JP2009510964A - Mimo伝送用データストリームの個別インターリーブ方法 - Google Patents

Mimo伝送用データストリームの個別インターリーブ方法 Download PDF

Info

Publication number
JP2009510964A
JP2009510964A JP2008534109A JP2008534109A JP2009510964A JP 2009510964 A JP2009510964 A JP 2009510964A JP 2008534109 A JP2008534109 A JP 2008534109A JP 2008534109 A JP2008534109 A JP 2008534109A JP 2009510964 A JP2009510964 A JP 2009510964A
Authority
JP
Japan
Prior art keywords
data
data stream
antennas
ofdm symbol
data streams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008534109A
Other languages
English (en)
Inventor
ゴーシュ モニシャ
リ ペン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP BV
Original Assignee
NXP BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NXP BV filed Critical NXP BV
Publication of JP2009510964A publication Critical patent/JP2009510964A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/04Arrangements for detecting or preventing errors in the information received by diversity reception using frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0625Transmitter arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0668Orthogonal systems, e.g. using Alamouti codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

本発明は、包括的には、インターリーバ、及び効果的に競合する設計目標を扱いながら、後方互換性のニーズを満たすインターリーブ方法を提供することにある。本発明の一態様によれば、データは、受信アンテナの期待数よりも多い数の送信アンテナを用いて送信される。少なくとも一対の送信アンテナを構成し(ant1,ant_N)、複数の第2のデータストリーム(311,312)が第1のデータストリームから形成され、前記第1のデータストリームの連続ビットは、前記第2のデータストリームの異なるデータストリームに割り当てられる。前記第2のデータストリームの複数のそれぞれのデータストリームのブロックインターリーブ処理(313,314)を個別に行う。連続した送信期間中に、一対の送信アンテナを用いて前記第2のデータストリームの異なるデータストリームから取り出される一対のデータシンボルを同等に転換した当該対のデータシンボルが後に続くように送信する。

Description

本発明は、無線ディジタル通信に関する。
図1に、典型的な802.11a/gの送信機のブロック図を示す。このような送信機は、シングル・インプット・シングル・アウト(SISO)方式である。伝送すべきビットは、前方誤り訂正(FEC)エンコーダ101に供給され、インターリーバ103がその後に続く。インターリーバ103の出力ビットは、シンボルマッパ105(例えばQAMマッパ)によって信号プレーン内でグループ化されるとともにマップされ、シンボルを構成する。シンボルを一連のサブキャリア周波数(即ち、周波数ビン)にマップするとともに、一連の時間サンプルを得るように変換するIFFT演算107が後に続く。巡回拡張演算108(ガードシンボルの付加に相当する)を施して、OFDMシンボルを得る。次に、パルス整形109及びIQ変調111を施して、RF出力信号を得る。
典型的な802.11a/g方式は、後述するパラメータを用いて第2の順列が後に続く第1の順列で記述することができるブロックインターリーバ(例えば、ブロックインターリーバ103)を有している。
用いられるパラメータとは、以下である。
N_CBPSは、インターリーバのサイズであり、即ち、シンボル単位の符号化ビットの数である。
kは、入力ビットのインデックスである。
iは、第1の順列後のインデックスである。
jは、第2の順列後のインデックスである。
第1の順列及び第2の順列は、以下の通りである。
(第1の順列)
i=(N_CBPS/16)(k mod16)+floor(k/16)
尚、k=0,1,…,N_CBPS−1
16列及びN_CBPS/16行がある。
ビットは、行毎に書き込まれ、列毎に読み出される。
(第2の順列)
j=s*floor(i/s)
+(i+N_CBPS−floor(16*i/N_CBPS))mod s
尚、i=0,1,…,N_CBPS−1
ここに、s=max(N_BPSC/2,1)
N_CBPSは、OFDMサブキャリアにおけるシンボル単位のビットの数である。異なる列の場合、隣接ビットが如何なるシンボルでも常に同一のインデックスに対してマップされるというわけではないので、ビット・シグニフィカンス・インデックスは変わる。
上述の順列を、図2おけるブロック201及び203に表す。
802.1la/b/gの無線ネットワークの市場の大成功に続いて、高スループットの無線LAN用の規格を作成するために発足した、ワーキンググループ802.11nが20003年に設立された。この提案された規格では、最大データレートが802.1la/b/gと比較される範囲の2倍以上の高さ程度までいくことができる。その基本的な技法は、マルチプル・インプット・マルチプル・アウトプット(MIMO)と称され、本質的には、無線メディアの経路ダイバーシティを利用する複数のアンテナを用いるものである。MIMO方式を説明する際に、MxNは、M個の送信アンテナとN個の受信アンテナを意味する。
複数のアンテナは、スペース・タイム・ブロック符号化(STBC)と称される一種の符号化を可能とするものであり、その一例はAlamouti符号化である。STBCでは、1ブロックの情報を、複数のアンテナ(スペース)と複数のシンボルの期間(タイム)にわたって符号化して伝送する。
802.11n(MIMO)方式は、少なくとも802.11a/g(SISO)方式と後方互換性があることが望ましい。特にインターリーブ処理に関して、競合する設計目標(例えば、コンパクト性、低消費電力及び通信のロバスト性)を扱いながら、後方互換性を達成するインターリーブ処理装置のニーズがある。
本発明は、包括的には、インターリーバ、及び効果的に競合する設計目標を扱いながら、後方互換性のニーズを満たすインターリーブ方法を提供することにある。
本発明の一態様によれば、データは、受信アンテナの期待数よりも多い数の送信アンテナを用いて送信される。少なくとも一対の送信アンテナを構成し、複数の第2のデータストリームが第1のデータストリームから形成され、前記第1のデータストリームの連続ビットは、前記第2のデータストリームの異なるデータストリームに割り当てられる。前記第2のデータストリームの複数のそれぞれのデータストリームのブロックインターリーブ処理は、個別に行われる。連続した送信期間中に、一対の送信アンテナを用いて前記第2のデータストリームの異なるデータストリームから取り出される一対のデータシンボルを同等に転換した当該対のデータシンボルが後に続くように送信する。本発明の別の態様によれば、データが単一アンテナ又は複数のアンテナを用いて送信される。単一アンテナを用いてデータ送信するときには、データのブロックインターリーブ処理は、送信前に第1のインターリーブ方法を用いて行われ、複数のアンテナを用いてデータを送信するときには、複数の第2のデータストリームが第1のデータストリームから形成され、前記第1のデータストリームの連続ビットは、前記第2のデータストリームの異なるデータストリームに割り当てられる。前記第2のデータストリームの複数のデータストリームのブロックインターリーブ処理は、前記第1のインターリーブ方法と実質的に同一のインターリーブ方法を用いて行われる[動作C]。本発明の別の態様によれば、データは、受信アンテナの期待数より多い数の送信アンテナを用いて送信される。一群の送信アンテナを構成し、送信アンテナの各々用の第2のデータストリームを含む複数の第2のデータストリームが、第1のデータストリームから形成され、前記第1のデータストリームの連続ビットは、第2のデータストリームの異なるデータストリームに割り当てられている。前記第2のデータストリームの複数のそれぞれのデータストリームのブロックインターリーブ処理を個別に行う。連続する送信期間中に、それぞれゼロでないシンボルは、当該複数の送信アンテナの異なる送信アンテナからの送信のために順に出力される。或る送信期間中、ゼロでないシンボルは、前記一群の送信アンテナのうちただ1つのアンテナに割り当てられ、ゼロのシンボルは、前記一群の送信アンテナのうち他のアンテナに割り当てられるようにした。
本発明は、図と関連して以下の説明からより明らかになる。
以下の説明では、N個の送信アンテナのより包括的な例として、2つの送信アンテナの場合を説明する。本発明の原理は、2つの送信アンテナから2つ以上の送信アンテナに容易に拡張することができることは、当業者に明らかである。
802.11n方式の場合、複数の空間ストリームが要求される。802.11n方式は802.11a/g方式と後方互換性があるようにするには、802.11a/g方式のインターリーバが存在する必要がある。本発明の取り組みは、802.11a/g方式のインターリーバに基づく新たなインターリーバを作成することである。即ち、入力ビットは、2つのストリームに対して解析されるものであり、各ストリームにおいて802.11a/g方式のインターリーバを用いる。
ここで、図3を参照すると、MIMO通信の送信機のブロック図が示されている。単一の情報ストリームは、ビットパーサ301に供給される。送信モードに依存して、ビットパーサは、単一の情報ストリーム又は2つの別々のストリームを発生する。SISOモードでは、ビットパーサは、入ってくる情報ストリームをインターリーバ310の上側枝路311に向ける。インターリーバ310の上側枝路311は、図2のインターリーバと同一の構成である。即ち、ブロックインターリーバ動作313は、シグニフィカンス・インデックス・シャッフラ315が後に続く。MIMOモードでは、ビットパーサは、入ってくる情報ストリームの代替ビットを該インターリーバの上側枝路311と該インターリーバの下側枝路312に出力し、2つの別々の情報ストリームを発生する。
該インターリーバの下側枝路は、該インターリーバの上側枝路と対応するブロック314及び316を含むことが好適である。更に、該インターリーバの下側枝路は、ブロック315c(動作C)を含み、随意ブロック316b(動作B)及びブロック316a(動作A)を含むことができる。
隣接ビットを異なる空間ストリームでは、周波数領域で可能な限り離して分離することが好適である。これを行う簡単な方法は、複数のN_CBPSでブロック316の出力を周期的に回転させることである(動作C)。動作Cは、インターリーブしたブロックを線形バッファでバッファリングして、複数のN_CBPSで周期的な回転を実行することが考えられる。現実的なシステムモデルを使用した場合、2x2且つ40MHzのシステムでは、57*N_CBPSを周期的に回転し、即ちOFDMの57個の周波数トーンが、或るSNRに対して最低のPER(パケット誤り率)を発生するのを示すことができる。2x2且つ20MHzのシステムでは、適切な回転は、25*N_CBPSである。動作Cでは、ビット・シグニフィカンス・インデックスは変更されていないことに留意する。
2つのストリーム間のときもビット・シグニフィカンス・インデックスを変更することが望ましい。これを行うための多くの方法がある。1つの方法は、動作2(ブロック316)を変更することであり、上述の第2の順列の定義を変更することによる。或いは又、現在の順列が列インデックスに従って変更するので、ビット・シグニフィカンス・インデックスを変更するには、異なる列インデックス、例えば列インデックス+1に従って現在の順列を実行することによって達成することができる。
動作2の変更を避けるために(例えば、ハードウェアリソースを考慮した場合である)、回路内の様々な位置で、例えばビットパーサ301又は動作A又は動作Bで同等の効果を達成することができる。例えば、動作Bを実現する1つの簡単な方法は、第2のビットストリームのシンボルに属するビットを、例えば1だけ周期的に回転することである。第3のビットストリームの場合では、シンボルに属するビットは、例えば2だけ周期的に回転することになる。
例えば、動作Aは,異なるシグニフィカンス・インデックスのシャッフルを達成するように構成された別のインターリーバの形式をとることもできる。動作Aを解析ブロックであるビットパーサ301と組み合わせることも潜在的に可能である。
異なるシグニフィカンス・インデックスのシャッフルを動作Cの一部として行うこともできる(即ち、既に演算が為されたものを処理して周波数選択を達成する)。これを行う簡単な方法は、第2のビットストリームにおける1つ以上のビット(尚、第3のビットストリームにおいては2つ以上のビット)をシフトすることである。
MIMO−OFDM方式において送信アンテナが受信アンテナより数が多いとき、データストリームの数は、送信アンテナの数より少なくする必要がある。しかしながら、追加の送信アンテナは、追加の空間ダイバーシティを提供して、更にシステム性能を改善することができることは知られている。これを行う1つの方法は、他のアンテナの信号から周期的に遅延させた信号を用いる空間拡散を用いることである。
其れを行う他の別の方法は、図4に示す2つのアンテナにトーン・インターリーブ処理信号を用いることである。図4では、ブロック401、403及び405は、包括的にブロック101、103及び105に対応する。ブロック407は、トーン・インターリーブ処理を以下のように行う。
周波数領域で、
ant1=[a1,0,a3,0,…]
ant2=[0,a2,0,a4,…]
即ち、一対のアンテナを構成し、特定のシンボル期間中、一対のアンテナのうちの一方のアンテナを介して送信したOFDMシンボルの範囲内で半分のトーンを使用して、もう半分のトーンを未使用とする。他方のアンテナの場合には、特定のトーンの使用又は未使用を逆にする。この簡単なトーン・インターリーブ処理は、この簡単な別のスキームの結果として、OFDM信号の周波数ダイバーシティを完全に利用するものではない。
図5を参照するに、N個のアンテナがあることを想定しているが、1つのストリームのみが許容されている。単一の情報ストリームがFECエンコーダ501に供給され、その後にビットパーサ503が続く。ビットパーサは、入ってくる情報ストリームのビットを順に枝路510a、・・・、510nにおける異なるビットに出力する。各枝路は、インターリーバ511を有し、その後にビット・ツー・シンボルマッパ513及びトーン・インターリーブ処理ブロック515が続く。周波数ダイバーシティは以下のように活用される。
ant_1=[a1,0, ...,a_N+1,0, ...]
ant_2=[0,a2,0, ...0,a_N+2,0, ...]
....
ant_N=[0, ...0,a_N-1,0,a_N+N,0, ...]
インターリーバの深さは、レイテンシ要求を満たすように調整することができる。
図6を参照すると、同一構造をSTBCに適用でき、STBC(ブロック617)は、トーン・インターリーブ処理の後に適用される。
2x1システムの場合、STBCの特定の変形例は、Alamouti符号化である。Alamouti符号化は、2つの隣接シンボルを同期伝送用の2つの送信アンテナにマップする。Alamouti符号化(AC)の利点を完全に生かすために、インターリーバは、通常ACの前に利用される。図7を参照するに、送信されるべきデータはFECエンコーダ701に供給され、その後に順にインターリーバ703、QAMマッパ705及びシンボルパーサ707が続く。シンボルパーサは、ACブロック709に供給する複数のシンボルストリームを発生する。
OFDM方式の場合に、図8に示すように、各枝路用にIFFT806が、ACブロック809の後に加えられる。
4x1システムの場合、Alamouti符号化は、4x1のスペース・タイム・ブロック符号(STBC)へと一般化される。現在の一般化したスキームは、以下の通りである。
s1(k) −s2*(k)の繰り返し
s2(k) s1*(k)の繰り返し
s3(k) −s4*(k)の繰り返し
s4(k) s3*(k)の繰り返し
各ラインは、2つの連続シンボル期間中の特定のアンテナで送信されるシンボルを表す。特に、2つの連続シンボル期間の第1の期間中、異なるシンボルがアンテナ1〜4で送信される。次の連続シンボル期間中、同等であるが転換したシンボルが送信される。従って、アンテナ2で送信されたシンボルの負の共役は、アンテナ1で送信され、アンテナ1で送信されたシンボルの共役は、アンテナ2で送信される。この指示パターンは繰り返される(即ち、アンテナ1の場合、s1(k+1),−S2*(k+1))。
近接近の符号化ビットは、OFDMを適用するときに、時間領域及び周波数領域に可能な限り離して分離するべきである。この目標に達するインターリーバを設計することは可能ではあるが、既存のインターリーバを有するシステムをアップグレードすることは不可能である。また、M>2であるMx1システムの場合、既存の繰り返しスキームは、空間ダイバーシティの種々の変形例を完全には利用していない。
空間ダイバーシティの種々の変形例を良好に利用するために、個別にインターリーブした複数の情報ストリームを構成する。図9を参照して、ブロック901、903、911a、911b、913a及び913bは、包括的には、ブロック501、503、511a、511b、513a及び513bに対応する。ACブロック915は、結果として生じるストリーム(個別にインターリーブされている。)を受信し、既知の方法でAlamouti符号化を施す。この構成を、個別インターリーブ化したAlamouti符号化(I2AC)と称することにする。
OFDM方式では、図10に示すように、各枝路にとって、IFFT1006がACブロックの後に加えられる。
M>2である場合、空間的回転をI2ACの処理に適用することができる。例えば、4x2の場合では、4つのストリームが解析されるビットとなる。各ストリームは、個別にインターリーブされ、QAMシンボルにマップされる。次に、AC符号化を、以下のように行う。
s1(k) −s2*(k) s1(k+1) −s3*(k+1) s1(k+2) −s4*(k+2)
s2(k) s1*(k) s2(k+1) −s4*(k+1) s2(k+2) −s3*(k+2)
s3(k) −s4*(k) s3(k+1) s1*(k+1) s3(k+2) s2*(k+2)
s4(k) s3*(k) s4(k+1) s2*(k+1) s4(k+2) s1*(k+2)
それ故、ストリームは、4つのアンテナにわたって対をなしてSTBC化される(3つの対が可能であり、(1,2),(3,4))、((1,3),(2,4))、((1,4),(2,3)))。これは、以下に説明する2つの方法(オプション)で行うことができる。
(オプション1)
Alamouti符号化は、6つ以上の連続したOFDMシンボルで次のように行うことができる。まず、2つのOFDMシンボルは、全ての周波数で組み合わせ(1,2),(3,4)を用い、次に、2つのOFDMシンボルは、全ての周波数で組み合わせ(1,3),(2,4)を用い、最後に、2つのOFDMシンボルは、全ての周波数で組み合わせ(1,4),(2,3)を用いる。次に、そのパターンを次の6つのOFDMシンボルに対して繰り返す。これを行うことの欠点は、各周波数用のチャンネルマトリックスが、時間で変化することである。
i番目のOFDMブロックのj番目のデータシンボルを、aij、bij、cij及びdijとし、4つのストリームをa、b、c及びdで示す。各OFDMブロックがN個のデータブロックを有するものとする。角括弧の間の一組のシンボルは、1つのOFDMシンボルである。ACブロックによって行われる動作は、以下のように表すことができる。
Figure 2009510964
(オプション2)
Alamouti符号化は、2つのOFDMシンボルで次のように行うことができる。まず、第1の周波数ビンは、組み合わせ(1,2),(3,4)を用い、第2の周波数ビンは、組み合わせ(1,3),(2,4)を用い、第3の周波数ビンは、組み合わせ(1,4),(2,3)を用いる。次に、そのパターンを繰り返す。従って、このAlamouti符号化は、各周波数ビン用に異なるアンテナからのシンボルを用いる。しかしながら、各周波数ビン用のチャンネルマトリックスは、時間で変化しない。
Figure 2009510964
同一の原理は、如何なる2pxpのSTBCシステムにも適用可能である。
本発明は、その趣旨又は不可欠の構成要素から逸脱することなく、他の特定の態様で実現することができることは当業者に明らかである。従って、図を参照して説明した実施例は全ての態様において図示するために用いたものであり、制限することを意図するものではない。本発明の範囲は、上述の説明よりも特許請求の範囲によって指示されており、本発明の等価の趣旨及び範囲内でもたらされる全ての変更は、本発明に含まれることを意図している。
既知のSISO通信用送信部のブロック図である。 図1のインターリーバのより詳細なブロック図である。 MIMO通信用送信部の一部のブロック図である。 2つのアンテナ用のトーン・インターリーブ処理信号を用いる通信用送信機の一部のブロック図である。 本発明の一態様による2つのアンテナ用のトーン・インターリーブ処理信号を用いる通信用送信機の一部のブロック図である。 本発明の別の態様による2つのアンテナ用のトーン・インターリーブ処理信号を用いる通信用送信機の一部のブロック図である。 Alamouti符号化を用いる通信用送信機の一部のブロック図である。 OFDM及びAlamouti符号化を用いる通信用送信機の一部のブロック図である。 本発明の一態様によるAlamouti符号化を用いる通信用送信機の一部のブロック図である。 本発明の一態様によるOFDM及びAlamouti符号化を用いる通信用送信機の一部のブロック図である。

Claims (10)

  1. 受信アンテナの期待数より多い数の送信アンテナを用いてデータを送信する方法であって、
    一群の送信アンテナを構成するステップと、
    第1のデータストリームから、前記送信アンテナの各々用の第2のデータストリームを含み、前記第1のデータストリームの連続ビットが前記第2のデータストリームの異なるデータストリームに割り当てられている、複数の第2のデータストリームを形成するステップと、
    前記第2のデータストリームの複数のそれぞれのデータストリームのブロックインターリーブ処理を個別に行うステップと、
    特定の送信期間中に、前記送信アンテナに対してトーン・インターリーブ処理を行うステップとを含み、
    OFDMシンボルの各トーンについて、当該トーンが前記一群の送信アンテナのうちただ1つの送信アンテナ用にはゼロではなく、前記一群の送信アンテナのうち他のアンテナ用にはゼロとするようにした、データ送信方法。
  2. 送信前に、前記OFDMシンボルのスペース・タイム・ブロック符号化を行うステップを含む、請求項1に記載のデータ送信方法。
  3. 受信アンテナの期待数より多い数の送信アンテナを用いてデータを送信する送信機であって、
    一群の送信アンテナを構成する手段と、
    第1のデータストリームから、前記送信アンテナの各々用の第2のデータストリームを含み、前記第1のデータストリームの連続ビットが前記第2のデータストリームの異なるデータストリームに割り当てられている、複数の第2のデータストリームを形成する手段と、
    前記第2のデータストリームの複数のそれぞれのデータストリームのブロックインターリーブ処理を個別に行う手段と、
    特定の送信期間中に、前記送信アンテナに対してトーン・インターリーブ処理を行う手段とを含み、
    OFDMシンボルの各トーンについて、当該トーンが前記一群の送信アンテナのうちただ1つの送信アンテナ用にはゼロではなく、前記一群の送信アンテナのうち他のアンテナ用にはゼロとするようにした、送信機。
  4. 送信前に、前記OFDMシンボルのスペース・タイム・ブロック符号化を行うステップを含む、請求項3に記載の送信機。
  5. 受信アンテナの期待数より多い数の送信アンテナを用いてデータを送信する方法であって、
    第1のデータストリームから、前記第1のデータストリームの連続ビットが前記第2のデータストリームの異なるデータストリームに割り当てられている、複数の第2のデータストリームを形成するステップと、
    前記第2のデータストリームの複数のそれぞれのデータストリームのブロックインターリーブ処理を個別に行うステップと、
    前記第2のデータストリームのそれぞれのデータストリームから、シンボルを形成するステップと、
    連続する送信期間中に、OFDMシンボルの周波数ビンの範囲内で、前記第2のデータストリームの異なるデータストリームから取り出された周波数ビンの情報を1つの送信アンテナから同等に転換した周波数ビンの情報が後に続くように送信することによって、前記OFDMシンボルの周波数ビンの情報を再構成するステップとを含むデータ送信方法。
  6. 前記第1のデータストリームを符号化するステップを含む、請求項5に記載のデータ送信方法。
  7. 受信アンテナの期待数より多い数の送信アンテナを用いたデータ送信機であって、
    少なくとも一対の送信アンテナを構成し、
    第1のデータストリームから、前記第1のデータストリームの連続ビットが第2のデータストリームの異なるデータストリームに割り当てられている、複数の第2のデータストリームを形成する手段と、
    前記第2のデータストリームの複数のそれぞれのデータストリームのブロックインターリーブ処理を個別に行う手段と、
    前記第2のデータストリームのそれぞれのデータストリームから、シンボルを形成する手段と、
    OFDMシンボルを形成する手段とを備え、
    連続する送信期間中に、一対の送信アンテナが、前記第2のデータストリームの異なるデータストリームから取り出されたOFDMシンボルを同等に転換したOFDMシンボルが後に続くように送信するようにした、データ送信機。
  8. 前記第1のデータストリームを符号化する手段を備える、請求項7に記載のデータ送信機。
  9. 各OFDMシンボルについて、OFDMシンボル用の周波数ビンの情報が、前記第2のデータストリームのうち単一のデータストリームから取り出される、請求項5に記載のデータ送信方法。
  10. 前記OFDMシンボルの少なくとも幾つかについて、特定のOFDMシンボル用の周波数ビンの情報が、2より大きい偶数個の前記第2のデータストリームから取り出される、請求項5に記載のデータ送信方法。
JP2008534109A 2005-10-05 2006-06-23 Mimo伝送用データストリームの個別インターリーブ方法 Withdrawn JP2009510964A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US72413305P 2005-10-05 2005-10-05
PCT/IB2006/052066 WO2007091131A1 (en) 2005-10-05 2006-06-23 Individual interleaving of data streams for mimo transmission

Publications (1)

Publication Number Publication Date
JP2009510964A true JP2009510964A (ja) 2009-03-12

Family

ID=37398301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008534109A Withdrawn JP2009510964A (ja) 2005-10-05 2006-06-23 Mimo伝送用データストリームの個別インターリーブ方法

Country Status (5)

Country Link
US (1) US7949067B2 (ja)
EP (1) EP1935127A1 (ja)
JP (1) JP2009510964A (ja)
CN (1) CN101283538B (ja)
WO (1) WO2007091131A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9226270B1 (en) * 2009-03-24 2015-12-29 Marvell International Ltd. Multi-radio device for WLAN
US8773969B1 (en) 2009-03-24 2014-07-08 Marvell International Ltd. Multi-radio device for WLAN
US10411846B1 (en) 2009-03-24 2019-09-10 Marvell International Ltd. Multi-radio device for WLAN
US8601340B2 (en) * 2011-07-25 2013-12-03 Cortina Systems, Inc. Time varying data permutation apparatus and methods
WO2013048567A1 (en) * 2011-09-30 2013-04-04 Intel Corporation Methods to transport internet traffic over multiple wireless networks simultaneously
US10277448B1 (en) 2017-11-02 2019-04-30 Nxp Usa, Inc. Method for hierarchical modulation with vector processing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6807145B1 (en) * 1999-12-06 2004-10-19 Lucent Technologies Inc. Diversity in orthogonal frequency division multiplexing systems
US6888809B1 (en) * 2000-01-13 2005-05-03 Lucent Technologies Inc. Space-time processing for multiple-input, multiple-output, wireless systems
US20020193146A1 (en) * 2001-06-06 2002-12-19 Mark Wallace Method and apparatus for antenna diversity in a wireless communication system
US7359313B2 (en) * 2002-06-24 2008-04-15 Agere Systems Inc. Space-time bit-interleaved coded modulation for wideband transmission
US20040081131A1 (en) * 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US7450662B2 (en) * 2004-07-08 2008-11-11 Beceem Communications Inc. Method and system for maximum transmit diversity

Also Published As

Publication number Publication date
US7949067B2 (en) 2011-05-24
EP1935127A1 (en) 2008-06-25
WO2007091131A1 (en) 2007-08-16
US20090074091A1 (en) 2009-03-19
CN101283538A (zh) 2008-10-08
CN101283538B (zh) 2012-12-05

Similar Documents

Publication Publication Date Title
US7826556B2 (en) Individual interleaving of data streams for MIMO transmission
KR100698770B1 (ko) 광대역 무선통신시스템에서 시공간 부호화 데이터의 부반송파 사상 장치 및 방법
JP5592346B2 (ja) IEEE802.11n標準のため改善されたインターリーバ
US9680616B2 (en) Tone reordering in a wireless communication system
JP5431970B2 (ja) 多入力多出力マルチバンドofdm通信システムのインターリーブをする方法及びシステム
US9178658B2 (en) System and method for channel interleaver and layer mapping in a communications system
US7756004B2 (en) Interleaver design with column swap and bit circulation for multiple convolutional encoder MIMO OFDM system
WO2007104209A1 (fr) Procédé et appareil de transmission multi-antenne utilisant un codage en fréquence spatiale
JP2009510964A (ja) Mimo伝送用データストリームの個別インターリーブ方法
WO2010078786A1 (zh) 多天线信号处理系统及方法
KR100769671B1 (ko) Mb-ofdm 송수신장치 및 그 신호처리 방법
JP4169796B2 (ja) 無線通信システム
US8050349B2 (en) Individual interleaving of data streams for MIMO transmission
CN101378283A (zh) 基于空频编码的mimo-ofdm系统的分集方法
Nagaraj et al. Best antenna selection for coded SIMO–OFDM
Zhang et al. Advances in space-time/frequency coding for next generation broadband wireless communications

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090904