JP2007147348A - Fracture toughness testing method for light-weight sandwich panel - Google Patents

Fracture toughness testing method for light-weight sandwich panel Download PDF

Info

Publication number
JP2007147348A
JP2007147348A JP2005339822A JP2005339822A JP2007147348A JP 2007147348 A JP2007147348 A JP 2007147348A JP 2005339822 A JP2005339822 A JP 2005339822A JP 2005339822 A JP2005339822 A JP 2005339822A JP 2007147348 A JP2007147348 A JP 2007147348A
Authority
JP
Japan
Prior art keywords
core
crack
sandwich panel
fracture toughness
skin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005339822A
Other languages
Japanese (ja)
Inventor
Keiichi Nagata
啓一 永田
Akihiko Kitano
彰彦 北野
Hitoshi Nishiyama
等 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005339822A priority Critical patent/JP2007147348A/en
Publication of JP2007147348A publication Critical patent/JP2007147348A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To establish a test method capable of quantifying the fracture toughness value of a sandwich panel, which becomes the planning index of the fracture behavior and energy-absorbing behavior of a sandwich panel member, governing the safety of an automobile hood, having head protective function for a pedestrian or the like, under a condition that is close to practical conditions. <P>SOLUTION: To the two skins, made of a fiber reinforced plastic and the rectangular sandwich panel test piece, of which the core having a specific gravity lower than that of the skins is present between two skins via an adhesive layer, pre-cracking reaching from one skin to the other skin to completely dividing the core or pre-cracking for dividing 80% or more of the core is provided. The cracking is developed so as to peel the core and the skins by a three-point or four-point bending test; the load and the displacement of a load point and the development quantity of the cracking length at the development of cracking are measured; and the energy used in fracture is calculated from a load-displacement curve and is divided by the product of the average crack length and width to calculate the fracture toughness value. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、スポーツ部材や自動車部品に用いられる、繊維強化プラスチック(以下FRPと略す)製のスキンと、スキンよりも低比重のフォーム材やハニカム材のコアからなる軽量サンドイッチパネル(図1参照)の破壊靱性試験法に関する。   The present invention is a lightweight sandwich panel made of a fiber reinforced plastic (hereinafter abbreviated as FRP) skin and a core of foam material or honeycomb material having a specific gravity lower than that of the skin, used for sports members and automobile parts (see FIG. 1). It relates to the fracture toughness test method.

FRP製のスキンと、スキンよりも低比重のフォーム材やハニカム材のコアからなる軽量サンドイッチパネルは、比剛性(重さ当たりの剛性)が高いため、軽量化要請の高い、自動車をはじめとする輸送機器部材やスポーツ部材に適用が拡大しているが、部材の安全性を確保するために、破壊挙動の予測を正確に行い、部材設計することが重要である。   Lightweight sandwich panels consisting of FRP skins and foam and honeycomb cores with a lower specific gravity than skins have high specific rigidity (stiffness per weight), so there is a strong demand for weight reduction, including automobiles. Although application is expanding to transportation equipment members and sports members, it is important to accurately predict fracture behavior and to design members in order to ensure the safety of the members.

図1に示すように、通常、サンドイッチパネルは、上下2層のスキン板とその間に位置するコアからなる3層構造(コアをスキンでサンドイッチした(挟んだ)構造)であり、剛性のより高い材料をパネルの外側(スキン)に、より軽量な材料をパネルの内側(コア)
とすることで、軽量で曲げ剛性が大きくできるという特徴がある。スキンには金属シートやFRP製の薄板が用いられ、コアにはスキンよりも軽量なハニカム材やフォーム材が用いられ、ヨットやボートのハル、デッキなどの構造部材として使われている。近年、燃費向上要請の大きな自動車分野においても、軽量化の手段として、FRPをスキンとし、フォーム材とコアとする、軽量なサンドイッチパネルのフードやルーフ等の構造部材への本格適用が検討さている。
As shown in FIG. 1, a sandwich panel usually has a three-layer structure (a structure in which a core is sandwiched (sandwiched) with a skin) composed of two upper and lower skin plates and a core positioned therebetween, and has higher rigidity. Material on the outside of the panel (skin) and lighter material on the inside of the panel (core)
Thus, there is a feature that the bending rigidity can be increased with light weight. A metal sheet or a thin plate made of FRP is used for the skin, and a honeycomb material or foam material that is lighter than the skin is used for the core, which is used as a structural member such as a hull or deck of a yacht or boat. In recent years, in the automobile field where there is a great demand for improving fuel consumption, full-scale application of lightweight sandwich panels, such as hoods and roofs, using FRP as a skin, foam material and core as a means for weight reduction is being studied. .

フードとはエンジンルームを覆うカバーであり、フードの機能として、雨よけや空気の整流機能のほか、高級感を出すための面剛性や正面衝突時に曲げ変形させるなどの機能が挙げられる。最近ではこれらの機能に加え歩行者頭部保護性能が要求され頭部衝撃試験が行われており、日本でも2005年9月から国土交通省において歩行者頭部保護基準が導入されている。スチールを用いた従来の設計で歩行者頭部保護性能を確保するには、衝突時にフードの変形のストロークをかせぐためにエンジンとのクリアランスを大きくとる必要があり、ボンネット位置が高くなる。ボンネット位置を高くすると視界が悪くなり、視界を確保するために車高全体を上げる必要がある。車高を上げると、重量増による燃料消費率低下などが起こるといったような性能面への影響を及ぼす。プラスチックを発泡させたプラスチックフォーム材をコアに使ったフォームコアサンドイッチパネルを自動車フードへ適用した場合、フード単体の軽量化が期待されるが、剛性設計やエネルギー吸収設計の自由度が高くなるため、ボンネット位置の高さを押さえつつ歩行者頭部保護性能を確保することが可能となる。   The hood is a cover that covers the engine room. The functions of the hood include rain protection and air rectification, as well as functions such as surface rigidity to give a high-class feel and bending deformation during a frontal collision. In recent years, in addition to these functions, pedestrian head protection performance is required and a head impact test has been conducted. In Japan, the pedestrian head protection standard has been introduced by the Ministry of Land, Infrastructure, Transport and Tourism in September 2005. In order to secure the pedestrian head protection performance with the conventional design using steel, it is necessary to increase the clearance with the engine in order to increase the stroke of deformation of the hood at the time of collision, and the bonnet position becomes high. If the bonnet position is raised, the field of view deteriorates, and it is necessary to raise the entire vehicle height in order to secure the field of view. Increasing the vehicle height has an impact on performance such as a decrease in fuel consumption due to weight increase. When a foam core sandwich panel using a plastic foam material with foamed plastic as a core is applied to an automobile hood, it is expected to reduce the weight of the hood alone, but the degree of freedom in rigidity design and energy absorption design is increased. It becomes possible to secure the pedestrian head protection performance while suppressing the height of the bonnet position.

一方、サンドイッチパネルを構造部材として使用する場合、まずは、日本工業規格(JIS)等の規格に従って、強度や剛性試験を実施する。例えば、図2と図3に示す3点、あるいは4点曲げ試験(非特許文献1、文非特許献2参照)に従ってサンドイッチパネルの静的剛性と強度を測定するが、自動車のフード等における衝撃エネルギー吸収などのより実用的な部材設計を行う場合やスキンと剥離亀裂の進展しやすさなどの評価を行う場合、FRP同様、サンドイッチパネルが破壊する際のエネルギー吸収量である破壊靭性値を知る必要があり、かかる観点から、サンドイッチ構造部材のエネルギー吸収量を設計するための破壊靭性測定法が必要となっている。しかしながら、サンドイッチパネルの破壊靭性値を評価する試験規格は今のところ制定されていない。FRPに用いられる破壊靭性値を評価する試験規格(非特許文献3、非特許文献4参照)を用いてサンドイッチパネルの破壊靭性値を測定することも考えられるが、非特許文献3,4がサンドイッチパネルに適用できると規定していないことからも明らかなように、複雑な破壊挙動を示すサンドイッチパネルにおいては、部材の運用上想定される破壊とは異なる破壊挙動を示すこともあり、また、試験そのものが実行不可能である場合もあり、エネルギー吸収設計を行うために必要な靭性値を的確に取得することが困難である。
JIS K7074−1988「炭素繊維強化プラスチックの曲げ試験方法」 ASTM C393−00 “Standard Test Method for Flexural Properties of Sandwich Constructions” JIS K7086−1993「炭素繊維強化プラスチックの層間破壊靱性試験法」 ASTM D5528−94a “Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber−Reinforced Polymer Matrix Composites
On the other hand, when a sandwich panel is used as a structural member, first, strength and rigidity tests are performed in accordance with standards such as Japanese Industrial Standards (JIS). For example, the static stiffness and strength of a sandwich panel are measured according to the three-point or four-point bending test shown in FIGS. 2 and 3 (see Non-Patent Document 1 and Non-Patent Document 2). Know the fracture toughness value, which is the amount of energy absorbed when the sandwich panel breaks, as in FRP, when designing more practical materials such as energy absorption or when evaluating the ease of progress of skin and peeling cracks, etc. From this point of view, there is a need for a fracture toughness measurement method for designing the amount of energy absorption of a sandwich structure member. However, a test standard for evaluating the fracture toughness value of sandwich panels has not been established so far. Although it is conceivable to measure the fracture toughness value of a sandwich panel using a test standard for evaluating the fracture toughness value used for FRP (see Non-Patent Document 3 and Non-Patent Document 4), Non-Patent Documents 3 and 4 are sandwiches. As is clear from the fact that it is not specified that it can be applied to panels, sandwich panels that exhibit complex fracture behavior may exhibit fracture behaviors that are different from those expected for the operation of members. In some cases, it is not feasible, and it is difficult to accurately obtain the toughness value necessary for performing the energy absorption design.
JIS K7074-1988 "Bending test method for carbon fiber reinforced plastic" ASTM C393-00 “Standard Test Method for Flexural Properties of Sandwich Constructions” JIS K7086-1993 "Test method for interlaminar fracture toughness of carbon fiber reinforced plastics" ASTM D5528-94a “Standard Test Method for Mode I Interlaminar Fracture Toughness of Uniform Fiber-Reinforced Polymer Matrix

本発明は、歩行者頭部保護機能を有する自動車フードなど、安全性を司るサンドイッチパネル部材の破壊挙動、エネルギー吸収挙動の設計指標となるサンドイッチパネルの破壊靭性値を、実用条件に近い条件で定量化できる試験法を提案することを目的とする。サンドイッチパネルを構成するスキン、コア、接着層の破壊靱性を正確に測定する試験方法を確立することにより、信頼性、安全性のより高い軽量サンドイッチパネル部材が実現可能となる。   The present invention quantifies the fracture toughness value of sandwich panels, which is a design index for sandwich panel members that control safety, such as automobile hoods with a pedestrian head protection function, under practical conditions. The purpose is to propose a test method that can be used. By establishing a test method for accurately measuring the fracture toughness of the skin, core, and adhesive layer constituting the sandwich panel, a lightweight sandwich panel member with higher reliability and safety can be realized.

(1)繊維強化プラスチック製の2枚のスキンと、2枚のスキンの間に、接着層を介して、スキンより低比重のコアが存在する矩形状のサンドイッチパネル試験片に、一方のスキンから他方のスキンに到達し、コアを完全に分断する予亀裂、もしくはコアを80%以上分断する予亀裂をいれておき、3点曲げ、または4点曲げ試験により、コアとスキンが剥離するように亀裂を進展させ、亀裂が進展する際の荷重、荷重点の変位、亀裂長さの進展量を計測し、荷重−変位曲線から破壊に使われたエネルギーを算出し、これを平均亀裂長さと幅の積である亀裂面積で割って破壊靱性値を算出する、軽量サンドイッチパネルの破壊靭性試験方法。   (1) Two skins made of fiber reinforced plastic and a sandwich panel test piece having a specific gravity core lower than the skin through an adhesive layer between the two skins. Reach the other skin and insert a pre-crack that completely divides the core, or a pre-crack that divides the core by 80% or more, so that the core and skin are peeled off by 3-point bending or 4-point bending test. Measure the load, displacement of load point, and crack length when the crack progresses, calculate the energy used for fracture from the load-displacement curve, and calculate the average crack length and width. The fracture toughness test method for lightweight sandwich panels, which calculates the fracture toughness value by dividing by the crack area, which is the product of

(2)前記予亀裂を、3点曲げ試験、もしくは4点曲げ試験により形成する前記(1)に記載の軽量サンドイッチパネルの破壊靭性試験方法。   (2) The fracture toughness test method for a lightweight sandwich panel according to (1), wherein the pre-crack is formed by a three-point bending test or a four-point bending test.

本発明によれば、部材の実用上想定される荷重に近い条件でサンドイッチパネルの破壊靭性値を定量化することが可能になるため、部材の破壊挙動予測やエネルギー吸収設計を容易にする。例えばサンドイッチパネルを用いた自動車フード部材に本発明の破壊靭性試験法を適用することにより、歩行者保護性能の最適設計が容易となる。また、かかるデータに基づき設計をすることにより、部材の信頼性が向上し、部材自体の安全性も著しく向上する。   According to the present invention, it becomes possible to quantify the fracture toughness value of the sandwich panel under conditions close to the load assumed in practical use of the member, so that the fracture behavior prediction and energy absorption design of the member are facilitated. For example, by applying the fracture toughness test method of the present invention to an automobile hood member using a sandwich panel, the optimum design of pedestrian protection performance is facilitated. Moreover, by designing based on such data, the reliability of the member is improved and the safety of the member itself is remarkably improved.

本発明における破壊靱性試験および、予亀裂を入れるための試験は3点曲げ試験(図3)、もしくは4点曲げ試験(図4)のいずれかで行うことができるが、以下、本発明の最良の実施態様を3点曲げ試験を用いた試験法で説明する。   The fracture toughness test and the test for introducing a precrack in the present invention can be performed by either a three-point bending test (FIG. 3) or a four-point bending test (FIG. 4). The embodiment will be described by a test method using a three-point bending test.

まず、軽量サンドイッチパネル1とは、繊維強化プラスチック(以下、FRP:Fiber Reinforced Plasticと略す)からなる2枚のFRPスキン2、と、プラスチックを発泡させたプラスチックフォーム材やハニカム等からなるスキンより低比重のコア3、および接着層4で構成される。コア3はFRPスキンの間に位置し、接着層はスキンとコアの間に位置する(図1)。   First, the lightweight sandwich panel 1 is lower than two FRP skins 2 made of fiber reinforced plastic (hereinafter abbreviated as FRP: Fiber Reinforced Plastic), and a skin made of a plastic foam material or a honeycomb made of plastic. It is composed of a core 3 having a specific gravity and an adhesive layer 4. The core 3 is located between the FRP skins, and the adhesive layer is located between the skin and the core (FIG. 1).

本発明に用いるサンドイッチパネル試験片5は、図2に示すように、長さ6、幅7と厚み8を有する矩形状のサンドイッチパネルであり、後述する破壊靭性試験の前に予亀裂22を入れておく(図8)。予亀裂とは、後述する亀裂を発生させるトリガーの役割を果たすものである。   As shown in FIG. 2, the sandwich panel test piece 5 used in the present invention is a rectangular sandwich panel having a length 6, a width 7 and a thickness 8, and a pre-crack 22 is inserted before a fracture toughness test described later. (FIG. 8). The pre-crack serves as a trigger for generating a crack described later.

FRPスキン2は、炭素繊維強化プラスチック(通常、CFRPと称される)、ガラス繊維強化プラスチック(通常、GFRPと称される)、アラミド繊維強化プラスチック(通常、AFRPと称される)からなる平板であり、エポキシ樹脂やポリエステル樹脂などのプラスチックを、強化繊維である炭素繊維などで強化したものである。プラスチックには、上記したエポキシ樹脂、ポリエステル樹脂の他、ビニルエステル樹脂、フェノール樹脂などの熱硬化樹脂や、ポリプロピレン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂など熱可塑樹脂が使用される。強化繊維は、炭素繊維やガラス繊維などの無機繊維や、アラミド繊維(ケブラー、トワロンなど)、高強度ポリエチレン繊維、PBO繊維などの有機繊維であり、強化繊維の比重は軽金属であるアルミニウムの比重2.7より小さい。また、樹脂の比重は1.0〜1.5の範囲内であるため、FRPの比重もアルミニウムを下回る。中でも、炭素繊維とエポキシ樹脂を重量比で4:6〜7:3の割合で組み合わせたCFRPは、重量当たりの剛性、強度が最も高く、本発明で最も好ましい材料である。ちなみに、通常、炭素繊維の弾性率は、200〜800GPa、強度は3GPa〜8GPaであり、アルミニウムの弾性率70GPa、強度0.2〜0.8GPaを大きく上回る。また、炭素繊維の比重は、1.5〜2.0程度で、アルミニウムの比重2.7より軽い。さらに、エポキシ樹脂の比重は、1.2〜1.3であり、樹脂を炭素繊維で強化したCFRPの比重は、アルミニウムのそれを大きく下回る。   The FRP skin 2 is a flat plate made of carbon fiber reinforced plastic (usually called CFRP), glass fiber reinforced plastic (usually called GFRP), and aramid fiber reinforced plastic (usually called AFRP). Yes, plastics such as epoxy resins and polyester resins are reinforced with carbon fibers that are reinforcing fibers. In addition to the above-described epoxy resin and polyester resin, thermosetting resins such as vinyl ester resins and phenol resins, and thermoplastic resins such as polypropylene resins, polyamide resins, polycarbonate resins, and polyetherimide resins are used as plastics. The reinforcing fibers are inorganic fibers such as carbon fibers and glass fibers, organic fibers such as aramid fibers (Kevlar, Twaron, etc.), high-strength polyethylene fibers, PBO fibers, etc. The specific gravity of the reinforcing fibers is that of aluminum, which is a light metal. Less than 7. Moreover, since the specific gravity of resin is in the range of 1.0 to 1.5, the specific gravity of FRP is also lower than that of aluminum. Among them, CFRP in which carbon fiber and epoxy resin are combined at a weight ratio of 4: 6 to 7: 3 has the highest rigidity and strength per weight and is the most preferable material in the present invention. Incidentally, the elastic modulus of carbon fiber is usually 200 to 800 GPa, the strength is 3 GPa to 8 GPa, and greatly exceeds the elastic modulus 70 GPa and strength 0.2 to 0.8 GPa of aluminum. Moreover, the specific gravity of carbon fiber is about 1.5 to 2.0, and is lighter than the specific gravity of 2.7 of aluminum. Furthermore, the specific gravity of the epoxy resin is 1.2 to 1.3, and the specific gravity of CFRP in which the resin is reinforced with carbon fiber is much lower than that of aluminum.

コア3は、アルミニウムハニカム、ペーパーハニカム、アラミドハニカム、カーボンハニカムなどのハニカム材や、ウレタン、ポリメタクリルイミド、アクリル、フェノール、ポリスチレンなどの樹脂を発泡させたプラスチックフォーム材、バルサ材などの低密度材料が用いられる。具体的なコアの例として、昭和飛行機株式会社のアルミニウムハニカム、デュポン社のノーメックスを使用したノーメックスハニカム、Rohm社のロハセル、積水化学工業のフォーマックなどがある。コア3の比重は、上記したFRPスキン2より低比重であり、0.6以下である。上記のスキンと組み合わせたサンドイッチパネルは、金属材料に比べ大幅に軽量な材料となる。なお、本発明で好ましいサンドイッチパネルの比重としては、0.03〜0.6の範囲内であり、上述したプラスチックフォーム材をコアと用いるのが好ましい。   The core 3 is a low density material such as a honeycomb material such as an aluminum honeycomb, a paper honeycomb, an aramid honeycomb or a carbon honeycomb, a plastic foam material obtained by foaming a resin such as urethane, polymethacrylimide, acrylic, phenol or polystyrene, or a balsa material. Is used. Specific examples of cores include aluminum honeycomb from Showa Airplane Co., Ltd., Nomex honeycomb using DuPont's Nomex, Rohmel from Rohm, and formal from Sekisui Chemical. The specific gravity of the core 3 is lower than that of the FRP skin 2 described above, and is 0.6 or less. Sandwich panels combined with the above skins are significantly lighter than metal materials. In addition, the specific gravity of the sandwich panel preferable in the present invention is in the range of 0.03 to 0.6, and the above-described plastic foam material is preferably used as the core.

コア3の厚みは、3mm〜20mm、FRPスキン2の厚みは、0.2mm〜4mmで、サンドイッチパネル1は、図1のようにスキンとコアが接着層4を介して一体となっている。サンドイッチコアの厚みを大きくすること、あるいは、剛性の大きなスキンを使用することで、サンドイッチパネルの剛性を向上させることができ、重量あたりの曲げ強度、曲げ剛性が高い材料となる。   The thickness of the core 3 is 3 mm to 20 mm, and the thickness of the FRP skin 2 is 0.2 mm to 4 mm. In the sandwich panel 1, the skin and the core are integrated with the adhesive layer 4 as shown in FIG. By increasing the thickness of the sandwich core or by using a skin having high rigidity, the rigidity of the sandwich panel can be improved, and the material has high bending strength and bending rigidity per weight.

本発明における破壊靭性値とは、材料が破壊し亀裂が進展する際、エネルギーが必要となるが、この亀裂進展に必要なエネルギーを、亀裂進展面積で除したもの、亀裂進展に必要な単位面積あたりエネルギーのことを示す。   The fracture toughness value in the present invention means that energy is required when a material breaks and a crack progresses, but the energy required for this crack progress divided by the crack progress area, the unit area required for crack progress It shows the energy per hit.

FRP積層板の層間破壊靱性値はJIS K7086−1993記載のDCB試験、ENF試験等で計測することができ、DCB試験では図6のように亀裂を、亀裂と垂直の方向に開く(モードI)ように予荷重18を与え、ENF試験では図7のように、亀裂先端に亀裂方向へのせん断力がはたらくモードIIと呼ばれる荷重20を与える。   The interlaminar fracture toughness value of FRP laminates can be measured by the DCB test, ENF test, etc. described in JIS K7086-1993. In the DCB test, a crack is opened in a direction perpendicular to the crack as shown in FIG. 6 (mode I) In the ENF test, as shown in FIG. 7, a load 20 called mode II in which a shearing force in the crack direction is applied is applied to the crack tip.

本発明における破壊靱性試験法においては、サンドイッチパネルのスキンとコアが剥離し亀裂が進展する際に使われたエネルギーを、亀裂進展面積で割ったものを破壊靱性値とし、亀裂先端にモードIとモードIIの両方の応力が加わるため、モードIとモードIIの混合モードとなる。ここで亀裂進展面積は平均亀裂進展長さと試験片の幅を乗じたものとする。平均亀裂進展長さは両端側の亀裂進展長さを平均したものとする。亀裂進展長さは、亀裂に沿って計測する場合と、スキンに沿って計測する場合が考えられるが、サンドイッチ材としての性能評価をする場合はスキンに沿って計算する方がより好ましい。亀裂はスキンと接着層との界面を進展する場合とコアの内部を進展する場合とがあり、コア内を進展する場合、コア内に異物や接着剤の固まりがあるときはこれらを避けて進展する。破壊に使われたエネルギーの算出は荷重変位線図から求められる。図13に荷重変位線図の例を示す。図13の点Aから点Bの間に亀裂が進展し、亀裂面積がaだけ増加したとすると、斜線部の面積ΔUが亀裂が進むのに使われたエネルギーに相当し、ΔUをaで除したものが破壊壊靭性値Gcとなる。JIS K7086−1993記載のDCB試験ではモードIの破壊靭性値(GIc)を計測し、ENF試験ではモードIIの破壊靱性値(GIIc)を計測するのに対し、本試験法ではモードIとモードIIの混合モードでの破壊靱性値(Gc)を計測する。亀裂が進展するに従い、亀裂先端のモードIとモードIIの応力の混合比は変化するため、亀裂が進展するに従い見かけ上の破壊靱性値は変化する。   In the fracture toughness test method of the present invention, the energy used when the skin and core of the sandwich panel peel and the crack progresses is divided by the crack propagation area as the fracture toughness value. Since both mode II stresses are applied, a mixed mode of mode I and mode II is obtained. Here, the crack growth area is obtained by multiplying the average crack growth length and the width of the test piece. The average crack growth length is the average of the crack growth lengths at both ends. The crack growth length may be measured along the crack or measured along the skin, but it is more preferable to calculate along the skin when evaluating the performance as a sandwich material. Cracks may develop at the interface between the skin and the adhesive layer, or may progress inside the core. If the crack propagates inside the core, it avoids these if there is a mass of foreign matter or adhesive in the core. To do. Calculation of energy used for destruction is obtained from the load displacement diagram. FIG. 13 shows an example of a load displacement diagram. If a crack develops between point A and point B in FIG. 13 and the crack area increases by a, the shaded area ΔU corresponds to the energy used to advance the crack, and ΔU is divided by a. This is the fracture toughness value Gc. In the DCB test described in JIS K7086-1993, the mode I fracture toughness value (GIc) is measured. In the ENF test, the mode II fracture toughness value (GIIc) is measured. In this test method, mode I and mode II are measured. The fracture toughness value (Gc) in the mixed mode is measured. As the crack progresses, the mixed ratio of the mode I and mode II stresses at the crack tip changes, so that the apparent fracture toughness value changes as the crack progresses.

本発明では、プラスチックフォーム材をコアとしたサンドイッチパネル(フォームコアサンドイッチパネル)を用いるのが好ましい。フォームコアサンドイッチパネルは、オートクレーブ成形法、ハンドレイアップ成形法、引き抜き成形法、RTM成形(Resin Transfer Molding)、Va−RTM成形(VaRTM:Vacuum Assisted Resin Transfer Molding、真空圧を用いたRTM成形法)等により一体成形を行う、もしくはFRPのスキンとコアを接着して作ることができるが、成形時に樹脂がコア内部深くに含浸することを防ぐため、コアは独立発泡であることが好ましい。この場合でも、より大きなプラスチックフォーム材から切り出した場合などは表面のセルは外の空間とつながっており、表面のセルに樹脂が含浸することがある(図5)。コア表面に含浸した樹脂層は接着層4としての機能を果たすが、この樹脂層がサンドイッチパネルの破壊靱性値に影響をあたえることが考えられる。   In the present invention, it is preferable to use a sandwich panel having a plastic foam material as a core (foam core sandwich panel). Foam core sandwich panel is autoclave molding method, hand lay-up molding method, pultrusion molding method, RTM molding (Resin Transfer Molding), Va-RTM molding (VaRTM: Vacuum Assisted Resin Transfer Molding, RTM molding method using vacuum pressure) However, in order to prevent the resin from being impregnated deep inside the core during molding, it is preferable that the core is closed-cell foamed. Even in this case, when cut out from a larger plastic foam material, the cells on the surface are connected to the outer space, and the cells on the surface may be impregnated with the resin (FIG. 5). Although the resin layer impregnated on the core surface functions as the adhesive layer 4, it is considered that this resin layer affects the fracture toughness value of the sandwich panel.

予亀裂22とは、後述する亀裂を発生させるトリガーの役割を果たすものである。予亀裂を入れる方法は、コアをあらかじめ予亀裂を入れておく位置で分割しておき、離型性の高いフィルムを挟んで成形する方法、成形後のサンドイッチパネルのコアに穴を開け、糸鋸のような刃物で予亀裂を入れる方法などが挙げられるが、短いスパンで3点曲げ試験(図3)もしくは4点曲げ試験(図4)により、剪断力によりコアを破壊させ予亀裂22を入れる方法が好ましい。この場合、支点間の距離12がサンドイッチパネルの厚み8の2〜4倍となるようにスパンを設定することが好ましい。予亀裂22の形状は、コアが80%以上分断されており、分断されたそれぞれのコアが両側のスキンとつながった状態とする。好ましい形状として、(サンドイッチパネル試験片の幅方向から見た断面を観察すると)コアを分断する箇所が直線状であり、該直線と2枚のスキンのなす角度が30度以上60度未満である形状が挙げられる(図8)。さらに部材の運用上想定される破壊を考慮した場合、特にプラスチックフォーム材をコアとする場合は、せん断力が最大となる40〜50度の範囲内が好ましい。また、予亀裂22は、四角形形状(図9)、三角形状(図10)にするなどの方法においても試験は可能である。さらに、部材の運用上想定される破壊荷重条件に近い3点曲げ(もしくは4点曲げ)を用いて予亀裂22を入れる(図11)ことも好ましい。   The pre-crack 22 serves as a trigger for generating a crack described later. The pre-cracking method consists of dividing the core in advance at the pre-cracking position and molding it with a highly releasable film, or making holes in the core of the sandwich panel after molding, There is a method of making a pre-crack with such a blade, etc., but a method of making a pre-crack 22 by breaking the core by a shearing force by a three-point bending test (FIG. 3) or a four-point bending test (FIG. 4) with a short span. Is preferred. In this case, it is preferable to set the span so that the distance 12 between the fulcrums is 2 to 4 times the thickness 8 of the sandwich panel. The shape of the pre-crack 22 is such that the core is divided by 80% or more and each divided core is connected to the skin on both sides. As a preferred shape (when the cross section viewed from the width direction of the sandwich panel test piece is observed), the portion where the core is divided is linear, and the angle between the straight line and the two skins is 30 degrees or more and less than 60 degrees. A shape is mentioned (FIG. 8). Furthermore, when considering the destruction assumed in the operation of the member, particularly when a plastic foam material is used as the core, it is preferably within a range of 40 to 50 degrees where the shearing force is maximized. Further, the pre-crack 22 can be tested by a method such as a quadrangular shape (FIG. 9) or a triangular shape (FIG. 10). Furthermore, it is also preferable to make the precrack 22 using a three-point bend (or a four-point bend) close to the fracture load condition assumed in the operation of the member (FIG. 11).

本発明における破壊靭性試験は、上記破壊靭性試験用試験片を3点曲げ試験(もしくは4点曲げ試験)にて行い、荷重を徐々に加えて予亀裂22先端から亀裂を進展させ(図12)、亀裂が進展する際の亀裂長さ23に試験片の幅7(図2)を乗じた亀裂面積、荷重および荷重点の変位から亀裂が進展する際の破壊靭性値を定量化するものである。3点曲げ試験、4点曲げ試験のいずれにおいても破壊靭性試験は可能であるが、以下は3点曲げ試験について説明を行う。4点曲げ試験についても同様に試験することができる。   In the fracture toughness test according to the present invention, the above-mentioned fracture toughness test specimen is subjected to a three-point bending test (or a four-point bending test), and a crack is developed from the tip of the precrack 22 by gradually applying a load (FIG. 12). Quantifying the fracture toughness value when the crack progresses from the crack area, load, and displacement of the load point obtained by multiplying the crack length 23 when the crack progresses by the width 7 of the test piece (FIG. 2) . Although the fracture toughness test is possible in both the three-point bending test and the four-point bending test, the following describes the three-point bending test. The same test can be performed for the 4-point bending test.

スパンは、支点間の距離がサンプルの厚みの4倍以上が必要であり、10倍以上が好ましい。10倍未満では亀裂が進展するためのスペースを確保することが困難である。ただし、スパンが長すぎると、徐々に亀裂が進展することなく一度に亀裂が進展することがあるため(不安定破壊)、靭性値の絶対値評価は困難となるケースもある。どの程度のスパンで不安定破壊が起こるかは、サンプルの構成によって異なる。また、部材の運用上想定される荷重条件で行うことが最も好ましい。予亀裂の位置は支点間のいずれの箇所でも試験することが可能であるが、亀裂が進展するスペースを確保するため、予亀裂の先端が中央の支点に接する程度が好ましい。衝撃荷重の場合、衝撃荷重が作用した箇所に亀裂が発生することが多いためである。ただし、部材の運用上想定される亀裂発生位置がこの位置と異なる場合は、予想される亀裂位置に予亀裂を配置することが好ましい。試験機の速度はスパンの大きさや試験片の剛性によって変える必要があるが、スパンが200〜300mmで0.5〜50mm/secを目安に試験を行うことが好ましい。好ましい試験条件は、厚さ6mmの独立発泡アクリルフォーム材(積水化学社製 フォーマックHR1000)製コア(比重0.1)の上下に東レ社製炭素繊維クロスCO6343B(炭素繊維の弾性率は230GPa、強度は3.53GPa)を2層ずつ配置し、コアと炭素繊維クロスをバッグしてバッグ内を真空圧にした後に、液状のビスフェノールA型エポキシ樹脂と酸無水物硬化剤を混合したものを注入してオーブン内にて90℃×40分の熱を加えて硬化させ(RTM成形法)、硬化後のサンドイッチパネルの厚さが7.2mmとしたものを試験片として用いた場合、スパンは200mm以上〜300mm以下、試験機の速度は0.5mmであった。   As for the span, the distance between the fulcrums needs to be 4 times or more of the thickness of the sample, and preferably 10 times or more. If it is less than 10 times, it is difficult to secure a space for cracks to propagate. However, if the span is too long, the crack may progress at once without gradually progressing (unstable fracture), and it may be difficult to evaluate the absolute value of the toughness value. The extent to which unstable fracture occurs is dependent on the sample configuration. Moreover, it is most preferable to carry out under the load condition assumed in the operation of the member. The position of the precrack can be tested at any location between the fulcrums, but it is preferable that the tip of the precrack is in contact with the center fulcrum in order to secure a space for the crack to propagate. This is because in the case of an impact load, cracks often occur at locations where the impact load is applied. However, when the crack occurrence position assumed in the operation of the member is different from this position, it is preferable to arrange the pre-crack at the expected crack position. Although it is necessary to change the speed of the testing machine depending on the size of the span and the rigidity of the test piece, it is preferable to perform the test with a span of 200 to 300 mm and 0.5 to 50 mm / sec as a guide. A preferable test condition is that carbon fiber cloth CO6343B (carbon fiber elastic modulus is 230 GPa) above and below a core (specific gravity 0.1) made of an independently foamed acrylic foam material (formac HR1000 manufactured by Sekisui Chemical Co., Ltd.) having a thickness of 6 mm. (Strength is 3.53 GPa) 2 layers at a time, bag the core and carbon fiber cloth, and vacuum the inside of the bag, then inject a mixture of liquid bisphenol A type epoxy resin and acid anhydride curing agent Then, when 90 ° C. × 40 minutes heat is applied in the oven and cured (RTM molding method), and the cured sandwich panel thickness is 7.2 mm, the span is 200 mm. From above to 300 mm or less, the speed of the testing machine was 0.5 mm.

(実施例1)
厚さ6mmの独立発泡アクリルフォーム材(積水化学社製 フォーマックHR1000)製コア(比重0.1)の上下に東レ社製炭素繊維クロスBT70−30(炭素繊維の弾性率は230GPa、強度は4.9GPa)を2層ずつ配置し、コアと炭素繊維クロスをバッグしてバッグ内を真空圧にした後に、液状のビスフェノールA型エポキシ樹脂と酸無水物硬化剤を混合したものを注入してオーブン内にて90℃×40分の熱を加えて硬化させた(VaRTM:Vacuum Assisted Resin Transfer Molding、真空圧を用いたRTM成形法)。硬化後のサンドイッチパネル(サイズ500mm×500mm)は、51点の平均厚さが7.21mm(最大厚さ7.4mm、最小厚さ7.0mm)であった。
本サンドイッチパネルから、ダイアモンドカッターを用いて、幅22mm、長さ300mmの曲げ疲労試験用サンドイッチパネルを5本切り出し、インストロン社製試験機5565、ロードセル2525−805(最大荷重5kN)を用い、図9のような3点曲げ荷重を加え予亀裂を入れた。この時のスパンは60mmで、支持側の圧子は曲率半径2mm、荷重側の圧子の曲率半径は5mmであった。また、荷重側の圧子の集中荷重によりスキンが割れてしまうため、図この時の予亀裂は図14のように圧子の試験片の間に厚さ1mmのシリコンゴム24を挟んだ。
予亀裂22は、図15のように、試験片側面において、コアを分断する箇所が直線状となり、該直線と2枚のスキンのなす角度が45度となるような予亀裂となった。予亀裂の両端はコア内部をスキンと界面近くに伸びており、予亀裂長さ27をスキンに沿った方向で計測すると平均15.9mm(最小8.18mm、最大18.73mm)であった。上記のように予亀裂を入れた試験片をスパンを大きくして3点曲げ荷重を加え、徐々に亀裂を進展させ荷重、変位、および亀裂長さを記録し、サンドイッチパネルの破壊靭性値を測定した。この時のスパンは200mm、支持側の圧子の径は25mm、荷重点側の圧子の径は4mmとした。荷重点側の圧子にシリコンゴム24を挟むとか重点の正確な変位を測定することができなくなるため、シリコンゴムを挟まなかったが、集中荷重によりスキンが割れることはなかった。亀裂はコア内部のスキンと界面近くに伸びていき、最終的に平均亀裂長さが83.3mm(最小78.9mm、最大85.8mm)となるまで荷重を加えた。荷重変位線図の概形を図13に示す。亀裂が進展するに従い破壊靱性値の見かけ上の値が増加しているが、モードIとモードIIの混合比が変化したためと考えられる。破壊靱性値のそれぞれのサンプルにおける平均値(図13のグラフにおける、亀裂進展開始から終了までの破壊靱性値の平均値)をさらにサンプル数5で平均すると1.23J/m(最小0.90J/m、最大1.64J/m)となった。
Example 1
Carbon fiber cloth BT70-30 (carbon fiber elastic modulus is 230 GPa, strength is 4) on the top and bottom of a core (specific gravity 0.1) made of an independently foamed acrylic foam material (formac HR1000 made by Sekisui Chemical Co., Ltd.) having a thickness of 6 mm. .9 GPa) are placed in two layers, the core and carbon fiber cloth are bagged, the inside of the bag is vacuumed, and a mixture of liquid bisphenol A type epoxy resin and acid anhydride curing agent is injected into the oven. It was cured by applying heat at 90 ° C. for 40 minutes (VaRTM: Vacuum Assisted Resin Transfer Molding, RTM molding method using vacuum pressure). The sandwich panel after curing (size 500 mm × 500 mm) had an average thickness of 51 points of 7.21 mm (maximum thickness 7.4 mm, minimum thickness 7.0 mm).
From this sandwich panel, using a diamond cutter, cut out five sandwich panels for a bending fatigue test having a width of 22 mm and a length of 300 mm, using an Instron testing machine 5565, a load cell 2525-805 (maximum load 5 kN), A three-point bending load such as 9 was applied to pre-crack. The span at this time was 60 mm, the radius of curvature of the support side indenter was 2 mm, and the radius of curvature of the load side indenter was 5 mm. Further, since the skin breaks due to the concentrated load of the indenter on the load side, the silicon rubber 24 having a thickness of 1 mm is sandwiched between the test pieces of the indenter as shown in FIG.
As shown in FIG. 15, the pre-crack 22 was a pre-crack on the side surface of the test piece so that the part where the core was divided was linear, and the angle between the straight line and the two skins was 45 degrees. Both ends of the pre-crack extended near the interface with the skin inside the core, and when the pre-crack length 27 was measured in the direction along the skin, the average was 15.9 mm (minimum 8.18 mm, maximum 18.73 mm). Measure the toughness value of the sandwich panel by increasing the span and applying a three-point bending load to the specimen with pre-crack as described above, gradually developing the crack, recording the load, displacement, and crack length. did. The span at this time was 200 mm, the diameter of the indenter on the support side was 25 mm, and the diameter of the indenter on the load point side was 4 mm. Silicon rubber was not sandwiched between the load point side indenter and accurate displacement of the point could not be measured, but silicon rubber was not sandwiched, but the skin was not cracked by concentrated load. The cracks extended near the interface with the skin inside the core, and a load was applied until the average crack length finally reached 83.3 mm (minimum 78.9 mm, maximum 85.8 mm). An outline of the load displacement diagram is shown in FIG. Although the apparent value of the fracture toughness value increases as the crack progresses, it is considered that the mixing ratio of mode I and mode II has changed. When the average value of fracture toughness values in each sample (the average value of fracture toughness values from the start to the end of crack growth in the graph of FIG. 13) is further averaged by the number of samples 5, it is 1.23 J / m 2 (minimum 0.90 J / M 2 , maximum 1.64 J / m 2 ).

(実施例2)
実施例1で使用したコアの表面に、幅1.5mm、深さ1.5mmの溝28を、10mm間隔で切削加工したものをコアとして用い、実施例1と同様の方法でサンドイッチパネルを成形し、図18のように、亀裂方向と試験片の長さ方向が垂直になるように試験片を切り出した。3本の試験片を用いて実施例1と同様にして破壊靭性試験を行ったところ、破壊靭性値(亀裂進展開始から終了までの平均値)は、2.61kJ/m、1.58kJ/m、1.53kJ/m、平均1.91kJ/mとなった。実施例1と比較すると0.68kJ/m増加しており、溝加工が影響しているものと思われる。亀裂進展箇所を観察すると、図19のように溝を迂回しながら亀裂が進展しており、コアの破壊面積が大きくなっていることが要因と考えられる。
(Example 2)
A sandwich panel is formed in the same manner as in Example 1 using a core obtained by cutting grooves 28 having a width of 1.5 mm and a depth of 1.5 mm on the surface of the core used in Example 1 at intervals of 10 mm. Then, as shown in FIG. 18, the test piece was cut out so that the crack direction and the length direction of the test piece were perpendicular to each other. When a fracture toughness test was conducted in the same manner as in Example 1 using three test pieces, the fracture toughness values (average values from the start to the end of crack growth) were 2.61 kJ / m 2 and 1.58 kJ /. m 2 , 1.53 kJ / m 2 and an average of 1.91 kJ / m 2 were obtained. Compared with Example 1, it is increased by 0.68 kJ / m 2, and it seems that groove processing has an influence. When observing the crack propagation location, it is considered that the crack progresses while bypassing the groove as shown in FIG. 19 and the fracture area of the core is increased.

(比較例1)
実施例1と同じサンドイッチパネルからダイアモンドカッターを用いて、幅22mm、長さ300mmの曲げ疲労試験用サンドイッチパネルを切り出し、試験片の端から片側のスキンを75mm剥離させ、JIS K7086−1993記載のENF試験法を参考に図16のように剥離側のスキンを荷重点側にし、スパン200mmの3点曲げで破壊靭性試験を行ったところ、剥離の先端でコアがスキンと垂直方向に割れて(図17)、著しい剛性低下が起こり、実験の継続が不可能となった。剥離側のスキンを支持点側にしても同様にコアが割れた。
(Comparative Example 1)
Using a diamond cutter from the same sandwich panel as in Example 1, a sandwich panel for bending fatigue test having a width of 22 mm and a length of 300 mm was cut out, the skin on one side was peeled off 75 mm from the end of the test piece, and ENF described in JIS K7086-1993 With reference to the test method, as shown in FIG. 16, the skin on the peeling side was set to the load point side, and a fracture toughness test was conducted by a three-point bending with a span of 200 mm. 17) A significant decrease in rigidity occurred, making it impossible to continue the experiment. The core cracked in the same manner even when the skin on the peeling side was the supporting point side.

本発明における被測定体のサンドイッチパネルの一例を示す斜視図である。It is a perspective view which shows an example of the sandwich panel of the to-be-measured body in this invention. 本発明における被測定体のサンドイッチパネル試験片を示す斜視図である。It is a perspective view which shows the sandwich panel test piece of the to-be-measured body in this invention. 3点曲げ試験法の一例を示す図である。It is a figure which shows an example of a 3 point | piece bending test method. 4点曲げ試験法の一例を示す図である。It is a figure which shows an example of a 4-point bending test method. フォームコアサンドイッチパネルのスキン近くの拡大図である。It is an enlarged view near the skin of a foam core sandwich panel. JIS K7086−1993記載のDCB試験の模式図である。It is a schematic diagram of the DCB test described in JIS K7086-1993. JIS K7086−1993記載のENF試験の模式図である。It is a schematic diagram of the ENF test described in JIS K7086-1993. 本発明における被測定体試験片の予亀裂の一例を示す図である。It is a figure which shows an example of the precrack of the to-be-measured object test piece in this invention. 本発明における被測定体試験片の予亀裂の一例を示す図である。It is a figure which shows an example of the precrack of the to-be-measured object test piece in this invention. 本発明における被測定体試験片の予亀裂の一例を示す図である。It is a figure which shows an example of the precrack of the to-be-measured object test piece in this invention. 本発明における被測定体試験片に予亀裂を入れる方法の一例を示す図である。It is a figure which shows an example of the method of putting a precrack in the to-be-measured object test piece in this invention. 本発明の破壊靱性試験法の一実施態様を示す図である。It is a figure which shows one embodiment of the fracture toughness test method of this invention. 本発明における破壊靱性値を算出するために必要な荷重変位線図の一例を示す図である。It is a figure which shows an example of a load displacement diagram required in order to calculate the fracture toughness value in this invention. 本発明における被測定体試験片に予亀裂を入れる方法の一例を示す図である。It is a figure which shows an example of the method of putting a precrack in the to-be-measured object test piece in this invention. 本発明における被測定体試験片の予亀裂の一例を示す図である。It is a figure which shows an example of the precrack of the to-be-measured object test piece in this invention. ENF試験を参考に行った破壊靭性試験法を示す図である。It is a figure which shows the fracture toughness test method performed with reference to the ENF test. ENF試験を参考に行った破壊靭性試験法の結果を示す図である。It is a figure which shows the result of the fracture toughness test method performed with reference to the ENF test. 本発明の破壊靱性試験法に使用する破壊試験片の一例を示す側面図である。It is a side view which shows an example of the fracture test piece used for the fracture toughness test method of this invention. 本発明の破壊靱性試験法を行った結果、試験片に亀裂が進展したものの一例を示す側面図である。It is a side view which shows an example of what the crack extended to the test piece as a result of performing the fracture toughness test method of this invention.

符号の説明Explanation of symbols

1:サンドイッチパネル
2:FRPスキン
3:コア
4:接着層
5:サンドイッチパネル試験片
6:(サンドイッチパネル試験片の)長さ
7:(サンドイッチパネル試験片の)幅
8:(サンドイッチパネル試験片の)厚さ
9:上部支点
10:下部支点
11:曲げ試験治具
12:支点間の距離
13:荷重
14: CFRPスキン
15:フォームコアのセル
16:樹脂が含浸したフォームコアのセル
17:試験片(ENF、DCB)
18:荷重
19:モードI変形方向
20:荷重
21:モードII変形方向
22:予亀裂
23:亀裂長さ
24:シリコンゴム
25:直線状亀裂
26:予亀裂
27:亀裂長さ
28:溝
29:溝
30:溝
31:亀裂
32:溝を迂回した亀裂
1: Sandwich panel 2: FRP skin 3: Core
4: Adhesive layer 5: Sandwich panel test piece 6: Length (for sandwich panel test piece) 7: Width (for sandwich panel test piece) 8: Thickness (for sandwich panel test piece) 9: Upper fulcrum 10: Lower fulcrum 11: Bending test jig 12: Distance between supporting points 13: Load 14: CFRP skin 15: Cell of foam core 16: Cell of foam core impregnated with resin 17: Test piece (ENF, DCB)
18: Load 19: Mode I deformation direction 20: Load 21: Mode II deformation direction 22: Precrack 23: Crack length 24: Silicon rubber 25: Linear crack 26: Precrack 27: Crack length 28: Groove 29: Groove 30: Groove 31: Crack 32: Crack circumventing the groove

Claims (2)

繊維強化プラスチック製の2枚のスキンと、2枚のスキンの間に、接着層を介して、スキンより低比重のコアが存在する矩形状のサンドイッチパネル試験片に、一方のスキンから他方のスキンに到達し、コアを完全に分断する予亀裂、もしくはコアを80%以上分断する予亀裂をいれておき、3点曲げ、または4点曲げ試験により、コアとスキンが剥離するように亀裂を進展させ、亀裂が進展する際の荷重、荷重点の変位、亀裂長さの進展量を計測し、荷重−変位曲線から破壊に使われたエネルギーを算出し、これを平均亀裂長さと幅の積である亀裂面積で割って破壊靱性値を算出する、軽量サンドイッチパネルの破壊靭性試験方法。   Two skins made of fiber reinforced plastic and a rectangular sandwich panel specimen in which a core having a specific gravity lower than the skin exists between the two skins through an adhesive layer, from one skin to the other skin , And a pre-crack that completely divides the core or a pre-crack that divides the core by 80% or more is added, and the crack progresses so that the core and the skin are peeled by a three-point bending or four-point bending test. Measure the load when the crack propagates, the displacement of the load point, and the crack length, calculate the energy used for the fracture from the load-displacement curve, and calculate this as the product of the average crack length and width. A fracture toughness test method for lightweight sandwich panels that calculates the fracture toughness value by dividing by a certain crack area. 前記予亀裂を、3点曲げ試験、もしくは4点曲げ試験により形成する請求項1に記載の軽量サンドイッチパネルの破壊靭性試験方法。   The method for testing the fracture toughness of a lightweight sandwich panel according to claim 1, wherein the pre-crack is formed by a three-point bending test or a four-point bending test.
JP2005339822A 2005-11-25 2005-11-25 Fracture toughness testing method for light-weight sandwich panel Pending JP2007147348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005339822A JP2007147348A (en) 2005-11-25 2005-11-25 Fracture toughness testing method for light-weight sandwich panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005339822A JP2007147348A (en) 2005-11-25 2005-11-25 Fracture toughness testing method for light-weight sandwich panel

Publications (1)

Publication Number Publication Date
JP2007147348A true JP2007147348A (en) 2007-06-14

Family

ID=38208931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005339822A Pending JP2007147348A (en) 2005-11-25 2005-11-25 Fracture toughness testing method for light-weight sandwich panel

Country Status (1)

Country Link
JP (1) JP2007147348A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002289A (en) * 2008-06-20 2010-01-07 Society Of Japanese Aerospace Co Inc Evaluation testing method of peeling in multilayer structure
CN108562486A (en) * 2018-05-21 2018-09-21 攀钢集团攀枝花钢铁研究院有限公司 Steel rail weld joint material object repeated bend test loads fixture
KR20190064061A (en) * 2017-11-30 2019-06-10 한국생산기술연구원 Jig-unit for measuring the physical properties of fiber reinforced composite materials
WO2019223264A1 (en) * 2018-05-25 2019-11-28 西南石油大学 Crushing system for large natural gas hydrate rock sample
CN112903394A (en) * 2021-02-10 2021-06-04 北京科技大学 Method and device for measuring fracture toughness of coating
CN114062133A (en) * 2021-11-12 2022-02-18 横店集团东磁股份有限公司 Method and device for testing mechanical strength of solar cell
CN114136779A (en) * 2021-11-26 2022-03-04 河北工业大学 Quasi-brittle material I-II type fracture toughness test solving method
CN114441336A (en) * 2022-01-14 2022-05-06 中国石油大学(北京) Method for testing CTOD-delta a resistance curve of metal
CN114441337A (en) * 2022-01-14 2022-05-06 中国石油大学(北京) Detection method for opening displacement of metal fracture toughness crack tip
CN114486516A (en) * 2021-12-24 2022-05-13 中国京冶工程技术有限公司 Method for testing coating crack following performance

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002289A (en) * 2008-06-20 2010-01-07 Society Of Japanese Aerospace Co Inc Evaluation testing method of peeling in multilayer structure
KR20190064061A (en) * 2017-11-30 2019-06-10 한국생산기술연구원 Jig-unit for measuring the physical properties of fiber reinforced composite materials
KR102026288B1 (en) 2017-11-30 2019-09-30 한국생산기술연구원 Jig-unit for measuring the physical properties of fiber reinforced composite materials
CN108562486A (en) * 2018-05-21 2018-09-21 攀钢集团攀枝花钢铁研究院有限公司 Steel rail weld joint material object repeated bend test loads fixture
US11465152B2 (en) 2018-05-25 2022-10-11 Southwest Petroleum University Crushing system for large-size natural gas hydrate rock samples
WO2019223264A1 (en) * 2018-05-25 2019-11-28 西南石油大学 Crushing system for large natural gas hydrate rock sample
CN112903394A (en) * 2021-02-10 2021-06-04 北京科技大学 Method and device for measuring fracture toughness of coating
CN114062133A (en) * 2021-11-12 2022-02-18 横店集团东磁股份有限公司 Method and device for testing mechanical strength of solar cell
CN114136779A (en) * 2021-11-26 2022-03-04 河北工业大学 Quasi-brittle material I-II type fracture toughness test solving method
CN114136779B (en) * 2021-11-26 2024-01-30 河北工业大学 Method for solving I-II type fracture toughness test of quasi-brittle material
CN114486516A (en) * 2021-12-24 2022-05-13 中国京冶工程技术有限公司 Method for testing coating crack following performance
CN114441336A (en) * 2022-01-14 2022-05-06 中国石油大学(北京) Method for testing CTOD-delta a resistance curve of metal
CN114441337A (en) * 2022-01-14 2022-05-06 中国石油大学(北京) Detection method for opening displacement of metal fracture toughness crack tip
CN114441336B (en) * 2022-01-14 2023-03-17 中国石油大学(北京) Method for testing CTOD-delta a resistance curve of metal

Similar Documents

Publication Publication Date Title
JP2007147348A (en) Fracture toughness testing method for light-weight sandwich panel
Zenkert The handbook of sandwich construction
Hazizan et al. The low velocity impact response of foam-based sandwich structures
Kim et al. Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures
Vaidya et al. Processing and high strain rate impact response of multi-functional sandwich composites
Shenoi et al. A study of structural composite tee joints in small boats
Du et al. Fabrication and bending behavior of thermoplastic composite curved corrugated sandwich beam with interface enhancement
Burman Fatigue crack initiation and propagation in sandwich structures
Ozdemir et al. Single and repeated impact behaviors of bio-sandwich structures consisting of thermoplastic face sheets and different balsa core thicknesses
Galos et al. Review of balsa core sandwich composite structures
Zenkert An introduction to sandwich structures
Barsotti et al. Recent industrial developments of marine composites limit states and design approaches on strength
Boyd et al. Integrity of hybrid steel-to-composite joints for marine application
Liang et al. Development and evaluation of load-bearing fiber reinforced polymer composite panel systems with tongue and groove joints
Liu et al. Bending response and failure mechanism of composite sandwich panel with Y-frame core
Chu et al. Experimental study for the effect of hole notched in fracture mechanics of GLARE and GFRP composites subjected to quasi-static loading
Fang et al. Flexural properties of grooved perforation sandwich composites
Zhang et al. Failure behavior of a sandwich beam with GLARE face-sheets and aluminum foam core under three-point bending
Zhang et al. Damage behaviors of foam sandwiched composite materials under quasi-static three-point bending
Osa-Uwagboe et al. Mechanical behaviour of fabric-reinforced plastic sandwich structures: A state-of-the-art review
De Marco Muscat-Fenech et al. Impact damage testing on composite marine sandwich panels. Part 2: Instrumented drop weight
Sutherland et al. Impact resistance of cork-skinned marine PVC/GRP sandwich laminates
Silva et al. Cork: Is it a good material for aerospace structures?
Grasso et al. Composite material design for rail vehicle innovative lightweight components
Shipsha Failure of sandwich structures with sub-interface damage