JP2009541079A - Memsベース形のナノポジショナおよびナノマニピュレータ - Google Patents

Memsベース形のナノポジショナおよびナノマニピュレータ Download PDF

Info

Publication number
JP2009541079A
JP2009541079A JP2009516835A JP2009516835A JP2009541079A JP 2009541079 A JP2009541079 A JP 2009541079A JP 2009516835 A JP2009516835 A JP 2009516835A JP 2009516835 A JP2009516835 A JP 2009516835A JP 2009541079 A JP2009541079 A JP 2009541079A
Authority
JP
Japan
Prior art keywords
nanomanipulator
microactuator
amplification mechanism
position sensor
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009516835A
Other languages
English (en)
Inventor
ユ スン
シンユ リウ
Original Assignee
ユ スン
シンユ リウ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユ スン, シンユ リウ filed Critical ユ スン
Publication of JP2009541079A publication Critical patent/JP2009541079A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J7/00Micromanipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0009Constructional details, e.g. manipulator supports, bases
    • B25J9/0015Flexure members, i.e. parts of manipulators having a narrowed section allowing articulation by flexion

Abstract

サブナノメートルの分解能およびミリニュートンの力のアウトプットの両方を達成できるMEMSベース形ナノマニピュレータが提供される。ナノマニピュレータまたはナノポジショナは、インプット変位を減少させかつインプット力を増幅するリニア増幅機構と、増幅機構を駆動して前後運動を生じさせるマイクロアクチュエータと、増幅機構のインプット変位を測定するポジションセンサとを有している。ポジショナセンサは、ナノマニピュレーション中に正確な閉ループ制御を可能にするポジションフィードバックを得る。
【選択図】 図1

Description

(関連する出願)
本願は、2006年6月23日付カナダ国特許第2,551,194号の利益を主張する。
(技術分野)
本発明は、ナノテクノロジおよびナノサイエンスおよびナノエンジニアリングに関する。
マイクロエレクトロメカニカルシステム(Microelectromechanical Systems:MEMS)とは、非常に小さいスケールの技術をいい、ナノレベルのナノエレクトロメカニカルシステム(nanoelectromechanical systems:NEMS)に集中して使用されるが、NEMSはまた、アクティブエレメントとしてナノスケール材料を用いているナノデバイスをも含むものである。
ナノ材料(例えば、カーボンナノチューブ、シリコンナノワイヤおよび酸化亜鉛ナノロッド)のマニピュレーションおよび特徴付けを含むナノサイエンスおよびナノテクノロジにおける最近の進歩およびNEMSの開発は、ナノメートルのポジショニング分解能、マイクロメートル運動範囲、高反復性および大きい力アウトプット(すなわち、ペイロードドライビング能力)を有するマニピュレータを必要とする。現在では、SEM(走査形電子顕微鏡:scanning electron microscope)またはTEM(透過形電子顕微鏡:transmission electron microscope)内の正確なポジショニングおよびマニピュレーションに使用される殆どの一般的ナノマニピュレータが、圧電アクチュエータを使用している。
MEMS技術を使用するデバイスを製造するのに、他の多くの試みがなされている。ナノポジショニングには、静電マイクロアクチュエータが最も一般的に使用されている。10nmのポジショニング分解能が得られる、静電容量形ポジションセンサを備えたコームドライブ(comb drive)マイクロアクチュエータが提案されている(下記非特許文献1参照)。しかしながら、このデバイスは、そのサブマイクロニュートン力のアウトプットのため、用途が制限されている。このデバイスは、荷重を駆動するときに、分解能およびポジショニング能力が犠牲にされる。
ナノポジショナの開発には、電熱(electrothermal)マイクロアクチュエータも使用された。下記非特許文献2には、電熱アクチュエータにより作動される2段階(粗運動段階および微細運動段階)ナノポジショナが開示されている。
また、ナノ材料の機械的特性試験についての30nmの分解能をもつ熱的作動段階も報告されている(下記非特許文献3参照)。電熱マイクロ作動は非常に大きいアウトプットが得られるが、ヒステリシスおよび熱ドリフトのため、開ループ作動におけるポジショニング精度は比較的低くなる(数十ナノメートルから数百ナノメートル)。また、プローブチップの温度を良く制御することが困難であるため、温度に敏感な用途での使用が妨げられる。
下記特許文献1には、多壁形ナノチューブを嵌合するのにナノマニピュレーションシステムを使用することが教示されている。この特許は、ナノマニピュレータを必要とする特定用途を開示しているが、ナノマニピュレータ自体に関する情報は全く開示されていない。
下記特許文献2には、2つのカーボンナノチューブおよび静電体を使用して、ナノスケール物品を把持するための1対のナノピンセット(nanotweezers)を形成することが開示されている。ナノピンセットは、このポジショニングおよび移動を行うナノマニピュレータに取付けられ、これは、ナノマニピュレータを必要とする他の特定用途である。
下記特許文献3は、圧電アクチュエータを使用してナノポジショニングを行うことに関するものである。ポジショニング段階はマイクロデバイスではなく、むしろマクロシステムである。一般に圧電アクチュエータをベースとするシステムは、1nmの運動分解能が得られる。しかしながら、圧電アクチュエータに特有のヒステリシスおよびクリープにより、大きい開ループポジショニングエラーが生じ、従って複雑な補償制御アルゴリズムが必要になる。
下記特許文献4には、SEMまたはTEMに使用する圧電アクチュエータを使用したナノマニピュレーションシステムが開示されている。商業的に入手できる圧電ナノマニピュレータは、高コストであることに加え、サイズが大きい(5cmから20cm)ため、用途に厳格なスペース条件がある場合には、使用が制限されてしまう。このシステムはSEMの内部に取付けることはできても、大き過ぎるため、TEMのチャンバ内に適合させることはできない。このシステムは5nmの運動分解能を有するマクロスケールシステムであり、本発明によるMEMSベース形ナノマニピュレータ(mm×mmのサイズおよびサブナノメートルの運動分解能を有する)とは異なるものである。
要するに、既知の圧電段階は1nmのポジショニング分解能を達成できるが、圧電アクチュエータに特有のヒステリシスおよびクリープのために大きい開ループポジショニングエラーが生じ、従って、複雑な補償制御アルゴリズムが必要になる。また、商業的に入手できる圧電ナノマニピュレータは、高コストであることに加え、サイズが大きい(5cmから10cm)ため、用途に厳格なスペース条件がある場合、特にTEMのチャンバ内に使用することは制限されてしまう。
米国特許第6,874,668号明細書 米国特許第6,805,390号明細書 米国特許第5,903,085号明細書 米国特許第6,967,335号明細書
P. Cheung and R. Horowitz著「静電駆動形ポリシリコンマイクロアクチュエータの設計、製造、ポジション検出および制御(Design, fabrication, position sensing, and control of an electrostatically-driven polysilicon microactuator)」(IEEE Trans. Magnetics, 第32巻、第122頁−128頁、1996年) N.B. HubbardおよびL.L. Howell著「2段階熱作動形ナノポジショナの設計および特徴付け(Design and characterization of a dual-stage, thermally actuated nanopositioner)」(J. of Nicromechanics and Microengineering, 第15巻、第8号、第1482頁−1493頁、2005年) S.N. Lu、D.A. Dikin、S.L. Zhang、F.T. Fisher、J. LeeおよびR.S. Ruoff著「マイクロマシンによる熱的作動形試験段階でのナノスケールの分解能の実現(Realization of nanoscale resolution with a micromachined thermally actuated testing stage)」(Review of Scientific Instruments、第5巻、第6号、第2154頁−2162頁、2004年) Yu Sun、S.N. Fry、D.P. Potassek、D.J. BellおよびB.J. Nelson著「新規なコームドライブ形態を備えたマイクロ力センサを用いたフルーツフライフライト挙動の特徴付け(Characterizing fruit fly flight behavior using microforce sensor with a new comb drive configuration)」(IEEE/ASME Journal of Microelectromechanical Systems、第14巻、第1号、第4頁−11頁、2005年)
MEMSベース形ナノマニピュレータは、低コスト、小サイズ、高速レスポンスおよびシステムの集積化に対するフレキシビリティがある等の長所を有しているが、既存のMEMSデバイス(例えば、静電アクチュエータおよび電熱アクチュエータ)は、高ポジショニング分解能および大きい力アウトプットの両方を達成することができない。
要望されているものは、既存のMEMSデバイスの上記欠点を解消できる、サブナノメートルの分解能およびミリニュートン力のアウトプットを有する新規なMEMSベース形ナノマニピュレータである。
本発明の一態様では、サブナノメートルの分解能およびミリメートル力のアウトプットの両方を達成できるMEMSベース形ナノマニピュレータが提供される。
本発明の他の態様では、ナノマニピュレーションおよびナノポジショニング中の正確な閉ループ制御を可能にするポジションフィードバックが得られる集積形変位センサが提供される。
本発明の一実施形態では、ナノマニピュレータは、MEMS静電マイクロアクチュエータの高い反復可能性および高速レスポンスを得るのに有効であると同時に、小さいアウトプット力に制限されないようにする。本発明のデバイスは、高度にリニアな増幅機構と、横向きコームドライブマイクロアクチュエータと、静電容量形ポジションセンサとを集積している。増幅機構は、コームドライブマイクロアクチュエータにより付与されるインプット変位を減少させて、アウトプットプローブチップでの高いポジショニング分解能を達成すること、およびナノ物品をマニピュレートするアウトプット力を増幅することに使用される。静電容量形ポジションセンサは、インプット変位を測定するポジションエンコーダとしてインプット端に配置される。増幅機構の厳格なリニアリティは、ポジションセンサがアウトプットプローブチップの正確なポジションフィードバックを行って、閉ループ制御形ナノマニピュレーションを可能にすることを保証する。
1自由度のナノマニピュレータを示す図面である。 図1のA−A線におけるナノマニピュレータの断面図である。 単軸撓みヒンジピボットを備えたリニア増幅機構を示す概略図である。 フレキシブルビームピボットを備えたリニア増幅機構を示す概略図である。 2つの1自由度ナノマニピュレータを直角に連結することにより作られた2自由度ナノマニピュレータを示す図面である。 2段レバー機構を集積したナノマニピュレータを示す図面である。 単軸撓みヒンジピボットを備えた2段レバー機構を示す概略図である。 フレキシブルビームピボットを備えた2段レバー機構を示す概略図である。 差動トリプレート静電容量形ポジションセンサを集積したナノマニピュレータを示す図面である。
以下、添付図面を参照して、本発明の1つ以上の実施形態を単なる例示として説明する。図面には、本発明の1つ以上の実施形態が例示されている。本明細書の説明および添付図面は、図示および理解の補助のみを目的とするもので、本発明の限定を意味するものではないことを理解すべきである。
本発明は、サブナノメートル分解能およびミリメートル力のアウトプットの両方を達成できるMEMSベース形のナノマニピュレータを提供する。ナノマニピュレーション中の正確な閉ループ制御を可能にするポジションフィードバックを得るための集積形変位センサも提供される。
本発明はナノマニピュレータまたはナノポジショナのいずれの機能も有することを特に理解すべきである。ナノマニピュレータとしては、本明細書で説明する用途以外に、デバイスは、例えば生物理的特性の特徴付けまたはナノチューブ、ナノワイヤおよびナノ粒子等のナノサイズ物品の正確な拾い上げおよび配置のように、生物学的分子と正確に相互作用することに適用できる。ナノポジショナとしては、デバイスは、例えば、データ伝達用のコンピュータのハードドライブのサスペンションヘッドに取付けられるx−y正確ポジショナとして面内ポジショニングする一定範囲の正確な用途を見出すことができる。現在では、メソスケールの圧電ポジショナが、ハードドライブのサスペンションヘッドに使用されている。ハードドライブ産業の比較的長期の目的は、0.01nmのポジショニング分解能を達成することにある。この超高分解能は本発明の能力の範囲内のものであり、本発明はまた、低コスト、閉ループ作動、およびデバイス全体の高い再現性をも提供できる。
本発明の一実施形態では、ナノマニピュレータは、図1および図2に示すように、3つの主要部品、すなわち(i)インプット変位を小さくしまたは低減させかつインプット力を増幅または増大させるリニア増幅機構2と、(ii)前後方向の運動を生じさせる増幅機構を駆動する横向きコームドライブマイクロアクチュエータC1、C2、C5、C6と、(iii)増幅機構のインプット変位を測定する静電容量形ポジションセンサC3、C4とを有している。静電容量形ポジションセンサは、例えば、シャフト3を介してインプット端に連結できる。
コームドライブマイクロアクチュエータは、MEMSリサーチに一般的に使用されているコンポーネンツであり、その設計は良く知られている。本発明の背景において、コームドライブマイクロアクチュエータは、高速レスポンスであるが小さい力のアウトプットを有している。増幅機構2は減少モードで使用され、マイクロアクチュエータC1、C2、C5およびC6に、大きいインプット変位(この変位は、アウトプット端9でナノスケール変位に減少される(図3))を生じさせる低インプット剛性を付与する。増幅機構2のインプット剛性およびインプット端での拘束ビーム(tethering beams)TB1、TB2,…、TB6の剛性を変えることにより、ナノマニピュレータの分解能および運動範囲を調節できる。
コームドライブマイクロアクチュエータにより発生される全静電容量力Feは、
Figure 2009541079

ここで、εは誘電率、Vは作動電圧、haはフィンガ厚、gaは隣接する作動コームフィンガ間のギャップ、およびNaは作動コームフィンガ対の数である。
従って、ナノマニピュレータのアウトプット変位youtは、
Figure 2009541079

ここで、αは増幅機構の減少比、およびKsumはナノマニピュレータのインプット剛性である。
インプット変位を測定しかつアウトプット変位を得るために、電極対C4、C5のキャパシタンス変化が測定される。静電容量形センサのキャパシタンス変化ΔCは、

Figure 2009541079

ここで、Nsは検出コームフィンガ対の数、hsは検出フィンガ厚、gsは隣接検出コームフィンガ間のギャップ、およびyinはインプット変位である。
アウトプット変位youtも次式から正確に予測できる。

Figure 2009541079
デバイスは、デバイス厚の正確な制御および機械的連結および電気的絶縁の便宜を与えるSOI(シリコンオンインシュレータ:silicon on insulator)上のDRIE(ディープリアクティブイオンエッチング:deep reactive ion etching)により構成するのが好ましい(これらのマイクロファブリケーション法は、例えば上記非特許文献4から知られている)。作動コームドライブと検出コームドライブの群間の電気的絶縁は、デバイスのシリコン層5(図2)内に形成されかつ二酸化ケイ素層6で終端しているエッチングギャップ4により達成される。
図3および図4には、リニア増幅機構の構造的細部が示されている。この機構は、2つの一般的な増幅機構、すなわちフレキシブルピボットにより直列に連結されたトグル機構T1、T2およびレバー機構L1、L2を集積している。ピボットは、図3の単軸撓みヒンジH1、H2、…、H6、または図4のフレキシブルビームB3、B4、…、B8で形成できる。インプット変位は最初にトグル機構により減少され、次にレバー機構により運動が更に減少される。レバーの回転によりアウトプット端で横方向変位が引起こされないようにするため、2対のトグル機構T1、T2およびレバー機構L1、L2は対称的に構成されている。フレキシブルビームB1、B2は、レバー機構の2つのアウトプット端をアウトプットプラットホーム9に連結している。
増幅機構の減少比αは、

Figure 2009541079

ここで、l0およびl1はレバーの短ビームおよび長ビームの長さ、l2はトグルビームの長さ、θ1、θ2はレバーの長ビームおよびトグルビームの回転角である。
増幅機構のインプット剛性Ksumは、

Figure 2009541079

Figure 2009541079

ここで、Khingeは単軸撓みヒンジの捩り剛性、Eはシリコンのヤング係数、w、hおよびlはフレキシブルビームB1、B2の幅、高さおよび長さ、W1、1およびL1はフレキシブルビームTB2、TB3、TB4およびTB5の幅、高さおよび長さ、およびW2、2およびL2はフレキシブルビームTB1、TB6の幅、高さおよび長さである。
例えば2自由度のナノマニピュレータは、図5に示すように、2つの1自由度ナノマニピュレータNM1、NM2を直角に連結することにより構成できる。プローブチップをx方向に沿って駆動するように応答できるNM2は、4つの拘束ビームTB1、TB2、TB3およびTB4により懸架されている。NM2は、NM1を駆動してy方向に沿う運動を生じさせる。
ナノマニピュレータはまた、インプット変位の減少およびアウトプット力の増幅を行うべく、他の増幅機構を採用することができる。図6は2段レバー機構2を集積したナノマニピュレータを示し、その構成が図7および図8に示されている。2つのレバー機構L1、L4、インプット端8およびアウトプット端9はフレキシブルピボットにより連結されており、フレキシブルピボットは、図7に示す単軸撓みヒンジH1、H2、H8およびH9で構成するか、図8に示すフレキシブルビームB1、B2、B8およびB9で構成できる。インプット変位は、L1およびL2により2倍減少される。同様な対称的構成により、レバー回転により引起こされるアウトプット端の横方向変位が除去される。
ポジション検出は、リニアニティおよび横向きコームドライブよりも高い分解能を達成すべく、横向きコームドライブまたは差動横向きコームドライブのいずれかを用いることができる。図9に示すように、バルクマイクロマシニングに適した差動トリプレートコーム構造C3、C4は、横向きコームポジションセンサ(図1のC3、C4)より高い感度を有し、従って、ナノマニピュレータの運動分解能を更に改善する。
上記の例では、横向きコームドライブマイクロアクチュエータの使用を説明したが、本発明の他の実施形態も可能である。例えば、一般に、電熱マイクロアクチュエータの反復可能性はコームドライブマイクロアクチュエータより低いが、本発明の集積形ポジションセンサでは、電熱マイクロアクチュエータの低い反復可能性を補償する閉ループポジショニングを遂行できる。従って、閉ループポジショニングが可能な集積形ポジションセンサによれば、本発明の他の実施形態では、コームドライブ静電マイクロアクチュエータの代わりに電熱マイクロアクチュエータを使用できる。
本発明の他の設計的特徴として、粗い・微細なアクチュエーション機構を含むことも理解すべきである。上述したものは、数マイクロメートルの全体的運動を生じさせることができるナノマニピュレータ・ナノポジショナである。これらのデバイスと他の静電マイクロアクチュエータまたは電熱マイクロアクチュエータとを、粗いポジショニング用アウターループとして集積することにより、デバイスは、数十マイクロメートルの作動範囲を有すると同時に、同じサブナノメートルの運動分解能を発揮する。
また、本発明のx−y面内ナノポジショナを、例えばマイクロアセンブリを用いてx−y−z3次元ナノポジショニングデバイスに拡張すれば、例えば、原子間力顕微鏡(atomic force microscopy:AFM)スキャニング、光学的干渉顕微鏡(optical coherence microscopy:OCM)およびフェーズ−シフト干渉計等のより広い用途が可能になる。
要するに、本発明のMEMSナノマニピュレータは、次のような長所、すなわち(i)サブナノメートルの分解能、(ii)ミリニュートンの力アウトプット、(iii)閉ループ制御ナノマニピュレーションの可能性、(iv)高速レスポンス、(v)ウェーハレベルのマイクロファブリケーションによる低コスト、および(vi)小サイズを有している。
当業者ならば、本発明の範囲から逸脱することなく、本願で説明した1つ以上の実施形態の他の変更が可能でありかつ実施できることは明らかであろう。
2 増幅機構(2段レバー機構)
5 シリコン層
6 二酸化ケイ素層
8 インプット端
9 アウトプット端(アウトプットプラットホーム)
B1、B2、…、B9 フレキシブルビーム
C1、C2、C5、C6 横向きコームドライブマイクロアクチュエータ
C3、C4 静電容量形ポジションセンサ
H1、H2、…、H6 単軸撓みヒンジ

Claims (15)

  1. (a)増幅機構と、
    (b)増幅機構のインプット端に連結されたマイクロアクチュエータとを有する、物品をマニピュレートしまたはポジショニングするデバイスにおいて、
    増幅機構が、インプット変位を減少させかつインプット力を増幅し、
    マイクロアクチュエータが、インプット端を一軸に沿って前後に駆動し、これによりアウトプット端を前記軸に沿って前後に運動させる、
    ことを特徴とするデバイス。
  2. 前記インプット端に静電容量形ポジションセンサが連結されていることを特徴とする請求項1記載のデバイス。
  3. 前記静電容量形ポジションセンサは、増幅機構の前後方向のインプット変位を測定し、これにより増幅機構のアウトプット変位を予測することを特徴とする請求項2記載のデバイス。
  4. 前記静電容量形ポジションセンサは、横向きコームドライブポジションセンサまたは差動横向きコームドライブポジションセンサであることを特徴とする請求項2記載のデバイス。
  5. 前記マイクロアクチュエータは、コームドライブ静電マイクロアクチュエータまたは電熱マイクロアクチュエータであることを特徴とする請求項2記載のデバイス。
  6. 前記増幅機構は、対称的に構成されたトグル機構およびレバー機構を有していることを特徴とする請求項1記載のデバイス。
  7. 前記増幅機構は1対のトグル機構および1対のレバー機構を有し、トグル機構およびレバー機構は対称的に構成されていることを特徴とする請求項1記載のデバイス。
  8. 前記トグル機構およびレバー機構はフレキシブルに連結されていることを特徴とする請求項7記載のデバイス。
  9. 前記トグル機構およびレバー機構は、単軸撓みヒンジまたはフレキシブルビームにより連結されていることを特徴とする請求項8記載のデバイス。
  10. 前記レバー機構は、フレキシブルビームによりアウトプット端に連結されていることを特徴とする請求項6記載のデバイス。
  11. 運動分解能が1nmより小さいことを特徴とする請求項1記載のデバイス。
  12. 粗−微細アクチュエーション機構を形成すべく第二マイクロアクチュエータに集積されており、第二マイクロアクチュエータは粗いポジショニングを行うアウタループとして作動することを特徴とする請求項1記載のデバイス。
  13. 物品のマニピュレーションおよびポジショニングを行うタンデムデバイスであって、第一ナノマニピュレータおよび第二マニピュレータを有し、第一ナノマニピュレータおよび第二ナノマニピュレータの各々が、増幅機構と、この増幅機構のアウトプット端に連結されたマイクロアクチュエータとを備え、第一ナノマニピュレータおよび第二マニピュレータは実質的に直角位置に配置されることを特徴とする、タンデムデバイス。
  14. 2つの方向に沿う面内運動を生じさせることができることを特徴とする請求項13記載のタンデムデバイス。
  15. 前記第一ナノマニピュレータまたは第二ナノマニピュレータは拘束ビームにより支持されていることを特徴とする請求項13記載のタンデムデバイス。
JP2009516835A 2006-06-23 2007-06-21 Memsベース形のナノポジショナおよびナノマニピュレータ Pending JP2009541079A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA002551194A CA2551194A1 (en) 2006-06-23 2006-06-23 Mems-based nanomanipulators/nanopositioners
PCT/CA2007/001092 WO2007147241A2 (en) 2006-06-23 2007-06-21 Mems-based nanopositioners and mano manipulators

Publications (1)

Publication Number Publication Date
JP2009541079A true JP2009541079A (ja) 2009-11-26

Family

ID=38833787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009516835A Pending JP2009541079A (ja) 2006-06-23 2007-06-21 Memsベース形のナノポジショナおよびナノマニピュレータ

Country Status (6)

Country Link
US (1) US20090278420A1 (ja)
EP (1) EP2038206B1 (ja)
JP (1) JP2009541079A (ja)
AT (1) ATE554049T1 (ja)
CA (2) CA2551194A1 (ja)
WO (1) WO2007147241A2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8161803B2 (en) * 2008-07-03 2012-04-24 Hysitron Incorporated Micromachined comb drive for quantitative nanoindentation
US9335240B2 (en) 2008-07-03 2016-05-10 Hysitron Incorporated Method of measuring an interaction force
SG175240A1 (en) * 2009-04-17 2011-11-28 Si Ware Systems Long travel range mems actuator
KR101161060B1 (ko) * 2009-11-30 2012-06-29 서강대학교산학협력단 나노입자를 기둥형태로 조직화시키기 위한 배열장치 및 그 배열방법
US8922094B2 (en) * 2010-02-08 2014-12-30 Uchicago Argonne, Llc Microelectromechanical (MEMS) manipulators for control of nanoparticle coupling interactions
US10048289B2 (en) * 2011-12-16 2018-08-14 Cornell University Motion sensor integrated nano-probe N/MEMS apparatus, method, and applications
EP2926111B1 (en) * 2012-11-28 2022-07-27 Bruker Nano, Inc. Micromachined comb drive for quantitative nanoindentation
US10557533B2 (en) 2015-07-30 2020-02-11 Nec Corporation Linear motion mechanism formed integrally
US9708135B2 (en) * 2015-10-02 2017-07-18 University Of Macau Compliant gripper with integrated position and grasping/interaction force sensing for microassembly
FR3102946B1 (fr) * 2019-11-13 2022-04-01 Percipio Robotics Dispositif pour microactionneur et microactionneur équipé d’un tel dispositif

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11232806A (ja) * 1997-06-18 1999-08-27 Phase Metrics Inc 圧電式ナノポジショナー
JP2005342845A (ja) * 2004-06-03 2005-12-15 Nisca Corp 駆動力伝達機構及びマイクロマニュピュレータ
JP2006026827A (ja) * 2004-07-16 2006-02-02 Aoi Electronics Co Ltd 測長機能付きナノグリッパ装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179499A (en) * 1992-04-14 1993-01-12 Cornell Research Foundation, Inc. Multi-dimensional precision micro-actuator
JP3525313B2 (ja) * 1995-06-30 2004-05-10 太平洋セメント株式会社 レバー変位拡大機構付位置決め装置
JP3919270B2 (ja) * 1996-11-18 2007-05-23 アドバンスド エナジー ジャパン株式会社 変位又は力の増幅機構
US6735055B1 (en) * 1998-05-07 2004-05-11 Seagate Technology Llc Microactuator structure with vibration attenuation properties
US6507138B1 (en) * 1999-06-24 2003-01-14 Sandia Corporation Very compact, high-stability electrostatic actuator featuring contact-free self-limiting displacement
US6255757B1 (en) * 1999-09-01 2001-07-03 Jds Uniphase Inc. Microactuators including a metal layer on distal portions of an arched beam
US6175170B1 (en) * 1999-09-10 2001-01-16 Sridhar Kota Compliant displacement-multiplying apparatus for microelectromechanical systems
US6833652B2 (en) * 2000-08-25 2004-12-21 Iolon, Inc. Balanced micromechanical device having two degrees of motion
US6848328B2 (en) * 2001-03-09 2005-02-01 Klocke Nanotechnik Positioning unit and positioning apparatus with at least two positioning units
US6594994B2 (en) * 2001-06-01 2003-07-22 Wisconsin Alumni Research Foundation Micromechanical actuation apparatus
US6967335B1 (en) * 2002-06-17 2005-11-22 Zyvex Corporation Manipulation system for manipulating a sample under study with a microscope
US6700173B1 (en) * 2002-08-20 2004-03-02 Memx, Inc. Electrically isolated support for overlying MEM structure
US6853517B2 (en) * 2003-02-13 2005-02-08 Hitachi Global Storage Technologies Netherlands B.V. Electrostatic microactuator with electrically isolated movable portion and associated drive circuitry
US6865313B2 (en) * 2003-05-09 2005-03-08 Opticnet, Inc. Bistable latching actuator for optical switching applications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11232806A (ja) * 1997-06-18 1999-08-27 Phase Metrics Inc 圧電式ナノポジショナー
JP2005342845A (ja) * 2004-06-03 2005-12-15 Nisca Corp 駆動力伝達機構及びマイクロマニュピュレータ
JP2006026827A (ja) * 2004-07-16 2006-02-02 Aoi Electronics Co Ltd 測長機能付きナノグリッパ装置

Also Published As

Publication number Publication date
EP2038206A4 (en) 2011-01-19
CA2655534A1 (en) 2007-12-27
EP2038206B1 (en) 2012-04-18
WO2007147241A3 (en) 2008-02-21
EP2038206A2 (en) 2009-03-25
WO2007147241A2 (en) 2007-12-27
US20090278420A1 (en) 2009-11-12
ATE554049T1 (de) 2012-05-15
CA2551194A1 (en) 2007-12-23

Similar Documents

Publication Publication Date Title
EP2038206B1 (en) Mems-based nanopositioners and nanomanipulators
Iqbal et al. A review on MEMS based micro displacement amplification mechanisms
Wang et al. A planar 3-DOF nanopositioning platform with large magnification
Guo et al. Design and control methodology of a 3-DOF flexure-based mechanism for micro/nano-positioning
CA2655390C (en) Mems-based micro and nano grippers with two-axis force sensors
Sun et al. A novel piezo-driven linear-rotary inchworm actuator
Mukhopadhyay et al. A SOI-MEMS-based 3-DOF planar parallel-kinematics nanopositioning stage
Dong et al. Design of a precision compliant parallel positioner driven by dual piezoelectric actuators
Olfatnia et al. Large stroke electrostatic comb-drive actuators enabled by a novel flexure mechanism
Fowler et al. A 2-DOF electrostatically actuated MEMS nanopositioner for on-chip AFM
Li et al. Microactuators: Design and technology
Liu et al. A millimeter-sized nanomanipulator with sub-nanometer positioning resolution and large force output
US9190600B2 (en) Large-deflection microactuators
Liu et al. A self-moving precision positioning stage utilizing impact force of spring-mounted piezoelectric actuator
Nagel et al. Design of a dual-stage, three-axis hybrid parallel-serial-kinematic nanopositioner with mechanically mitigated cross-coupling
Moore et al. Serial-kinematic monolithic nanopositioner with in-plane bender actuators
Mekid et al. Nanoscale manipulators: Review of conceptual designs through recent patents
Seethaler et al. Position and force sensing using strain gauges integrated into piezoelectric bender electrodes
Li et al. Design of a new decoupled XY flexure parallel kinematic manipulator with actuator isolation
Patil et al. FEA analysis and experimental investigation of building blocks for flexural mechanism
Omidbeike et al. Five-axis bimorph monolithic nanopositioning stage: Design, modeling, and characterization
US8569932B2 (en) Multi-axis actuating apparatus
Gorman MEMS nanopositioners
Xu et al. Mechanical design of compliant parallel micromanipulators for nano scale manipulation
Brouwer et al. Sub-nanometer stable precision MEMS clamping mechanism maintaining clamp force unpowered for TEM application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130401