JP2010002294A - Control apparatus of chassis dynamometer - Google Patents

Control apparatus of chassis dynamometer Download PDF

Info

Publication number
JP2010002294A
JP2010002294A JP2008161305A JP2008161305A JP2010002294A JP 2010002294 A JP2010002294 A JP 2010002294A JP 2008161305 A JP2008161305 A JP 2008161305A JP 2008161305 A JP2008161305 A JP 2008161305A JP 2010002294 A JP2010002294 A JP 2010002294A
Authority
JP
Japan
Prior art keywords
tire
vehicle
vehicle speed
target value
dynamometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008161305A
Other languages
Japanese (ja)
Other versions
JP5139168B2 (en
Inventor
Junji Shibata
淳史 柴田
Takahiro Matsumoto
隆弘 松本
Isamu Inoue
勇 井上
Masayuki Masuyama
正幸 増山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Ono Sokki Co Ltd
Original Assignee
Honda Motor Co Ltd
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Ono Sokki Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008161305A priority Critical patent/JP5139168B2/en
Publication of JP2010002294A publication Critical patent/JP2010002294A/en
Application granted granted Critical
Publication of JP5139168B2 publication Critical patent/JP5139168B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately add desired running resistance determined to a vehicle speed to a vehicle. <P>SOLUTION: A vehicle speed conversion part 31 computes running resistance N to a vehicle speed V converted from a current rotational speed Rv on the basis of a resistance map 32. Rolling resistance TN corresponding to a current tire temperature Te and rolling resistance TNStd corresponding to a prescribed reference temperature TeStd are computed on the basis of a tire resistance table 33, and a subtraction part 34 computes (the rolling resistance TNStd corresponding to the reference temperature TeStd)-(the rolling resistance TN corresponding to the current tire temperature Te), the difference between them, as a correction value ΔN. An addition part 35 adds the rolling resistance N to the correction value ΔN to obtain a control target value TrgN. A control value computation part 36 computes a control value of a motor 23 for adding the control target value TrgN to a test vehicle 5 according to the current rotational speed Rv and a current detection torque Tr and outputs it to the motor 23 of a dynamometer 2 as a control signal Cnt. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車の各種試験に用いられるシャシーダイナモメータを制御する技術に関するものである。   The present invention relates to a technique for controlling a chassis dynamometer used for various tests of automobiles.

自動車の各種試験に用いられるシャシーダイナモメータとしては、車両の走行状態を再現するために車両に対して走行中の路面を模擬するローラと、前記ローラのトルクを制御するモータと、ローラと車輪間に作用する力を計測する測定装置とを備えたシャシーダイナモメータが知られている。   Chassis dynamometers used in various tests of automobiles include a roller that simulates the road surface that is running on the vehicle to reproduce the running state of the vehicle, a motor that controls the torque of the roller, and between the rollers and wheels. There is known a chassis dynamometer provided with a measuring device for measuring a force acting on the motor.

また、このような自動車用のシャシーダイナモメータを制御する技術としては、ローラの回転速度より自動車の車速を検出し、検出した車速に対して定まる所望の走行抵抗が自動車に加わるように、予め定めた車速の関数に従って前記モータの発生トルクを制御する技術が知られている(たとえば、特許文献1、特許文献2)。
特開平05-005676号公報 特開2005-265417号公報
Further, as a technology for controlling such a chassis dynamometer for automobiles, the vehicle speed of the automobile is detected from the rotational speed of the roller, and a predetermined running resistance determined with respect to the detected vehicle speed is applied in advance to the automobile. There are known techniques for controlling the torque generated by the motor in accordance with a function of the vehicle speed (for example, Patent Document 1 and Patent Document 2).
JP 05-005676 A JP 2005-265417 A

さて、シャシーダイナモメータにおける自動車の試験中に、車両に対して加わる走行抵抗のうちの現実のタイヤの転がり抵抗(ヒステリシスロス)は、タイヤの温度変化によって変動するため、車速の関数に従って前記モータの発生トルクを制御するだけでは、車速に対して定めた所望の走行抵抗を車両に加えることができない。   Now, during the test of the automobile in the chassis dynamometer, the actual tire rolling resistance (hysteresis loss) of the running resistance applied to the vehicle fluctuates due to the temperature change of the tire. By simply controlling the generated torque, it is not possible to apply a desired running resistance determined for the vehicle speed to the vehicle.

そこで、本発明は、シャシーダイナモメータにおいて、車速に対して定めた所望の走行抵抗をより精度よく車両に加えることを課題とする。   Accordingly, an object of the present invention is to add a desired running resistance determined with respect to the vehicle speed to a vehicle more accurately in a chassis dynamometer.

前記課題達成のために、本発明は、自動車のタイヤが載置されるローラと、前記ローラを介して前記タイヤに力を作用させるダイナモメータと、前記ダイナモメータが前記タイヤに作用させる力を制御する制御装置とを備えた、シャシーダイナモメータに、前記自動車のタイヤの温度を測定する温度測定手段と、前記自動車の車速を計測する車速計測手段とを備えると共に、前記制御手段に、前記自動車の車速と、当該車速にある自動車の前記タイヤに作用させるべき力との対応を記述した制御マップと、前記制御マップを参照し、前記車速計測手段が計測した車速に対応する力を目標値として算出する目標値算出手段と、前記温度測定手段で測定したタイヤの温度に応じて、前記目標値算出手段が算出した目標値を補正し、補正後目標値とする補正手段と、前記ダイナモメータに、前記補正手段が補正した前記補正後目標値が示す力を前記タイヤに作用させる制御手段とを設けたものである。但し、前記補正手段は、前記目標値の補正を、タイヤの温度変化による前記タイヤの転がり抵抗の大きさの変化と、当該補正による前記ダイナモメータが前記タイヤに作用させる力の大きさの変化とが相殺されるように行うものである。   To achieve the above object, the present invention controls a roller on which a tire of an automobile is placed, a dynamometer that applies a force to the tire via the roller, and a force that the dynamometer applies to the tire. A chassis dynamometer provided with a control device for measuring the temperature of the tire of the automobile, and a vehicle speed measuring means for measuring the vehicle speed of the automobile. Referring to the control map describing the correspondence between the vehicle speed and the force to be applied to the tire of the vehicle at the vehicle speed, and calculating the force corresponding to the vehicle speed measured by the vehicle speed measuring means as a target value The target value calculated by the target value calculating means according to the tire temperature measured by the temperature measuring means, and the corrected target value A correction unit that, on the dynamometer, in which the correction means corrects the corrected force indicated by the target value is provided and a control means for acting on the tire. However, the correction means corrects the target value by changing the magnitude of the rolling resistance of the tire due to a temperature change of the tire, and changing the magnitude of the force that the dynamometer acts on the tire due to the correction. Is to be offset.

このようなシャシーダイナモメータによれば、シャシーダイナモメータにおける自動車の試験中に、自動車に対して加わる走行抵抗のうちの現実のタイヤの転がり抵抗のタイヤの温度変化による変動分を相殺するように、ダイナモメータから前記タイヤに作用させる力を制御することができるので、車速に対して定めた所望の走行抵抗を車両に加えることができるようになる。   According to such a chassis dynamometer, during the test of the automobile in the chassis dynamometer, the fluctuation due to the temperature change of the tire in the rolling resistance of the actual tire of the running resistance applied to the automobile is offset. Since the force acting on the tire can be controlled from the dynamometer, a desired running resistance determined with respect to the vehicle speed can be applied to the vehicle.

ここで、本発明は、併せて、以上のようなシャシーダイナモメータにおいて、前記制御マップを設定する制御マップ設定方法として、前記制御手段において、前記目標値算出手段が算出した目標値が示す力を前記タイヤに作用させながら、前記自動車を惰行させて、前記自動車の車速の挙動を取得し、取得した挙動と、予め求めておいた実路において前記自動車を惰行させたときの前記自動車の車速の挙動とのずれに応じて、前記制御マップを修正する第1のステップと、前記目標値算出手段が算出した目標値に所定の補正値を加えた値が示す力を前記タイヤに作用させながら、前記自動車を惰行させて、前記自動車の車速の挙動を取得し、取得した挙動と、予め求めておいた実路において前記自動車を惰行させたときの前記自動車の車速の挙動とのずれに応じて、前記制御マップを修正する第2のステップを、前記挙動のずれが許容範囲に収まるまで繰り返すステップとを有する方法を提供する。但し、前記所定の補正値は、前記第1のステップの実行開始時に、前記温度測定手段が測定した前記タイヤの温度と、前記第2のステップ実行開始時に前記温度測定手段が測定した前記タイヤの温度との差による、前記第2のステップの実行開始時の前記タイヤの転がり抵抗の大きさの前記第1のステップの実行開始時の前記タイヤの転がり抵抗の大きさに対する変化と、当該補正値による前記ダイナモメータが前記タイヤに作用させる力の大きさの変化とが相殺されるように算出した値とする。   Here, according to the present invention, as a control map setting method for setting the control map in the chassis dynamometer as described above, the force indicated by the target value calculated by the target value calculating means in the control means is shown. While acting on the tire, the vehicle is coasted to acquire the behavior of the vehicle speed of the vehicle, and the acquired behavior and the vehicle speed of the vehicle when the vehicle is coasted on the actual road determined in advance. A first step of correcting the control map according to a deviation from the behavior, and a force indicated by a value obtained by adding a predetermined correction value to the target value calculated by the target value calculating means is applied to the tire. The vehicle is coasted, the behavior of the vehicle speed of the vehicle is acquired, the acquired behavior, and the vehicle speed of the vehicle when the vehicle is coasted on the actual road that has been obtained in advance. Depending on the deviation between the movement, the second step of modifying the control map, the deviation of the behavior to provide a method and a step of repeating until falls within an allowable range. However, the predetermined correction value is the temperature of the tire measured by the temperature measuring unit at the start of execution of the first step and the tire measured by the temperature measuring unit at the start of execution of the second step. The change of the magnitude of the rolling resistance of the tire at the start of execution of the second step due to the difference from the temperature with respect to the magnitude of the rolling resistance of the tire at the start of execution of the first step, and the correction value The value calculated so that the change in the magnitude of the force applied to the tire by the dynamometer is canceled out.

このような制御マップ設定方法によれば、前記第2のステップ実行時のタイヤの転がり抵抗の大きさの、第1のステップ実行時のタイヤの転がり抵抗の大きさからの、タイヤ温度変化による変化分を補正値で相殺した形態で、第2のステップを実行できるので、タイヤ温度変化によるタイヤの転がり抵抗の大きさの変動による外乱を廃して、速やかに適正な制御マップを設定することができるようになる。   According to such a control map setting method, the change in the tire rolling resistance during the execution of the second step from the magnitude of the tire rolling resistance during the execution of the first step due to a change in tire temperature. Since the second step can be executed in a form in which the minutes are offset by the correction value, it is possible to quickly set an appropriate control map by eliminating disturbance caused by fluctuations in the tire rolling resistance due to changes in tire temperature. It becomes like this.

以上のように、本発明によれば、シャシーダイナモメータにおいて、車速に対して定めた所望の走行抵抗を、より精度よく車両に加えることができる。   As described above, according to the present invention, in the chassis dynamometer, a desired running resistance determined with respect to the vehicle speed can be applied to the vehicle with higher accuracy.

以下、本発明の実施形態について説明する。
図1に、本実施形態に係るシャシーダイナモメータの構成を模式的に示す。
ここで、図1aはシャシーダイナモメータの上面模式図を、図1bはシャシーダイナモメータの側面模式図を示している。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 schematically shows the configuration of the chassis dynamometer according to this embodiment.
Here, FIG. 1a is a schematic top view of the chassis dynamometer, and FIG. 1b is a schematic side view of the chassis dynamometer.

図示するように、このシャシーダイナモメータは、自動車用のシャシーダイナモメータであり、ピット1と、ピット1内に配置されたダイナモメータ2と、制御装置3と、自動車の駆動輪のタイヤの温度を測定し、測定した温度をタイヤ温度Teとして制御装置3に出力する放射温度計4とを備えている。   As shown in the figure, this chassis dynamometer is a chassis dynamometer for an automobile. A radiation thermometer 4 that measures and outputs the measured temperature to the control device 3 as a tire temperature Te is provided.

ここで、ダイナモメータ2は、図2に前面を示すようにベース21、左右一対の円筒形状のローラ22、ベース21に固定されたモータ23を有している。そして、各ローラ22の中心軸24は、ベース21に固定された二つの支柱25によって回動可能に支持されている。また、左側のローラ22の中心軸24の右端は、左軸トルク計26を介在して、モータ23のモータ軸27の左端に連結し、右側のローラ22の中心軸24の左端は、右軸トルク計28を介在して、モータ23のモータ軸27の右端に連結している。また、モータ23には、モータ軸27の回転速度を検出し、検出した回転速度を回転速度Rvとして制御装置3に出力する回転速度計29が設けられている。   Here, the dynamometer 2 has a base 21, a pair of left and right cylindrical rollers 22, and a motor 23 fixed to the base 21, as shown in FIG. 2. The central shaft 24 of each roller 22 is rotatably supported by two struts 25 fixed to the base 21. The right end of the center shaft 24 of the left roller 22 is connected to the left end of the motor shaft 27 of the motor 23 via a left shaft torque meter 26, and the left end of the center shaft 24 of the right roller 22 is connected to the right shaft. The motor 23 is connected to the right end of the motor shaft 27 via a torque meter 28. The motor 23 is provided with a rotation speed meter 29 that detects the rotation speed of the motor shaft 27 and outputs the detected rotation speed to the control device 3 as the rotation speed Rv.

このような構成において、モータ23は、制御装置3から出力される制御信号CNTに従ったトルクを発生し各ローラ22の回転の動力を供給または吸収する。また、左軸トルク計26、右軸トルク計28は、たとえば歪みゲージであり、左軸トルク計26は、モータ23のモータ軸27と左側のローラ22の中心軸24との間に働く軸トルクをねじれ方向の歪み量より検出し、右軸トルク計28は、モータ23のモータ軸27と右側のローラ22の中心軸24との間に働く軸トルクを、たとえば、ねじれ方向の歪み量より検出する。そして、左軸トルク計26が検出した軸トルクと、右軸トルク計28が検出した軸トルクとを加算した値が、検出トルクTrとして制御装置3に出力される。   In such a configuration, the motor 23 generates torque according to the control signal CNT output from the control device 3 and supplies or absorbs the rotational power of each roller 22. The left-axis torque meter 26 and the right-axis torque meter 28 are strain gauges, for example, and the left-axis torque meter 26 is a shaft torque that acts between the motor shaft 27 of the motor 23 and the central shaft 24 of the left roller 22. Is detected from the amount of distortion in the torsional direction, and the right axis torque meter 28 detects the axial torque acting between the motor shaft 27 of the motor 23 and the central shaft 24 of the right roller 22 from the amount of distortion in the torsional direction, for example. To do. Then, a value obtained by adding the shaft torque detected by the left-axis torque meter 26 and the shaft torque detected by the right-axis torque meter 28 is output to the control device 3 as the detected torque Tr.

さて、図1に戻り、ダイナモメータ2はローラ22の頂部がピット1上面に設けられた開口から露出するように配置されている。
そして、自動車の試験は、図示するように、ピット1に試験する自動車である試験車両5を進行させ、試験車両5が前輪駆動車である場合には左右の駆動輪である前輪のタイヤをダイナモメータ2の左右のローラ22の頂上にそれぞれ位置決めした上で、試験車両5をピット1に対して固定して行う。
次に、図3に制御装置3の構成を示す。
Now, referring back to FIG. 1, the dynamometer 2 is arranged so that the top of the roller 22 is exposed from an opening provided on the upper surface of the pit 1.
Then, in the automobile test, as shown in the figure, a test vehicle 5 that is an automobile to be tested in the pit 1 is advanced, and when the test vehicle 5 is a front-wheel drive car, the front tires that are the left and right drive wheels are The test vehicle 5 is fixed to the pit 1 after positioning on the tops of the left and right rollers 22 of the meter 2.
Next, the configuration of the control device 3 is shown in FIG.

図示するように、制御装置3は、ダイナモメータ2から出力される回転速度Rvを自動車の車速Vに変換する車速変換部31、車速Vと当該車速Vのときに試験車両5に加えるべき走行抵抗Nとの関係を記述した抵抗マップ32、予め実験的に求めたタイヤ温度Teと二つの駆動輪のタイヤの転がり抵抗TNとの関係を記述したタイヤ抵抗テーブル33、減算部34、加算部35、制御値算出部36、校正制御部37、実路惰行データ38とを備えている。   As shown in the figure, the control device 3 includes a vehicle speed conversion unit 31 that converts the rotational speed Rv output from the dynamometer 2 into the vehicle speed V of the vehicle, and the running resistance to be applied to the test vehicle 5 at the vehicle speed V and the vehicle speed V. A resistance map 32 describing the relationship with N, a tire resistance table 33 describing the relationship between the tire temperature Te obtained experimentally in advance and the rolling resistance TN of the tires of the two drive wheels, a subtracting unit 34, an adding unit 35, A control value calculation unit 36, a calibration control unit 37, and actual road coasting data 38 are provided.

このような構成において、試験車両5の試験の際に、制御装置3は以下のように、ダイナモメータ2を制御する。
すなわち、まず、車速変換部31が現在の回転速度Rvを変換した車速Vに対応する走行抵抗Nを抵抗マップ32から算出する。また、現在のタイヤ温度Teに対応する転がり抵抗TNと、所定の基準温度TeStdに対応する転がり抵抗TNStdを、タイヤ抵抗テーブル33から算出し、両者の差である(基準温度TeStdに対応する転がり抵抗TNStd)-(現在のタイヤ温度Teに対応する転がり抵抗TN)を減算部34で補正値ΔNとして算出する。
In such a configuration, when the test vehicle 5 is tested, the control device 3 controls the dynamometer 2 as follows.
That is, first, the vehicle speed conversion unit 31 calculates a running resistance N corresponding to the vehicle speed V obtained by converting the current rotational speed Rv from the resistance map 32. Further, the rolling resistance TN corresponding to the current tire temperature Te and the rolling resistance TNStd corresponding to the predetermined reference temperature TeStd are calculated from the tire resistance table 33, and are the difference between them (the rolling resistance corresponding to the reference temperature TeStd). TNStd) − (rolling resistance TN corresponding to the current tire temperature Te) is calculated by the subtractor 34 as the correction value ΔN.

そして、加算部35で走行抵抗Nと補正値ΔNを加算して制御目標値TrgNとする。この結果、制御目標値TrgNは、現在のタイヤ温度Teが上昇しタイヤの転がり抵抗が小さくなるとその分大きくなり、現在のタイヤ温度Teが下降しタイヤの転がり抵抗が大きくなるとその分小さくなる。   Then, the adder 35 adds the running resistance N and the correction value ΔN to obtain a control target value TrgN. As a result, the control target value TrgN increases as the current tire temperature Te increases and the tire rolling resistance decreases, and decreases as the current tire temperature Te decreases and the tire rolling resistance increases.

そして、制御値算出部36で、制御目標値TrgN(=走行抵抗N+補正値ΔN)を試験車両5に加えるためのモータ23の制御値を、現在の回転速度Rvや現在の検出トルクTrに応じて算出し、制御信号Cntとして、ダイナモメータ2のモータ23に出力する。
このような制御装置3による制御によれば、抵抗マップ32を、試験車両5がタイヤ温度が基準温度TeStdのときの転がり抵抗を有する場合における、車速Vと当該車速Vのときに試験車両5に加えるべき走行抵抗Nとの関係を記述したものとしておくことにより、タイヤ抵抗テーブル33を用いて、試験車両5のタイヤの転がり抵抗のタイヤの温度変化による変動分を相殺するように、ダイナモメータ2のモータ23の制御目標値TrgNを補正することができる。よって、適正に、車速に対して定めた所望の走行抵抗を試験車両5に加えることができるようになる。
Then, the control value calculation unit 36 determines the control value of the motor 23 for applying the control target value TrgN (= running resistance N + correction value ΔN) to the test vehicle 5 according to the current rotational speed Rv and the current detected torque Tr. And output to the motor 23 of the dynamometer 2 as a control signal Cnt.
According to such control by the control device 3, the resistance map 32 is transferred to the test vehicle 5 at the vehicle speed V and the vehicle speed V when the test vehicle 5 has rolling resistance when the tire temperature is the reference temperature TeStd. By describing the relationship with the running resistance N to be added, the dynamometer 2 uses the tire resistance table 33 so as to offset the fluctuation due to the tire temperature change of the tire rolling resistance of the test vehicle 5. The control target value TrgN of the motor 23 can be corrected. Therefore, it is possible to appropriately apply a desired running resistance determined with respect to the vehicle speed to the test vehicle 5.

次に、以上のような試験車両5の試験に先だって行う、前述した所定の基準温度TeStdと、抵抗マップ32の設定動作について説明する。
まず、制御装置3には、予め実路惰行データ38が登録されており、この実路惰行データ38は、図4aに示すように、試験車両5を平坦な実路上で所定車速Vrefからギヤをニュートラルとして惰行させたときの車速の時間変化を表したものである。
そして、抵抗マップ32は、試験車両5の走行抵抗のうちのシャシーダイナモメータで模擬する成分の値が、車速Vの関数a+b×(Vの2乗)として登録される。ここで、aは転がり抵抗のうちのダイナモメータ2で模擬する成分に相当し、b×(Vの2乗)はシャシーダイナモメータで模擬する風損の値に相当する。なお、転がり抵抗のうちのダイナモメータ2で模擬する成分とは、路面状況の相違等によって生じる、実路走行時に発生する転がり抵抗と、ローラ22上の走行によって発生する転がり抵抗との差分である。
Next, the setting operation of the predetermined reference temperature TeStd and the resistance map 32 described above prior to the test of the test vehicle 5 will be described.
First, actual road coasting data 38 is registered in the control device 3, and the actual road coasting data 38 is used to drive the test vehicle 5 from a predetermined vehicle speed Vref on a flat actual road as shown in FIG. 4a. It shows the time change of the vehicle speed when coasting as neutral.
In the resistance map 32, the value of the component simulated by the chassis dynamometer in the running resistance of the test vehicle 5 is registered as a function a + b × (V square) of the vehicle speed V. Here, a corresponds to a component of the rolling resistance that is simulated by the dynamometer 2, and b × (square of V) corresponds to a value of wind loss that is simulated by the chassis dynamometer. The component of the rolling resistance that is simulated by the dynamometer 2 is the difference between the rolling resistance that occurs when traveling on an actual road and the rolling resistance that occurs when traveling on the roller 22 due to a difference in road surface conditions. .

なお、自動車の走行抵抗としては、この他に慣性抵抗が存在するが、この慣性抵抗は、別途フライホイールなどの機械的手段を用いて模擬する。または、制御装置3において、車速変換部31が現在の回転速度Rvを変換した車速Vの加速度と試験車両重量mに応じた値を制御信号CNTに加算してモータ23に出力することにより、当該慣性抵抗分の抵抗分もダイナモメータ2によって模擬するようにしてもよい。   In addition to the above, there is inertial resistance as the running resistance of the automobile. This inertial resistance is separately simulated using mechanical means such as a flywheel. Alternatively, in the control device 3, the vehicle speed conversion unit 31 adds a value corresponding to the acceleration of the vehicle speed V obtained by converting the current rotational speed Rv and the test vehicle weight m to the control signal CNT and outputs it to the motor 23. A resistance component corresponding to the inertial resistance may be simulated by the dynamometer 2.

さて、抵抗マップ32の設定動作は、次の手順によって行う。
すなわち、まず、制御装置3の校正制御部37において、実路惰行データ38から、計算によって適当と思われる抵抗マップ32を算定し設定する。
次に、試験車両5をシャシーダイナモメータにセットし、図3bに示すように、試験車両5を所定時間の暖気運転する(D)、次に、試験車両5の車速を所定車速Vrefとした後に、試験車両5のギヤをニュートラルとして惰行させ、第1回目の校正運転(C1)を行う。
Now, the setting operation of the resistance map 32 is performed according to the following procedure.
That is, first, the calibration control unit 37 of the control device 3 calculates and sets a resistance map 32 that seems appropriate by calculation from the actual road coasting data 38.
Next, the test vehicle 5 is set on the chassis dynamometer, and as shown in FIG. 3B, the test vehicle 5 is warmed up for a predetermined time (D), and then the vehicle speed of the test vehicle 5 is set to the predetermined vehicle speed Vref. Then, the gear of the test vehicle 5 is coasted as neutral, and the first calibration operation (C1) is performed.

この第1回目の校正運転では、まず、校正制御部37において、第1回目の校正運転(C1)開始時点t1のタイヤ温度Te(t1)を基準温度TeStdとして設定すると共に、試験車両5の車速の時間変化の記録を開始する。
そして、以降は、制御装置3において、車速変換部31が現在の回転速度Rvを変換した車速Vに対応する走行抵抗Nを抵抗マップ32から算出し、算出した走行抵抗Nをそのまま制御目標値TrgNとし、制御値算出部36で、制御目標値TrgN(=走行抵抗N)を試験車両5に加えるためのモータ23の制御値を、現在の回転速度Rvや現在の検出トルクTrに応じて算出し、制御信号Cntとして、ダイナモメータ2のモータ23に出力する。すなわち、第1回目の校正運転(C1)では、校正運転中、加算部35を、走行抵抗Nに対する補正値ΔNの加算を行わず、走行抵抗Nをそのまま制御目標値TrgNとして出力するように制御する。
In the first calibration operation, first, the calibration control unit 37 sets the tire temperature Te (t1) at the first calibration operation (C1) start time t1 as the reference temperature TeStd and the vehicle speed of the test vehicle 5. Start recording time changes.
Subsequently, in the control device 3, the vehicle speed conversion unit 31 calculates the running resistance N corresponding to the vehicle speed V converted from the current rotational speed Rv from the resistance map 32, and the calculated running resistance N is directly used as the control target value TrgN. The control value calculation unit 36 calculates the control value of the motor 23 for applying the control target value TrgN (= running resistance N) to the test vehicle 5 according to the current rotational speed Rv and the current detected torque Tr. The control signal Cnt is output to the motor 23 of the dynamometer 2. That is, in the first calibration operation (C1), during the calibration operation, the adding unit 35 is controlled not to add the correction value ΔN to the running resistance N and to output the running resistance N as the control target value TrgN as it is. To do.

そして、試験車両5が停止したならば、校正制御部37において、試験車両5の車速の時間変化の記録を終了し、記録された試験車両5の車速の時間変化と、実路走行データが示す試験車両5の車速の時間変化との差分が解消されるように抵抗マップ32を修正する。   If the test vehicle 5 stops, the calibration control unit 37 finishes recording the time change of the vehicle speed of the test vehicle 5 and shows the time change of the recorded vehicle speed of the test vehicle 5 and the actual road travel data. The resistance map 32 is corrected so that the difference with the time change of the vehicle speed of the test vehicle 5 is eliminated.

そして、再度、試験車両5の車速を所定車速Vrefとした後に、試験車両5のギヤをニュートラルとして惰行させ、第2回目の校正運転(C2)を行う。
第2回目の校正運転では、まず、校正制御部37において、第2回目の校正運転(C2)開始時点t2のタイヤ温度Te(t2)に対応する転がり抵抗TN(t2)と、先に設定した第1回目の校正運転(C2)開始時点のタイヤ温度Te(t1)である基準温度TeStdに対応する転がり抵抗TNStdを、タイヤ抵抗テーブル33から算出し、両者の差である(基準温度TeStdに対応する転がり抵抗TNStd)-(現在のタイヤ温度Te(t2)に対応する転がり抵抗TN(t2))を減算部34で補正値ΔN(t2)として算出する。
Then, after again setting the vehicle speed of the test vehicle 5 to the predetermined vehicle speed Vref, the gear of the test vehicle 5 is coasted as neutral, and the second calibration operation (C2) is performed.
In the second calibration operation, first, in the calibration control unit 37, the rolling resistance TN (t2) corresponding to the tire temperature Te (t2) at the start time t2 of the second calibration operation (C2) is set first. The rolling resistance TNStd corresponding to the reference temperature TeStd that is the tire temperature Te (t1) at the start of the first calibration operation (C2) is calculated from the tire resistance table 33, and is the difference between the two (corresponding to the reference temperature TeStd). Rolling resistance TNStd) − (rolling resistance TN (t2) corresponding to the current tire temperature Te (t2)) is calculated by the subtractor 34 as the correction value ΔN (t2).

そして、以降は、制御装置3において、車速変換部31が現在の回転速度Rvを変換した車速Vに対応する走行抵抗Nを抵抗マップ32から算出し、算出した走行抵抗Nに、第2回目の校正(C2)開始時点の補正値ΔN(t2)を加算した値を制御目標値TrgNとし、制御値算出部36で、制御目標値TrgN(=走行抵抗N+補正値ΔN(t2))を試験車両5に加えるためのモータ23の制御値を、現在の回転速度Rvや現在の検出トルクTrに応じて算出し、制御信号Cntとして、ダイナモメータ2のモータ23に出力する。すなわち、第2回目の校正運転(C2)では、校正運転中、加算部35を、走行抵抗Nに対して、常に第2回目の校正運転(C2)開始時点t2の補正値ΔN(t2)を加算して、制御目標値TrgNとして出力するように制御する。   Thereafter, in the control device 3, the vehicle resistance conversion unit 31 calculates a running resistance N corresponding to the vehicle speed V converted from the current rotational speed Rv from the resistance map 32, and the calculated running resistance N is set to the second time. The value obtained by adding the correction value ΔN (t2) at the start of calibration (C2) is set as the control target value TrgN, and the control value calculation unit 36 sets the control target value TrgN (= running resistance N + correction value ΔN (t2)) to the test vehicle. 5 is calculated according to the current rotational speed Rv and the current detected torque Tr, and is output to the motor 23 of the dynamometer 2 as a control signal Cnt. That is, in the second calibration operation (C2), during the calibration operation, the adding unit 35 always sets the correction value ΔN (t2) of the second calibration operation (C2) start time t2 to the running resistance N. Addition is performed and control is performed so as to output as the control target value TrgN.

そして、試験車両5が停止したならば、校正制御部37において、試験車両5の車速の時間変化の記録を終了し、記録された試験車両5の車速の時間変化と、実路走行データが示す試験車両5の車速の時間変化との差分が許容値以下となっていれば、校正作業を終了する。   If the test vehicle 5 stops, the calibration control unit 37 finishes recording the time change of the vehicle speed of the test vehicle 5 and shows the time change of the recorded vehicle speed of the test vehicle 5 and the actual road travel data. If the difference from the time change of the vehicle speed of the test vehicle 5 is less than or equal to the allowable value, the calibration operation is terminated.

一方、差分が許容値を超えていれば、当該差分解消されるように抵抗マップ32を修正し、第3回目の校正運転を第2回目の校正運転と同様に行う。また、以下、同様に、記録された試験車両5の車速の時間変化と、実路走行データが示す試験車両5の車速の時間変化との差分が許容値以下となるまで、第2回目の校正運転と同様の校正運転を繰り返す。
このような抵抗マップ32の設定動作によれば、第1回目の校正運転時に対する、タイヤ温度変化によるタイヤの転がり抵抗の大きさの変動を相殺した形態で、第2回目以降の校正運転を行うことができるので、タイヤ温度変化によるタイヤの転がり抵抗の大きさの変動による外乱を廃して、速やかに適正な制御マップを設定することができるようになる。
On the other hand, if the difference exceeds the allowable value, the resistance map 32 is corrected so that the difference is eliminated, and the third calibration operation is performed in the same manner as the second calibration operation. Similarly, the second calibration is performed until the difference between the recorded time change of the vehicle speed of the test vehicle 5 and the time change of the vehicle speed of the test vehicle 5 indicated by the actual road travel data is equal to or less than the allowable value. Repeat the same calibration operation as the operation.
According to the setting operation of the resistance map 32 as described above, the second and subsequent calibration operations are performed in a form in which fluctuations in the rolling resistance of the tire due to changes in tire temperature with respect to the first calibration operation are offset. Therefore, it is possible to quickly set an appropriate control map by eliminating disturbance caused by fluctuations in the rolling resistance of the tire due to changes in tire temperature.

以上、本発明の実施形態について説明した。
なお、以上で示したシャシーダイナモメータの制御技術は、四輪駆動車や自動二輪車用のシャシーダイナモメータにも同様に適用することができる。また、二輪駆動車の前輪を各々ローラ上に載せ置いて抵抗を与える場合にも、同様に適用することができる。
また、以上のシャシーダイナモメータでは、ダイナモメータ2として軸トルク計でトルクを測定するタイプのダイナモメータを用いたが、ダイナモメータ2としては、軸周りに揺動可能に設けたモータ23と、モータ23の揺動に伴いモータ23に固定したアームから加わる荷重をトルクとして計測するロードセルとを備えた、揺動式のダイナモメータ2を用いるようにしてもよい。
The embodiment of the present invention has been described above.
The above-described chassis dynamometer control technology can be similarly applied to a chassis dynamometer for a four-wheel drive vehicle or a motorcycle. Further, the present invention can be similarly applied to the case where the front wheels of the two-wheel drive vehicle are placed on rollers and given resistance.
In the above chassis dynamometer, a dynamometer of the type that measures torque with a shaft torque meter is used as the dynamometer 2, but as the dynamometer 2, a motor 23 provided so as to be able to swing around an axis, a motor A swing type dynamometer 2 provided with a load cell that measures a load applied from an arm fixed to the motor 23 as the torque swings as a torque may be used.

本発明の実施形態に係るシャシーダイナモメータの構成を示す図である。It is a figure which shows the structure of the chassis dynamometer which concerns on embodiment of this invention. 本発明の実施形態に係るダイナモメータの構成を示す図である。It is a figure which shows the structure of the dynamometer which concerns on embodiment of this invention. 本発明の実施形態に係るシャシーダイナモメータの制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the control apparatus of the chassis dynamometer which concerns on embodiment of this invention. 本発明の実施形態に係るシャシーダイナモメータの抵抗マップと基準温度の設定法を示す図である。It is a figure which shows the resistance map of the chassis dynamometer which concerns on embodiment of this invention, and the setting method of reference temperature.

符号の説明Explanation of symbols

1…ピット、2…ダイナモメータ、3…制御装置、4…放射温度計、5…試験車両、21…ベース、22…ローラ、23…モータ、25…支柱、26…左軸トルク計、28…右軸トルク計、29…回転速度計、31…車速変換部、32…抵抗マップ、33…タイヤ抵抗テーブル、34…減算部、35…加算部、36…制御値算出部、37…校正制御部、38…実路惰行データ。   DESCRIPTION OF SYMBOLS 1 ... Pit, 2 ... Dynamometer, 3 ... Control apparatus, 4 ... Radiation thermometer, 5 ... Test vehicle, 21 ... Base, 22 ... Roller, 23 ... Motor, 25 ... Strut, 26 ... Left axis torque meter, 28 ... Right axis torque meter, 29 ... rotational speed meter, 31 ... vehicle speed conversion unit, 32 ... resistance map, 33 ... tire resistance table, 34 ... subtraction unit, 35 ... addition unit, 36 ... control value calculation unit, 37 ... calibration control unit , 38 ... Actual road coasting data.

Claims (2)

自動車のタイヤが載置されるローラと、前記ローラを介して前記タイヤに力を作用させるダイナモメータと、前記ダイナモメータが前記タイヤに作用させる力を制御する制御装置とを備えた、シャシーダイナモメータであって、
前記自動車のタイヤの温度を測定する温度測定手段と、
前記自動車の車速を計測する車速計測手段とを有し、
前記制御手段は、
前記自動車の車速と、当該車速にある自動車の前記タイヤに作用させるべき力との対応を記述した制御マップと、
前記制御マップを参照し、前記車速計測手段が計測した車速に対応する力を目標値として算出する目標値算出手段と、
前記温度測定手段で測定したタイヤの温度に応じて、前記目標値算出手段が算出した目標値を補正し、補正後目標値とする補正手段と、
前記ダイナモメータに、前記補正手段が補正した前記補正後目標値が示す力を前記タイヤに作用させる制御手段とを有し、
前記補正手段は、前記目標値の補正を、タイヤの温度変化による前記タイヤの転がり抵抗の大きさの変化と、当該補正による前記ダイナモメータが前記タイヤに作用させる力の大きさの変化とが相殺されるように行うことを特徴とするシャシーダイナモメータ。
A chassis dynamometer, comprising: a roller on which a tire of an automobile is placed; a dynamometer that applies a force to the tire via the roller; and a control device that controls a force that the dynamometer applies to the tire. Because
Temperature measuring means for measuring the temperature of the automobile tire;
Vehicle speed measuring means for measuring the vehicle speed of the automobile,
The control means includes
A control map describing the correspondence between the vehicle speed of the vehicle and the force to be applied to the tire of the vehicle at the vehicle speed;
A target value calculating means for referring to the control map and calculating a force corresponding to the vehicle speed measured by the vehicle speed measuring means as a target value;
A correction unit that corrects the target value calculated by the target value calculation unit according to the temperature of the tire measured by the temperature measurement unit, and sets the corrected target value;
The dynamometer has a control unit that causes the force indicated by the corrected target value corrected by the correction unit to act on the tire,
The correction means cancels the correction of the target value by a change in the magnitude of the rolling resistance of the tire due to a change in tire temperature and a change in the magnitude of the force that the dynamometer exerts on the tire due to the correction. A chassis dynamometer characterized by being performed.
請求項1記載のシャシーダイナモメータにおいて、前記制御マップを設定する制御マップ設定方法であって、
前記制御手段において、前記目標値算出手段が算出した目標値が示す力を前記タイヤに作用させながら、前記自動車を惰行させて、前記自動車の車速の挙動を取得し、取得した挙動と、予め求めておいた実路において前記自動車を惰行させたときの前記自動車の車速の挙動とのずれに応じて、前記制御マップを修正する第1のステップと、
前記目標値算出手段が算出した目標値に所定の補正値を加えた値が示す力を前記タイヤに作用させながら、前記自動車を惰行させて、前記自動車の車速の挙動を取得し、取得した挙動と、予め求めておいた実路において前記自動車を惰行させたときの前記自動車の車速の挙動とのずれに応じて、前記制御マップを修正する第2のステップを、前記挙動のずれが許容範囲に収まるまで繰り返すステップとを有し、
前記所定の補正値は、前記第1のステップの実行開始時に、前記温度測定手段が測定した前記タイヤの温度と、前記第2のステップ実行開始時に前記温度測定手段が測定した前記タイヤの温度との差による、前記第2のステップの実行開始時の前記タイヤの転がり抵抗の大きさの前記第1のステップの実行開始時の前記タイヤの転がり抵抗の大きさに対する変化と、当該補正値による前記ダイナモメータが前記タイヤに作用させる力の大きさの変化とが相殺されるように算出した値であることを特徴とするシャシーダイナモメータにおける制御マップ設定方法。
The chassis dynamometer according to claim 1, wherein the control map setting method sets the control map,
In the control means, while causing the force indicated by the target value calculated by the target value calculating means to act on the tire, the vehicle is coasted, and the behavior of the vehicle speed of the vehicle is acquired. A first step of correcting the control map in accordance with a deviation from the behavior of the vehicle speed when the vehicle is coasted on a real road,
The behavior of the vehicle is acquired by causing the vehicle to coast while causing the tire to exert a force indicated by a value obtained by adding a predetermined correction value to the target value calculated by the target value calculation means. And a second step of correcting the control map in accordance with a deviation from the behavior of the vehicle speed when the automobile is coasted on a real road that has been obtained in advance, the deviation of the behavior is within an allowable range. And repeating until it fits in
The predetermined correction value includes the temperature of the tire measured by the temperature measurement unit at the start of execution of the first step, and the temperature of the tire measured by the temperature measurement unit at the start of execution of the second step. Due to the difference between the change in the rolling resistance of the tire at the start of execution of the first step and the correction value according to the correction value. A method for setting a control map in a chassis dynamometer, characterized in that the value is calculated so that a change in the magnitude of a force applied to the tire by a dynamometer is offset.
JP2008161305A 2008-06-20 2008-06-20 Chassis dynamometer controller Active JP5139168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008161305A JP5139168B2 (en) 2008-06-20 2008-06-20 Chassis dynamometer controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008161305A JP5139168B2 (en) 2008-06-20 2008-06-20 Chassis dynamometer controller

Publications (2)

Publication Number Publication Date
JP2010002294A true JP2010002294A (en) 2010-01-07
JP5139168B2 JP5139168B2 (en) 2013-02-06

Family

ID=41584145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008161305A Active JP5139168B2 (en) 2008-06-20 2008-06-20 Chassis dynamometer controller

Country Status (1)

Country Link
JP (1) JP5139168B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099436A1 (en) * 2010-02-10 2011-08-18 株式会社明電舎 Running-resistance control device
JP2013036833A (en) * 2011-08-08 2013-02-21 Ono Sokki Co Ltd Device for testing bicycle
JP2013036834A (en) * 2011-08-08 2013-02-21 Ono Sokki Co Ltd Device for testing bicycle
CN112051065A (en) * 2020-08-19 2020-12-08 中国第一汽车股份有限公司 Engine brake system testing method
AT522635A1 (en) * 2019-06-13 2020-12-15 Avl List Gmbh Method and control device for operating a test bench
CN113420372A (en) * 2021-06-09 2021-09-21 神龙汽车有限公司 Simulation calculation system and calculation method for whole vehicle running resistance of passenger vehicle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04331347A (en) * 1991-05-03 1992-11-19 Horiba Ltd Chassis dynamometer device
JPH0559279U (en) * 1992-01-24 1993-08-06 株式会社明電舎 Chassis dynamometer
JPH10238619A (en) * 1997-02-26 1998-09-08 Nissan Motor Co Ltd Gear shift control device for automatic transmission
JP2000321175A (en) * 1999-05-14 2000-11-24 Horiba Ltd Method for creating map to be used for engine-testing device or vehicle-testing device
JP2000338008A (en) * 1999-05-28 2000-12-08 Horiba Ltd System and method for controlling vehicle automatic drive device
JP2004020401A (en) * 2002-06-18 2004-01-22 Toyota Motor Corp Chassis dynamo apparatus and vehicle testing method
JP2006317372A (en) * 2005-05-16 2006-11-24 Ono Sokki Co Ltd Chassis dynamometer
JP2008048464A (en) * 2006-08-10 2008-02-28 Shinko Electric Co Ltd Electrical inertia controller, and its control method
JP2009276304A (en) * 2008-05-19 2009-11-26 Meidensha Corp Vehicle behavior testing apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04331347A (en) * 1991-05-03 1992-11-19 Horiba Ltd Chassis dynamometer device
JPH0559279U (en) * 1992-01-24 1993-08-06 株式会社明電舎 Chassis dynamometer
JPH10238619A (en) * 1997-02-26 1998-09-08 Nissan Motor Co Ltd Gear shift control device for automatic transmission
JP2000321175A (en) * 1999-05-14 2000-11-24 Horiba Ltd Method for creating map to be used for engine-testing device or vehicle-testing device
JP2000338008A (en) * 1999-05-28 2000-12-08 Horiba Ltd System and method for controlling vehicle automatic drive device
JP2004020401A (en) * 2002-06-18 2004-01-22 Toyota Motor Corp Chassis dynamo apparatus and vehicle testing method
JP2006317372A (en) * 2005-05-16 2006-11-24 Ono Sokki Co Ltd Chassis dynamometer
JP2008048464A (en) * 2006-08-10 2008-02-28 Shinko Electric Co Ltd Electrical inertia controller, and its control method
JP2009276304A (en) * 2008-05-19 2009-11-26 Meidensha Corp Vehicle behavior testing apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099436A1 (en) * 2010-02-10 2011-08-18 株式会社明電舎 Running-resistance control device
CN102762970A (en) * 2010-02-10 2012-10-31 株式会社明电舍 Running-resistance control device
JP5273260B2 (en) * 2010-02-10 2013-08-28 株式会社明電舎 Running resistance control device
KR101371642B1 (en) * 2010-02-10 2014-03-06 메이덴샤 코포레이션 Running-resistance control device
US9157833B2 (en) 2010-02-10 2015-10-13 Meidensha Corporation Running-resistance control device
JP2013036833A (en) * 2011-08-08 2013-02-21 Ono Sokki Co Ltd Device for testing bicycle
JP2013036834A (en) * 2011-08-08 2013-02-21 Ono Sokki Co Ltd Device for testing bicycle
AT522635A1 (en) * 2019-06-13 2020-12-15 Avl List Gmbh Method and control device for operating a test bench
AT522635B1 (en) * 2019-06-13 2022-02-15 Avl List Gmbh Method and control device for operating a test stand
CN112051065A (en) * 2020-08-19 2020-12-08 中国第一汽车股份有限公司 Engine brake system testing method
CN113420372A (en) * 2021-06-09 2021-09-21 神龙汽车有限公司 Simulation calculation system and calculation method for whole vehicle running resistance of passenger vehicle

Also Published As

Publication number Publication date
JP5139168B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5139168B2 (en) Chassis dynamometer controller
US6247348B1 (en) Apparatus for and method of testing dynamic characteristics of components of vehicle
KR101505345B1 (en) Calibration method for multi-component force detector provided in rolling resistance testing machine
CN107839749B (en) Method for controlling steering road feel and whole vehicle stability of electric wheel vehicle
JP5316151B2 (en) Power system test apparatus and control method thereof
JP2008309605A (en) Chassis dynamometer control system and engine dynamometer control system
EP3591368A1 (en) Chassis dynamometer, control method for the same, and chassis dynamometer program
JP3625480B2 (en) Method and wind tunnel meter for aerodynamic measurements in automobiles
US7784334B2 (en) Camber angle optimization for a biaxial wheel test machine
JP4781859B2 (en) Chassis dynamometer controller for automobiles
JP4606246B2 (en) Chassis dynamometer
JP5414661B2 (en) Dynamometer
JP2010139470A (en) Tire rolling resistance testing machine and tire rolling resistance testing method
JP5493927B2 (en) Power system test apparatus and control method thereof
JP5790339B2 (en) Power transmission system test equipment
JP4921020B2 (en) Chassis dynamometer
JP5358331B2 (en) Chassis dynamometer
JP5245679B2 (en) Chassis dynamometer for 4WD vehicles
CN111656153A (en) Method and device for dynamometer testing of motor vehicle
JP2006184041A (en) Travel condition simulation testing system and travel condition simulator for vehicle mounted with drive motor
JP2010043940A (en) Apparatus for testing power transmission system and its control method
JP5414662B2 (en) Method for creating characteristic map of dynamometer and dynamometer
JP2011191151A (en) Chassis dynamometer system for evaluating vehicle body vibration, and evaluation method of the vehicle body vibration
CN117030287B (en) Method for measuring running resistance and inertia of vehicle and chassis dynamometer system
JP4926525B2 (en) Chassis dynamometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121115

R150 Certificate of patent or registration of utility model

Ref document number: 5139168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250