JP2010001718A - Shallow ground improving method - Google Patents

Shallow ground improving method Download PDF

Info

Publication number
JP2010001718A
JP2010001718A JP2008184275A JP2008184275A JP2010001718A JP 2010001718 A JP2010001718 A JP 2010001718A JP 2008184275 A JP2008184275 A JP 2008184275A JP 2008184275 A JP2008184275 A JP 2008184275A JP 2010001718 A JP2010001718 A JP 2010001718A
Authority
JP
Japan
Prior art keywords
foamed resin
geotextile
ground
laid
ground improvement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008184275A
Other languages
Japanese (ja)
Inventor
Kunio Okada
九二夫 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008184275A priority Critical patent/JP2010001718A/en
Publication of JP2010001718A publication Critical patent/JP2010001718A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shallow ground improving method for alleviating sinkage of an upper building and input vibrations to the upper building, reducing the construction cost compared with a conventional art, and improving an effect of preventing deformation of an improved layer. <P>SOLUTION: In the shallow ground improving method, an integrated improved ground is formed by laying a sheet of geotextile on a leveled ground surface, placing dry mixed mortar, and bonding foamed resin plates to each other. When the ground is particularly soft, more stable improved ground is formed by injecting a chemical liquid or laying a plurality of geotextile sheets. Further, when improvement in vibration control performance is required, a vibration control material is arranged between the foamed resin plates. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、建物施工に際し、特に軟弱地盤上に建物を建設する場合に上部荷重を支持し、沈下を軽減し、地盤振動の上部建物への入力を軽減するための地盤改良に関する。The present invention relates to ground improvement for supporting an upper load, reducing subsidence, and reducing input of ground vibration to an upper building, particularly when a building is constructed on soft ground.

軟弱地盤上に建物を建設する際、又は既存建物下部の地盤補強をする際に、発泡樹脂を敷設して下部基礎構造を構築する工法が知られている。この工法は、特許文献1ないし特許文献3に示されている。
特許文献1の工法を要約すると、建物基礎の下部に排水材及び定形の発泡樹脂材を敷設して耐震性に優れ、施工が簡便な基礎構造を構築するものである。
又、特許文献2の工法を要約すると、交通振動対策、地震対策、地盤沈下対策のために、既存の建物の基礎下部を掘削、排土し、発泡樹脂盤を設置するものである。
さらに、特許文献3の工法を要約すると、地盤を根伐りし、直接砂を敷き、該砂敷きの上に発泡樹脂ブロックを並べておき、該発泡樹脂ブロック上に建物基礎を構築する工法である。その効果としては、上部建物の耐震性向上、支持地盤の沈下防止効果がうたわれている。
特開平9−273160号公報 特開平11−256596号公報 特開2000−154550号公報
A method of constructing a lower foundation structure by laying foamed resin is known when a building is constructed on soft ground or when reinforcing the ground of the lower part of an existing building. This construction method is shown in Patent Documents 1 to 3.
Summarizing the construction method of Patent Document 1, a drainage material and a fixed foamed resin material are laid at the bottom of a building foundation to construct a foundation structure that is excellent in earthquake resistance and easy to construct.
In summary, the construction method of Patent Document 2 excavates and discharges the lower part of the foundation of an existing building and installs a foamed resin board to prevent traffic vibrations, earthquakes, and land subsidence.
Furthermore, the construction method disclosed in Patent Document 3 is a construction method in which the ground is rooted, sand is directly spread, foamed resin blocks are arranged on the sandbed, and a building foundation is constructed on the foamed resin block. The effect is said to improve the earthquake resistance of the upper building and prevent the settlement of the supporting ground.
Japanese Patent Laid-Open No. 9-273160 Japanese Patent Laid-Open No. 11-256596 JP 2000-154550 A

前記背景技術のうち、特許文献1に係る技術については、排水材が容易に目詰まりを起こし、所定の排水能力が得られず、かえって地下水による悪影響を上部建物に生じさせるという問題がある。
又、特許文献2に係る技術については、既存建物の基礎下部を掘削するためにかえって不同沈下を誘発してしまうこと、及び、設置された発泡樹脂盤と上部建築物とのなじみが悪く、上部建物の構造安全性に悪影響を及ぼすという問題がある。
さらに、特許文献3に係る技術については、発泡樹脂ブロックを敷設する方法については、単に根伐底面上に砂を敷いたのちに発泡樹脂ブロックを置いただけであり、地下水により砂が流出し、または発泡樹脂ブロック同士が分離することにより上部建物に不同沈下を起こすことが多い、さらに、発泡樹脂仕上面の水平精度が悪く、上部建物の構造に悪影響を及ぼすという問題がある。さらに、防振性能については、低周波の振動を吸収又は反射しづらいといった問題もある。
Among the background arts, the technique according to Patent Document 1 has a problem that the drainage material is easily clogged, a predetermined drainage capacity cannot be obtained, and an adverse effect due to groundwater is caused on the upper building.
Moreover, about the technique which concerns on patent document 2, in order to excavate the lower part of the foundation of an existing building, it induces non-uniform subsidence, and the familiarity with the installed foam resin board and an upper building is bad, and upper part There is a problem of adversely affecting the structural safety of the building.
Furthermore, regarding the technique according to Patent Document 3, the method of laying the foamed resin block is simply placing the foamed resin block after laying the sand on the bottom surface of the rooting, and the sand flows out by groundwater, or Separation of the foamed resin blocks often causes uneven settlement in the upper building, and further, there is a problem that the horizontal accuracy of the foamed resin finished surface is poor and adversely affects the structure of the upper building. Furthermore, with regard to the vibration proof performance, there is a problem that it is difficult to absorb or reflect low frequency vibration.

本発明は、上記課題を解決するためのものであり、特許文献1で問題となった地下排水路の目詰まり、特許文献2で問題となった上部建物の構造安全性への悪影響、特許文献3で問題となった上部建築物の不同沈下、低周波領域での防振性能の低下という問題を解決し、軟弱地盤上への建築物の構築において、支持力向上効果、不同沈下防止効果、及び制震効果を有する改良地盤の提供を行なうことを課題とする。The present invention is for solving the above-mentioned problems, and clogging of an underground drainage channel which has been a problem in Patent Document 1, adverse effects on structural safety of an upper building which has been a problem in Patent Document 2, Patent Document 3 solves the problem of the uneven settlement of the upper building, which has become a problem in 3, and the deterioration of the vibration-proof performance in the low-frequency region. And providing improved ground with seismic control effect.

根伐底面に単層のジオ・テキスタイルが敷設され、該ジオ・テキスタイル上に砕石が敷設され、該砕石上に空練モルタルが敷設され、該空練モルタル上に発泡樹脂板が複数層敷設され、該発泡樹脂板相互は、接着剤にて互いに接着固定され、前記、発泡樹脂板相互は接着部が重ならないように複数層に積層配置され、該ジオ・テキスタイルは根伐底面の形状に合わせて一体縫製されたものであることを特徴としている。A single layer of geotextile is laid on the bottom of the rooting, crushed stone is laid on the geotextile, empty paste mortar is laid on the crushed stone, and multiple layers of foamed resin boards are laid on the empty paste mortar. The foamed resin boards are bonded and fixed to each other with an adhesive, and the foamed resin boards are laminated in a plurality of layers so that the adhesive portions do not overlap with each other, and the geotextile matches the shape of the bottom of the rooting. It is characterized by being sewn together.

又、より安定的な地盤とすることが要求される場合には、前記工法において、ジオ・テキスタイルを複数層敷設し、該ジオ・テキスタイル間においては、砕石・埋土、粘性土、又は生石灰を混入した粘性土が介在されることを特徴としている。In addition, when it is required to have a more stable ground, a plurality of layers of geotextiles are laid in the construction method, and crushed stone / burial soil, cohesive soil, or quick lime is placed between the geotextiles. It is characterized by interspersed viscous soil.

下部地盤が特に軟弱な場合には、ジオ・テキスタイル敷設部の下部に、地盤固化用薬液を注入して下部地盤の補強を行なうこととする。
この場合、ジオ・テキスタイルと薬液注入部との間に介在する原地盤層の層厚は2m以内とし、該薬液注入に注入する薬液は、水ガラス系又はセメント系材料とすることを特徴としている。
In the case where the lower ground is particularly soft, the lower ground is reinforced by injecting a chemical solution for solidification into the lower part of the geotextile laying portion.
In this case, the layer thickness of the original ground layer interposed between the geotextile and the chemical solution injection part is within 2 m, and the chemical solution injected into the chemical solution injection is a water glass or cement material. .

防振性能を特に要求される場合には、発泡樹脂板の上下の層の間に制震部材を敷設する。該制震部材は、鉄筋コンクリート板、制震用ゴム材料、フレキシブルボード又は不織布とすることを特徴としている。When vibration-proof performance is particularly required, a damping member is laid between the upper and lower layers of the foamed resin plate. The damping member is a reinforced concrete plate, a damping rubber material, a flexible board, or a nonwoven fabric.

本発明の効果Effects of the present invention

建物下部地盤を根伐りすると、発泡樹脂板は比重が極めて小さいため、排土された重量だけ根伐底面の下部地盤の地中応力増加が軽減される。
これにより、建物建設後における建物下部地盤の即時沈下量及び圧密沈下量が大幅に軽減されることになる。その結果、建物全体の沈下及び不同沈下の軽減に効果がある。
When the lower ground of the building is rooted, the specific gravity of the foamed resin board is extremely small, so the increase in underground stress in the lower ground on the bottom of the rooting is reduced by the weight of the soil removed.
As a result, the amount of immediate settlement and consolidation settlement of the lower ground of the building after construction is greatly reduced. As a result, it is effective in reducing the settlement and uneven settlement of the entire building.

ジオ・テキスタイルは、周囲の土との摩擦力を生ずるため、改良層下端面の土、及び側面の土との摩擦力が生じ、そのため、改良層にいわゆるハンモック効果により上向きの摩擦応力がかかることになり、その結果として、建物の沈下軽減に効果がある。
又、ジオ・テキスタイルは、根伐底の形状に合わせて一体縫製されたものであることから、該ジオ・テキスタイルは、上部の砕石を包み込む形状となるため、砕石が軟弱土中に散逸することを防ぐ効果がある。
Since geotextiles generate frictional force with the surrounding soil, frictional force is generated with the soil on the bottom of the improved layer and the soil on the side surface. Therefore, upward frictional stress is applied to the improved layer due to the so-called hammock effect. As a result, it is effective in reducing the settlement of buildings.
In addition, since the geotextile is sewn in accordance with the shape of the bottoming bottom, the geotextile has a shape that wraps the crushed stone at the top, so that the crushed stone will dissipate in soft soil. There is an effect to prevent.

砕石をジオ・テキスタイル上に敷設することにより、地下水の地中での水路の役割を果すことになる。具体的には、地下からの湧水又は地上からの雨水が地中に浸透してきた場合、砕石中を自由に流れることができ、改良地盤下部に滞留することなく、又、水圧による悪影響を改良地盤に与えることなく、改良地盤の外部へと流出していくこととなる。その結果、地下水流による改良層への悪影響を防ぐ効果がある。By laying crushed stones on the geotextile, it will serve as a channel in the groundwater ground. Specifically, if spring water from the ground or rainwater from the ground penetrates into the ground, it can flow freely in the crushed stone, staying in the lower part of the improved ground, and improving the adverse effects of water pressure Without giving to the ground, it will flow out of the improved ground. As a result, it has the effect of preventing adverse effects on the improved layer due to groundwater flow.

空練モルタルを敷設することにより、上部発泡樹脂板と下部砕石との接着性を向上させ、改良層全体の一体性を向上させる効果がある。すなわち、空練モルタルは敷設直後より水分を吸収して硬化を開始し、その際、上部に位置する最下層の発泡樹脂板及び下部砕石と接着し一体となる作用を有している。そのため、硬化終了時においては、上部発泡樹脂板、空練モルタル、下部砕石が全体として一体的な強度を有することとなる。該空練モルタルは、施工時において金コテ等で平滑な面に仕上げることにより良好な水平精度を確保することができる。このため、空練モルタル上部に敷設される発泡樹脂板の水平精度が向上することとなる。又、空練モルタルに代えて捨てコンクリートとしてもよい。By laying the empty mortar, there is an effect of improving the adhesion between the upper foamed resin plate and the lower crushed stone and improving the integrity of the entire improved layer. That is, the empty mortar absorbs moisture immediately after laying and starts to harden. At that time, it has an action of being bonded to and integrated with the lowermost foamed resin plate and the lower crushed stone. Therefore, at the end of curing, the upper foamed resin plate, the empty mortar, and the lower crushed stone have an integrated strength as a whole. The empty mortar can ensure a good horizontal accuracy by finishing it to a smooth surface with a gold iron or the like during construction. For this reason, the horizontal accuracy of the foamed resin plate laid on the upper part of the empty paste mortar is improved. Also, it may be discarded concrete instead of empty mortar.

発泡樹脂板は、非常に軽量でありながら圧縮強度が強く、発泡樹脂板内部で、上部建物の鉛直応力が分散され、上部建物の建設による地中への応力増加を軽減させる効果がある。
又、発泡樹脂板相互は、接着剤にて強固に接着されており、又、その接着面は発泡樹脂板の目地が目違いとなるように配置されていることから、全体として一体的な構造となっており、改良層全体の強度を増加させる効果及び改良地盤の不同沈下抑止効果がある。
The foamed resin plate is very lightweight but has high compressive strength, and the vertical stress of the upper building is dispersed inside the foamed resin plate, which has the effect of reducing the increase in stress due to the construction of the upper building.
In addition, the foamed resin plates are firmly bonded with an adhesive, and the adhesive surfaces are arranged so that the joints of the foamed resin plates are misplaced. It has the effect of increasing the strength of the entire improved layer and the effect of preventing the subsidence of the improved ground.

発泡樹脂板はその弾性領域が広いため、一種のウィンクラーバネとなり、地震時には上部建物のロッキング・バネとして作用し、上部建物の固有振動周期を長期化させ、地震エネルギーの上部建物への入力を減少させる効果を有する。これは、上部建物の剛性が高く、かつ塔状比が大きい場合に、特に有効となる。Foamed resin board has a wide elastic region, so it becomes a kind of winkler spring, acts as a rocking spring for the upper building during an earthquake, prolongs the natural vibration period of the upper building, and inputs seismic energy to the upper building. Has the effect of reducing. This is particularly effective when the upper building has high rigidity and a large tower ratio.

発泡樹脂板周囲の埋戻層は、発泡樹脂板を外部の紫外線から保護し、改良層全体の劣化防止、及び形状安定化の効果がある。The backfill layer around the foamed resin plate protects the foamed resin plate from external ultraviolet rays, and is effective in preventing deterioration of the entire improved layer and stabilizing the shape.

地盤固化用薬液にて改良された層は、下部地盤が特に軟弱な場合に、該下部地盤内に薬液を注入して改良地盤の支持力をより向上させる効果がある。すなわち、下部地盤が特に軟弱な場合には、側方流動による地盤変形を生ずることが予想されるが、側方流動に対する備えとして、水ガラス系又はセメント系薬液を注入することにより、注入部地盤の粘着性、止水性が向上し、側方流動が防止されることとなる。
このため、結果的に、改良地盤の支持力が向上し、又、上部建物の沈下抑制効果が得られる。
The layer improved by the ground solidifying chemical solution has an effect of injecting the chemical solution into the lower ground and further improving the supporting force of the improved ground when the lower ground is particularly soft. That is, if the lower ground is particularly soft, it is expected that ground deformation will occur due to lateral flow, but in preparation for lateral flow, by injecting water glass or cement-based chemicals, This improves the adhesiveness and water-stopping property and prevents lateral flow.
For this reason, as a result, the supporting force of the improved ground is improved and the effect of suppressing the settlement of the upper building is obtained.

制震部材は、特に制震効果が要求される場合に使用される。制震部材に制震用ゴム材、フレキシブルボード、又は不織布を使用した場合には、該制震部材と発泡樹脂板、それぞれが異なった周波数帯の振動を吸収し、改良体全体として振動吸収効果を向上させる。又、制震部材に鉄筋コンクリート板を使用した場合には、該鉄筋コンクリート板と発泡スチロールとの振動インピーダンス比が大きいため、波動反射理論により、振動が反射される効率が向上する。この反射効果と発泡スチロールの高周波数帯での波動吸収効果、及び鉄筋コンクリート板の質量効果により、効率よく振動を吸収又は反射し、上部建物への振動入力を軽減する。The damping member is used particularly when a damping effect is required. When a damping rubber material, flexible board, or non-woven fabric is used as the damping member, the damping member and the foamed resin plate each absorb vibrations in different frequency bands, and the improved body as a whole absorbs vibration. To improve. Further, when a reinforced concrete plate is used as the vibration control member, the vibration impedance ratio between the reinforced concrete plate and the polystyrene foam is large, so that the efficiency of reflection of vibration is improved by the wave reflection theory. By this reflection effect, the wave absorption effect in the high frequency band of the polystyrene foam, and the mass effect of the reinforced concrete board, the vibration is efficiently absorbed or reflected, and the vibration input to the upper building is reduced.

ジオ・テキスタイルの縦方向相互間に生石灰混入の粘性土を施工し、該粘性土をつき固めて、複数層の地層を構築することにより、いわゆる「版築」の原理により、長期にわたって安定した改良地盤となる。この際、地下水路の確保のため該下記ジオ・テキスタイルは、透水性の大きい不織布材を使用することが好ましい。By installing viscous soil mixed with quick lime between the longitudinal directions of geotextiles, solidifying the viscous soil and constructing multiple layers of layers, so-called "plate construction" principle, stable improvement over a long period of time It becomes the ground. At this time, it is preferable to use a non-woven material having high water permeability for the following geo-textile for securing a groundwater channel.

ジオ・テキスタイルの縦方向相互間に埋土を施工した場合には、いわゆる「テールアルメ」の原理により、ジオ・テキスタイルと埋土との摩擦及びジオ・テキスタイル自体の引張強度により、上部建物の鉛直方向の応力を支持するための安定した改良地盤となる。この際、ジオ・テキスタイル端部に適切な定着長さを確保すること、又は、ジオ・テキスタイルの端部に俵積を施すことが好ましい。When buried in the vertical direction between geotextiles, the vertical direction of the upper building depends on the friction between the geotextile and the buried soil and the tensile strength of the geotextile itself. It becomes a stable improved ground to support the stress of At this time, it is preferable to secure an appropriate fixing length at the end of the geotextile, or to apply an area to the end of the geotextile.

以下において本発明の実施例を説明する。Examples of the present invention will be described below.

図1にベタ基礎に本工法を適用した例を示す。
まず、地盤を所定の深さまで根伐りする。根伐底1は、十分に転圧して水平精度を確保することとし、その上にジオ・テキスタイル2を敷設する。該ジオ・テキスタイル2は、根伐底面1の形状に合わせて一体縫製したものとする。この上に砕石3を敷設し、十分に転圧する。該砕石3の上に空練モルタル4を敷設する。該空練モルタル4の天端面は、正確にレベル出しをすることとし、金コテ仕上げが望ましい。
該空練モルタル4の上に、第1層の発泡樹脂板5Aを敷設していく。敷設に際しては、所定の施工図に基づき、割付をしていく。第1層の上に、第2層の発泡樹脂板5Bを下層の発泡樹脂板5Aとの間に接着材を塗布して接着して敷設していく。この際、発泡樹脂板5A及び5Bの間は、串状のものによって上下の層が緊結されることが好ましい。又、該上下層は、平面的に目地がいわゆる目違いになるように割付けされていることとする。以降、順次、所定の層まで発泡樹脂板5C等を同様の手順にて敷設し、最終的に発泡樹脂板周囲を埋戻層7によって埋戻して、全体としての改良層が完成する。
各構成要素の作用、効果は以下の通りである。ジオ・テキスタイル2は、原地盤と改良層との絶縁をし、かつ、原地盤との摩擦力によって改良層の不同沈下を軽減させる効果がある。砕石2は、地下水の水路となり、地下水の水流は又は水圧によって改良層が変形することを防止する。空練モルタル4は、上部の発泡樹脂板5と下部の砕石3とを接着させ、改良層全体を構造的に一体化する効果がある。発泡樹脂板5は、上部建物の鉛直荷重を均一かつ分散させて下部地盤へ伝達する効果がある。
又、該発泡樹脂板5により排土された土の重量分において下部の地盤における地中応力の増加を軽減する効果があり、これにより上部建物の不同沈下が軽減されることになる。又、発泡樹脂板相互を接着剤にて接着することにより、改良層が全体として一体的な構造となり、不同沈下軽減効果が向上する。
FIG. 1 shows an example in which the present construction method is applied to a solid foundation.
First, the ground is cut down to a predetermined depth. The bottom cutting bottom 1 is sufficiently rolled to ensure horizontal accuracy, and the geotextile 2 is laid thereon. The geotextile 2 is integrally sewn in accordance with the shape of the bottoming bottom surface 1. The crushed stone 3 is laid on this and fully rolled. An empty mortar 4 is laid on the crushed stone 3. The top end surface of the empty mortar 4 is accurately leveled, and a gold trowel finish is desirable.
On the empty mortar 4, a first layer of foamed resin plate 5A is laid. When laying, it will be allocated based on a predetermined construction drawing. On the first layer, the second layer of the foamed resin plate 5B is applied and adhered between the lower layer of the foamed resin plate 5A and laid. At this time, it is preferable that the upper and lower layers are fastened by a skewer between the foamed resin plates 5A and 5B. The upper and lower layers are allocated so that the joints are so-called misplaced in a plane. Thereafter, the foamed resin plate 5C and the like are sequentially laid up to a predetermined layer in the same procedure, and finally the periphery of the foamed resin plate is backfilled by the backfill layer 7 to complete the improved layer as a whole.
The function and effect of each component are as follows. The geotextile 2 has an effect of insulating the original ground and the improved layer and reducing the uneven settlement of the improved layer by the frictional force with the original ground. The crushed stone 2 becomes a channel for groundwater, and prevents the improvement layer from being deformed due to the flow of groundwater or water pressure. The empty mortar 4 has an effect of bonding the upper foamed resin plate 5 and the lower crushed stone 3 and structurally integrating the entire improved layer. The foamed resin plate 5 has an effect of uniformly and dispersing the vertical load of the upper building and transmitting it to the lower ground.
Further, there is an effect of reducing an increase in underground stress in the lower ground for the weight of the soil discharged by the foamed resin plate 5, thereby reducing the uneven settlement of the upper building. Further, by adhering the foamed resin plates to each other with an adhesive, the improvement layer has an integral structure as a whole, and the effect of reducing the uneven settlement is improved.

図2に、ジオ・テキスタイルを複数層敷設した例を示す。
根伐底1までの掘削は、前記実施例1の場合と同様である。ジオ・テキスタイル2A(第1層)を敷設した後、該ジオ・テキスタイル2A上に粘性土8を敷設し、十分な転圧を行なう。この際において、粘性土に接するジオ・テキスタイル2A及び2Bは、透水性の確保の点から不繊布製のものが好ましい。
粘性土8を十分に転圧し、レベル出しを行なった後、ジオ・テキスタイル2B(第2層)を敷設する。施工手順は、ジオ・テキスタイル2Aの場合と同様である。場合によっては、同様のジオ・テキスタイルと粘性土の層をサンドイッチ状に構築していくことも好ましい。又、ジオ・テキスタイル最上層2Cとその上部の発泡樹脂板5Aの間には砕石3を敷設することとする。これにより、地下水の流れを確保する。砕石3以降の施工手順は、実施例1の場合と同様である。
各構成要素の作用、効果のうち、実施例1に係る技術と異なる点は以下の通りである。ジオ・テキスタイル2Aと粘性土8とは、摩擦力が大きく作用して一体的な構造となり、建物支持層として良好な改良層となる。又、ジオ・テキスタイル2Cと周囲の砕石3A、3Bは、地下水の水流及び水圧による改良層の変形を抑える効果がある。
FIG. 2 shows an example in which a plurality of geotextiles are laid.
Excavation up to the bottom 1 is the same as in the first embodiment. After laying the geotextile 2A (first layer), the clay 8 is laid on the geotextile 2A, and sufficient rolling is performed. In this case, the geotextiles 2A and 2B in contact with the viscous soil are preferably made of non-woven cloth from the viewpoint of ensuring water permeability.
The cohesive soil 8 is fully rolled and leveled, and then the geotextile 2B (second layer) is laid. The construction procedure is the same as in the case of Geotextile 2A. In some cases, it is also preferable to construct a similar geotextile and cohesive soil layer in a sandwich. Further, the crushed stone 3 is laid between the geotextile uppermost layer 2C and the foamed resin plate 5A on the top. This ensures the flow of groundwater. The construction procedure after the crushed stone 3 is the same as that in the first embodiment.
Of the actions and effects of the constituent elements, the differences from the technique according to the first embodiment are as follows. The geotextile 2A and the cohesive soil 8 have an integrated structure due to a large frictional force, and are a good improvement layer as a building support layer. Further, the geotextile 2C and the surrounding crushed stones 3A and 3B have an effect of suppressing deformation of the improved layer due to the groundwater flow and water pressure.

図3に布基礎12に本工法を適用した例を示す。施工方法は、前記図1に示した手順と同様である、この場合、布基礎下部の発泡樹脂板5Aは、一般に布基礎接地圧が大きいことから、圧縮強度が大きいものを使用することが好ましい。
各構成要素の作用、効果は、実施例1に係る技術と同様である。
FIG. 3 shows an example in which the present construction method is applied to the fabric foundation 12. The construction method is the same as the procedure shown in FIG. 1. In this case, it is preferable to use the foam resin plate 5A at the lower part of the fabric foundation having a high compressive strength because the cloth foundation ground pressure is generally large. .
The function and effect of each component are the same as in the technique according to the first embodiment.

図4に本工法を特に軟弱な地盤に適用する場合の例を示す。
地盤を根伐りする前に、薬液注入部10に、所定の深度、及び水平面上の範囲を逸脱しないように薬液を注入する。薬液は、水ガラス系、又はセメント系とする。
薬液注入後、所定の深度まで根伐りを行なう。原地盤層9は層厚2m以内とするが、場合によっては、原地盤層はなくしてジオ・テキスタイル2と薬液注入部10が接していてもよい。根伐り後の施工手順は、前記実施例1ないし実施例3の場合と同様である。
各構成要素の作用、効果について実施例1に係る技術と異なる点は以下の通りである。薬液注入部10は、地盤の側方流動を抑え、又、場合により地震時の液状化を防止する効果がある。又、原地盤層9は、ジオ・テキスタイル2と薬液注入部10との間に介在し、上部建物の鉛直応力を分散して薬液注入部10に伝達する効果がある。
FIG. 4 shows an example in which the present construction method is applied to a particularly soft ground.
Before rooting the ground, the chemical solution is injected into the chemical solution injection unit 10 so as not to deviate from a predetermined depth and a range on a horizontal plane. The chemical solution is water glass or cement.
After chemical injection, root cutting is performed to a predetermined depth. Although the original ground layer 9 has a layer thickness of 2 m or less, the raw textile layer may be omitted and the geotextile 2 may be in contact with the chemical injection part 10 in some cases. The construction procedure after root cutting is the same as that in the first to third embodiments.
The differences between the functions and effects of the constituent elements from the technique according to the first embodiment are as follows. The chemical injection unit 10 has an effect of suppressing the lateral flow of the ground and preventing liquefaction during an earthquake in some cases. The raw ground layer 9 is interposed between the geotextile 2 and the chemical solution injection unit 10 and has an effect of dispersing the vertical stress of the upper building and transmitting it to the chemical solution injection unit 10.

図5に特に防振性を向上するために本工法を適用する場合の例を示す。
根伐から第1層の発泡樹脂板5Aまでの施工は、前記図1の場合と同様である。発泡樹脂板第1層の上に制震部材を敷設する。
発泡樹脂板5Aの上に、制震部材11Aを接着する。このとき、制震部材に鉄筋コンクリート板を使用した場合には、鉄筋を配筋の上コンクリート打設とする。
さらに、該制震部材11Aの上に発泡樹脂板5Bを接着し、以降、順次、制震材、発泡樹脂板をサンドイッチ状に施工していき、最上層に発泡樹脂板5Cを施工する。
以後の施工手順は実施例1の場合と同様である。
各構成要素の作用、効果について実施例1に係る技術と異なる点は、以下の通りである。制震部材11は、発泡樹脂板5で吸収又は反射しづらい周波数の振動につき、効果的に吸収又は反射する効果がある。
FIG. 5 shows an example in which the present construction method is applied in order to improve the vibration isolation.
The construction from the root cutting to the first layer of the foamed resin plate 5A is the same as in FIG. A damping member is laid on the first layer of the foamed resin plate.
The damping member 11A is bonded onto the foamed resin plate 5A. At this time, when a reinforced concrete plate is used as the vibration control member, the reinforcing bar is placed on the upper concrete.
Further, the foamed resin plate 5B is bonded onto the vibration damping member 11A, and thereafter, the vibration damping material and the foamed resin plate are sequentially constructed in a sandwich shape, and the foamed resin plate 5C is constructed as the uppermost layer.
Subsequent construction procedures are the same as those in the first embodiment.
The differences between the functions and effects of the constituent elements from the technique according to the first embodiment are as follows. The damping member 11 has an effect of effectively absorbing or reflecting vibrations having a frequency that is difficult to be absorbed or reflected by the foamed resin plate 5.

図1はベタ基礎に単層のジオ・テキスタイルを施工して本工法を適用した例を示す。FIG. 1 shows an example in which a single-layer geotextile is applied to a solid foundation and this method is applied. 図2は、ベタ基礎に複数層のジオ・テキスタイルを施工して、本工法を適用した例を示す。FIG. 2 shows an example in which a multi-layer geotextile is constructed on a solid foundation and the present construction method is applied. 図3は布基礎に本工法を適用した例を示す。FIG. 3 shows an example in which the present construction method is applied to a fabric foundation. 図4に本工法を特に軟弱な地盤に適用する場合に、薬液注入工事を行なった例を示す。FIG. 4 shows an example in which a chemical solution injection work is performed when the present construction method is applied to a particularly soft ground. 図5に特に地盤の防振性を向上するために本工法において、制震材を使用した場合の例を示す。FIG. 5 shows an example in which a vibration control material is used in the present construction method in order to improve the vibration resistance of the ground.

符号の説明Explanation of symbols

1.根伐底面
2.ジオ・テキスタイル
3.砕石
4.空練モルタル
5.発泡樹脂板
6.建物基礎(ベタ基礎)
7.埋戻層
8.粘性土
9.原地盤層
10.薬液注入部
11.制震部材
12.建物基礎(布基礎)
1. Bottom of root cutting 1. Geotextile 2. Crushed stone 4. Empty mortar 5. Foamed resin plate 6. Building foundation (solid foundation)
7). Backfill layer 8. Cohesive soil Original ground layer10. 10. Chemical solution injection part Damping member 12. Building foundation (cloth foundation)

Claims (5)

根伐底面に単層のジオ・テキスタイルが敷設され、該ジオ・テキスタイル上に砕石が敷設され、該砕石上に空練モルタル又は捨てコンクリートが敷設され、該空練モルタル又は捨てコンクリート上に発泡樹脂板が複数層敷設され、該発泡樹脂板相互は、接着剤にて互いに接着固定され、前記発泡樹脂板で鉛直面相互は接着部が重ならないように複数層に積層配置され、該ジオ・テキスタイルは根伐底面の形状に合わせて一体縫製されたものであることを特徴とする浅層地盤改良工法。A single layer of geotextile is laid on the bottom of the root cutting, crushed stone is laid on the geotextile, empty mortar or discarded concrete is laid on the crushed stone, and foamed resin on the empty mortar or discarded concrete A plurality of plates are laid, and the foamed resin plates are bonded and fixed to each other with an adhesive, and the vertical surfaces of the foamed resin plates are arranged in a plurality of layers so that the adhesive portions do not overlap each other, the geotextile Is a shallow ground improvement method characterized by being integrally sewn according to the shape of the bottom of the bottoming. 請求項1に記載の浅層地盤改良工法のうち、ジオ・テキスタイルは複数層敷設され、該ジオ・テキスタイル間においては、砕石埋土、粘性土、又は生石灰を混入した粘性土が介在されていることを特徴とする浅層地盤改良工法。In the shallow ground improvement method according to claim 1, a plurality of geotextiles are laid, and between the geotextiles, clay soil, viscous soil, or viscous soil mixed with quick lime is interposed. A shallow ground improvement method characterized by this. 請求項1又は請求項2に記載の浅層地盤改良工法のうち、ジオ・テキスタイル敷設部の下部に、地盤固化用薬液を注入された薬液注入部を備えることを特徴とする浅層地盤改良工法。The shallow ground improvement construction method of the shallow ground improvement construction method according to claim 1 or 2, further comprising a chemical injection portion into which a ground solidification chemical solution is injected at a lower portion of the geotextile laying portion. . 前記請求項3に記載の浅層地盤改良工法のうち、前記ジオ・テキスタイルと前記薬液注入部との間に原地盤層が介在し、その層厚は2m以内であり、該薬液注入部に注入する薬液は、水ガラス系又はセメント系材料であることを特徴とする浅層地盤改良工法。The shallow ground improvement method according to claim 3, wherein a raw ground layer is interposed between the geotextile and the chemical solution injection part, and the layer thickness is within 2 m, and is injected into the chemical solution injection part. A shallow ground improvement method characterized in that the chemical solution to be used is a water glass-based or cement-based material. 請求項1ないし請求項4に記載の浅層地盤改良工法のうち、発泡樹脂板の上下の層の間に制震部材が敷設され、該制震部材は、鉄筋コンクリート板、制震用ゴム材料、フレキシブルボード又は不織布製であることを特徴とする浅層地盤改良工法。In the shallow ground improvement method according to claim 1 to claim 4, a damping member is laid between the upper and lower layers of the foamed resin plate, and the damping member includes a reinforced concrete plate, a damping rubber material, A shallow ground improvement method characterized by being made of flexible board or non-woven fabric.
JP2008184275A 2008-06-19 2008-06-19 Shallow ground improving method Pending JP2010001718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008184275A JP2010001718A (en) 2008-06-19 2008-06-19 Shallow ground improving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008184275A JP2010001718A (en) 2008-06-19 2008-06-19 Shallow ground improving method

Publications (1)

Publication Number Publication Date
JP2010001718A true JP2010001718A (en) 2010-01-07

Family

ID=41583648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008184275A Pending JP2010001718A (en) 2008-06-19 2008-06-19 Shallow ground improving method

Country Status (1)

Country Link
JP (1) JP2010001718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6944224B1 (en) * 2021-02-07 2021-10-06 株式会社ピーエルジー Foundation structure for structures
CN115404842A (en) * 2022-09-30 2022-11-29 中国电建集团河北工程有限公司 Method for treating rubble concrete foundation under desert geology

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319341A (en) * 1986-07-12 1988-01-27 Marukiyou Sangyo Kk Formation of improved ground
JPH04293820A (en) * 1991-03-20 1992-10-19 Fujita Corp Reinforced soil back filling construction method for rigid wall
JPH08209670A (en) * 1995-02-08 1996-08-13 Mitsui Sekika Sanshi Kk Reinforcing construction method for gas station foundation ground
JP2000073302A (en) * 1998-08-28 2000-03-07 Takagi Packs:Kk Constructing method for structure
JP2000160585A (en) * 1998-11-30 2000-06-13 National House Industrial Co Ltd Vibration damping structure for building
JP2004052348A (en) * 2002-07-19 2004-02-19 Kensetsu Kikaku Consultant:Kk Structure using foamed resin block, and construction method therefor
JP2005083174A (en) * 2003-09-11 2005-03-31 Shimizu Corp Countermeasure structure against liquefaction of foundation for construction
JP2006274657A (en) * 2005-03-29 2006-10-12 Kunio Okada Construction method of building foundation structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319341A (en) * 1986-07-12 1988-01-27 Marukiyou Sangyo Kk Formation of improved ground
JPH04293820A (en) * 1991-03-20 1992-10-19 Fujita Corp Reinforced soil back filling construction method for rigid wall
JPH08209670A (en) * 1995-02-08 1996-08-13 Mitsui Sekika Sanshi Kk Reinforcing construction method for gas station foundation ground
JP2000073302A (en) * 1998-08-28 2000-03-07 Takagi Packs:Kk Constructing method for structure
JP2000160585A (en) * 1998-11-30 2000-06-13 National House Industrial Co Ltd Vibration damping structure for building
JP2004052348A (en) * 2002-07-19 2004-02-19 Kensetsu Kikaku Consultant:Kk Structure using foamed resin block, and construction method therefor
JP2005083174A (en) * 2003-09-11 2005-03-31 Shimizu Corp Countermeasure structure against liquefaction of foundation for construction
JP2006274657A (en) * 2005-03-29 2006-10-12 Kunio Okada Construction method of building foundation structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6944224B1 (en) * 2021-02-07 2021-10-06 株式会社ピーエルジー Foundation structure for structures
JP2022120861A (en) * 2021-02-07 2022-08-19 株式会社ピーエルジー Foundation structure for building
CN115404842A (en) * 2022-09-30 2022-11-29 中国电建集团河北工程有限公司 Method for treating rubble concrete foundation under desert geology

Similar Documents

Publication Publication Date Title
JP2007315067A (en) Improved ground
JP2007070859A (en) Base isolation construction method and base isolation structure of building
WO1997036057A1 (en) Reinforcement frame for structures and method of constructing building structures utilizing the same reinforcement frame
JP2980604B1 (en) Vibration isolation foundation structure of building and its construction method
KR101730502B1 (en) Floor space noise prevention structure for apart and thereof
KR100930421B1 (en) Waterproof construction method of concrete station pouring section
KR101098953B1 (en) waterproof sheet
JP2010001718A (en) Shallow ground improving method
KR101380782B1 (en) Eco-composite type steel temporary construction and construction method thereof
JP2008163613A (en) Building foundation and construction method therefor
KR20180025420A (en) Noise reduction method between floors in reinforced concrete buildings using composite mortar with improved sound insulation and sound absorption
JP2013159953A (en) Joint structure of concrete floor slab end of bridge
KR101665909B1 (en) Composite wall structure of underground outer wall with cip retaining wall
JP4519998B2 (en) Lightweight ground construction method, foundation construction method, and lightweight embankment construction method using polystyrene resin foam board assembly
CN210827532U (en) Shock insulation and absorption structure of large-scale test equipment
KR102025410B1 (en) structure of multi composite tile panel
KR101483744B1 (en) Manufacturing method of nature-friendly permeable structure restraining ground subsidence
JP2849805B2 (en) Seismic isolation method for structures
KR20150021098A (en) Waterside structures reinforced method
CN110468868A (en) A kind of the earthquake isolation structure and method of large-scale experiment equipment
JPH08100427A (en) Water-permeable lightweight block
JP7130592B2 (en) Construction method of foundation on expansive ground and cushioning material for expansive ground used in the method
JP2019206803A (en) Foundation structure for wind power generator
KR20090115694A (en) The panel for noise prevention between layers for building and construction method using the same
RU132810U1 (en) PILED FOUNDATION WITH INTERMEDIATE SAND PILLOW

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090626

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090626

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

AX71 Interruption

Free format text: JAPANESE INTERMEDIATE CODE: A0071

Effective date: 20110304

AX72 Removal of interruption

Free format text: JAPANESE INTERMEDIATE CODE: A0072

Effective date: 20151028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160315