JP2010001799A - Burner apparatus - Google Patents

Burner apparatus Download PDF

Info

Publication number
JP2010001799A
JP2010001799A JP2008161156A JP2008161156A JP2010001799A JP 2010001799 A JP2010001799 A JP 2010001799A JP 2008161156 A JP2008161156 A JP 2008161156A JP 2008161156 A JP2008161156 A JP 2008161156A JP 2010001799 A JP2010001799 A JP 2010001799A
Authority
JP
Japan
Prior art keywords
oxidation catalyst
inlet portion
axis
nozzle
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008161156A
Other languages
Japanese (ja)
Other versions
JP4989565B2 (en
Inventor
Hiroshi Funahashi
博 舟橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2008161156A priority Critical patent/JP4989565B2/en
Publication of JP2010001799A publication Critical patent/JP2010001799A/en
Application granted granted Critical
Publication of JP4989565B2 publication Critical patent/JP4989565B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To heat an inlet portion of an oxidation catalyst so as to perform desulfurizing treatment of the inlet portion by a compact burner apparatus that requires only a small amount of fuel and combustion air. <P>SOLUTION: The burner apparatus 16, configured to heat the inlet portion of the oxidation catalyst 14 so as to perform the desulfurizing treatment of the inlet portion, includes an addition valve 17, a turning nozzle 19 having an injection port 18 and a discharge terminal 20 (ignition means). The addition valve 17 is so located on the axis x of the oxidation catalyst 14 as to face the center of the inlet portion of the oxidation catalyst 14, and injects the fuel together with the combustion air. The turning nozzle 19 is mounted on the top end of the addition valve 17 rotatably around the axis x of the oxidation catalyst 14. The turning nozzle 19 is bent in a V shape in such a manner that it extends obliquely with respect to the axis x and returns onto the axis x. The discharge terminal 20 is disposed in the vicinity of the injection port 18 of the turning nozzle 19 so as to ignite the fuel injected from the injection port 18. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、バーナ装置に関するものである。   The present invention relates to a burner device.

ディーゼルエンジンから排出されるパティキュレート(Particulate Matter:粒子状物質)は、炭素質から成る煤と、高沸点炭化水素成分から成るSOF分(Soluble Organic Fraction:可溶性有機成分)とを主成分とし、更に微量のサルフェート(ミスト状硫酸成分)を含んだ組成を成すものであるが、この種のパティキュレートの低減対策としては、排気ガスが流通する排気管の途中に、パティキュレートフィルタを装備することが従来より行われている。   Particulate matter (particulate matter) discharged from a diesel engine is mainly composed of soot made of carbonaceous matter and SOF content (Soluble Organic Fraction) made of high-boiling hydrocarbon components. The composition contains a small amount of sulfate (mist-like sulfuric acid component). As a measure to reduce this type of particulates, a particulate filter is installed in the middle of the exhaust pipe through which the exhaust gas flows. It has been done conventionally.

この種のパティキュレートフィルタは、コージェライト等のセラミックから成る多孔質のハニカム構造を成し、格子状に区画された各流路の入口が交互に目封じされ、入口が目封じされていない流路については、その出口が目封じされるようになっており、各流路を区画する多孔質薄壁を透過した排気ガスのみが下流側へ排出される一方、排気ガス中のパティキュレートが多孔質薄壁の内側表面に捕集されるようになっている。   This type of particulate filter has a porous honeycomb structure made of ceramics such as cordierite, and the inlets of the flow paths partitioned in a lattice pattern are alternately sealed, and the inlets are not sealed. The outlet of the passage is sealed, and only the exhaust gas that has permeated through the porous thin wall defining each flow passage is discharged downstream, while the particulates in the exhaust gas are porous. It is collected on the inner surface of the thin wall.

そして、排気ガス中のパティキュレートは、前記多孔質薄壁の内側表面に捕集されて堆積するので、目詰まりにより排気抵抗が増加しないうちにパティキュレートを適宜に燃焼除去してパティキュレートフィルタの再生を図る必要があるが、通常のディーゼルエンジンの運転状態においては、パティキュレートが自己燃焼するほどの高い排気温度が得られる機会が少ない為、PtやPd等を活性種とする酸化触媒をパティキュレートフィルタに一体的に担持させるようにしている。   Then, the particulates in the exhaust gas are collected and deposited on the inner surface of the porous thin wall, so that the particulates are appropriately burned and removed before the exhaust resistance increases due to clogging. It is necessary to regenerate, but in normal diesel engine operating conditions, there are few opportunities to obtain exhaust temperatures that are high enough to cause the particulates to self-combust. The curate filter is integrally supported.

即ち、このような酸化触媒を担持させたパティキュレートフィルタを採用すれば、捕集されたパティキュレートの酸化反応が促進されて着火温度が低下し、従来より低い排気温度でもパティキュレートを燃焼除去することが可能となるのである。   That is, if such a particulate filter carrying an oxidation catalyst is employed, the oxidation reaction of the collected particulates is promoted to lower the ignition temperature, and the particulates are burned and removed even at a lower exhaust temperature than in the past. It becomes possible.

ただし、斯かるパティキュレートフィルタを採用した場合であっても、排気温度の低い運転領域では、パティキュレートの処理量よりも捕集量が上まわってしまうので、このような低い排気温度での運転状態が続くと、パティキュレートフィルタの再生が良好に進まずに該パティキュレートフィルタが過捕集状態に陥る虞れがある。   However, even when such a particulate filter is adopted, the trapped amount exceeds the processing amount of particulates in the operation region where the exhaust temperature is low, so operation at such a low exhaust temperature is required. If the state continues, there is a possibility that the particulate filter will fall into an over trapped state without the regeneration of the particulate filter proceeding well.

そこで、パティキュレートフィルタの前段にフロースルー型の酸化触媒を付帯装備させ、パティキュレートの堆積量が増加してきた段階でパティキュレートフィルタより上流側に燃料を添加してパティキュレートフィルタの強制再生を行うことが考えられている。   Therefore, a flow-through type oxidation catalyst is attached to the front stage of the particulate filter, and fuel is added to the upstream side of the particulate filter and the particulate filter is forcibly regenerated when the amount of particulate accumulation increases. It is considered.

つまり、このようにすれば、燃料添加で生じた炭化水素が酸化触媒を通過する間に酸化反応し、その反応熱で昇温した排気ガスの流入により直後のパティキュレートフィルタの床温度が上げられてパティキュレートが燃やし尽くされ、パティキュレートフィルタの再生化が図られることになる。   In other words, in this way, the hydrocarbon generated by the fuel addition undergoes an oxidation reaction while passing through the oxidation catalyst, and the inflow of exhaust gas heated by the reaction heat raises the bed temperature of the particulate filter immediately after. Thus, the particulates are burned out, and the particulate filter is regenerated.

ところが、このようにパティキュレートフィルタの前段に酸化触媒を付帯装備させた場合に、ディーゼルエンジンの排気ガス中に燃料(軽油)中の硫黄分を起源とするSO2ガスが存在していると、このSO2ガスが次式
[化1]
2SO2+O2+2H2O→2H2SO4
によりサルフェート(ミスト状硫酸成分)を生成してしまう懸念があった。
However, when an oxidation catalyst is attached to the upstream of the particulate filter in this way, if the SO 2 gas originating from the sulfur content in the fuel (light oil) is present in the exhaust gas of the diesel engine, This SO 2 gas has the following formula [Chemical Formula 1]
2SO 2 + O 2 + 2H 2 O → 2H 2 SO 4
There was a concern that sulfate (mist-like sulfuric acid component) might be generated.

この種のサルフェートは、約630℃以上の高温下で再びSO2ガスとなって脱離してしまうものであるが、開発途上国等での高硫黄燃料の使用にあっては、サルフェートの生成量が多すぎて短期間のうちに酸化触媒の入口部の表面が全て覆われるコーキングを招いてしまうので、酸化触媒の機能が発揮できなくなってパティキュレートフィルタの再生を図ることができなくなる虞れがあり、前記酸化触媒の入口部にバーナ装置を設けて該バーナ装置の火炎により排気ガスを大幅に昇温し、この高温の排気ガスを流入させることで酸化触媒の入口部を加熱するという脱硫手段が検討されている。 This type of sulfate is desorbed as SO 2 gas again at a high temperature of about 630 ° C. or higher. However, when high sulfur fuel is used in developing countries, the amount of sulfate produced Because there is too much coking that covers the entire surface of the inlet portion of the oxidation catalyst in a short period of time, there is a possibility that the function of the oxidation catalyst cannot be exhibited and the particulate filter cannot be regenerated. A desulfurization means in which a burner device is provided at the inlet portion of the oxidation catalyst, the temperature of the exhaust gas is significantly raised by the flame of the burner device, and the inlet portion of the oxidation catalyst is heated by flowing this high-temperature exhaust gas Is being considered.

尚、この種の触媒や排気ガスをバーナ装置を用いて加熱する技術に関連する先行技術文献情報としては下記の特許文献1や特許文献2がある。
特開平5−86845号公報 特開平6−167212号公報
Prior art document information relating to a technique for heating this type of catalyst or exhaust gas using a burner device includes the following Patent Document 1 and Patent Document 2.
JP-A-5-86845 JP-A-6-167212

しかしながら、酸化触媒に流入する排気ガスの全てを一度に加熱し得る能力を備えたバーナ装置は大型化してしまうことが避けられず、その燃焼に多量の燃料が必要となって燃費の大幅な悪化を招いてしまうという問題がある。   However, it is inevitable that the burner device having the ability to heat all the exhaust gas flowing into the oxidation catalyst at the same time will increase in size, and a large amount of fuel is required for its combustion, resulting in a significant deterioration in fuel consumption. There is a problem of inviting.

また、燃焼用空気も多量に必要となるため、ターボチャージャのコンプレッサの出口から吸気を分岐して導くような手段を講じなければならなくなるが、このようにコンプレッサの出口から吸気を分岐して導くような大掛かりな配管改造を伴う流路変更は、実施コストの大幅な高騰を招く結果となる。   Also, since a large amount of combustion air is required, it is necessary to take measures to branch the intake air from the compressor outlet of the turbocharger. In this way, the intake air is branched and guided from the compressor outlet. Such a flow path change accompanying such a large-scale piping modification results in a significant increase in implementation cost.

本発明は上述の実情に鑑みてなしたもので、燃料も燃焼用空気も少量で済むコンパクトなバーナ装置により酸化触媒の入口部を加熱して該入口部の脱硫処理を図り得るようにすることを目的としている。   The present invention has been made in view of the above circumstances, and is intended to be able to desulfurize the inlet portion by heating the inlet portion of the oxidation catalyst with a compact burner apparatus that requires only a small amount of fuel and combustion air. It is an object.

本発明は、酸化触媒の入口部を加熱して該入口部の脱硫処理を図るためのバーナ装置であって、酸化触媒の入口部の中心に対峙するよう前記酸化触媒の軸線x上に配置されて燃料を燃焼用空気と共に噴射する添加弁と、該添加弁の先端部に前記酸化触媒の軸線xを中心として旋回し得るように装備され且つ前記軸線xに対し斜めに延びてから前記軸線x上に戻るようにV字状に屈曲して噴射口を開口する旋回ノズルと、該旋回ノズルの噴射口近傍に配置され且つ該噴射口から噴射される燃料に着火する着火手段とを備えたことを特徴とするものである。   The present invention is a burner device for heating an inlet portion of an oxidation catalyst to desulfurize the inlet portion, and is disposed on the axis x of the oxidation catalyst so as to face the center of the inlet portion of the oxidation catalyst. An addition valve for injecting fuel together with combustion air, and a tip of the addition valve so as to be pivotable about the axis x of the oxidation catalyst and extending obliquely with respect to the axis x and then the axis x A revolving nozzle that bends in a V-shape so as to return upward and opens the injection port; and an ignition means that is disposed in the vicinity of the injection port of the revolving nozzle and that ignites the fuel injected from the injection port. It is characterized by.

而して、旋回ノズルを旋回させながら添加弁により燃料を燃焼用空気と共に噴射し、その噴射燃料に着火手段により着火を行うと、その着火点を不動の中心として酸化触媒の軸心回りに火炎が旋回することになり、酸化触媒の入口部を旋回ノズルの旋回方向に順番に位置を変えながら局所的に直接加熱していくことが可能となる。   Thus, when the fuel is injected together with combustion air by the addition valve while the swirling nozzle is swirling and the injected fuel is ignited by the igniting means, a flame is generated around the axis of the oxidation catalyst with the ignition point as the center of immobilization. Thus, the inlet portion of the oxidation catalyst can be directly heated locally while changing its position in the turn direction of the turning nozzle.

この結果、酸化触媒の軸心回りに旋回する火炎により酸化触媒の入口部の周方向全域が約630℃以上に加熱され、ここに溜っているサルフェートがSO2ガスとして脱離されて酸化触媒の入口部の脱硫処理が図られることになる。 As a result, the entire area in the circumferential direction of the inlet portion of the oxidation catalyst is heated to about 630 ° C. or more by the flame swirling around the axis of the oxidation catalyst, and the sulfate accumulated therein is desorbed as SO 2 gas, and the oxidation catalyst The desulfurization process of an inlet part will be achieved.

また、本発明においては、旋回ノズルと酸化触媒の入口部との間に、旋回する旋回ノズルの噴射口から火炎を個別に受け入れ得るよう前記旋回ノズルの旋回方向に分割され且つその受け入れた火炎を酸化触媒の入口部の直近まで案内してから該入口部の半径方向外側へ吹き出し得るよう複数のガイド流路を備えた火炎ガイドを配設することが好ましい。   Further, in the present invention, the flame divided into the swirling direction of the swirl nozzle and received from the revolving nozzle so that the flame can be individually received between the swirl nozzle and the inlet of the oxidation catalyst. It is preferable to dispose a flame guide having a plurality of guide channels so that the oxidation catalyst can be guided to the immediate vicinity of the inlet and then blown out radially outward of the inlet.

このようにすれば、旋回ノズルからの火炎が火炎ガイドのガイド流路に個別に受け入れられて適切な方向づけが成され、しかも、この火炎ガイドが灼熱化して噴射燃料の着火維持に寄与することになり、更には、旋回ノズルや着火手段が酸化触媒側の排気ガスに直接晒されなくなって着火手段や旋回ノズルへの煤の付着が大幅に抑制されることになる。   In this way, the flame from the swirling nozzle is individually received in the guide flow path of the flame guide and is appropriately oriented, and the flame guide is heated to contribute to maintaining the ignition of the injected fuel. Furthermore, the swirl nozzle and the ignition means are not directly exposed to the exhaust gas on the oxidation catalyst side, so that the adhesion of soot to the ignition means and the swirl nozzle is greatly suppressed.

上記した本発明のバーナ装置によれば、下記の如き種々の優れた効果を奏し得る。   According to the burner device of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1に記載の発明によれば、着火点を一点に決めて酸化触媒の軸心回りに火炎を旋回させ、酸化触媒の入口部を旋回ノズルの旋回方向に順番に位置を変えながら局所的に直接加熱していくことで酸化触媒の入口部の周方向全域を約630℃以上に加熱して脱硫処理を施すことができるので、燃料も燃焼用空気も少量で済むコンパクトなバーナ装置により酸化触媒の入口部を加熱して該入口部の脱硫処理を施すことができ、これによって、脱硫処理に要する燃料を削減して燃費を著しく改善することができると共に、燃焼用空気をターボチャージャのコンプレッサの出口から吸気を分岐して導くような大掛かりな配管改造を伴う流路変更を行わなくても、エアタンクなどから簡易に少量の空気を導いて賄うことができて実施コストの削減を図ることもできる。   (I) According to the invention described in claim 1 of the present invention, the ignition point is determined as one point, the flame is swung around the axis of the oxidation catalyst, and the inlet portions of the oxidation catalyst are sequentially positioned in the swirling direction of the swirling nozzle. By directly heating locally while changing the temperature, the entire area in the circumferential direction of the inlet of the oxidation catalyst can be heated to about 630 ° C or higher for desulfurization, so a small amount of fuel and combustion air are required. The inlet part of the oxidation catalyst can be heated by a simple burner device to perform the desulfurization process of the inlet part, thereby reducing the fuel required for the desulfurization process and remarkably improving the fuel consumption, as well as the combustion air Even if there is no need to change the flow path that involves extensive piping modifications such as branching the intake air from the outlet of the turbocharger compressor, it can be easily conducted by introducing a small amount of air from an air tank. It is also possible to reduce the strike.

(II)本発明の請求項2に記載の発明によれば、旋回ノズルからの火炎を火炎ガイドのガイド流路により適切に方向づけして酸化触媒の入口部を効率良く加熱していくことができ、しかも、この火炎ガイドを灼熱化して噴射燃料を着火させ易くすることで火炎の安定化を図ることもでき、更には、着火手段や旋回ノズルへの煤の付着を大幅に抑制して作動不良の発生を未然に回避することができる。   (II) According to the invention described in claim 2 of the present invention, the inlet of the oxidation catalyst can be efficiently heated by appropriately directing the flame from the swivel nozzle by the guide channel of the flame guide. In addition, the flame guide can be heated to make the injected fuel easier to ignite, and the flame can be stabilized. In addition, the adhesion of soot to the ignition means and swirl nozzle is greatly suppressed, resulting in malfunction. Can be avoided in advance.

以下、本発明の実施の形態を図面を参照しつつ説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1〜図4は本発明を実施する形態の一例を示すもので、図1中における符号1はターボチャージャ2を装備したディーゼルエンジンを示しており、エアクリーナ3から導かれた吸気4が吸気管5を通し前記ターボチャージャ2のコンプレッサ2aへと送られ、該コンプレッサ2aで加圧された吸気4がインタークーラ6へと送られて冷却され、該インタークーラ6から更に吸気マニホールド7へと吸気4が導かれてディーゼルエンジン1の各気筒8(図1では直列6気筒の場合を例示している)に分配されるようになっている。   1 to 4 show an example of an embodiment for carrying out the present invention. Reference numeral 1 in FIG. 1 denotes a diesel engine equipped with a turbocharger 2, and intake air 4 guided from an air cleaner 3 is an intake pipe. 5, the intake air 4 sent to the compressor 2 a of the turbocharger 2 and pressurized by the compressor 2 a is sent to the intercooler 6 to be cooled, and the intake air 4 further flows from the intercooler 6 to the intake manifold 7. Is distributed to each cylinder 8 of the diesel engine 1 (the case of in-line 6 cylinders is illustrated in FIG. 1).

また、前記ディーゼルエンジン1の各気筒8から排出された排気ガス9は、排気マニホールド10を介しターボチャージャ2のタービン2bへと送られ、該タービン2bを駆動した後に排気管11へと送り出されるようにしてあるが、この排気管11の終端部にフィルタケース12が介装されており、該フィルタケース12内における後段側に、酸化触媒を一体的に担持して成る触媒再生型のパティキュレートフィルタ13が収容されている。   The exhaust gas 9 discharged from each cylinder 8 of the diesel engine 1 is sent to the turbine 2b of the turbocharger 2 via the exhaust manifold 10, and is sent to the exhaust pipe 11 after driving the turbine 2b. However, a filter case 12 is interposed at the end of the exhaust pipe 11, and a catalyst regeneration type particulate filter comprising an oxidation catalyst integrally supported on the rear stage side in the filter case 12. 13 is accommodated.

このパティキュレートフィルタ13は、セラミックから成る多孔質のハニカム構造を有し、格子状に区画された各流路の入口が交互に目封じされ、入口が目封じされていない流路については、その出口が目封じされるようになっており、各流路を区画する多孔質薄壁を透過した排気ガス9のみが下流側へ排出されるようにしてある。   This particulate filter 13 has a porous honeycomb structure made of ceramic, and the inlets of the respective flow paths partitioned in a lattice pattern are alternately sealed. The outlet is sealed, and only the exhaust gas 9 that has permeated through the porous thin wall partitioning each flow path is discharged downstream.

更に、前記フィルタケース12内におけるパティキュレートフィルタ13の前段には、フロースルー型の酸化触媒14が付帯装備されており、ディーゼルエンジン1側でのポスト噴射などにより排気ガス9中に添加された燃料から生じた炭化水素を酸化させ、その反応熱で排気ガス9を昇温して直後のパティキュレートフィルタ13の床温度を上げ、ここに捕集されているパティキュレートを燃やし尽くしてパティキュレートフィルタ13の再生化を図り得るようにしてある。   Further, a flow-through type oxidation catalyst 14 is attached to the front stage of the particulate filter 13 in the filter case 12, and the fuel added to the exhaust gas 9 by post injection on the diesel engine 1 side or the like. Oxidized hydrocarbons are heated, the exhaust gas 9 is heated by the reaction heat, the bed temperature of the particulate filter 13 immediately after is raised, the particulates collected here are burned out, and the particulate filter 13 Can be regenerated.

また、図1及び図2に示す如く、前記フィルタケース12の前端部に、環状の入口チャンバ15が外嵌装着されていると共に、該入口チャンバ15の周方向適宜位置には、前記ディーゼルエンジン1から排気ガス9を導く排気管11が接続されており、前記フィルタケース12の入口チャンバ15により被包された部分の周方向複数箇所には、前記排気管11からの排気ガス9を分散して導入するための連通孔15aが開口されている。   As shown in FIGS. 1 and 2, an annular inlet chamber 15 is externally fitted to the front end of the filter case 12, and the diesel engine 1 is positioned at an appropriate position in the circumferential direction of the inlet chamber 15. An exhaust pipe 11 that guides the exhaust gas 9 from the exhaust pipe 11 is connected. The exhaust gas 9 from the exhaust pipe 11 is dispersed at a plurality of locations in the circumferential direction of the portion encased by the inlet chamber 15 of the filter case 12. A communication hole 15a for introduction is opened.

そして、前記フィルタケース12の前面中央位置には、前記酸化触媒14の入口部を加熱して該入口部の脱硫処理を図り得るようにしたバーナ装置16が装備されており、図3に拡大して示す如く、このバーナ装置16は、酸化触媒14の入口部の中心に対峙するよう前記酸化触媒14の軸線x上に配置された添加弁17と、該添加弁17の先端部に前記酸化触媒14の軸線xを中心として旋回し得るように装備された旋回ノズル19と、該旋回ノズル19の噴射口18近傍に配置された放電端子20(着火手段)と、前記旋回ノズル19と酸化触媒14の入口部との間に配設された火炎ガイド21とにより構成されている。   A burner device 16 is provided at the center of the front surface of the filter case 12 so that the inlet portion of the oxidation catalyst 14 can be heated to desulfurize the inlet portion. As shown, the burner device 16 includes an addition valve 17 disposed on the axis x of the oxidation catalyst 14 so as to face the center of the inlet portion of the oxidation catalyst 14, and the oxidation catalyst at the tip of the addition valve 17. A swivel nozzle 19 equipped so as to be able to swivel about the axis line 14 of the fourteen, a discharge terminal 20 (ignition means) disposed in the vicinity of the injection port 18 of the swivel nozzle 19, the swivel nozzle 19 and the oxidation catalyst 14 The flame guide 21 is disposed between the inlet portion and the flame guide 21.

ここで、前記添加弁17の基端部には、エアタンク22(図1参照)から開閉弁23を介して導いたエアホース24が接続されていると共に、燃料タンク25(図1参照)からポンプ26を介して導いた燃料パイプ27が接続されており、燃料を燃焼用空気と共に噴射し得るようにしてある。   Here, an air hose 24 led from an air tank 22 (see FIG. 1) through an on-off valve 23 is connected to the base end portion of the addition valve 17, and a pump 26 is connected from a fuel tank 25 (see FIG. 1). A fuel pipe 27 led through the pipe is connected so that fuel can be injected together with combustion air.

また、前記旋回ノズル19は、添加弁17の先端部にベアリングなどを介し基端部を回転自在に外嵌装着し、しかも、その基端部の外周に駆動用ギヤ歯28を刻設しており、該駆動用ギヤ歯28に噛合するピニオン29を電動モータ30により回転駆動されることにより前記酸化触媒14の軸線xを中心として旋回し得るようにしてある。   The swivel nozzle 19 has a base end portion rotatably mounted on the tip end portion of the addition valve 17 via a bearing or the like, and driving gear teeth 28 are engraved on the outer periphery of the base end portion. The pinion 29 meshing with the drive gear teeth 28 is driven to rotate by an electric motor 30 so that the pinion 29 can turn around the axis x of the oxidation catalyst 14.

しかも、前記旋回ノズル19は、前記酸化触媒14の軸線xに対し斜めに延びてから前記軸線x上に戻るようにV字状に屈曲して噴射口18を開口するように形成されており、この噴射口18から噴射される燃料が前記放電端子20による放電で着火されるようになっている。   In addition, the swivel nozzle 19 is formed so as to be inclined with respect to the axis x of the oxidation catalyst 14 and then bent in a V shape so as to return to the axis x, thereby opening the injection port 18. The fuel injected from the injection port 18 is ignited by discharge from the discharge terminal 20.

また、図3及び図4に示す如く、前記火炎ガイド21は、旋回する旋回ノズル19の噴射口18から火炎を個別に受け入れるよう前記旋回ノズル19の旋回方向に分割され且つその受け入れた火炎を酸化触媒14の入口部の直近まで案内してから該入口部の半径方向外側へ吹き出し得るようにした複数のガイド流路31を備えており、その全体は耐熱性の高いステンレス鋼などにより構成されている。   Further, as shown in FIGS. 3 and 4, the flame guide 21 is divided in the swirl direction of the swivel nozzle 19 so as to individually accept the flames from the injection ports 18 of the swirl swivel nozzle 19, and oxidizes the received flame. A plurality of guide passages 31 are provided so that they can be guided to the immediate vicinity of the inlet portion of the catalyst 14 and then blown out radially outward of the inlet portion, and the whole is made of stainless steel having high heat resistance. Yes.

尚、図1中の符号32は排気ガス9を排気側から吸気側へ再循環するためのEGRパイプ、33はその再循環される排気ガス9の一部を冷却する水冷式のEGRクーラ、34はEGRバルブを夫々示しており、図3中の符号35,36はガスケットを示している。   1 is an EGR pipe for recirculating the exhaust gas 9 from the exhaust side to the intake side, 33 is a water-cooled EGR cooler for cooling a part of the recirculated exhaust gas 9, and 34. Denotes an EGR valve, and reference numerals 35 and 36 in FIG. 3 denote gaskets.

而して、電動モータ30によりピニオン29を回転駆動して駆動用ギヤ歯28を介し旋回ノズル19を旋回させながら添加弁17により燃料を燃焼用空気と共に噴射し、その噴射燃料に放電端子20による放電で着火を行うと、その着火点を不動の中心として酸化触媒14の軸心回りに火炎が旋回し、その火炎が火炎ガイド21の各ガイド流路31に順次受け入れられ、該各ガイド流路31を通し酸化触媒14の入口部の直近まで案内されてから該入口部の半径方向外側へ吹き出されることになり、酸化触媒14の入口部を旋回ノズル19の旋回方向に順番に位置を変えながら局所的に直接加熱していくことが可能となる。   Thus, while the pinion 29 is rotationally driven by the electric motor 30 and the swivel nozzle 19 is swung via the drive gear teeth 28, fuel is injected together with combustion air by the addition valve 17, and the injected fuel is injected into the injected fuel by the discharge terminal 20. When ignition is performed by discharge, a flame turns around the axis of the oxidation catalyst 14 with the ignition point as a stationary center, and the flame is sequentially received by each guide channel 31 of the flame guide 21, and each guide channel 31. Then, the gas is guided to the vicinity of the inlet portion of the oxidation catalyst 14 and then blown outward in the radial direction of the inlet portion. The position of the inlet portion of the oxidation catalyst 14 is sequentially changed in the turning direction of the turning nozzle 19. It becomes possible to heat directly locally.

この結果、酸化触媒14の軸心回りに旋回する火炎により酸化触媒14の入口部の周方向全域が約630℃以上に加熱され、ここに溜っているサルフェートがSO2ガスとして脱離されて酸化触媒14の入口部の脱硫処理が図られることになる。 As a result, a flame swirling around the axis of the oxidation catalyst 14 heats the entire circumferential area of the inlet portion of the oxidation catalyst 14 to about 630 ° C. or more, and the sulfate accumulated therein is desorbed as SO 2 gas and oxidized. The desulfurization process of the inlet part of the catalyst 14 will be achieved.

また、旋回ノズル19と酸化触媒14の入口部との間に火炎ガイド21を配設しているので、旋回ノズル19からの火炎が火炎ガイド21のガイド流路31に個別に受け入れられて適切な方向づけが成され、しかも、この火炎ガイド21が灼熱化して噴射燃料の着火維持に寄与することになり、更には、旋回ノズル19や放電端子20が酸化触媒14側の排気ガス9に直接晒されなくなって放電端子20や旋回ノズル19への煤の付着が大幅に抑制されることになる。   Further, since the flame guide 21 is disposed between the swivel nozzle 19 and the inlet portion of the oxidation catalyst 14, the flame from the swirl nozzle 19 is individually received by the guide flow path 31 of the flame guide 21 and is appropriate. In addition, the flame guide 21 is heated to contribute to maintaining the ignition of the injected fuel, and the swivel nozzle 19 and the discharge terminal 20 are directly exposed to the exhaust gas 9 on the oxidation catalyst 14 side. As a result, adhesion of soot to the discharge terminal 20 and the swivel nozzle 19 is greatly suppressed.

従って、上記形態例によれば、着火点を一点に決めて酸化触媒14の軸心回りに火炎を旋回させ、酸化触媒14の入口部を旋回ノズル19の旋回方向に順番に位置を変えながら局所的に直接加熱していくことで酸化触媒14の入口部の周方向全域を約630℃以上に加熱して脱硫処理を施すことができるので、燃料も燃焼用空気も少量で済むコンパクトなバーナ装置16により酸化触媒14の入口部を加熱して該入口部の脱硫処理を施すことができ、これによって、脱硫処理に要する燃料を削減して燃費を著しく改善することができると共に、燃焼用空気をターボチャージャ2のコンプレッサ2aの出口から吸気4を分岐して導くような大掛かりな配管改造を伴う流路変更を行わなくても、エアタンク22などから簡易に少量の空気を導いて賄うことができて実施コストの削減を図ることもできる。   Therefore, according to the above embodiment, the ignition point is determined as one point, the flame is swirled around the axis of the oxidation catalyst 14, and the inlet portion of the oxidation catalyst 14 is locally changed while sequentially changing the position in the swirl direction of the swirl nozzle 19. By directly heating the gas, the entire area in the circumferential direction of the inlet portion of the oxidation catalyst 14 can be heated to about 630 ° C. or more to perform the desulfurization process, so that a compact burner device 16 that requires a small amount of fuel and combustion air is sufficient. Thus, the inlet portion of the oxidation catalyst 14 can be heated to perform the desulfurization treatment of the inlet portion, thereby reducing the fuel required for the desulfurization treatment and remarkably improving the fuel consumption, and the combustion air can be turbocharged. A small amount of air can be easily introduced from the air tank 22 or the like without changing the flow path with a major pipe modification such as branching the intake 4 from the outlet of the compressor 2a of the charger 2. Ukoto can be in can also be reduced implementation cost.

また、旋回ノズル19と酸化触媒14の入口部との間に火炎ガイド21を配設しているので、旋回ノズル19からの火炎を火炎ガイド21のガイド流路31により適切に方向づけして酸化触媒14の入口部を効率良く加熱していくことができ、しかも、この火炎ガイド21を灼熱化して噴射燃料を着火させ易くすることで火炎の安定化を図ることもでき、更には、放電端子20や旋回ノズル19への煤の付着を大幅に抑制して作動不良の発生を未然に回避することができる。   In addition, since the flame guide 21 is disposed between the swivel nozzle 19 and the inlet of the oxidation catalyst 14, the flame from the swivel nozzle 19 is appropriately directed by the guide flow path 31 of the flame guide 21, and the oxidation catalyst. 14 can be efficiently heated, and the flame guide 21 can be heated to make the injected fuel easier to ignite, so that the flame can be stabilized. In addition, the adhesion of soot to the revolving nozzle 19 can be significantly suppressed, and the occurrence of malfunction can be avoided in advance.

尚、本発明のバーナ装置は、上述の形態例にのみ限定されるものではなく、本発明で対象としている酸化触媒には、高硫黄燃料を使用した場合にSO2ガスを酸化してサルフェートを生成してしまう酸化促進性能を備えた触媒全てが含まれ、この種の酸化促進性能を備えた触媒であれば、三元触媒やNOx吸蔵還元触媒などと呼称されているものであっても同様に適用できること、また、火炎ガイドは必要に応じて追加装備すれば良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 Note that the burner apparatus of the present invention is not limited to the above-described embodiments. The oxidation catalyst targeted by the present invention is a catalyst for oxidizing sulfate by oxidizing SO 2 gas when high sulfur fuel is used. All catalysts with oxidation promotion performance that are generated are included, and any catalyst with this kind of oxidation promotion performance is the same even if it is called a three-way catalyst or NOx storage reduction catalyst. Of course, the flame guide may be additionally provided as necessary, and various modifications may be made without departing from the scope of the present invention.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 図1の入口チャンバの詳細を示す一部を破断した斜視図である。It is the perspective view which fractured | ruptured a part which shows the detail of the inlet chamber of FIG. 図1のバーナ装置の詳細を示す断面図である。It is sectional drawing which shows the detail of the burner apparatus of FIG. 図3の火炎ガイドの詳細を示す斜視図である。It is a perspective view which shows the detail of the flame guide of FIG.

符号の説明Explanation of symbols

9 排気ガス
11 排気管
14 酸化触媒
16 バーナ装置
17 添加弁
18 噴射口
19 旋回ノズル
20 放電端子(着火手段)
21 火炎ガイド
x 酸化触媒の軸線
DESCRIPTION OF SYMBOLS 9 Exhaust gas 11 Exhaust pipe 14 Oxidation catalyst 16 Burner apparatus 17 Addition valve 18 Injection port 19 Turning nozzle 20 Discharge terminal (ignition means)
21 Flame guide x Oxidation catalyst axis

Claims (2)

酸化触媒の入口部を加熱して該入口部の脱硫処理を図るためのバーナ装置であって、酸化触媒の入口部の中心に対峙するよう前記酸化触媒の軸線x上に配置されて燃料を燃焼用空気と共に噴射する添加弁と、該添加弁の先端部に前記酸化触媒の軸線xを中心として旋回し得るように装備され且つ前記軸線xに対し斜めに延びてから前記軸線x上に戻るようにV字状に屈曲して噴射口を開口する旋回ノズルと、該旋回ノズルの噴射口近傍に配置され且つ該噴射口から噴射される燃料に着火する着火手段とを備えたことを特徴とするバーナ装置。   A burner device for heating an inlet portion of an oxidation catalyst to desulfurize the inlet portion, disposed on the axis x of the oxidation catalyst so as to face the center of the inlet portion of the oxidation catalyst, and burning fuel An addition valve that is injected together with the working air, and is provided at the tip of the addition valve so as to be pivotable about the axis x of the oxidation catalyst and extends obliquely with respect to the axis x and then returns to the axis x A revolving nozzle that is bent in a V shape and opens an injection port, and an ignition means that is disposed in the vicinity of the injection port of the revolving nozzle and ignites fuel injected from the injection port. Burner device. 旋回ノズルと酸化触媒の入口部との間に、旋回する旋回ノズルの噴射口から火炎を個別に受け入れ得るよう前記旋回ノズルの旋回方向に分割され且つその受け入れた火炎を酸化触媒の入口部の直近まで案内してから該入口部の半径方向外側へ吹き出し得るよう複数のガイド流路を備えた火炎ガイドを配設したことを特徴とする請求項1に記載のバーナ装置。   Between the swirl nozzle and the inlet of the oxidation catalyst, the swirl nozzle is divided in the swirl direction so that the flame can be individually received from the injection nozzle of the swirl nozzle, and the received flame is disposed in the immediate vicinity of the inlet of the oxidation catalyst. 2. The burner device according to claim 1, wherein a flame guide having a plurality of guide channels is disposed so that the guide can be blown out radially outward of the inlet portion.
JP2008161156A 2008-06-20 2008-06-20 Burner equipment Expired - Fee Related JP4989565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008161156A JP4989565B2 (en) 2008-06-20 2008-06-20 Burner equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008161156A JP4989565B2 (en) 2008-06-20 2008-06-20 Burner equipment

Publications (2)

Publication Number Publication Date
JP2010001799A true JP2010001799A (en) 2010-01-07
JP4989565B2 JP4989565B2 (en) 2012-08-01

Family

ID=41583717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008161156A Expired - Fee Related JP4989565B2 (en) 2008-06-20 2008-06-20 Burner equipment

Country Status (1)

Country Link
JP (1) JP4989565B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011101898A1 (en) * 2010-02-17 2011-08-25 トヨタ自動車株式会社 Exhaust purification device for an internal combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028211U (en) * 1983-08-01 1985-02-26 清水建設株式会社 Diesel engine exhaust particulate treatment device
JPH0212017U (en) * 1988-07-07 1990-01-25
JPH11173135A (en) * 1997-12-11 1999-06-29 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
JP2002089327A (en) * 2000-09-14 2002-03-27 Nissan Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2003148131A (en) * 2001-11-13 2003-05-21 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
JP2007146700A (en) * 2005-11-25 2007-06-14 Bosch Corp Exhaust emission control device and exhaust emission control method for internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028211U (en) * 1983-08-01 1985-02-26 清水建設株式会社 Diesel engine exhaust particulate treatment device
JPH0212017U (en) * 1988-07-07 1990-01-25
JPH11173135A (en) * 1997-12-11 1999-06-29 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
JP2002089327A (en) * 2000-09-14 2002-03-27 Nissan Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2003148131A (en) * 2001-11-13 2003-05-21 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
JP2007146700A (en) * 2005-11-25 2007-06-14 Bosch Corp Exhaust emission control device and exhaust emission control method for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011101898A1 (en) * 2010-02-17 2011-08-25 トヨタ自動車株式会社 Exhaust purification device for an internal combustion engine
CN102762826A (en) * 2010-02-17 2012-10-31 丰田自动车株式会社 Exhaust purification device for an internal combustion engine
JPWO2011101898A1 (en) * 2010-02-17 2013-06-17 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
JP4989565B2 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
US9784156B2 (en) Particle filter assembly and method for cleaning a particle filter
US9115625B2 (en) Exhaust emission control device
US20110225969A1 (en) Compressor bypass to exhaust for particulate trap regeneration
JP5448310B2 (en) Exhaust purification device
US7805931B2 (en) Self-sustaining oxy-exothermal filter regeneration system
JP2006233947A (en) Egr device
JP5335315B2 (en) Exhaust purification device
JP4327445B2 (en) Exhaust purification equipment
JP3545712B2 (en) Exhaust gas purification device
JP5112986B2 (en) Exhaust purification device
JP4248199B2 (en) Exhaust purification equipment
JP2007009718A (en) Exhaust emission control device
JP2009092015A (en) Exhaust emission control device
JP2010526968A (en) Joint of turbocharger to oxidation catalyst of exhaust line of internal combustion engine
JP2006194253A (en) Internal combustion engine with exhaust emission control device
JP4989565B2 (en) Burner equipment
JP2009013809A (en) Exhaust emission control device
JP2007255256A (en) Exhaust emission control device in internal combustion engine
JP5553562B2 (en) Exhaust purification device
JP5266105B2 (en) Desulfurization equipment
KR20220099866A (en) Smoke reduction device having diesel particulate filter
KR100763411B1 (en) Catalytic converter with multi-arrangement type for diesel engine
JP5085393B2 (en) Exhaust purification device
JP2007127069A (en) Exhaust emission control device
JP2007120346A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees