pressure using a vacuum pump to obtain 1.13 g of liquid (yield 16%). When the obtained liquid was dissolved in deuterated chloroform and analyzed by 1 H-NMR and 13 C-NMR, the liquid was represented by the following chemical formula (b):
[スペクトルデーダ(250 MHz, CDCl3, δ/ppm)]
・1H-NMR:δ=0.98(t, J=7.25 Hz, 3H)・・HA、δ=1.38(m, 2H)・・HB、δ=1.75(m, 2H)・・HC、δ=2.97(m, J=5.04 Hz, 6H)・・HD
・13C-NMR:δ=13.1(s)・・CE、δ=19.6(s)・・CF、δ=25.3(s)・・CG、δ=53.0(s)・・CH、δ=119.5(q, J=1275 Hz)・・CI
[Spectral data (250 MHz, CDCl 3 , δ / ppm)]
· 1 H-NMR: δ = 0.98 (t, J = 7.25 Hz, 3H) ·· H A, δ = 1.38 (m, 2H) ·· H B, δ = 1.75 (m, 2H) ·· H C, δ = 2.97 (m, J = 5.04 Hz, 6H) ・ ・ H D
13 C-NMR: δ = 13.1 (s), C E , δ = 19.6 (s), C F , δ = 25.3 (s), C G , δ = 53.0 (s), C H , δ = 119.5 (q, J = 1275 Hz) ・ ・ C I
(実施例2)
還流冷却器を備えた三口フラスコ中で、上記化学式(II)で表される環状ホスファゼン化合物1.5 mL(0.01 mol)と、トリ-n-オクチルアミン[即ち、上記一般式(III)で表され、3つのRの総てがn-オクチル基である3級アミン]4.38 mL(0.01 mol)とを、脱水ジメチルエーテル 30 mLに溶解させ、20℃で3時間撹拌した後、エバポレーターにてジメチルエーテルを留去し、上記一般式(IV)で表され、6つのR2のうち5つがフッ素で且つ1つが−N+(C8H17)3Cl-であるイオン性化合物を得た。該イオン性化合物をクロロホルム 30 mLに溶解させた後、ビス(トリフルオロメタンスルホニル)イミドリチウム[LiN(SO2CF3)2]0.37 gを添加し、室温にて1時間撹拌したところ、LiClが沈殿した。沈殿したLiClを濾過で分離し、更に、遠心分離機を用い、12000 rpmで30分間濾液を遠心分離して、上澄み液を採取した。次に、得られた上澄み液をクロロホルム 30 mLに溶解させ、更に活性炭 5 gを加えて、着色成分を除去した。次に、活性炭を濾過で取り除き、エバポレーターにてクロロホルムを除去し、更に、真空ポンプにて減圧下、150℃で24時間乾燥を行って、液体 0.93 g(収率 10%)を得た。得られた液体を重クロロホルムに溶解させて、1H-NMR及び13C-NMRで分析したところ、該液体は、下記化学式(c):
In a three-necked flask equipped with a reflux condenser, 1.5 mL (0.01 mol) of the cyclic phosphazene compound represented by the above chemical formula (II) and tri-n-octylamine [that is, represented by the above general formula (III), Tertiary amine in which all three Rs are n-octyl groups] 4.38 mL (0.01 mol) was dissolved in 30 mL of dehydrated dimethyl ether, stirred at 20 ° C for 3 hours, and then dimethyl ether was distilled off with an evaporator. Thus, an ionic compound represented by the above general formula (IV), in which 5 out of 6 R 2 were fluorine and 1 was —N + (C 8 H 17 ) 3 Cl − was obtained. After dissolving the ionic compound in 30 mL of chloroform, 0.37 g of bis (trifluoromethanesulfonyl) imidolithium [LiN (SO 2 CF 3 ) 2 ] was added and stirred at room temperature for 1 hour. did. The precipitated LiCl was separated by filtration, and the filtrate was further centrifuged at 12000 rpm for 30 minutes using a centrifuge, and the supernatant was collected. Next, the obtained supernatant was dissolved in 30 mL of chloroform, and 5 g of activated carbon was further added to remove the coloring components. Next, the activated carbon was removed by filtration, chloroform was removed with an evaporator, and further, drying was performed at 150 ° C. for 24 hours under reduced pressure with a vacuum pump to obtain 0.93 g of liquid (yield 10%). When the obtained liquid was dissolved in deuterated chloroform and analyzed by 1 H-NMR and 13 C-NMR, the liquid was represented by the following chemical formula (c):
[スペクトルデーダ(400 MHz, CDCl3, δ/ppm)]
・1H-NMR:δ=0.89(t, J=6.72 Hz, 3H)・・HA、δ=1.29(m, 10H)・・HB、δ=1.67(m, 2H)・・HC、δ=3.02(m, 2H)・・HD
・13C-NMR:δ=14.0(s)・・CF、δ=22.5(s)・・CG、δ=23.3(s)・・CH、δ=26.5(s)・・CI、δ=28.9(s)・・CJ、δ=31.6(s)・・CK、δ=53.0(s)・・CL、δ=119.5(q, J=1275 Hz)・・CM
[Spectral data (400 MHz, CDCl 3 , δ / ppm)]
・1 H-NMR: δ = 0.89 (t, J = 6.72 Hz, 3H) ・ H A , δ = 1.29 (m, 10H) ・ H B , δ = 1.67 (m, 2H) ・ H C , δ = 3.02 (m, 2H) ·· H D
13 C-NMR: δ = 14.0 (s), C F , δ = 22.5 (s), C G , δ = 23.3 (s), C H , δ = 26.5 (s), C I , δ = 28.9 (s) ·· C J , δ = 31.6 (s) · · C K , δ = 53.0 (s) · · C L , δ = 119.5 (q, J = 1275 Hz) · · C M
(実施例3)
還流冷却器を備えた三口フラスコ中で、上記化学式(II)で表される環状ホスファゼン化合物1.5 mL(0.01 mol)と、n-ブチルジメチルアミン[即ち、上記一般式(III)で表され、3つのRのうち1つがn-ブチル基で且つ2つがメチル基である3級アミン]1.40 mL(0.01 mol)とを、脱水ジメチルエーテル 30 mLに溶解させ、20℃で3時間撹拌した後、エバポレーターにてジメチルエーテルを留去し、上記一般式(IV)で表され、6つのR2のうち5つがフッ素で且つ1つが−N+(C4H9)(CH3)2Cl-であるイオン性化合物を得た。該イオン性化合物をクロロホルム 30 mLに溶解させた後、ビス(トリフルオロメタンスルホニル)イミドリチウム[LiN(SO2CF3)2]0.32 gを添加し、室温にて1時間撹拌したところ、LiClが沈殿した。沈殿したLiClを濾過で分離し、更に、遠心分離機を用い、12000 rpmで30分間濾液を遠心分離して、上澄み液を採取した。次に、得られた上澄み液をクロロホルム 30 mLに溶解させ、更に活性炭 5 gを加えて、着色成分を除去した。次に、活性炭を濾過で取り除き、エバポレーターにてクロロホルムを除去し、更に、真空ポンプにて減圧下、150℃で24時間乾燥を行って、液体 0.52 g(収率 8.4%)を得た。得られた液体を重クロロホルムに溶解させて、1H-NMR及び13C-NMRで分析したところ、該液体は、下記化学式(d):
In a three-necked flask equipped with a reflux condenser, 1.5 mL (0.01 mol) of the cyclic phosphazene compound represented by the above chemical formula (II) and n-butyldimethylamine [that is, represented by the above general formula (III), 3 Tertiary amine, one of which is an n-butyl group and two methyl groups] 1.40 mL (0.01 mol) is dissolved in 30 mL of dehydrated dimethyl ether and stirred at 20 ° C. for 3 hours. Dimethyl ether was distilled off, and the ionicity represented by the above general formula (IV), in which 5 out of 6 R 2 were fluorine and 1 was —N + (C 4 H 9 ) (CH 3 ) 2 Cl − A compound was obtained. After dissolving the ionic compound in 30 mL of chloroform, 0.32 g of bis (trifluoromethanesulfonyl) imidolithium [LiN (SO 2 CF 3 ) 2 ] was added and stirred at room temperature for 1 hour. did. The precipitated LiCl was separated by filtration, and the filtrate was further centrifuged at 12000 rpm for 30 minutes using a centrifuge, and the supernatant was collected. Next, the obtained supernatant was dissolved in 30 mL of chloroform, and 5 g of activated carbon was further added to remove the coloring components. Next, the activated carbon was removed by filtration, chloroform was removed by an evaporator, and further, drying was performed at 150 ° C. for 24 hours under reduced pressure using a vacuum pump to obtain 0.52 g of a liquid (yield 8.4%). When the obtained liquid was dissolved in deuterated chloroform and analyzed by 1 H-NMR and 13 C-NMR, the liquid was represented by the following chemical formula (d):
[スペクトルデーダ(400 MHz, CDCl3, δ/ppm)]
・1H-NMR:δ=0.97(t, J=7.36 Hz, 3H)・・HA、δ=1.41(m, 2H)・・HB、δ=1.71(m, 2H)・・HC、δ=2.89(d, J=5.04 Hz, 6H)・・HD、δ=3.07(m, 2H)・・HE
・13C-NMR:δ=13.3(s)・・CF、δ=19.5(s)・・CG、δ=26.3(s)・・CH、δ=43.7(s)・・CI、δ=58.8(s)・・CJ、δ=119.5(q, J=1275 Hz)・・CK
[Spectral data (400 MHz, CDCl 3 , δ / ppm)]
-1 H-NMR: δ = 0.97 (t, J = 7.36 Hz, 3H) · · H A , δ = 1.41 (m, 2H) · · H B , δ = 1.71 (m, 2H) · · H C , δ = 2.89 (d, J = 5.04 Hz, 6H) ·· H D , δ = 3.07 (m, 2H) ·· H E
· 13 C-NMR: δ = 13.3 (s) ·· C F, δ = 19.5 (s) ·· C G, δ = 26.3 (s) ·· C H, δ = 43.7 (s) ·· C I, δ = 58.8 (s) ·· C J , δ = 119.5 (q, J = 1275 Hz) ·· C K
(実施例4)
還流冷却器を備えた三口フラスコ中で、上記化学式(II)で表される環状ホスファゼン化合物1.5 mL(0.01 mol)と、n-ヘキシルジメチルアミン[即ち、上記一般式(III)で表され、3つのRのうち1つがn-ヘキシル基で且つ2つがメチル基である3級アミン]2.08 mL(0.01 mol)とを、脱水ジメチルエーテル 30 mLに溶解させ、20℃で3時間撹拌した後、エバポレーターにてジメチルエーテルを留去し、上記一般式(IV)で表され、6つのR2のうち5つがフッ素で且つ1つが−N+(C6H13)(CH3)2Cl-であるイオン性化合物を得た。該イオン性化合物をクロロホルム 30 mLに溶解させた後、ビス(トリフルオロメタンスルホニル)イミドリチウム[LiN(SO2CF3)2]0.22 gを添加し、室温にて1時間撹拌したところ、LiClが沈殿した。沈殿したLiClを濾過で分離し、更に、遠心分離機を用い、12000 rpmで30分間濾液を遠心分離して、上澄み液を採取した。次に、得られた上澄み液をクロロホルム 30 mLに溶解させ、更に活性炭 5 gを加えて、着色成分を除去した。次に、活性炭を濾過で取り除き、エバポレーターにてクロロホルムを除去し、更に、真空ポンプにて減圧下、150℃で24時間乾燥を行って、液体 0.58 g(収率 8.9%)を得た。得られた液体を重クロロホルムに溶解させて、1H-NMR及び13C-NMRで分析したところ、該液体は、下記化学式(e):
In a three-necked flask equipped with a reflux condenser, 1.5 mL (0.01 mol) of a cyclic phosphazene compound represented by the above chemical formula (II) and n-hexyldimethylamine [that is, represented by the above general formula (III), 3 Tertiary amine in which one of the Rs is an n-hexyl group and two are methyl groups] 2.08 mL (0.01 mol) is dissolved in 30 mL of dehydrated dimethyl ether and stirred at 20 ° C. for 3 hours. Dimethyl ether was distilled off, and the ionicity represented by the above general formula (IV), in which 5 out of 6 R 2 were fluorine and 1 was —N + (C 6 H 13 ) (CH 3 ) 2 Cl − A compound was obtained. After dissolving the ionic compound in 30 mL of chloroform, 0.22 g of bis (trifluoromethanesulfonyl) imidolithium [LiN (SO 2 CF 3 ) 2 ] was added and stirred at room temperature for 1 hour. did. The precipitated LiCl was separated by filtration, and the filtrate was further centrifuged at 12000 rpm for 30 minutes using a centrifuge, and the supernatant was collected. Next, the obtained supernatant was dissolved in 30 mL of chloroform, and 5 g of activated carbon was further added to remove the coloring components. Next, the activated carbon was removed by filtration, chloroform was removed by an evaporator, and further, drying was performed at 150 ° C. for 24 hours under reduced pressure using a vacuum pump to obtain 0.58 g of liquid (yield 8.9%). When the obtained liquid was dissolved in deuterated chloroform and analyzed by 1 H-NMR and 13 C-NMR, the liquid was represented by the following chemical formula (e):
[スペクトルデーダ(400 MHz, CDCl3, δ/ppm)]
・1H-NMR:δ=0.89(t, J=6.76 Hz, 3H)・・HA、δ=1.32(m, 6H)・・HB、δ=1.67(m, 2H)・・HC、δ=2.85(s, 6H)・・HD、δ=2.93(m, 2H)・・HE
・13C-NMR:δ=13.8(s)・・CF、δ=19.5(s)・・CG、δ=22.3(s)・・CH、δ=24.7(s)・・CI、δ=31.1(s)・・CJ、δ=43.5(s)・・CK、δ=58.7(s)・・CL、δ=119.5(q, J=1275 Hz)・・CM
[Spectral data (400 MHz, CDCl 3 , δ / ppm)]
・1 H-NMR: δ = 0.89 (t, J = 6.76 Hz, 3H) ・ H A , δ = 1.32 (m, 6H) ・ H B , δ = 1.67 (m, 2H) ・ H C , δ = 2.85 (s, 6H) ·· H D , δ = 2.93 (m, 2H) ·· H E
· 13 C-NMR: δ = 13.8 (s) ·· C F, δ = 19.5 (s) ·· C G, δ = 22.3 (s) ·· C H, δ = 24.7 (s) ·· C I, δ = 31.1 (s) ·· C J , δ = 43.5 (s) · · C K , δ = 58.7 (s) · · C L , δ = 119.5 (q, J = 1275 Hz) · · C M
<発光量子収率の測定>
上記実施例及び比較例で得られたイオン液体の発光量子収率を、4-アミノフタルイミドの蛍光量子収率の相対値として測定した。なお、励起波長は360 nmとし、メタノールに各イオン液体を0.1 mol/Lの濃度で溶解させて、室温(25℃)、100℃、150℃で測定した。結果を表1に示す。また、比較として、1-メチル-3-ブチルイミダゾリウムヘキサフルオロホスフェート([bmim]PF6)の発光量子収率も示す。
<Measurement of luminescence quantum yield>
The luminescence quantum yields of the ionic liquids obtained in the above Examples and Comparative Examples were measured as relative values of the fluorescence quantum yield of 4-aminophthalimide. The excitation wavelength was 360 nm, each ionic liquid was dissolved in methanol at a concentration of 0.1 mol / L, and measurement was performed at room temperature (25 ° C.), 100 ° C., and 150 ° C. The results are shown in Table 1. For comparison, the luminescence quantum yield of 1-methyl-3-butylimidazolium hexafluorophosphate ([bmim] PF 6 ) is also shown.
表1から、実施例のイオン液体は、比較例のイオン液体よりも発光量子収率が高く、特に高温での発光量子収率が高いことが分かる。 From Table 1, it can be seen that the ionic liquids of the examples have higher emission quantum yields than the ionic liquids of the comparative examples, and in particular, the emission quantum yields at high temperatures are higher.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008168997A JP5318479B2 (en) | 2008-06-27 | 2008-06-27 | Luminescent ionic liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008168997A JP5318479B2 (en) | 2008-06-27 | 2008-06-27 | Luminescent ionic liquid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010006758A true JP2010006758A (en) | 2010-01-14 |
JP5318479B2 JP5318479B2 (en) | 2013-10-16 |
Family
ID=41587657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008168997A Expired - Fee Related JP5318479B2 (en) | 2008-06-27 | 2008-06-27 | Luminescent ionic liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5318479B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5750770B2 (en) * | 2010-10-13 | 2015-07-22 | 国立大学法人東京工業大学 | LIGHT CONVERSION ELEMENT CONTAINING ION LIQUID, MANUFACTURING METHOD THEREOF, AND APPARATUS INCLUDING LIGHT CONVERSION ELEMENT |
JPWO2015115556A1 (en) * | 2014-01-31 | 2017-03-23 | 日本化薬株式会社 | Optical wavelength conversion element containing ionic liquid and article comprising the optical wavelength conversion element |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007055081A1 (en) * | 2005-11-08 | 2007-05-18 | Bridgestone Corporation | Ionic compounds |
-
2008
- 2008-06-27 JP JP2008168997A patent/JP5318479B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007055081A1 (en) * | 2005-11-08 | 2007-05-18 | Bridgestone Corporation | Ionic compounds |
Non-Patent Citations (1)
Title |
---|
JPN6013033105; Chemical Physics Letters 402, 2005, 375-379 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5750770B2 (en) * | 2010-10-13 | 2015-07-22 | 国立大学法人東京工業大学 | LIGHT CONVERSION ELEMENT CONTAINING ION LIQUID, MANUFACTURING METHOD THEREOF, AND APPARATUS INCLUDING LIGHT CONVERSION ELEMENT |
JPWO2015115556A1 (en) * | 2014-01-31 | 2017-03-23 | 日本化薬株式会社 | Optical wavelength conversion element containing ionic liquid and article comprising the optical wavelength conversion element |
Also Published As
Publication number | Publication date |
---|---|
JP5318479B2 (en) | 2013-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7370352B2 (en) | Method for producing fluoride ion-containing solution | |
EP2276772B1 (en) | Boron or aluminum complexes | |
JP5959171B2 (en) | PI-conjugated organoboron compound and method for producing the same | |
US11557788B2 (en) | Preparation of ionic liquids based on boron clusters | |
WO2016002771A1 (en) | Complex center formation agent, ionic complex and production method thereof | |
TW535319B (en) | Tetrakisfluoroalkylborate salts and their use as conducting salts | |
JP6978361B2 (en) | Method for manufacturing lithium salt complex compound | |
JP4939836B2 (en) | Ionic compounds | |
US10889537B2 (en) | Method for producing fluorine-containing dialkyl carbonate compounds | |
US8318037B2 (en) | Organosilicon glycol-based electrolytes with a hydroxy terminus | |
JP5318479B2 (en) | Luminescent ionic liquid | |
JP5639344B2 (en) | Ionic liquid and method for producing the same | |
WO2008069207A1 (en) | Lithium salt and method for producing the same | |
JP5364307B2 (en) | Process for producing ionic compounds | |
JP2005179254A (en) | Cold molten salt and method for producing the same | |
JP5201620B2 (en) | Phosphonium ionic liquid, method for producing biaryl compound and method for using ionic liquid | |
JP5054932B2 (en) | Process for producing ionic compounds | |
JP4422256B2 (en) | Phosphazene derivative having sulfonyl group and process for producing the same | |
JP5060783B2 (en) | Process for producing ionic compounds | |
WO2016002773A1 (en) | Method for producing purified ionic complex | |
EP2570420B1 (en) | Phosphoric acid ester production method | |
JP4217460B2 (en) | New Lewis acid catalyst | |
JP2007106753A (en) | Method for purifying quaternary ammonium tetrafluoroborate and electric double layer capacitor using the same | |
JP2015044779A (en) | Fluorine-containing linear ether compound and production method thereof | |
WO2013081137A1 (en) | Method for producing fluorine-containing cyclic carbonate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110620 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130709 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130710 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |