JP2010002289A - Evaluation testing method of peeling in multilayer structure - Google Patents

Evaluation testing method of peeling in multilayer structure Download PDF

Info

Publication number
JP2010002289A
JP2010002289A JP2008161193A JP2008161193A JP2010002289A JP 2010002289 A JP2010002289 A JP 2010002289A JP 2008161193 A JP2008161193 A JP 2008161193A JP 2008161193 A JP2008161193 A JP 2008161193A JP 2010002289 A JP2010002289 A JP 2010002289A
Authority
JP
Japan
Prior art keywords
crack
load
piece
mode
bending rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008161193A
Other languages
Japanese (ja)
Other versions
JP4751914B2 (en
Inventor
Yasuo Hirose
康夫 廣瀬
Takeshi Matsubara
剛 松原
Hirokazu Matsuyama
博和 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Society of Japanese Aerospace Companies
Original Assignee
Kawasaki Heavy Industries Ltd
Society of Japanese Aerospace Companies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Society of Japanese Aerospace Companies filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2008161193A priority Critical patent/JP4751914B2/en
Publication of JP2010002289A publication Critical patent/JP2010002289A/en
Application granted granted Critical
Publication of JP4751914B2 publication Critical patent/JP4751914B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a testing method for reproducing a mode I load and a mode II load in any combination relative to a crack by a uniaxial loading. <P>SOLUTION: In a test piece 1 of foam core sandwich panel having a crack 5 generated, an auxiliary plate 7 is adhered to the whole area of the test piece 1 outside an upside crack piece 6a having a smaller bending rigidity on the upper side of the crack 5 so that the bending rigidity gets substantially equal to each other, in upper and lower portions of the crack 5 to obtain a reinforced crack piece 6A. The reinforced crack piece is mounted on struts 32, 33. A downside crack piece 6b on the lower side of the crack 5 is rotatably fixed to the strut 32, while the reinforced crack piece 6A on the upper side of the crack 5 is rotatably fixed to the strut 33. In this condition, a load is applied to a loading point 39 of a lever section 37 using a chip of a leg section 36 of a tool 34 as a fulcrum 38. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、積層構造体の剥離評価試験方法に関し、更に詳細には、上下方向に積層材を積層した構造を有し、上下に非対称な位置に層間き裂を有する積層構造体の剥離評価試験方法に関する。   The present invention relates to a peel evaluation test method for a laminated structure, and more specifically, a peel evaluation test for a laminated structure having a structure in which laminated materials are laminated in the vertical direction and having an interlaminar crack in an asymmetric position vertically. Regarding the method.

層間き裂を生じているFRP積層板などの積層構造体における混合モードの層間剥離は、開口荷重と剪断荷重とにより評価が行われている。即ち、図12(a)〜(c)に示すように、予めき裂31を形成したFRP積層板等からなる試験片30に、図12(a)に示す開口荷重(以下、「モードI荷重」と称することがある。)と、図12(b)に示す剪断荷重(以下、「モードII荷重」と称することがある。)とを加えることにより評価が行われている。   The delamination in the mixed mode in the laminated structure such as the FRP laminated plate in which the interlayer crack is generated is evaluated by the opening load and the shear load. That is, as shown in FIGS. 12A to 12C, an opening load (hereinafter referred to as “mode I load”) shown in FIG. And a shear load shown in FIG. 12B (hereinafter sometimes referred to as “mode II load”).

また、モードI荷重とモードII荷重を、図12(c)に示すように、単軸負荷により任意の組み合わせで負荷する試験方法として、MMB(Mixed Mode Bending)試験法が知られている(例えば、非特許文献1)。MMB試験法では、図13に示すように、予めき裂31を形成したFRP積層板等からなる試験片30が支柱32及び33の上に載置され、き裂31の下側部分30bが支柱32に固定されるとともに、上側部分30aに治具34の脚部35が固定される。そして、脚部36の先端を支点38として、レバー部37の負荷点39に負荷が与えられる。この場合の試験片30に作用する力は、図12(c)のように表すことができる。MMB試験法では、モードI荷重とモードII荷重を単軸負荷により任意の組み合わせで負荷することができ、モードI荷重とモードII荷重との比率は、支点38と負荷点39との間の距離cを変化させることにより、変化させることが可能となっている。   Further, as shown in FIG. 12 (c), an MMB (Mixed Mode Bending) test method is known as a test method for applying a mode I load and a mode II load in an arbitrary combination by a uniaxial load (for example, as shown in FIG. 12C). Non-Patent Document 1). In the MMB test method, as shown in FIG. 13, a test piece 30 made of an FRP laminated plate or the like in which a crack 31 is formed in advance is placed on support columns 32 and 33, and the lower portion 30 b of the crack 31 is a support column. The leg portion 35 of the jig 34 is fixed to the upper portion 30a. A load is applied to the load point 39 of the lever portion 37 with the tip of the leg portion 36 as a fulcrum 38. The force acting on the test piece 30 in this case can be expressed as shown in FIG. In the MMB test method, a mode I load and a mode II load can be applied in any combination by a uniaxial load, and the ratio between the mode I load and the mode II load is the distance between the fulcrum 38 and the load point 39. It can be changed by changing c.

MMB試験法では、開口荷重としてき裂の上下反対方向に同じ大きさの荷重が与えられ、また、せん断荷重としてき裂の上下同一方向に同じ大きさの荷重の荷重が与えられる。そのため、き裂の先端のモードを、開口負荷からはモードIのみ、剪断負荷からはモードIIのみを作り出すためには、試験片30におけるき裂31の位置が、試験片の厚さ方向の中央部になければならない。換言すれば、MMB試験はき裂31の下側部分30bと上側部分30aとにおける剛性が等しいことから成立している。このことにより、支点38から負荷点39までの距離Cを変化させることだけで、モードIとモードIIの組み合わせを任意の比率で作り出すことが可能となっている。しかし、き裂31の位置が試験片の厚さ方向の中央にない場合、開口負荷からはモードIだけでなくモードIIが発生し、剪断負荷からはモードIIだけでなくモードIも発生することとなり、組み合わせの比率を変更し得る範囲が限定されてしまう。   In the MMB test method, a load of the same magnitude is given as the opening load in the opposite direction of the crack, and a load of the same magnitude is given as the shear load in the same direction of the crack. Therefore, in order to create only mode I from the opening load and only mode II from the shear load, the position of the crack 31 in the test piece 30 is the center in the thickness direction of the test piece. Must be in the department. In other words, the MMB test is established because the rigidity of the lower portion 30b and the upper portion 30a of the crack 31 is equal. This makes it possible to create a combination of mode I and mode II at an arbitrary ratio by simply changing the distance C from the fulcrum 38 to the load point 39. However, if the position of the crack 31 is not at the center in the thickness direction of the specimen, not only mode I but also mode II is generated from the opening load, and not only mode II but also mode I is generated from the shear load. Thus, the range in which the combination ratio can be changed is limited.

一方、発泡コアサンドイッチパネル(Foam Core sandwich Panel)等の積層構造体は、樹脂の発泡コアの上下を面板で挟んだ構造を有しており、発泡コアと面板との間に生じるき裂は、図3に示すように、積層構造体の中央にはなく、そのために、き裂31の下側部分30bと上側部分30aとで剛性が極端に異なる。そのために、FRP積層板において成立した図13に示すMMB試験方法を、非対称の位置にき裂を生じる積層構造体の試験片に用いても、モードI荷重とモードII荷重の任意の組み合わせを再現することは不可能である。
荒井、他3名、「MMB試験によるCFRP直交積層板の層間破壊靱性値の評価」、日本機械学会論文集(A編)、2004年10月、第70巻、第698号、p.1356−1363
On the other hand, a laminated structure such as a foam core sandwich panel has a structure in which the upper and lower sides of a resin foam core are sandwiched between face plates, and a crack generated between the foam core and the face plate is As shown in FIG. 3, it is not at the center of the laminated structure, and therefore, the lower portion 30b and the upper portion 30a of the crack 31 have extremely different rigidity. Therefore, even if the MMB test method shown in Fig. 13 established for FRP laminates is used for specimens of laminate structures that crack at asymmetric positions, any combination of mode I load and mode II load is reproduced. It is impossible to do.
Arai, et al., “Evaluation of Interlaminar Fracture Toughness of CFRP Cross-Laminated Plates by MMB Test”, Transactions of the Japan Society of Mechanical Engineers (A), October 2004, Vol. 70, No. 698, p. 1356-1363

本発明は、上記従来技術の問題点を解決するために為されたものであり、本発明の目的は、モードI荷重とモードII荷重を、複数方向から負荷を加えるのではなく、単軸荷重により、き裂に対してモードI荷重とモードII荷重とを任意の組み合わせで再現することができる試験方法を提供することである。   The present invention has been made to solve the above-described problems of the prior art, and the object of the present invention is to apply a mode I load and a mode II load to a single axis load instead of applying loads from a plurality of directions. Thus, it is to provide a test method capable of reproducing a mode I load and a mode II load in an arbitrary combination with respect to a crack.

本発明の積層構造体の剥離評価試験方法は、上下方向に面状の積層材を積層した積層構造体において、積層構造の上下方向に非対称な位置に層間き裂を形成した試験片を用いた積層構造体の剥離評価試験方法であって、前記試験片の前記層間き裂の上下に位置するき裂片のうちの曲げ剛性の小さい方のき裂片の外側に、前記試験片の全面に亘って補助板を結合し、該補助板を結合した試験片に単軸荷重を与えることを特徴とする。   In the laminate structure peeling evaluation test method of the present invention, in a laminate structure in which planar laminates are laminated in the vertical direction, a test piece in which an interlayer crack is formed at an asymmetrical position in the vertical direction of the laminate structure is used. A test method for evaluating the peeling of a laminated structure, wherein the test piece is placed over the entire surface of the test piece on the outer side of the crack piece having the lower bending rigidity among the crack pieces located above and below the interlayer crack. The auxiliary plate is coupled, and a uniaxial load is applied to the test piece coupled with the auxiliary plate.

上記のように、本発明では、積層構造体の試験片に形成したき裂の上下に位置するき裂片のうち、曲げ剛性の小さい方のき裂片を補強板で補強するので、き裂の上下で曲げ剛性がほぼ等しくすることができ、従来のMMB試験法において、モードI荷重とモードII荷重を任意の組み合わせで再現することが可能となる。   As described above, in the present invention, among the crack pieces positioned above and below the crack formed on the test piece of the laminated structure, the crack piece having the lower bending rigidity is reinforced by the reinforcing plate. Thus, the bending rigidity can be made substantially equal, and in the conventional MMB test method, the mode I load and the mode II load can be reproduced in any combination.

上記においては、前記試験片の前記層間き裂の上下に位置するき裂片のうち、曲げ剛性の小さいき裂片及び補助板を結合したものの曲げ剛性をB1、曲げ剛性の大きいき裂片の曲げ剛性をB2として、
0.5≦B1/B2≦2
となる前記補助板を用いることが好ましい。
In the above, among the crack pieces positioned above and below the interlaminar crack of the test piece, the bending rigidity of the crack piece having a small bending rigidity and the auxiliary plate combined is B 1 , and the bending rigidity of the crack piece having a large bending rigidity is B 1 . As B 2
0.5 ≦ B 1 / B 2 ≦ 2
It is preferable to use the auxiliary plate.

これにより、上記発明においては、前記単軸荷重により、開口荷重と剪断荷重との組み合わせ荷重が発生する。   Thereby, in the said invention, the combined load of an opening load and a shear load generate | occur | produces with the said uniaxial load.

上記発明に係る剥離評価試験方法は、前記積層構造体が発泡体の上下にプレプレグを積層し加圧及び加熱して得られる発泡コアサンドイッチパネルの場合に好適に使用することができる。   The peeling evaluation test method according to the invention can be suitably used in the case where the laminated structure is a foamed core sandwich panel obtained by laminating a prepreg on the top and bottom of a foam, and applying pressure and heating.

本発明の積層構造体の剥離評価試験方法では、積層構造体の試験片に形成したき裂の上下に位置するき裂片のうち、曲げ剛性の小さい方に補強板を結合したので、き裂の上下で曲げ剛性がほぼ等しくなり、積層方向において非対称な位置にき裂を生じた積層構造体について、MMB試験法を用いて評価を行うことが可能となる。   In the peel evaluation test method for a laminated structure according to the present invention, the reinforcing plate is coupled to the crack piece positioned above and below the crack formed on the test piece of the laminated structure, so that the bending plate has a smaller bending rigidity. It is possible to evaluate the laminated structure in which the bending rigidity is substantially equal between the upper and lower sides and a crack is generated at an asymmetric position in the laminating direction using the MMB test method.

本発明について、発泡コアサンドイッチパネルを積層構造体の例として用いて、以下に説明する。図1は発泡コアサンドイッチパネルの試験片1の断面図であり、この試験片1は、発泡コア2の上下両面にCFRP(炭素繊維強化プラスチック)からなる面板3b及び3aが形成されている。面板3b及び3aは複数枚のプレプレグを重ねて発泡コア2とともに加熱及び加圧成形することにより形成され、加圧に際してプレプレグから滲みだした樹脂により接着層4が形成されている。また、この発泡コア2には、面板3aと発泡コア2との間に予めポリイミドからなるカプトンフィルム(東レ・デュポン社製)を挟んでおいて成形することにより、き裂5が形成されている。   The present invention will be described below using a foam core sandwich panel as an example of a laminated structure. FIG. 1 is a cross-sectional view of a test piece 1 of a foam core sandwich panel. In this test piece 1, face plates 3b and 3a made of CFRP (carbon fiber reinforced plastic) are formed on both upper and lower surfaces of a foam core 2. The face plates 3b and 3a are formed by stacking a plurality of prepregs and heating and press-molding together with the foamed core 2, and the adhesive layer 4 is formed of a resin that has oozed out of the prepreg during pressurization. Further, a crack 5 is formed in the foamed core 2 by forming a Kapton film (made by Toray DuPont) made of polyimide between the face plate 3a and the foamed core 2 in advance. .

本明細書では、き裂5の上側にある、面板3a及び接着層4をまとめて上側き裂片6aと称し、き裂5の下側にある、面板3b、接着層4及び面板3bをまとめて下側き裂片6bと称することとする。上側き裂片6a及び下側き裂片6bの曲げ剛性を比較した場合、上側き裂片6aの曲げ剛性が小さいので、図2に示すように、上側き裂片6aの外側(上側)に、試験片1の全面に亘って補助板7が例えば接着剤等を用いて結合される。試験片1は特に限定されるものではないが、本実施形態ではアルミニウム板を使用した。本明細書では、上記のように上側き裂片6aに補助板7を接着した部分を、補強き裂片6Aと称することとする。   In this specification, the face plate 3a and the adhesive layer 4 on the upper side of the crack 5 are collectively referred to as an upper crack piece 6a, and the face plate 3b, the adhesive layer 4 and the face plate 3b on the lower side of the crack 5 are collectively shown. It will be referred to as the lower crack piece 6b. When the bending rigidity of the upper crack piece 6a and the lower crack piece 6b is compared, the bending rigidity of the upper crack piece 6a is small. Therefore, as shown in FIG. The auxiliary plate 7 is bonded to the entire surface using, for example, an adhesive. Although the test piece 1 is not specifically limited, the aluminum plate was used in this embodiment. In the present specification, the portion where the auxiliary plate 7 is bonded to the upper crack piece 6a as described above is referred to as a reinforcing crack piece 6A.

本実施形態では、補助板7の厚さは、補強き裂片6Aの曲げ剛性B1と、下側き裂片6bの曲げ剛性B2とが、0.5≦B1/B2≦2の関係を満たすように決められる。図3は、補助板7の厚さとB1/B2の値との関係を例示している。この例では、適切な補助板7の厚さは6.46mmであることが分かる。 In the present embodiment, the thickness of the auxiliary plate 7 has a bending stiffness B 1 of the reinforcement-out lobes 6A, and bending rigidity B 2 of the lower-out lobes 6b is of 0.5 ≦ B 1 / B 2 ≦ 2 relationship It is decided to satisfy. FIG. 3 illustrates the relationship between the thickness of the auxiliary plate 7 and the value of B 1 / B 2 . In this example, it can be seen that a suitable thickness of the auxiliary plate 7 is 6.46 mm.

上記のようにき裂5の上下の位置する補強き裂片6Aと下側き裂片6bとの曲げ剛性をほぼ等しくすれば、従来のMMB試験法を適用することが可能となる。図4は、図2に示した補助板7を接着した発泡コアサンドイッチパネルの試験片1を用いたMMBの試験方法を示す模式図である。同図に示すように、予めき裂5を形成した試験片1が支柱32及び33の上に載置され、き裂5の下側の下側き裂片6bに固定ブロック42が取り付けられ、この固定ブロック42は回転軸43によって支柱32に回転自在に固定される。き裂5の上側の補強き裂片6Aには固定ブロック45が取り付けられ、この固定ブロック45は回転軸46によって治具34の脚部35に回転自在に固定される。そして、治具34の脚部36の先端を支点38として、レバー部37の負荷点39に負荷が加えられる。ここで、図4において、支柱32の中心と支柱33の中心との間の距離は2Lであり、支点38は支柱32の中心から距離Lに位置している。また、支点38と負荷点39との間の距離はCである。き裂5は、支柱32の中心から距離aの位置から試験片1の端面1aまで形成されているものとする。   If the bending rigidity of the reinforcing crack piece 6A and the lower crack piece 6b positioned above and below the crack 5 is made substantially equal as described above, the conventional MMB test method can be applied. FIG. 4 is a schematic diagram showing an MMB test method using the test piece 1 of the foam core sandwich panel to which the auxiliary plate 7 shown in FIG. 2 is bonded. As shown in the figure, the test piece 1 in which the crack 5 is formed in advance is placed on the pillars 32 and 33, and the fixing block 42 is attached to the lower crack piece 6b below the crack 5. The fixed block 42 is rotatably fixed to the support column 32 by a rotating shaft 43. A fixed block 45 is attached to the reinforcing crack piece 6 </ b> A on the upper side of the crack 5, and this fixed block 45 is rotatably fixed to the leg portion 35 of the jig 34 by a rotating shaft 46. Then, a load is applied to the load point 39 of the lever portion 37 with the tip of the leg portion 36 of the jig 34 as a fulcrum 38. Here, in FIG. 4, the distance between the center of the support column 32 and the center of the support column 33 is 2L, and the fulcrum 38 is located at a distance L from the center of the support column 32. The distance between the fulcrum 38 and the load point 39 is C. It is assumed that the crack 5 is formed from a position a distance a from the center of the support column 32 to the end surface 1 a of the test piece 1.

図5は図4の試験片1を用いた場合のMMB試験の原理を表している。同図に示すように、混合モードにおいては、負荷点39にはP・(C+L)/L、支柱33にはP・(C+L)/2L、下側き裂片6b(支柱32)には上向きの荷重P・(C−L)/2L、補強き裂片6A(脚部35)には上向きの荷重P・C/Lがそれぞれ加えられることになる。このような荷重は、モードI荷重とモードII荷重との和として表される。ここでモードI荷重では、図5に示すように、下側き裂片6bには下向きの荷重P・(3C−L)/4L、補強き裂片6Aには上向きの荷重P・(3C−L)/4Lがそれぞれ加えられることになる。また、モードII荷重では、負荷点39にはP・(C+L)/L、支柱33にはP・(C+L)/2L、下側き裂片6b及び補強き裂片6Aには上向きの荷重P・(C+L)/4Lがそれぞれ加えられることになる。ここで、モードI荷重とモードII荷重とにおけるき裂5のエネルギー開放率をそれぞれGI及びGIIとすると、モード比GI/(GI+GII)は、数1で表される。 FIG. 5 shows the principle of the MMB test when the test piece 1 of FIG. 4 is used. As shown in the figure, in the mixed mode, P · (C + L) / L is applied to the load point 39, P · (C + L) / 2L is applied to the support 33, and the upper crack piece 6b (support 32) is directed upward. The upward load P · C / L is applied to the load P · (C−L) / 2L and the reinforcing crack piece 6A (leg portion 35). Such a load is expressed as the sum of a mode I load and a mode II load. Here, in the mode I load, as shown in FIG. 5, the lower crack piece 6b has a downward load P · (3C-L) / 4L, and the reinforcing crack piece 6A has an upward load P · (3C-L). / 4L will be added respectively. In mode II load, P · (C + L) / L is applied to the load point 39, P · (C + L) / 2L is applied to the support 33, and the upward load P · (is applied to the lower crack piece 6b and the reinforcing crack piece 6A. C + L) / 4L will be added respectively. Here, assuming that the energy release rates of the crack 5 in the mode I load and the mode II load are G I and G II , respectively, the mode ratio G I / (G I + G II ) is expressed by Equation 1.

Figure 2010002289
Figure 2010002289

補助板7を試験片1に結合した効果を確認するため、図4に示す試験片1をモデルとして数値計算を行い、き裂5の先端部のエネルギー解放率GI及びGIIを求めて、モードI荷重とモードII荷重の組み合わせの比率を確認した。具体的には、脚部36の支点38と治具34の負荷点39との距離Cを変えて、組み合わせ荷重の比率が変わることを確認した。その結果を図6に示した。同図に示すように、補助板7を結合した本発明の剥離評価試験方法では、エネルギー解放率の比率が0〜100%まで任意に設定可能であることが分かる。これに対して、補助板7を結合しない場合(従来の試験方法)には、エネルギー解放率の比率が殆ど変化しないことが分かる。また、図7に示すように、き裂5の長さaを変えた場合も、本発明の剥離評価試験方法によりエネルギー解放率を任意の比率に設定可能であることが分かる。更に、結合する金属製の補助板7の厚さtと組み合わせ荷重の比率の関係(図8参照)から、補助板7の厚さtの違い、即ち、結合する補助板7の剛性により、組み合わせ荷重の比率に影響があることがわかる。図8に示すように、3種類の厚さtの補助板7を用いた場合、この例では板厚7mmが最も組み合わせの比率を大きく変化させることができることがわかる。図6〜図8の結果から、本発明の試験方法によれば、単軸荷重により組み合わせ荷重の比率を作り出すための本発明の試験方法の有用性を確認することができた。 In order to confirm the effect of joining the auxiliary plate 7 to the test piece 1, numerical calculation is performed using the test piece 1 shown in FIG. 4 as a model to obtain the energy release rates G I and G II at the tip of the crack 5, The ratio of the combination of mode I load and mode II load was confirmed. Specifically, it was confirmed that the ratio of the combined load was changed by changing the distance C between the fulcrum 38 of the leg portion 36 and the load point 39 of the jig 34. The results are shown in FIG. As shown in the figure, it can be seen that in the peel evaluation test method of the present invention in which the auxiliary plate 7 is coupled, the ratio of the energy release rate can be arbitrarily set from 0 to 100%. On the other hand, when the auxiliary plate 7 is not coupled (conventional test method), it can be seen that the ratio of the energy release rate hardly changes. In addition, as shown in FIG. 7, it can be seen that the energy release rate can be set to an arbitrary ratio by the peeling evaluation test method of the present invention even when the length a of the crack 5 is changed. Furthermore, from the relationship between the thickness t of the metallic auxiliary plate 7 to be combined and the ratio of the combined load (see FIG. 8), the combination depends on the difference in the thickness t of the auxiliary plate 7, that is, the rigidity of the auxiliary plate 7 to be combined. It can be seen that the load ratio is affected. As shown in FIG. 8, when three types of auxiliary plates 7 having a thickness t are used, it can be seen that in this example, a plate thickness of 7 mm can change the combination ratio most greatly. From the results of FIGS. 6 to 8, according to the test method of the present invention, it was possible to confirm the usefulness of the test method of the present invention for creating a combined load ratio by uniaxial load.

以下、本発明の試験方法を用いて実際に発泡コアサンドイッチパネルの試験片の剥離評価を行った。用いた発泡コアサンドイッチパネルは、表1に示す材料を用いて作製した。図9は発泡コアサンドイッチパネルの積層構造を示す図であり、同図における層P1〜P4に用いる平織りプリプレグを表2に示した。なお、表2に示す平織りプリプレグは、表1に掲げたものに対応している。ここで、表2における配向角とは、繊維方向と試験片長手方向の角度である。   Hereinafter, peeling evaluation of the test piece of the foam core sandwich panel was actually performed using the test method of the present invention. The used foam core sandwich panel was produced using the materials shown in Table 1. FIG. 9 is a view showing a laminated structure of a foam core sandwich panel. Table 2 shows plain weave prepregs used for the layers P1 to P4 in FIG. The plain weave prepregs shown in Table 2 correspond to those listed in Table 1. Here, the orientation angle in Table 2 is an angle between the fiber direction and the specimen longitudinal direction.

Figure 2010002289
Figure 2010002289

Figure 2010002289
Figure 2010002289

用いた試験片の上面のサイズは、幅50mm、長さ300mmで、板厚5mmのアルミニウム板を補助板7(図4)として接着し、その上に、荷重負荷用のアルミニウム製の固定ブロック45を接着した。試験片1の下面の面板3bには、荷重負荷用のアルミニウム製の固定ブロック42を接着した。図10に示すように、固定ブロック42及び45の位置は、その中心がカプトンフィルム48の先端から24mmの位置とした。また、全ての試験片で、試験前に静的に開口モードでカプトンフィルム48の先端から5mm程度の予き裂51を入れた。   The size of the upper surface of the test piece used was 50 mm in width, 300 mm in length, and an aluminum plate having a thickness of 5 mm was bonded as an auxiliary plate 7 (FIG. 4), on which an aluminum fixing block 45 for load application was attached. Glued. An aluminum fixing block 42 for load application was bonded to the face plate 3b on the lower surface of the test piece 1. As shown in FIG. 10, the positions of the fixed blocks 42 and 45 were 24 mm from the tip of the Kapton film 48 at the center. Further, in all the test pieces, a pre-crack 51 of about 5 mm was made from the tip of the Kapton film 48 in a static opening mode before the test.

(1)試験装置
本実施例において使用した試験装置は、以下のとおりである。
(1) Test apparatus The test apparatus used in the present Example is as follows.

試験機 :インストロン(5kN容量)電気・油圧サーボ式疲労試験機
インストロン8501型
ロードセル :インストロン製ロードセル(5kN容量)
読み取り顕微鏡:×50倍
計測器 :共和製EDX1500(荷重、試験機変位の記録)。
Testing machine: Instron (5kN capacity) electric / hydraulic servo type fatigue testing machine
Instron 8501 type load cell: Instron load cell (5kN capacity)
Reading microscope: x50 magnification Measuring instrument: Kyowa EDX1500 (recording of load and displacement of the testing machine).

(2)試験手順
図4に示す配置で、荷重点変位速度一定(1.0mm/min)で試験を行った。き裂が安定的に進展した場合は、荷重の負荷除荷を繰り返した。き裂の長さは、試験片の両端面から、荷重除荷時に読み取り顕微鏡を用いて計測した(JIS K 7086 3.4 DCB試験の操作)。
(2) Test procedure With the arrangement shown in FIG. 4, the test was performed at a constant load point displacement speed (1.0 mm / min). When the crack grew stably, the load unloading was repeated. The crack length was measured from both end faces of the test piece using a reading microscope at the time of load unloading (operation of JIS K 7086 3.4 DCB test).

(3)試験条件
試験条件は、支点38と負荷点39との距離C=15mm,20mm,40mmとした。
(3) Test conditions The test conditions were such that the distance C between the fulcrum 38 and the load point 39 was 15 mm, 20 mm, and 40 mm.

(4)破壊じん性値の算出方法
破壊じん性値は、FEM解析結果が試験荷重Pと解析に用いた荷重PFEMの比の2乗に比例する、すなわち(P/PFEM2に比例するとして求めた。。
(4) Fracture toughness value calculation method Fracture toughness value is proportional to the square of the ratio of the test load P to the load P FEM used in the analysis, that is, proportional to (P / P FEM ) 2 Asked to do. .

(4)試験結果
図11に、破壊じん性値について、縦軸をモードI成分、横軸をモードII成分として整理した結果を示す。この結果から、本実施例より、混合モードにおけるモードI及びモードIIの比率を大きく変化させることができることが分かる。
(4) Test Results FIG. 11 shows the results of arranging the fracture toughness values with the vertical axis representing the mode I component and the horizontal axis representing the mode II component. From this result, it can be seen that the ratio of the mode I and the mode II in the mixed mode can be greatly changed from the present embodiment.

本発明の積層構造体の剥離評価試験方法は、航空機、車両等において使用される複合材料の分野で利用可能である。   The laminate structure peeling evaluation test method of the present invention can be used in the field of composite materials used in aircraft, vehicles, and the like.

き裂を生じている発泡コアサンドイッチパネルの積層構造を表す断面図である。It is sectional drawing showing the laminated structure of the foam core sandwich panel which has produced the crack. 図1の発泡コアサンドイッチパネルの試験片の全面に亘って補助板を結合した様子を示す断面図である。It is sectional drawing which shows a mode that the auxiliary | assistant board was couple | bonded over the whole surface of the test piece of the foam core sandwich panel of FIG. 補助板の厚さと(補強き裂片6Aの曲げ剛性B1)/(下側き裂片6bの曲げ剛性B2)の値との関係を例示する図である。Is a diagram illustrating the relationship between the value of the thickness of the auxiliary plate and (bending rigidity B 1 of the reinforcement-out lobe 6A) / (flexural rigidity B 2 of the lower-out lobe 6b). 図2に示す補助板を接着した発泡コアサンドイッチパネルの試験片を用いたMMBの試験方法を示す模式図である。It is a schematic diagram which shows the test method of MMB using the test piece of the foam core sandwich panel which adhere | attached the auxiliary | assistant board shown in FIG. 図4の試験片を用いた場合のMMB試験の原理を表している。The principle of the MMB test at the time of using the test piece of FIG. 4 is represented. 図4に示す試験片1をモデルとして数値計算を行い、き裂5の先端部のエネルギー解放率GI及びGIIから求めたモードI荷重とモードII荷重との組み合わせの比率と、支点と負荷点との距離Cとの関係を表す図である。Figure 4 performs a numerical calculation of the test piece 1 as a model shown in, the ratio of the combination of a mode I load and mode II load was calculated from the energy release rate G I and G II of the tip portion of the crack 5, the fulcrum and the load It is a figure showing the relationship with the distance C with a point. き裂5の先端部のエネルギー解放率GI及びGIIから求めたモードI荷重とモードII荷重との組み合わせの比率と、き裂5の長さaとの関係を表す図である。Can the ratio of the combination of a mode I load and mode II load was calculated from the energy release rate G I and G II of the distal end portion of the crack 5 is a diagram showing a relationship between the length a of crack 5. 補助板の厚さtと組み合わせ荷重の比率の関係を示す図である。It is a figure which shows the relationship between the thickness t of an auxiliary plate, and the ratio of a combined load. 本発明の一実施例で使用する発泡コアサンドイッチパネルの積層構造を表す模式図である。It is a schematic diagram showing the laminated structure of the foam core sandwich panel used in one Example of this invention. 本発明の剥離評価試験方法における試験片の状態を表す模式図である。It is a schematic diagram showing the state of the test piece in the peeling evaluation test method of this invention. 破壊じん性値について、縦軸をモードI成分、横軸をモードII成分として表した図である。It is the figure which represented the fracture toughness value as the mode I component on the vertical axis and the mode II component on the horizontal axis. (a)は層間き裂を生じている積層構造体におけるモードI荷重を表す模式図、(b)はモードII荷重を表す模式図、(c)は混合モード荷重を表す模式図である。(A) is a schematic diagram showing the mode I load in the laminated structure which has produced the interlaminar crack, (b) is a schematic diagram showing the mode II load, (c) is a schematic diagram showing the mixed mode load. MMB試験法を層の中央にき裂がある積層構造体の試験片に適用する場合を表す模式図である。It is a schematic diagram showing the case where the MMB test method is applied to a test piece of a laminated structure having a crack in the center of a layer.

符号の説明Explanation of symbols

1 試験片
1a 端面
2 発泡コア
3a 面板
3b 面板
4 接着層
5 き裂
6A 補強き裂片
6a 上側き裂片
6b 下側き裂片
7 補助板
32 支柱
33 支柱
34 治具
35 脚部
36 脚部
37 レバー部
38 支点
39 負荷点
42 固定ブロック
43 回転軸
45 固定ブロック
46 回転軸
48 カプトンフィルム
51 予き裂
DESCRIPTION OF SYMBOLS 1 Test piece 1a End surface 2 Foam core 3a Face plate 3b Face plate 4 Adhesive layer 5 Crack 6A Reinforcement crack piece 6a Upper crack piece 6b Lower crack piece 7 Auxiliary plate 32 Support pillar 33 Support pillar 34 Jig 35 Leg part 36 Leg part 37 Lever part 38 fulcrum 39 load point 42 fixed block 43 rotating shaft 45 fixed block 46 rotating shaft 48 kapton film 51 pre-crack

Claims (4)

上下方向に面状の積層材を積層した積層構造体において、積層構造の上下方向に非対称な位置に層間き裂を形成した試験片を用いた積層構造体の剥離評価試験方法であって、
前記試験片の前記層間き裂の上下に位置するき裂片のうちの曲げ剛性の小さい方のき裂片の外側に、前記試験片の全面に亘って補助板を結合し、該補助板を結合した試験片に単軸荷重を与えることを特徴とする剥離評価試験方法。
In a laminate structure in which planar laminates are laminated in the vertical direction, a peel evaluation test method for a laminate structure using a test piece in which an interlayer crack is formed at an asymmetric position in the vertical direction of the laminate structure,
The auxiliary plate was bonded to the entire outer surface of the test piece on the outer side of the crack piece having the lower bending rigidity among the crack pieces positioned above and below the interlayer crack of the test piece, and the auxiliary plate was connected. A peeling evaluation test method characterized by applying a uniaxial load to a test piece.
前記試験片の前記層間き裂の上下に位置するき裂片のうち、曲げ剛性の小さいき裂片及び補助板を結合したものの曲げ剛性をB1、曲げ剛性の大きいき裂片の曲げ剛性をB2として、
0.5≦B1/B2≦2
となる前記補助板を用いることを特徴とする請求項1記載の剥離評価試験方法。
Of the crack pieces located above and below the interlaminar crack of the test piece, the bending rigidity of the crack piece having a low bending rigidity and the auxiliary plate combined is B 1 , and the bending rigidity of the crack piece having a high bending rigidity is B 2. ,
0.5 ≦ B 1 / B 2 ≦ 2
The peeling evaluation test method according to claim 1, wherein the auxiliary plate is used.
前記単軸荷重により、開口荷重と剪断荷重との組み合わせ荷重を発生させることを特徴とする請求項1又は2に記載の剥離評価試験方法。   The peeling evaluation test method according to claim 1, wherein a combined load of an opening load and a shear load is generated by the uniaxial load. 前記積層構造体が、発泡体の上下にプレプレグを積層し加圧及び加熱して得られる発泡コアサンドイッチパネルである請求項1乃至3の何れかに記載の剥離評価試験方法。   The peel evaluation test method according to any one of claims 1 to 3, wherein the laminated structure is a foamed core sandwich panel obtained by laminating a prepreg on top and bottom of a foam, and applying pressure and heating.
JP2008161193A 2008-06-20 2008-06-20 Lamination evaluation test method for laminated structures Active JP4751914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008161193A JP4751914B2 (en) 2008-06-20 2008-06-20 Lamination evaluation test method for laminated structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008161193A JP4751914B2 (en) 2008-06-20 2008-06-20 Lamination evaluation test method for laminated structures

Publications (2)

Publication Number Publication Date
JP2010002289A true JP2010002289A (en) 2010-01-07
JP4751914B2 JP4751914B2 (en) 2011-08-17

Family

ID=41584140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008161193A Active JP4751914B2 (en) 2008-06-20 2008-06-20 Lamination evaluation test method for laminated structures

Country Status (1)

Country Link
JP (1) JP4751914B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI490470B (en) * 2013-12-11 2015-07-01 Advanced Semiconductor Eng Laminated structure test apparatus and method
CN108469389A (en) * 2018-02-07 2018-08-31 河南中原高速公路股份有限公司新登分公司 A kind of road surface interlayer cementing effect evaluation method based on composite beam fatigue test
CN111624099A (en) * 2020-04-16 2020-09-04 重庆大学 Composite material laminated plate II type fatigue layering test device suitable for high and low temperature environment
CN113720772A (en) * 2021-08-31 2021-11-30 中航复合材料有限责任公司 Temperature control device suitable for quantitative measurement of viscosity of prepreg and use method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04343042A (en) * 1991-05-20 1992-11-30 Mitsubishi Heavy Ind Ltd Method for testing interlayer release breakdown toughness
JPH07178859A (en) * 1993-12-22 1995-07-18 Mitsui Toatsu Chem Inc Laminate and production thereof
JPH08285761A (en) * 1993-03-05 1996-11-01 Yoshiki Uragami Method for measuring bonding strength of coating
JP2006282046A (en) * 2005-04-01 2006-10-19 Kawasaki Heavy Ind Ltd Separation development prevention structure of sandwich panel
JP2007147348A (en) * 2005-11-25 2007-06-14 Toray Ind Inc Fracture toughness testing method for light-weight sandwich panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04343042A (en) * 1991-05-20 1992-11-30 Mitsubishi Heavy Ind Ltd Method for testing interlayer release breakdown toughness
JPH08285761A (en) * 1993-03-05 1996-11-01 Yoshiki Uragami Method for measuring bonding strength of coating
JPH07178859A (en) * 1993-12-22 1995-07-18 Mitsui Toatsu Chem Inc Laminate and production thereof
JP2006282046A (en) * 2005-04-01 2006-10-19 Kawasaki Heavy Ind Ltd Separation development prevention structure of sandwich panel
JP2007147348A (en) * 2005-11-25 2007-06-14 Toray Ind Inc Fracture toughness testing method for light-weight sandwich panel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI490470B (en) * 2013-12-11 2015-07-01 Advanced Semiconductor Eng Laminated structure test apparatus and method
CN108469389A (en) * 2018-02-07 2018-08-31 河南中原高速公路股份有限公司新登分公司 A kind of road surface interlayer cementing effect evaluation method based on composite beam fatigue test
CN111624099A (en) * 2020-04-16 2020-09-04 重庆大学 Composite material laminated plate II type fatigue layering test device suitable for high and low temperature environment
CN113720772A (en) * 2021-08-31 2021-11-30 中航复合材料有限责任公司 Temperature control device suitable for quantitative measurement of viscosity of prepreg and use method
CN113720772B (en) * 2021-08-31 2023-05-30 中航复合材料有限责任公司 Temperature control device suitable for quantitative prepreg viscosity test and use method

Also Published As

Publication number Publication date
JP4751914B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
Shi et al. Carbon-fiber and aluminum-honeycomb sandwich composites with and without Kevlar-fiber interfacial toughening
Du et al. Open-hole tensile progressive damage and failure prediction of carbon fiber-reinforced PEEK–titanium laminates
da Costa et al. The effect of thermal cycles on the mechanical properties of fiber–metal laminates
CN107621408A (en) A kind of Fiber Reinforced Metal Laminates I mode Ⅱ fracture toughness GICEvaluation test method and device
Camanho et al. Increasing the efficiency of composite single-shear lap joints using bonded inserts
Jakobsen et al. New peel stopper concept for sandwich structures
Domingues et al. Experimental and numerical failure analysis of aluminium/composite single-L joints
JP4537247B2 (en) Method for suppressing cracking in composite sandwich panel joints
Xie et al. Fracture criterion for kinking cracks in a tri-material adhesively bonded joint under mixed mode loading
Campilho et al. Buckling strength of adhesively-bonded single and double-strap repairs on carbon-epoxy structures
Kharghani et al. Experimental and numerical study of the bolt reinforcement of a composite-to-steel butt-joint under three-point bending test
JP4751914B2 (en) Lamination evaluation test method for laminated structures
Tsouvalis et al. An investigation of the tensile strength of a composite-to-metal adhesive joint
Ramantani et al. Fracture characterization of sandwich structures interfaces under mode I loading
Li et al. Mechanical properties of L-joint with composite sandwich structure
Truong et al. Failure load analysis of C-shaped composite beams using a cohesive zone model
Arıkan et al. Improvement of load carrying capacity of sandwich composites by different patch repair types
Osnes et al. Experimental and analytical strength analysis of double-lap joints for marine applications
Pärnänen et al. The effects of debonding on the low-velocity impact response of steel-CFRP fibre metal laminates
Gaiotti et al. Testing and simulation of a bolted and bonded joint between steel deck and composite side shell plating of a naval vessel
Akbarpour et al. Reinforcement around holes in composite materials by use of patched metal inserts
Wu et al. Improved end bearing capacities of sharp-corner aluminum tubular sections with CFRP strengthening
Photiou et al. Selection of carbon-fiber-reinforced polymer systems for steelwork upgrading
Zhu et al. Mechanical behavior of the CFRP lattice core sandwich bolted splice joints
Rajkumar et al. Experimental and finite-element analysis of tee joint’s stiffness characteristics of A3003 honeycomb core sandwich panels

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

R150 Certificate of patent or registration of utility model

Ref document number: 4751914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250